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Abstract. In statistical decision theory involving a single decision maker, an information struc-
ture is said to be better than another one if for any cost function involving a hidden state variable
and an action variable which is restricted to be conditionally independent from the state given some
measurement, the solution value under the former is not worse than that under the latter. For finite
spaces, a theorem due to Blackwell leads to a complete characterization on when one information
structure is better than another. For stochastic games, in general, such an ordering is not possible
since additional information can lead to equilibria perturbations with positive or negative values to a
player. However, for zero-sum games in a finite probability space, Peski introduced a complete char-
acterization of ordering of information structures. In this paper, we obtain an infinite-dimensional
(standard Borel) generalization of Peski’s result. A corollary is that more information cannot hurt a
decision maker taking part in a zero-sum game. We establish two supporting results which are essen-
tial and explicit though modest improvements on prior literature: (i) a partial converse to Blackwell’s
ordering in the standard Borel setup and (ii) an existence result for equilibria in zero-sum games
with incomplete information.
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1. Introduction. Characterizing the value of information structures is a prob-
lem in many disciplines involving decision making under uncertainty. In stochastic
control theory, it is well known that more information cannot hurt a given decision
maker since the decision maker can always choose to ignore this information. In sta-
tistical decision theory involving a single decision maker, one says that an information
structure is better than another one if for any given measurable and bounded cost
function involving a hidden state variable and an action variable which is restricted to
be only a function of some measurement, the solution value obtained under optimal
policies under the former is not worse than the value obtained under the latter. For
finite probability spaces, Blackwell’s celebrated theorem [7] on the ordering of infor-
mation structures obtains a precise characterization of when an information structure
is better. This finding has inspired much further research as reviewed in, e.g., [11, 34].

Since Blackwell’s seminal 1953 paper [7], significant work has been done to extend
Blackwell’s results to team problems and games. Stochastic team problems (known
also as identical interest games) were studied in a finite-space setting by Lehrer,
Rosenberg, and Shmaya [28]; see also [45, Chapter 4]. The value of information in
various types of repeated games has also been explored in [24], [25], and [26].
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In general games, information can have both positive and negative value to a
player since additional information can lead to a perturbation which is not necessarily
monotone due to the presence of competitive equilibrium, unlike in a team setup.
Some of the earlier accounts on such phenomena are [21] and [3], where the latter
studied the comparison of information structures for team-like (LQG) and zero-sum-
like (quadratic duopoly) games.

As noted above, for general non—zero-sum game problems, informational aspects
are very challenging to address, and more information can hurt some or even all of the
players in a system; see, e.g., [21, 20, 23, 2]. To make this discussion more concrete,
we provide the following example due to Bassan et al. [6].

Ezample 1.1. Consider a card drawn at random from a deck, where its color can
be either red or black, each with probability 1/2. Player 1 first declares his guess of
the color, and then, after hearing what Player 1 guessed, Player 2 submits her guess
for the color. If both players guess the same color, the payout is $2 each, whereas if
one player guesses correctly, that player receives a payout of $6, and the other player
receives $0.

In the case where both players are uninformed about the color of the card, the
expected payout is $3 each, as Player 1’s optimal strategy is arbitrary, and Player 2’s
optimal strategy is to guess the opposite color of what Player 1 guessed.

In the case where both players are informed of the color of the card prior to
declaring their guess, the equilibrium for the game occurs when both players guess
the true color of the card. In this case, the expected payout becomes $2 for each
player.

Bassan et al. further provided sufficient conditions for games to have the “positive
value of information property,” where providing additional information to some or all
players results in greater or equal payoffs for all players [6]. Gossner and Mertens
highlighted zero-sum games as a particularly interesting class to study in the context
of ordering information structures in games and did preliminary work on this ordering
[20]; zero-sum games provide a worthwhile class of games to study due to the fact
that, under mild conditions, every game has a value (achieved at a saddle point).

For comparison of information structures in zero-sum games with finite measure-
ment and action spaces, Peski provided necessary and sufficient conditions and thus a
complete characterization [33]. Prior to Peski’s results, De Meyer, Lehrer, and Rosen-
berg had shown that the value of information is positive in zero-sum games, albeit
with a slightly different setup than Peski, where their payoff depended on an individ-
ual “type” for each player rather than a common state of nature; their results were
applicable for infinite action spaces and finite type spaces [14]. Furthermore, Lehrer
and Shmaya studied a “malevolent nature” zero-sum game played between nature and
a player in a finite setting and characterized a partial ordering of information struc-
tures for these games [29]. We also note the following references on topological and
continuity properties of information structures in single-agent and multiagent team
problems [46, 44, 47]. A recent comprehensive study on the value and topological
properties of information structures in zero-sum games, which also generalizes [33] to
the countably infinite probability space setup, is [32].

In this paper, we generalize Peski’s results to a broad class of zero-sum games
with standard Borel measurement and action spaces. We recall that a metric space
which is complete and separable is called a Polish space and that a Borel subset of
a Polish space is called a standard Borel space. Finite-dimensional real vector spaces
are important examples of such spaces.
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Toward this goal, additional supporting results, which may be of independent
interest, are obtained: Sufficient conditions are presented (i) for the existence of
saddle-point equilibria in zero-sum games with incomplete information and (ii) for a
partial converse to Blackwell’s ordering when the player has standard Borel measure-
ment and action spaces and the unknown variable also takes values from a standard
Borel space.

2. A review of prior results and contributions.

2.1. Comparison of information structures in single-agent problems.
Let  ~ ¢ be an X-valued random variable with X being a standard Borel space. We
call z the state of nature; ¢ is known by the decision maker, but x is not. Recall that a
standard Borel space is a Borel subset of a complete, separable, metric (Polish) space.
Let Y, our measurement space, be another standard Borel space and y be Y-valued,
defined with

y=g(z,w)
for some independent noise variable w (which, without any loss, can be taken to be
[0,1]-valued). In the above, we can view g as inducing a measurement channel Q,
which is a stochastic kernel or a regular conditional probability measure from X to Y
in the sense that Q(-|z) is a probability measure on the (Borel) o-algebra B(Y) on
Y for every z € X, and Q(4]-) : X — [0,1] is a Borel measurable function for every
A e B(Y).

Given a fixed X, Y, and (, a single-player decision problem is a pair (¢,U) of a
cost function ¢ : X x U — R and an action space U.

Using stochastic realization results (see Lemma 1.2 in [19] or Lemma 3.1 in [10]),
it follows that the functional representation in y = g(z, v) is equivalent to a stochastic
kernel description of an information structure since for every @), one can define g and
a [0, 1]-valued random function V' so that the representation holds almost surely.

Let P(X) denote the set of all probability measures on (the Borel sigma field over)
X. For ¢ € P(X) and kernel @, we let (@ denote the joint distribution induced on
(X' xY,B(X xY)) by channel @ with input distribution (:

Q) = [ Quisle)clan). A€ B x ),
Now let the objective be one of minimization of the cost
(2.1) J(.Q.7) = EZ” [C(f& U)]

over the set of all admissible measurable policies " := {7 : Y — U} with u = y(y),
where ¢ : X x U — R is a Borel measurable cost function and ECQ’AY denotes the
expectation with initial state probability measure given by (, under policy , and
given channel Q).

The comparison question is the following: When can one compare two measure-
ment channels Q', Q2 such that

inf J(, QN y) < inf, J(¢, Q%)

for a large class of single-player decision problems in (2.1)?

We now recall the notion of garbling. We note that garbling is sometimes defined
to be equivalent to physical degradedness of communication channels (as opposed to
stochastic degradedness) [13]; however, in this paper, we will take stochastic degrad-
edness and garbling to be equivalent.
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DEFINITION 2.1. An information structure induced by some channel Qo is garbled
(or stochastically degraded) with respect to another one, Q1, if there exists a channel
Q' onY x Y such that

Q2(B|z) = /YQ’(B|y)Q1(dy|x), B e B(Y), (as.zeX.

We also define the notion of more informative than and introduce a useful result.

DEFINITION 2.2. An information structure p is more informative than another
information structure v if

: vyy > Y
inf B (e, w)] = inf B e(z, u)]

for all single-player decision problems (c,U).

PROPOSITION 2.3. The function

V(¢) := inf /c(x,u){(dx)

uel

s concave in ( under the assumption that c is measurable and bounded.

For a proof of this proposition, see [45, Theorem 4.3.1].

We emphasize that in Definition 2.2, U is also a design variable for the decision
problem. For instance, if U were a singleton, then the comparison of information
structures would be meaningless. With this in mind and in view of Proposition 2.3,
we state Blackwell’s classical result in the following.

THEOREM 2.4 (see Blackwell [7]). Let X,Y be finite spaces. The following are
equivalent:

(i) Q2 is stochastically degraded with respect to Q1 (that is, a garbling of Q1 ).

(ii) The information structure induced by channel Q1 is more informative than

the one induced by channel Qo for all single-player decision problems with
finite U.

That (i) implies (ii) for general spaces follows from Proposition 2.3, which is an
immediate finding in statistical decision theory and Jensen’s inequality [45, Theorem
4.3.2]. We also note that this result will hold and that the proof will follow in an
identical manner if the player is allowed to use randomized policies, i.e., u = y(y,w),
where w is an independent noise variable.

The converse, (i) implies (i), is significantly more challenging. For the case
with general spaces, related results are attributed to [9], [12], and [40], which relate
an ordering of information structures in terms of dilatations and their relation with
comparisons under concave functions defined on conditional probability measures. A
very concise yet informative review is in [11, pp. 130-131], and a more comprehensive
review is in [41]. We will present a direct proof that will be utilized in our main result
of the paper and present a comparative discussion.

2.2. Comparison of information structures in zero-sum game problems.
Now consider a zero-sum game generalization of the problem above with two decision
makers.

Consider a two-agent setup as

)

Yy :gi(xvvi)v i:172a
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1 2

where the noise variables v! and v? are independent of x. Suppose that g* induces
a channel Q° for i = 1,2 as described earlier and DM 4 has only access to 3*. Let
v = {v!,4%} denote the measurable policies of the agents.

Given fixed X, Y!, Y2, and ¢ such that = ~ (, a game G = (¢, U, U?) is a triple
of a measurable and bounded cost function ¢ : X x U x U2 — R and action spaces
for each player U', U2.

We will impose one of the following conditions on the information structures. We
note that Assumption 2.2 implies Assumption 2.1, but this assumption often allows
for a simpler interpretation. That this implication holds is a consequence of the
independent measurements reduction formulation to be explained in detail later in
the paper (see Theorem 3.1). The results will be presented under the more general
Assumption 2.1.

Assumption 2.1. The information structure is absolutely continuous with respect
to a product measure

P(dy', dy?, dz) < Q' (dy")Q*(dy?)¢(dx)

for reference probability measures Q°, i = 1,2. That is, there exists an integrable f
which satisfies for every Borel A, B,C

Pyl € By € Cwe A) = /A A Q@)@ ).

Assumption 2.2. The following conditional independence (or Markov) condition
holds:

P(dy', dy?, dz) = Q" (dy'|2)Q*(dy*|x)¢ (dx).

Here, the measurements of agents are absolutely continuous so that for 7 = 1,2, there
exists a nonnegative function f’ and a reference probability measure @* such that for
all Borel S,

Q' € Slx) = /S Pty 2@ (dy).

Let the joint measure P(dy',dy?, dx) define the information structure for the
game, and let us denote this with y. For a zero-sum game with the conditional
independence assumption in Assumption 2.2, an information structure u consists of
private information structures p' and p? defined with Q% i = 1,2. Define u’ as
the joint probability measure induced on P(X x Y?) by measurement channel Q° with
input distribution ¢(dz). For our analysis, we will allow policies to be randomized with
independent randomness. That is, the set of all admissible measurable policies I'* will
be the set of all measurable functions ¢, where u® = v*(y*,w?) for some independent
noise variable w®. Admissible randomized policies are stochastic kernels from Y? to
U’. Under conditional independence, let us define the following cost functional for a
single-stage setup:

Q'.Q%
J(<7M17717ﬂ2772) :Eg l[c(xvulvu2)}

- /m c(z,7' (") 7* (1) Q" (dy'|2)Q? (dy® )¢ (da).
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Suppose that DM 1 (the minimizer) wishes to minimize the cost and that DM 2
(the maximizer) wishes to maximize the cost. Let 4! and 42 be defined as earlier for
each decision maker.

DEFINITION 2.5. Given an information structure u, we say that y-*,v** is an

equilibrium for the zero-sum game if
inf J(C,pt vt u? ) = Ity PR
'YIEFI
= sup J(¢ pt a2 R).
,Y2€F2

Let V& (v',~4?) be the expected value of the cost function ¢ for the maximizer, for
some game G, given information structure p and strategies (v*,~?) for the minimizer
and maximizer, respectively:

VA7) = / (7 (1), 72 (1)) Q* (dy|2) Q2 (dy?| ) (dr).

Let V*(G, p) be V4 (v%,~4?), where (y!,~?) are chosen to be the equilibrium strate-
gies for the players.

DEFINITION 2.6. For fized X,Y',Y?, and ¢ such that x ~ (, we say that an infor-
mation structure p is better for the mazimizer than information structure v (written
as v 'S ) over all games in a class of games G if and only if for all games G in G,

V(G p) > V(G v).

DEFINITION 2.7. We denote by x'i the information structure in which player i’s
information from 1 is garbled by a stochastic kernel x*. We let -i denote the other
player in the game. Explicitly, this means the information structure becomes

(K'w)(B,dy~", dx) = /Y E(Bly )u(dy',dy™", dx), B € B(Y').
We use K* to denote the space of all such stochastic kernels x* for player i.

THEOREM 2.8 (see Peski [33]). Let X, Y!, Y2 be finite. For any two information
structures p and v, u is better for the mazimizer than v over all games with finite
action spaces U, U? if and only if there exist kernels k' € K',i = 1,2, such that

kv = K%L

In particular, under Assumption 2.2, we have the more explicit characterization with
KQL = Qi and Q% = K? fm

where QZ and Q! are the measurement channels for player i under information struc-

tures p and v, respectively.

In this paper, we will obtain a standard Borel generalization of this result.

2.3. Team theoretic setup. For completeness, we also discuss the team theo-
retic setup in our review.

Lehrer, Rosenberg, and Shmaya extended Blackwell’s ordering of information
structures to team problems in finite-space settings for various solution concepts,
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including Nash equilibrium and several forms of correlated equilibrium, in [28]. For
these results to hold, various degrees of correlation between the players’ private signals
are allowed. These solution concepts for correlated equilibrium are adopted from [18],
which builds on ideas first introduced in [1]. These provide an ordering of information
structures for static stochastic team problems. Related results are discussed in [45,
Chapter 4]. Recently, advances have been made in understanding the topological
properties of strategic measures in team problems in [47].

2.4. Contributions. In this paper, we will derive a standard Borel counterpart
of Theorem 2.8. While obtaining our results, we will also derive conditions for the
existence of saddle points in Bayesian zero-sum games in standard Borel spaces as
well as a converse theorem to Blackwell’s ordering of information structures in the
infinite setup.

The contributions of this paper are as follows:

(i) We will derive a standard Borel counterpart of Theorem 2.8 characterizing

an ordering of information structures for zero-sum games (Theorem 4.4).

(ii) We present two supporting results: (a) As a minor technical contribution,
we present sufficient conditions for the existence of saddle points in Bayesian
zero-sum games with incomplete information in standard Borel spaces (The-
orem 3.1). This will build on placing an appropriate topology on the space
of policies adopted by the decision makers. Our analysis generalizes existing
results in the literature, notably [30] and [8], though, as we note in the paper,
our generalization is rather technical, and the conditions in [30] are nearly
equivalent to ours. (b) As a further supporting theorem, we will present a
partial converse to Blackwell’s ordering theorem for standard Borel spaces,
using a separating hyperplane argument and properties of locally convex spa-
ces (Theorem 3.3). This presents an explicit, self-sufficient derivation for a
converse theorem to be utilized in our main theorem, though related compre-
hensive results have been reported in the literature, as we note in the paper.

3. Supporting results on existence of saddle points and comparison for
zero-sum games with standard Borel spaces.

3.1. On existence of saddle points and equilibria. Prior to focusing in
on the ordering of information structures, we present a supporting result regarding
when equilibrium solutions to zero-sum games exist. In the finite case, equilibrium
solutions always exist [42] (through, e.g., [4, Theorem 4.4]), but this does not hold
true in general [31]. Theorem 3.1 below gives sufficient conditions for equilibrium
solutions to exist for games with incomplete information.

The existence of a value for games with incomplete information has been studied
rather extensively. For readers’ convenience and as a direct proof, we present the
result below; to our knowledge, our statement and conditions have not been stated in
the prior literature, though results nearly equivalent to ours have been noted rather
indirectly. Most notably, Milgrom and Weber present an existence result for more
general games in [30, Theorem 1], which presents conditions whose generality is diffi-
cult to interpret: A careful look at condition R1 in [30, p. 625] leads to the conclusion
that the authors have nearly (but not exactly) the same condition (ii) we note below;
that is, continuity of the cost function in the actions for every fixed hidden state
variable z is sufficient, though the statements given in [30] impose conditions that
are not conclusive on this. We attribute this to the fact that the authors in [30] use
their Proposition 1(c) without establishing its relation to item (ii) below (due to the
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measurability requirement in the statement of [30, Proposition 1(c)]). Our analysis
affords the simplicity and generality in the condition since we build on the w-s topol-
ogy rather than weak topology and directly on Lusin’s theorem [15] as followed in
[30] (we also note that the relation between weak and w-s topologies on probabili-
ties defined on product spaces with a fixed marginal can in fact be established using
Lusin’s theorem). Hence, in a strict sense, our conditions are more direct and general
as stated.

The comprehensive book [8, Proposition III.4.2] imposes continuity in all the
variables (unlike what is presented below). Furthermore, [8, Proposition II1.4.2] builds
on a topology construction on policies which is different from what we present here;
regarding the construction in [8], we would like to caution that in the absence of
absolute continuity conditions on the information structure, this construction may
lead to a lack of closedness on the sets of admissible policies (or strategic measures) as
the counterexample [47, Theorem 2.7] reveals: In this counterexample, which would
reduce to the setup studied here with y! = y? = y, a sequence of policies is constructed
so that for each element of the sequence, the action variables of the two decision makers
are conditionally independent given their measurements, but the setwise (and hence
weak) limit of the sequence is not conditionally (or otherwise) independent, and thus
the limit measure does not belong to the original information structure. For a more
detailed discussion, we refer the reader to [37, section 7.2].

THEOREM 3.1 (existence of equilibria). For a given game, assume that Assump-
tion 2.1 holds. Further, let the following hold:
(i) The action spaces of players, U, U?, are compact.
(ii) The cost function c is bounded and continuous in players’ actions for every
state of nature x.
Then an equilibrium exists under possibly randomized policies, and so there exists a
value of the zero-sum game.

Proof. Step (1): By Assumption 2.1, we can reformulate the problem in a new
probability space in which the measurements are independent from the unknown
variable z. This reformulation, called an independent measurements reduction, is
essentially due to Witsenhausen [43], with a detailed discussion in [44, section 2.2];
see Figure 3.1.

The main benefit of this approach is to define a compact/convex policy space for
the players (e.g., see [47, section 2.2]). To complete this reformulation, we note the

c(z,ut, u?)

,,)/1 Ql Q2 72
wl——y! E y2 o2
@ é(x7 y]7 y27 ul b /LLQ) = C(ZE7 ul 9 'ZLQ).f(x7 y] 9 y2)

’Yl 72

e =1 o [ 917 |
n y Q Q22

FiG. 3.1. Reformulation of two information structures (with respect to an independent mea-
surements reduction).
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following holds for some function f and reference probability measures Q*:
P(d(ﬂ, dylv dyQa du17 du2) = C(dx)f(x, yla y2)Q1(dyl)1{’71(yl)edul}Q2(dy2)1{72(y2)6du2)}a

where 17y is the indicator function. Thus, the value function for the game can be
written as

VEON) = [ oot o el ut )@ Ay Q)6 da).

We then create a new cost function c(z,ul, u?, y',y?) = c(x, ut, v?) f(z, y', y?).

Step (2): Let z € X be the random state of nature. Let v',7? be the policies
for the players and u',u? be the resulting actions chosen by the players. We allow
for policies v, where u’ is chosen in a random way, i.e., u’ = v*(y’,w’), where w’ is
some [0, 1]-valued independent random variable (we note that any randomized policy,
defined as a stochastic kernel from Y? to U?, admits such a stochastic realization; see
[19, Lemma 1.2] or [10, Lemma 3.1]).

Step (3): Let ¢ be the reformulated cost function of this game. Under the new
product probability measure, we have

VE( AP = /C(x»ul,u2,yl,y2)(52171)(dy1,dul)(Q%Q)(dyQ,du2)<(d$)~

Here, (Q'y')(dy', du') and (Q%~?)(dy?, du?) are the probability measures induced on
the measurement and the action variables. By independence due to the reduction, we
can consider the expected cost as a function of the reduced-form policies: V& (74,92 =
VE(Q', @*4?). Now, without loss of generality, we fix Q'y!, allowing us to express
the above equation in the following form:

VEGY, Q%) = / (G*2)(dy?, du?) / (e, ut, 2,y y?) Q) (dyt, dut ) (de).

Let [c(z,ut,u?,y', y?) QM) (dy', dut)((dz) be defined as ¢(u?,y?).

Now that we have an independent measurements reduction, we will (similar to
the analysis from [30, 10, 47]) identify, almost surely, every admissible policy with a
probability measure on the product space: We adopt the view that, given game G and
information structure p , Qv* is a probability measure on Y¢ x U? with fixed marginal
Q'(dy') on Y?. Let I'* denote the space of all such measures since every Q'+’ can be
identified with an element in I'* almost surely. The pairing of an information structure
and a policy induces a probability measure P on the five-tuple: (X,Y?!, Y2 U, U?),
with

P(dz,dy', dy?, du', du®) = v' (du'|y")7* (du?[y?) Q' (dy' |2) Q% (dy?|x) ¢ (dx).

This construction allows us to obtain a proper topology to work with for spaces
of policies with desirable convexity and compactness properties.

We now recall the w-s topology [38] on the set of probability measures P (X x U);
this is the coarsest topology under which [ f(z,u)v(dz,du) : P(X x U) — R is con-
tinuous for every measurable and bounded f which is continuous in w for every x
(but unlike weak topology, f does not need to be continuous in z). We note that
functions which are continuous in one argument and measurable in the other are
sometimes referred to as Carathéodory functions. Now, since the exogenous variables
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are fixed, weak convergence in this setting is equivalent to w-s convergence (see [44]),
and continuity in the exogenous variable is not needed here. Consider a sequence
of actions (Q%72),,(dy?, du?) which converges to (Q?v?)(dy?, du?) weakly. We have
that ¢(u?,y?) is continuous in u?. Since p is fixed, the marginals on Y? are fixed.
Therefore, by [38, Theorem 3.10] (or [5, Theorem 2.5]), we can use the w-s topol-
ogy on the set of probability measures P(Y? x U?). And so we have continuity of
VE(Q', @%4?) in Q4?2 in the w-s topology and, by the equivalence in this setting,
the weak topology.

This also holds for continuity in @'y in the reverse case where we fix Q%72.
Therefore, in general, we have that V& (-, ) is continuous in (Q+") when (Q~%y~%) is
fixed.

Step (4): Let T = {A € P(Y x U) : A\y = Q} be our reduced policy space,
where @ is the fixed marginal of the measure A on Y. Following from [47, section
2.1], the space of all Q*y* (which we denote by I'*) is compact under weak conver-
gence.

Step (5): We observe that V4 (Q'v!, Q%v?) is linear and hence is both concave
and convex in each entry. For completeness, we establish this linearity result. Take
6 € (0,1). Then, without loss of generality, we fix Q'y! and obtain the follow-
ing:

VEQ' 007 + (1 — 0)P)
- / (BG4 + (1 - 0)Q%72)(dy?, du?) / (%, 57)
- / (6Q%+2)(dy?, du?) /

y?u?
= 0VE(Q'Y, Q%) + (1 - 0)VE(Q', Q%F°).

Finally, we recall that, under the weak topology, the space of probability measures
is a metric space, and thus our spaces I are Hausdorff spaces.

Since V& (Ql'yl, Q?+?) is continuous and convex/concave in the compact Haus-
dorff spaces I'*, we have the following equality [17, Theorem 1]J:

: o 1.1 2.2\ _ : © 1.1 2 2
g}lﬁgﬁg%(@v,Qv)—r&%g};r}‘/c(@%@v)-

(o, u,y?) + / (1 — 0@ (AP du®) / ()

2 42

This establishes a (saddle-point) equilibrium for the game. |

Thus, we have obtained an existence result for the value of the games considered
and also provided an approach to topologize and convexify/compactify the policy
spaces.

For completeness, as a stand-alone contribution to the literature, we also present
the following theorem, which is a mild relaxation of the theorem above, removing the
requirements for the independent measurements reduction. However, we will work
with the independent measurements reduction for the rest of the paper, and so the
theorem above is sufficient for the main results of this paper. The proof follows
similarly to Theorem 3.1.

THEOREM 3.2 (existence of equilibria with a further relaxation). For a given
game, assume the following hold:
(i) The action spaces of players, U, U?, are compact.
(ii) The cost function c is bounded and continuous in players’ actions for every
state of nature x.
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Then an equilibrium exists under possibly randomized policies, and so there exists a
value of the zero-sum game.

Sketch. Here, we let py: denote the marginal of the information structure p on
Y?. We will combine our policies with these marginals to form the product measures
pyr (dyt) Y (dut]yt) and py= (dy?)y2(du?|y?) on the players’ measurement and action
spaces. We will denote these measures by (uy1y!) and (py272).

Similar to the previous proof, without loss of generality, we fix Player 2’s strategy
~2. Then we have

(3.1)
VEG AP
= [wtay it ([ ot e ).

We observe that we can equivalently write V4 as a function of the product mea-
sures (puy1y') and (uy27?) since the marginals of y are fixed.

Let [y, 22 C(dx)p(dy?|dy®)y? (du?ly?)e(z, u', u?) be defined as c(u', y').

We can observe that, by assumption, ¢(u!,y') is bounded and is continuous in
ul. Furthermore, it is also evident that ¢(u',y') is measurable in y'. By the same
arguments of Step (2) of the preceding theorem, via the machinery of the w-s topology
[38], we can show that ¢(ul,y!) is continuous in (py1y!') under w-s convergence and
thus also under weak convergence. This also holds for continuity in (uy27?) in the
reverse case where we fix y'.

Following from [47, section 2.1], the space of all p@{i'y is compact under weak
convergence, and we can observe that V4 (py AL, py2+?) is linear and hence is both
concave and convex in each entry.

The existence of a (saddle-point) equilibrium for the game then follows by [17,
Theorem 1]. d

%

3.2. On a partial converse to Blackwell ordering in the standard Borel
setup. In addition to requiring conditions for the existence of equilibrium solutions
in the infinite case, we need to address the extension of Blackwell’s ordering of infor-
mation structures to the infinite case, as this will form a key aspect of the proof of
the main result of this paper, Theorem 4.4.

Here, we present a partial converse to Blackwell’s theorem.

The forward direction to Blackwell’s theorem holds in the infinite case (see [45,
Theorem 4.3.2]); i.e., when X, Y are standard Borel spaces for a single-player setup,
v being a stochastically degraded version of p implies that g is more informative
than v over all single-player decision problems with standard Borel action spaces and
bounded cost functions that are continuous in the player’s action for every state of
nature.

As noted earlier, related results were presented by Boll in 1955 in an unpub-
lished thesis paper [9]. Le Cam presents a summary of these results in [11], with
a detailed review reported in [41]. The approach in the literature often builds on
the construction of dilatations of conditional probability measures, which is related
to Blackwell’s comparison of experiments theorem through what is known as the
Blackwell-Sherman—Stein theorem. A detailed comparative analysis is provided fur-
ther below. Our main contribution here is an explicit converse compatible with the
conditions on existence results presented in the previous section and a comparison to
be presented in the next section. This result serves as a supporting step with a direct

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/25/21 to 67.193.163.26. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1792 TAN HOGEBOOM-BURR AND SERDAR YUKSEL

proof; the results reported in the literature are often very technical, and the explicit
implication for our setup is not evident a priori as we discuss in the next subsection.

We note that our setup differs slightly from that of Blackwell in [7], contributing
to the fact that this is a partial converse to Blackwell’s result. In Blackwell’s original
setup with finite X, information structures could be compared over different priors on
X, as the comparison would apply uniformly to all such prior measures that satisfy
a positivity condition on each of the finitely many outcomes. In our setup, since the
space is possibly uncountable, we consider a fixed prior measure on X.

THEOREM 3.3. Let us consider a single player whose goal is to minimize the value
of the cost function c for a set of single-player decision problems. We assume the
measurement is absolutely continuous in the following sense: There exists a function
f and a reference probability measure Q such that for all Borel S,

P(y € S|z) = /S . 2)Q(dy).

If Y is compact and an information structure p is more informative than another
information structure v over all single-player decision problems with compact standard
Borel action spaces and bounded cost functions ¢ : X x U — R that are continuous in
u for every x, then v must be a garbling of u in the sense of Definition 2.1.

Proof. We note that under the conditions of the theorem, an optimal policy (which
is also deterministic) exists for every information structure (see Theorem 3.1 in [46]).

Step (1): Let ¢ be the fixed probability distribution on X for any given decision
problem in our set. Take information structures p,v € {P(X xY) : Px = (}, where u
is more informative than v in Blackwell’s sense (i.e., J({, p,v*) > J({,v,v*) over all
games with bounded cost functions ¢ that are continuous in w).

Take the space K, a subset of P(X x Y), to be the space of all possible garblings
of u, where the garblings are from Y to Y.

Step (2): We now establish the weak compactness of the space of all garbled
information structures. First, observe that the set of all induced garblings on the
product space (involving all of K) inducing probability measures of the form

Pr (dx, dy, dy) = p(dz, dy) K (dgly)

leads to a weakly precompact space in the space of probability measures on X x Y x Y.
If closedness can also be established, this would lead to a weakly compact space.
This follows from the proof of [44, Theorem 5.6]: Since the marginals on X x Y are
fixed, any limit of a weakly converging sequence will also satisfy the property that
the limit is a garbling of the original information structure. For completeness, we
present the following: With Px(dx,dy,dy) = K(dg|ly)u(dz,dy), consider a weakly
converging sequence Pk, (dx,dy,dy). We will show that the weak limit also admits
such a garbled structure. Let Pk, (dz,dy, d§) converge weakly to P(dx,dy,dy). Then
for every continuous and bounded g,

[ stevirptasdnan = [ ([ ote.vpntastan ) P taap).
Since the marginal on y is fixed, even though the function [ g(z,y,§)u(dz|dy) is only

measurable and bounded in y and is continuous in g, w-s convergence is equivalent
to the weak convergence of Pk, (dy,dy), and as a result we have that

/ ( / g(x,y,@m(dxdy>)PKH<dy,dg> -/ ( / g(x,m)u(dxwy))z?(dy,dm.
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As a result, P decomposes as P(dx,dy,dj) = p(dz,dy)K(dj|y) for some K. This
establishes the weak compactness of the garbled information structure in the product
space X X Y x Y.

Now take the projection of this space onto the measures on the first and the third
coordinates; as a continuous image of a weakly compact set, this map will also be
compact and gives us our space K p.

Finally, K is convex since the space of stochastic kernels is convex. As a result,
the space K p of all possible garblings of 1 is a convex and compact subset of P(XxY)
under the weak convergence topology.

Now assume there does not exist a stochastic kernel x € K such that

V= KU.

That is, we assume v is not a garbling of © and proceed with a proof by contradiction.
Then Kp N v =v. That is, v ¢ Kpu.

Step (3): We now use the Hahn—Banach separation theorem for locally convex
spaces by treating the space of probability measures P(X x Y) as a locally convex
space of measures (see [36, Theorem 3.4]). As such, since our spaces Ku and {v}
are subsets of this space and are convex, closed, and compact, in addition to being
disjoint, we can separate them using a continuous linear map from P(X x Y) to R.

To apply [36, Theorem 3.4], we require local convexity of P(X x Y), and so we
define the locally convex space of probability measures with the following notion of
convergence: We say that v, — v if [ f(z,y)v,(dz,dy) = [ f(x,y)v(dz,dy) for every
measurable and bounded function which is continuous in y for every . We note that
our measures must still have fixed marginal ¢ on X.

Since continuous and bounded functions separate probability measures (in the
sense that, if the integrations of two measures with respect to continuous functions
are equal, the measures must be equal), it follows from [36, Theorem 3.10] that we can
represent every continuous linear map on P(X x Y) using the form [ f(z,y)v(dz, dy)
for some measurable and bounded function f(z,y) continuous in y for every z. It also
follows from [36, Theorem 3.10] that, given this notion of convergence, P(X x Y) is a
locally convex space.

Therefore, we have the following statement from combining [36, Theorem 3.4] and
[36, Theorem 3.10]: There exists a measurable and bounded function (continuous in
y) f: X xY — R and constants Dy, Dy € R, where D < Dj such that

<V’f> §D1> <"<‘./Maf> 2D27 VFCEK7

where we use the following notation:

<V7f> = f(x,y)u(dw,dy)
XxY

This gives us the following inequality: (v, f) < (ku, f) Vk € K.

Step (4): Now consider the class of decision problems with bounded cost functions
continuous in the actions, with compact Y, U, where U = Y. This is clearly a subset of
all decision problems considered so far in the proof. Now let f(z,y) be the separating
function found above. Consider a game in this particular subclass where f(x,y) is
the cost function (which is valid since U =Y and f(z,y) is bounded continuous in y).
We note that (v, f) gives the expected value of the game with cost function f(x,y)
under information structure v when the player plays the identity policy 74 (y) = y.
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We can observe the following:

[z, y)v(de, dy) < f(z,y)kp(d, dy) Yk € K.
XxY XxY

Hence,

/ fay(de,dy) < inf [ fle,y)mu(de, dy)
XxY rEK XxY

= inf f(x,y’)AH(dy/|y)ﬂ(d$,y)

REK [xxy

:Klgf( oy [, k(|y))pldz, dy),

where we define

ﬁ%%M%ZAﬂ%wM@M)

Recalling that x(-|y) has a functional representation y(y) = g(y,w) for some indepen-
dent noise variable w and since K is the space of all stochastic kernels from Y to Y,
we can observe that this gives us

Jnf Xxyf(x,ffﬂly))u(dw,dy)=vir€ﬂ; Xxyf(zm(y))u(dw,dy)-

Since we allow for randomized policies, this minimization is equivalent to finding the
optimal policy v* € T for the cost function f(z,y) under information structure p.
And so we have

fla,y)v(de,dy) = J(C,v,7') < J(Cp,y™) = inf [, k(y))p(da, dy).
XxY ReK Jxxy

Since we have found a game where, when playing its optimal policy, p performs worse
than v does under some policy, we have contradicted the fact that p is better than v.
Therefore, there must exist a k € K such that v = ku, and so v is a garbling of . 0O

This result will allow us to use both directions of Blackwell’s ordering of infor-
mation structures in the standard Borel-type setup we are considering for players in
ZEero-sum games.

Dilatations as measures for comparisons of experiments and Strassen’s
theorem. Strassen, in [40, Theorem 2], presents a related result that is often in-
voked when comparison of experiments is studied in infinite-dimensional probability
spaces, although the direct implication on Blackwell’s ordering (in the sense needed
in our main result to be presented in the next section) is not explicit as we note in
the following. Likewise, Cartier, Fell, and Meyer relate an ordering of information
structures in terms of dilatations (where the hidden variable x does not appear ex-
plicitly in the analysis) in [12]. A very concise yet informative review is in [11, pp.
130-131]. A detailed discussion on comparisons of information structures along the
same approach is present in the comprehensive book [41]. Both for completeness as
well as to compare the findings, we present a discussion in the following.

Let €2 be a convex compact metrizable subset of a locally convex topological
vector space. For Borel probability measures p and v, write p < v if and only if for
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all y € § = {all continuous concave functionals on 2},

/yduz/ydu

THEOREM 3.4 (see [40, Theorem 2]). wu < v if and only if there is a dilatation
P such that v = Pu, where a dilatation P is a Markov kernel from Q to Q such that
for all continuous affine functions z on Q, zP = z.

The condition zP = z means that for any continuous affine function z on €2,
/ 2(r)P(dr,w) = z(w) Yw € Q.
Q

Theorem 3.4 does not lead to a converse to Blackwell’s theorem in the generality
presented in Theorem 3.3: Let  be the space of probability measures on X. Let
1 be an information structure that is more informative than another information
structure v in Blackwell’s sense. Let us restrict ourselves to decision problems where
U is compact. Let @, and @, be the measurement channels for the player under
information structures p and v, respectively. By definition, we have for all measurable
and bounded cost functions ¢ continuous in the actions,

inf [ C(de)Quldple)ele, 1) < inf. [ C(dr)Quldylo)ee. (o)

Let PH(dy)Q(dz|y) be the alternative disintegration of the information structure p
following Bayes’ rule. Likewise, perform the same disintegration for v. Then we can
rewrite the above equation as (due to the measurable selection conditions as in the
proof of Theorem 3.1 in [46])

62 [Py [ @elicen ) < [P ( g [ Qsies.n).
Now we define

H“(A) = /Ypu(dy)lQ“HA)'

We note that II* is a probability measure on 2. Define IT” similarly. Then (3.2)

becomes
/ H“(dﬂ)( inf / ﬂ(dx)c(:c,u)> < / n%dﬂ(gufj / w(dx)c(:c,U)>,

with the interpretation that m(dz) = Q(dz|y). Let W*(r) = inf,ey [ m(dx)c(z, u).
Then we can rewrite this once again as

/ 0 (d) W () < / 0 (dm) W™ ().

Since II* and II” give probability distributions on 2 and W* is a function over €2, we
will have v < p in Strassen’s sense if the above inequality holds for all continuous and
concave functions over 2.
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We can show that W* is continuous and concave in 7 provided that additionally
¢ is continuous both in x and u: Let m, — 7 weakly. Let u} be optimal for m,,. Then

‘ / c(@, ) (dz) — / c(w, u*)r(dz)

< max ( / o, 1) (o (dz) — 7(dz)), / oz, u*) (o (dar) — W(dx))) .

We note that [ ¢(x,ul)(m,(dz) — w(dx)) goes to 0 following [39, Theorem 3.5] or [27,
Theorem 3.5] (since the action space is compact, there always is a converging subse-
quence u,, ~— @ for some %, and since for x,, — = we have that c(zy,,,u;, ) — c(z, ),
the result follows from a generalized convergence theorem under weak convergence).
The second term converges to zero by the weak convergence of 7,, to m. We emphasize
the requirement that c¢ is continuous in both z and w; in Theorem 3.3, only conti-
nuity in u was required (one can construct a simple counterexample, even when U
is a singleton, to show that continuity in z is necessary for this argument to hold).
Concavity of W* in the conditional measure 7(dx) follows from Proposition 2.3.

Now if one can show that by using all bounded continuous cost functions ¢ and
compact action spaces U the space of all continuous and concave functions on 2 is
spanned by the space of all W* functions, then a converse can be attained through
Strassen’s result. We note here that every concave and upper semicontinuous W can
be written as an infimum of a family of affine functions (Fenchel-Moreau theorem
[35]), and an analysis can be pursued toward this direction at least for the case where
¢ can be assumed to be continuous in both variables and the condition on W is to be
relaxed in Strassen’s theorem. However, due to the conditions of upper semicontinuity
of W* and the joint continuity of ¢ noted earlier in both the state and actions, the ap-
plicability of Strassen’s theorem to our setup does not hold in the generality reported.

In summary, our paper presents a general condition and a direct proof, while we
recognize that Strassen’s theorem and accordingly its proof could be further modified
to allow for additional relaxations for arriving at a similar result.

4. Comparison of information structures for zero-sum standard Borel
Bayesian games. We are now prepared to order information structures in the spirit
of Theorem 2.8 for this standard Borel setup. We note that the following lemmas,
theorem, and corollary also hold in the general finite case studied by Peski, as they
rely solely on the existence of equilibria (which are guaranteed to exist in the finite
setup by von Neumann’s min-max theorem; see [42]) and Blackwell’s ordering of
information structures. Therefore, these results also serve as a strict generalization
of Theorem 2.8 to standard Borel Bayesian games. We note here that the required
absolute continuity conditions always hold for finite or countable spaces (in that one
can always find a reference measure with respect to which all probability measures on
a countable space are absolutely continuous).

DEFINITION 4.1. For fired X with x ~ ¢ and fized Y, Y2, we define a class of
games G¢(X, Y1, Y?) to be all games for which the players have compact action spaces
and the cost function is bounded and continuous in players’ actions for every state x.

LEMMA 4.2. Given fized X, (, Y, and Y2, for any information structure ju which
satisfies Assumption 2.1 and any kernels k' € K?,

RpSp and p <K

over all games in G¢(X, Y, Y?).
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Proof. Let us consider the first relation.

Take an arbitrary zero-sum game G € @g(X, Y*!, Y?) with cost function ¢ and
action spaces U' and U?. Let (y!,+?) be the Bayesian Nash equilibrium policies for the
players under information structure x?p and (', 7%) be the Bayesian Nash equilibrium
policies under information structure p. By our assumption on @C (X,Y!,Y?), these
policies exist [Theorem 3.1]. Let Q° be the measurement channel for player i under
information structure pu.

The expected value of the cost for the maximizer under the first information
structure is

VE (42 :/ c(z, v (y"), ¥’ (y*) s ulde, dy*, dy?).
XxYlxY2

By definition, the equilibrium solution (y!,+?) for G under x?u is given by the
solution to the min-max problem:

2
min max V5 *(6',67).
01er! 62er?
Therefore, since v' is the minimizing policy under x2u, by perturbing the mini-
mizer’s policy 4! to be the policy n* € T'!, we have the following inequality (i.e., we
make the minimizer no longer play her optimal policy):

2 2
VEHAL ) S VE (AP

We now wish to compare the two quantities V52“(771, v?) and V£ (n*,n?). To do so,
fix n! across both terms, and consider a cost function &(z,6%(y?)) : X x U? — R such
that é(z, 02(y?)) = c(z,n' (y1)), 0%(y?)) V6% € T2. That is, by holding the minimizer’s
strategy constant as n', we reduce c to & such that we now have a cost function that
only reflects dependence on the maximizer’s policy when the minimizer’s policy is
held at n'. Such a function ¢ clearly exists, as the value of n'(y') is only dependent
on z (potentially in some stochastic way in that it depends on Q! (y|z)) when n' (and
ut) are constant and so can be absorbed into the dependency of ¢ on z.

We can now compare the single-player decision problem for the maximizer given
by cost function ¢ and information structures (k2u)? and p? (which we use to denote
the maximizer’s private information structures present in x?y and pu, respectively,
i.e., the marginals on (X x Y2)). This is a single-player decision problem and as
such can be treated using the forward direction to Blackwell’s ordering of information
structures [7, Theorem 2], which holds in this infinite-dimensional case [45]. Since ¢é
and c are equal over all strategies in I'2, we know that 72 and 7n? are still optimal
policies for the maximizer to play under the respective information structures for this
game. Thus, since (k?u)? is a garbling of y? by channel x? and since é(z,n?(y?)) =
c(z,n*(ut(x)), n*(y?)), we have that

VEH (' y?)
- / (a7 (7)) (d, dy?)
XxY?2

< [ st ulde. g’

=VEMm',n?).
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Putting this all together, we have V52”(*yl,’yQ) < V52‘L(n1,72) < Vit n?).
Since this is true for any arbitrary game G € G¢(X,Y!,Y?), we have that x%u < p.
A nearly identical argument can be applied to show that u < x'p. d

Using a similar reasoning, we also develop the following converse result.

LEMMA 4.3. Take fized X,(, fized and compact Y, Y2, and information struc-

tures v and p, which both satisfy Assumption 2.1. If v < p over all games in
G¢(X,Y!,Y?), then there exist kernels k' € K* such that

kv = K?p.

In particular, under Assumption 2.2, we have the more explicit characterization with
QL = Qllt and Q% = K? Z,

where QZ and Q! are the measurement channels for player i under information struc-
tures p and v, respectively.

Proof. Let (v',7?) be the equilibrium solution under v, and let (n',n?) be the
equilibrium solution under p. Let QF and QZ be the measurement channel for player
¢ under the information structures v and pu, respectively. As in Lemma 4.2, these
equilibria exist and are the solutions of the standard min-max problem.

Therefore, we have the following inequality:

VE(0?) < max VE(,0%) = VE (v, 7).
02¢r2
Likewise, we can determine the following:
V&' n*) = min VE(al,n?) < VEG ).
alert
In addition, by assumption that v < u, we have that
VE( ) S VEM %)

From the above, one observes that V& (v, 7?) < V4 (n',n?). In the same manner
as in Lemma 4.2, we hold n? constant across both terms and develop a reduced
single-player cost function ¢. Once again, we use v* and '’ to denote the private (i.e.,
marginal) information structure for Player ¢ under v and u, respectively. We then
have a single-player decision problem where we observe that ! and 7' are still the
optimal policies for the minimizer for each respective information structure:

ety = [ etent i dy')

S/ &zt (yh))p(de, dy') = J(C, ptynt).
XxY?

Since the inequality V& (v, n?) < V& (n',n?) holds true for every arbitrary zero-
sum game G € @((X, Y?!,Y?), it holds for every game in the subclass G, defined
here to be all games in G¢(X, Y, Y?), where the action space of the maximizer is
U? = {0}. Moreover, we observe that for any arbitrary bounded single-player cost
function that is continuous in the player’s action &(x,u') : X x U — R, there exists
a two-player cost function é(x,u',u?) corresponding to some game in G such that
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é(z,ut,u?) = é(x,ut) Vul € U (following naturally from the fact that u? = 0
for these games). One such construction of ¢ would be é(z,ul,u?) = &(x,u') + u?;
when played in G, é(z,u',u?) = é(z,u') Vu! € U'. We note that since &(x,ul) is
continuous in u! for all z and is bounded, it is valid for a game in G € G¢(X, Y, Y?)
to use é(z, ul, u?).

Therefore, ¢ is a valid single-player reduction of ¢ when the maximizer’s strategy is
held constant. Since this process can be done for any single-player cost function ¢, we
observe that for constant U? and X, the reduction of all measurable and bounded two-
player cost functions that are continuous in player’s actions with one player playing
a constant strategy is surjective on the entire space of bounded single-player cost
functions that are continuous in the player’s action. Therefore, the inequality above
will hold over all single-player cost functions that are bounded and continuous in
action since it holds over all arbitrary two-player games G € GC (X, Y1 Y?).

Finally, we observe that since c is framed such that a higher quantity is better
for the maximizer, the minimizer wants to minimize the value of ¢. Therefore, from
the minimizer’s perspective, the inequality above indicates that she can never per-
form worse under v than under p over all single-player problems with bounded cost
functions that are continuous in the player’s action. Thus, by the converse direction
to Blackwell’s ordering of information structures [7, Theorem 6], which by the lemma
assumptions and the restrictions on the class @C (X, Y!,Y?) (namely, compactness of
Y? and U?) holds in this infinite setup due to Theorem 3.3, we have that u! must be
a garbling of v

In a similar manner, by observing that V&(v!,7?) < V& (', n?), one discovers
that v? must be a garbling of u2.

Therefore, we have that the minimizer’s channel in v is garbled in g and the
maximizer’s channel in p is garbled in v. Combining these two conditions yields the
desired equality for some k! € K

kv = K2p. 0

The following is our main result.

THEOREM 4.4. Take fized X, ¢, fized and compact Y, Y2, and information struc-
tures v and p, which both satisfy Assumption 2.1. Then u is better for the mazimizer
than v (v < p) over all games in G¢(X,Y',Y2) if and only if there exist kernels
k' € K such that

kv = K2 p.

Proof. The if direction follows directly from Lemma 4.2:
vSkv=ruSH

The only if direction is given in Lemma 4.3. 0

COROLLARY 4.5. Take fized X,( and fized and compact Y',Y2. The value of
additional information to a decision maker is never negative for that decision maker
in any zero-sum game in G¢(X, Y, Y?).

Proof. If i is an information structure which is more informative for the maxi-
mizer than another information structure v, we know there exists a kernel 2 such
that v = k?p and so know that V*(G,u) > V*(G,v) and x? is a well-defined map
since we can map any additional information to a fixed number. 0
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We note that the value of information is not always positive to a player since
many situations (such as where the action set is a singleton) will result in no change
in performance despite additional information.

Corollary 4.5 is consistent with the work of De Meyer, Lehrer, and Rosenberg
[14, Theorem 3.1], who found this result when studying the value of information in
zero-sum games with incomplete information with a slightly different setup, where the
“state of nature” was replaced by an individual “type” for each player drawn from a
finite space and where the cost function depended on both players’ types.

We note that for Theorem 4.4, the proof will follow for any class of zero-sum
games for which every game has an equilibrium solution and Blackwell’s ordering of
information structures holds for each player when holding the other player’s action
constant. Therefore, the ordering result can be generalized to be applicable for more
general classes of zero-sum games than GC (X, Y1, Y2).

4.1. Discussion. This main result comes with the following intuitive interpre-
tation. An information structure p is better for the maximizer than v if and only if
one of the following holds:

1. v? is a nonidentity garbling of the maximizer’s channel from jx, and the min-
imizer’s channel is identical.

2. p' is a nonidentity garbling of the minimizer’s channel from v, and the max-
imizer’s channel is identical.

3. v? is a nonidentity garbling of the maximizer’s channel from p, and p! is a
nonidentity garbling of the minimizer’s channel from v.

4. The information structures are identical.

In plain terms, this has the following interpretation: In zero-sum games, improv-
ing or hurting both players’ information structures will never give a general benefit
to either player over all games. The only time a player will not do worse under a
new information structure is if it only makes his channel better, only makes his op-
ponent’s channel worse, makes his channel better and his opponent’s channel worse,
or is identical to the previous information structure (and the player is guaranteed to
not do worse if any of these conditions holds).

In the following, we present an example showing that we cannot view garbling from
decision maker to decision maker in isolation from the entire information structure.
Consider a finite probability space game with X = U = Y! = Y2 = {1,2, 3,4}, with
distributed according to the uniform distribution, and cost function

1_ 1 2
—12, w =2z and u #u?,

1.2
c(z,ut,u?)=<¢ -5, wul=2 and ul=u?

0, otherwise.

Player 1 (the minimizer) gets rewarded for guessing = correctly, and Player 2 (the
maximizer) can only limit his losses by playing the same action as Player 1. We can
observe that Player 1’s optimal strategy will always be to attempt to guess x correctly
since she is only penalized for guessing incorrectly, while Player 2’s optimal strategy
will always be to attempt to copy Player 1’s action since that is the only way he can
positively affect the outcome for himself.

Now consider the following two information structures:

w1: Under this information structure, both players receive the same random mea-
surement y' = y? = y, where y = x with probability 0.9 and y is any of the other
three incorrect values with probability 0.1/3. Under this information structure, the
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best strategy for Player 1 (and thus also for Player 2) is to guess her observation, so
u! = u? = y and the expected payoff is —5(0.9) = —4.5.

po: Under this information structure, both players receive conditionally (given
x) independent measurements. For Player 1, y' = x with probability 0.85 and is any
of the three incorrect values of z with probability 0.05 each. Player 2 has the same
structure as under pq, with a 0.9 chance of success, albeit now uncoupled with Player
1’s chance of success. The optimal strategies remain the same under this information
structure, but the expected payoff is now —5(0.9)(0.85) + (—12)(0.85)(0.1) = —4.845.

Therefore, ps is better for the minimizer than ;. But we can observe that the
minimizer’s channel in p is garbled from g in the sense that the distribution on Y!
for Player 1 can be run through a stochastic kernel to get the distribution under pus.
The maximizer’s channel is identical in both games in the sense that the distribution
on Y? is unchanged. Yet the ordering of information structures rule from Theorem
2.8 appears to have been violated since the minimizer performs better under the
garbled information structure. This demonstrates that we cannot consider garbling
in isolation, and the comparison should be in view of the entire information structure.

While po appears to be a garbling of py for the minimizer, it is not a garbling in
the sense of this paper since u; features dependent measurements between the players,
while po has independent measurements between the players. Definition 2.7 specifies
that garblings are done in view of the entire information structure, and so a garbling
could not decouple dependence when going from g7 to ps. If the garbling had been
done in accordance with the results of this paper so that y* = y2 but y! is then gar-
bled to arrive at some §j! whose probability measure is as specified under o, then the
players’ measurements would still contain dependence after the garbling. Under this
construction, naturally Player 1 would perform worse in the equilibrium under the
garbled information structure since Player 2 has maintained a good ability to copy
Player 1’s actions when Player 1 is correct due to the dependence being maintained,
while Player 1 has received a disadvantage in being able to accurately guess x. If the
stochastic kernel garbling Player 1’s information is as given by & below, where the
(i, ) entry is the probability of Player 1 measuring j! = i given that the players orig-
inally measured y' = y? = j, then the expected equilibrium payoff in this situation
would be —5(0.9)(0.9423) + (—12)(0.1)(0.0192) = —4.263, which is worse for Player
1, as expected. Under this garbling, Player 1 has a probability of 0.85 of observing
the correct measurement §' = 2 and a 0.05 probability of observing any of the three
incorrect measurements, matching the distribution specified in the definition of puo:

0.9423 0.0192 0.0192 0.0192
0.0192 0.9423 0.0192 0.0192
0.0192 0.0192 0.9423 0.0192
0.0192 0.0192 0.0192 0.9423

=
Il

5. Conclusion. In this paper, we presented an ordering of information struc-
tures for a broad class of zero-sum Bayesian games with incomplete information in
standard Borel spaces. We also provided two key supporting results: (i) a refinement
on the conditions for the existence of equilibria in zero-sum games with incomplete in-
formation in standard Borel measurement and action spaces and (ii) a partial converse
to Blackwell’s ordering of information structures in this general setting.
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