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Dept. of Mathematics and Statistics

Queen’s University
Kingston, ON K7L 3N6,Canada
Email: yuksel@mast.queensu.ca

Tamer Başar
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Abstract— For Markov sources, the structure of optimal causal
encoders minimizing the total communication rate subject to a
mean-square distortion constraint is studied. The class of sources
considered lives in a continuous alphabet, and the encoder is
allowed to be variable-rate. Both the finite-horizon and the
infinite-horizon problems are considered. In the finite-horizon
case, the problem is non-convex, whereas in the infinite-horizon
case the problem can be convexified under certain assumptions.
For a finite horizon problem, the optimal deterministic causal
encoder for a kth-order Markov source uses only the most
recent k source symbols and the information available at the
receiver, whereas the optimal causal coder for a memoryless
source is memoryless. For the infinite-horizon problem, a convex-
analytic approach is adopted. Randomized stationary quantizers
are suboptimal in the absence of common randomness between
the encoder and the decoder. If there is common randomness,
the optimal quantizer requires the randomization of at most two
deterministic quantizers. In the absence of common randomness,
the optimal quantizer is non-stationary and a recurrence-based
time-sharing of two deterministic quantizers is optimal. A linear
source driven by Gaussian noise is considered. If the process is
stable, innovation coding is almost optimal at high-rates, whereas
if the source is unstable, then even a high-rate time-invariant
innovation coding scheme leads to an unstable estimation process.

I. INTRODUCTION

In real-time applications such as remote control of time-
sensitive processes, live streaming and voice over Internet,
causality in encoding and decoding is a natural limitation.
Causal coding has been studied in different contexts and with
different assumptions on the classes of sources and encoder
types.

A major result on the topic due to Neuhoff and Gilbert
[12] establishes that the optimal memoryless coder is the
optimal causal encoder, minimizing the data rate subject to
a distortion constraint. It is assumed that the sequence {xi}
is i.i.d., and evolves on a discrete alphabet. If the source is
kth-order Markov, then the optimal causal fixed-rate coder
minimizing any measurable distortion uses only the last k
source symbols, together with the current state at the receiver’s
memory [16]. The results of [16] were extended in [14] to
systems with noisy feedback, under the assumption of a fixed
decoder structure with finite memory. High-rate encoding of a
stable stationary process is treated in [9], where a memoryless
quantizer followed by a conditional entropy coder is found to

be at most 0.25 bits worse than any noncausal encoder in the
limit of low distortion.

If one allows variable rate coding, the optimization problem
for the evaluation of the optimal quantizer becomes an infinite-
dimensional problem [7]. Entropy, as a lower bound on error-
free transmission for a discrete source, can be attained fairly
closely by means of entropy coding techniques or via block
coding. We note that in variable rate coding, the delays in the
transmission of higher length codes might affect the overall
delay. Nonetheless, in variable-rate coding, the system is still
causal in that no future data is allowed to be used in encoding
and decoding. György et al [7], [8] have looked at the problem
of entropy-constrained quantization for the design of variable
rate quantizers for i.i.d sources also obtaining quantitative
results for a uniform source, in particular exhibiting the benefit
of time-sharing. The results of [16] do not immediately extend
to the cases when there is a randomization at the encoder [6].
We will observe that randomization might help in the present
setting due to the constraint in the optimization.

Stochastic control can provide a useful tool in the charac-
terization of optimal coding schemes, as has been exhibited
by Witsenhausen [16]. An important work in this direction
is Borkar [4], which considers infinite horizon quantization
of a partially observed source generated by a stationary
stable Markov process, allowing variable rate coding. Borkar
establishes the existence of an optimal policy over the class of
stationary policies. In the present paper, the convex analytic
approach to MDPs1 is adopted to establish optimality of a
stationary policy over all admissible policies.

II. PRELIMINARIES AND PROBLEM STATEMENT

We first recall the notion of a quantizer.
Definition 2.1: A quantizer for a scalar continuous variable

is a Borel-measurable mapping Q from the real line to a finite
or countable set, characterized by corresponding bins {Bi} and
their reconstruction levels {qi}, such that ∀i, Q(x) = qi if and
only if x ∈ Bi. ¦

We assume that the quantization bins are regular [7]. Thus,
(for scalar quantization) Bi can be taken to be nonoverlapping
semiopen intervals, Bi = [δi, δi+1), with “bin edges” δi <

1An excellent reference is [3], see also Chapter 9 of [2]



δi+1, i = 0,±1,±2, . . . . We assume that qi ∈ Bi, and that δ0

is the bin edge that is closest to the origin.
In a dynamic, discrete-time setting, the construction of a

quantizer at any time t can depend on past quantizer values. To
make this precise, let X denote the input space, X̂ the output
space, and Rt = {qt} the set of quantizer reconstruction
values at time t = 1, 2, . . .. Then, the quantizer at time t, to be
denoted by ft, is a mapping from X t to Rt, where X t is the
t-product of X . Such a quantizer is said to be dynamic and
causal. A quantizer is assumed to be followed by an encoder,
which provides the binary representation of the quantization
outputs. However, hereafter, we will use the term encoder to
refer to the ensemble of the quantizer and the encoder. Finally,
we let gt : R1×R2×. . .Rt → X̂ denote the decoder function,
which again has causal access to the past received values.

The class of quantizers we have introduced above are so-
called deterministic causal quantizers, in the sense that for
each fixed t, and given ft and history Ht := {xs, fs; s =
1, . . . , t}, the quantizer ft(Ht) is a uniquely defined element
of Q, where Q is the space of such deterministic quantizers,
and let σ(Q) be its σ-algebra. Randomized quantizers are
a more general class that assign a probability measure to a
selection of bins for each fixed Ht ∈ H∞. More precisely,
and by a slight abuse of notation, quantizer policy q(.|h) is
randomized if, for each Ht ∈ H∞, q(.|Ht) is a probability
measure on σ(Q), and if, for every fixed D ∈ σ(Q), q(D|.)
is a well-defined function on H∞, whose restriction to the
interval [1, t] agrees with a deterministic quantizer ft.

A randomized stationary quantizer assigns a probability
measure to selection of bins for each fixed x∞1 ∈ X∞. Let P
denote the set of conditional probability densities on the Borel
field on the real line B(R). A randomized stationary quantizer
defines for each t a random variable taking values in P ,
denoted p(xt|f t−1

1 , qt−1
1 ). A randomized stationary quantizer

policy has the property,

p(.|πt = π) = p(.|ht, πt = π), a.s. ∀ht(w)

for each π ∈ P , with ht(w) denoting the sample paths of the
history process. It is assumed that for each π ∈ P , q(.|π) is
a probability measure on σ(P), for every fixed D ∈ σ(P),
q(D|.) is a measurable function on Q. For a deterministic
stationary quantizer, p(.|π) is a dirac measure.

Let vm
i = (vi, . . . , vm)T denote the vector composed of

the ith through mth components of an n dimensional vector
v, with i ≤ m ≤ n. Consider a sequence {xt ∈ R, t =
1, 2, . . . , N}, causally encoded,

ft(xt
1), 1 ≤ t ≤ N,

and suppose that a delayless causal decoder generates the
estimates,

x̂t = gt(f1(x1), . . . , ft(xt
1)) = gt(f t

1, q
t
1),

for 1 ≤ t ≤ N. We have two assumptions, one of which is on
the set of initial distributions.

Assumption A: The initial state x0 with distribution p0 has
finite second moment, i.e. Ep0 [x

2
0] < ∞. ¦

The second set of assumptions is related to the transition
operator of the Markov process, hence the dynamics of the
source.

Assumption B:
1) The transition probabilities are µ-irreducible, where µ is

Lebesgue measure: P (xt ∈ C|xt−1) > 0 for every set
C ⊂ R with positive Lebesgue measure, and hence for
every non-empty open set.

2) The Markov process {xt} forms a positive recurrent
Markov chain.

3) The invariant limiting distribution p∞ := limt→∞ pt,
has finite second moment. Furthermore, for every t,
(pt) log2(pt) and x2

t are uniformly integrable.
4) For each t, the marginal density function pt is uniformly

continuous.
¦

Assumption B can be further relaxed, but for convenience
in the discussion we will assume it to hold. We will use
irreducibility to ensure recurrence properties of the conditional
density process. Uniform integrability conditions are needed
for the continuity-compactness arguments that will be em-
ployed in a weak sense for the existence of optimal quantizers.
These all can be significantly relaxed for sources which take
values in a finite space.

For instance, the family of stable linear systems driven by
Gaussian noise satisfies all these conditions. More generally,
uniform integrability holds under a certain stochastic drift
condition by the V -uniform ergodic theorem of [10].

Let H(fN
1 ) denote, with a slight abuse of notation, the

entropy of the quantizer outputs qN
1 := {q1, . . . , qN} under

the quantization policies fi(·), i = 1, . . . , N . That is, with
pt(qi) denoting the probability of qi at time t:

pt(qi) := p(xt ∈ Bi|f t−1
1 , qt−1

1 )

let

H(fN
1 ) =

N∑
t=1

H(ft|f t−1
1 ) = −

N∑
t=1

E[pt(q) log2 pt(q)]

qi = f(xi
1) , i = 1, . . . , N .

We study the following constrained minimization problem:
For a given positive integer N ,

inf
fN
1

1
N

H(fN
1 ) (1)

subject to

1
N

N∑
t=1

E[(xt − x̂t(f t
1, q

t
1))

2] ≤ D, (2)

for some finite D > 0, where x̂t(f t
1) is (as the output, gt(·),

of the decoder) the conditional mean of xt given the quantizer
policy {fs, s ≤ t}, and the output of the quantizer, qs, s ≤
t. When clear, we will drop the notation x̂t(f t

1, q
t
1) and use

x̂t(f t
1) instead. We will consider also the infinite-horizon case,

when N → ∞. Further, we will study the improvement in
the value of (1) when randomization is allowed on quantizer
policies.



III. FINITE-HORIZON PROBLEM

In the causal coding literature, the underlying optimization
problem has generally been restricted to finite dimensional
spaces. The analysis then builds on the fact that a continuous
function over a compact set attains a minimum. However,
when there is an entropy constraint, as opposed to a fixed
length rate constraint, the optimization problem is one of
infinite dimension and the optimal quantizer could then have
infinitely many quantization levels [8]. The appropriate frame-
work in this case is infinite-dimensional optimization and the
weak topology.

Lemma 3.1: There exists a solution to the optimization
problem.
The following is a known result for certain special cases, in
particular had been studied in [12] and also [15]. The following
follows the observation that the constraint problem can be
posed as an unconstrained problem by introducing a single
Lagrange multiplier. Consideration of the first order optimality
condition, for each of the quantizers used in the time stages
t = 1, 2, . . . , T , leads to the following result:

Theorem 3.1: Suppose {xt} are i.i.d. random variables
which can be discrete or continuous valued. Then, the optimal
deterministic encoder uses only the current symbol, and the
quantizer is only a function of the marginal distribution of
p(xt).
The above result can be extended to Markovian sources. Wit-
senhausen [16] studied this problem first with finite alphabet
sources, with fixed-length codes. We observe that this can be
extended to variable-length codes.

Theorem 3.2: For a kth-order Markov source, the finite-
horizon optimal causal deterministic encoder at stage t, 0 ≤
t ≤ N − 1 use the most recent (available) min(t, k) symbols
and the information available at the receiver. The optimal
deterministic encoder for the last stage, N , uses only the
distribution of the last symbol and the information available
at the receiver.

IV. INFINITE-HORIZON SOLUTION

In this section we consider the infinite-horizon problem.
Recall the following definition.

Definition 4.1: A probability measure η is invariant on
(R,B(R)), with B(R) denoting the Borel subsets of R, if

η(D) =
∫

X

P (D|x)η(dx), ∀D ∈ B(R),

where P (D|x) is the transition probability, P (xt+1 ∈ D|xt =
x).

To ease the technical burden, we use the following assump-
tion to atomize the state space where the coders live:

Assumption C: The filter at the decoder has arbitrarily
large, but finite memory: There exists d ≥ 1 such that
p(xt|f t−1

1 , qt−1
1 ) = p(xt|f t−1

t−d , qt−1
t−d). ¦

The following is useful for obtaining the optimality of
stationary policies over all admissible policies.

Assumption D: For all quantizers in Q, there exists an
arbitrarily small common bin B∗ = [δ∗a, δ∗b ), δ∗b > δ∗a. ¦

Under Assumption B, Markov processes admit an invariant
distribution. Furthermore, it follows that, under Assumption B
and C, the state distributions at each time t belong to a weak*
compact set, which implies tightness, and is equivalent to it
under closedness. This means that, for every ε, there exists a
compact set Kε ⊂ R, such that Pt(xt ∈ Kε) > 1− ε.

Hence if B∗ is sufficiently far away from the origin, then
since as p → 0, p log2(p) → 0, with P (x ∈ B∗) small,
Assumption D above does not impact the entropy cost of the
quantizers significantly. We will use the common small bin
to generate a neighborhood of a recurrent state under every
policy.

The problem we are interested in is the minimization of the
quantity

lim sup
N→∞

1
N

N∑
t=1

H(ft|f t−1
1 ) (3)

subject to the average distortion constraint

lim sup
N→∞

1
N

N∑
t=1

E[(xt − x̂t(f t
1))

2] ≤ D. (4)

The state process is partially observed by the decoder. This
class of infinite horizon problems is called Partially Observed
Markov Decision Process (POMDP) problems. As is typical
in MDP problems, the partially observed Markov chain can
be converted to a Fully Observed Markov Decision Process
(FOMDP), by enlarging the state space, and replacing the
state with the belief on the state [4]. Properties of conditional
probability leads to the following expression for P (xn|fn−1

1 ):
∫

P (xn−1|fn−2
1 )P (fn−1|xn−1)P (xn|xn−1)dxn−1∫ ∫

P (xn−1|fn−2
1 )P (fn−1|xn−1)P (xn|xn−1)dxndxn−1

. (5)

The entropy and the distortion constraint can be written
as a function of this conditional density for all time stages.
Following the notation of [4], we define

πn(x) := P (xn = x|fn−1
1 ).

Let P be the set of probability distributions for πn(x), n ≥
1. Then the conditional density and the quantization output
process, (πn(x), fn), form a joint Markov process in P ×Q.

We can extend the definition of Definition 4.1 to the
extended state as follows.

Definition 4.2: A probability measure η is invariant on
(P ×Q, σ(P ×Q)), if

η(D) =
∫

P×Q
pf (D|π)η(π, f), ∀D ∈ σ(P ×Q),

where pf (D|π) is the transition probability under f , p(πt+1 ∈
D|πt = π, ft = f).
Let Γ denote the steady state distribution of φt = (ft, πt). We
then have the minimization of

(Γ,H) (6)

subject to

(Γ, C) ≤ D (7)



G

(Γ, C) = D

P (P ×Q)

Fig. 1: The triangular region denotes the space of probability
distributions. The convex region is the set G, where the
boundary of G corresponds to occupation measures generated
by the deterministic quantizers. The dashed line denotes the
linear constraint due to the distortion constraint. The optimal
solution will live on the boundary defined by the intersection
of G and the dashed line. Under Assumption D, any point on
this boundary can be attained by the randomization of two
deterministic quantizers.

over all admissible quantizers, where C(φ) is the conditional
distortion, and H(φ) is the entropy of the quantizer applied to
the conditional density and (., .) denotes the inner product.
This is an infinite dimensional linear program, and under
general conditions, there exists a solution. In the following
we present a result toward this direction.

A. The structure of optimal randomized quantizers

Theorem 4.1: Suppose for a Markov process, Assumptions
A and B hold. Then there exists an optimal stationary deter-
ministic quantizer solving (6)-(7).

We say a quantizer is admissible if ft is a causal quantizer,
that is the policy is measurable with respect to the past
information generated as defined previously.

Lemma 4.1: The set of occupation measures for the state
process (belief process) is a closed, convex set.

Theorem 4.2: If under any two quantizers, the set of
corresponding occupation measures for the state are such that
for some B ⊂ P , ηf

π(B) > 0 and ηf ′
π (B) > 0, then there

exists a stationary quantizer which is as good as the optimal
admissible quantizer minimizing (6)-(7). In particular, under
Assumption D, the above argument holds.
Proof: The set of occupation measures for both the state and
the control is also closed and convex, which is also tight. Since
the cost function is weakly continuous in the input distribution
and control, there exists an optimal occupation measure. One
needs to show that this optimal occupation measure is achieved
by some stationary quantizer from any point π in the invariant
set, and follows the arguments in [3]. ¦

Theorem 4.3: For both the finite-horizon and the infinite-
horizon problems, performance can be improved using a ran-
domized causal quantizer. The optimal randomized stationary
policies are convex combinations of at most two stationary

deterministic policies, with the randomization information at
the encoder made available to the decoder.
Proof: The fact that only two-point randomization is needed
follows from the fact that there is only one constraint in the
optimization problem (see [1] or [2]), which can be regarded
as an infinite dimensional static optimization problem. ¦

It is impractical to implement randomized quantizers since
these require common randomness between the encoder and
the decoder and lack of such information increases the entropy
due to the synchronization error at the encoder and the
decoder. However, for the infinite-horizon problem, one might
achieve the optimal performance without the assumption of
such common randomness. This can be achieved via time-
sharing, which has to exploit the recurrence properties of
Markov chains. In the following we investigate this approach.
In this section we provide the most general solution to the
optimization problem, via an analysis of non-stationary quan-
tizers. We adopt an approach presented by Ross [13] via past-
dependent coding policies. We shall switch quantizer policies
at certain visits to a particular state. The set of probability
density functions, however, unlike discrete probability distribu-
tion functions requires a more involved analysis for recurrence
properties. However, due to the Assumption C above, this state
process will live in an atomic space.

Theorem 4.4: Suppose that there exists a state π∗(x),
which is visited infinitely often under each of the deterministic
policies used in the randomized stationary quantizer. Then,
there exists an optimal time-sharing scheme achieving the
performance of the optimal occupation measure. In particular,
under Assumption D, the argument above holds.
Proof: There is an optimal occupation measure. Now suppose,
this measure is a convex combination of two deterministic
policies with randomization rate η = m/n, m,n integers. By
assumption under both policies, the expected excursion to the
state from itself is finite. Now, apply the policy f ′ in the first
m cycles between the visits to the recurrent state C, and apply
f ′′ in the remaining n−m successive visits to the same state.
¦

Remark For the memoryless discrete source case, it was
shown in [12] that the optimal memoryless encoder time-
shares between two scalar quantizers. A result similiar in spirit
to the one by [12], is applicable to dynamic encoding as
well, with the difference here being in the additional analysis
required in the recurrence properties of the chain. In such a
case, the policy is not stationary. ¦
B. Asymptotic Performance of Innovation Coding

Consider a system generated by the following dynamics:

xt+1 = axt + wt (8)

where xt is the state at time t, and {wt} is a sequence of
zero-mean independent, identically distributed (i.i.d.) Gaussian
random variables. We first consider the case where µ < 0 and
hence |a| < 1. For the coding problem, there does exist a
solution by our earlier argument due to the following. We first
argue that there exists an invariant density for the error process.



Define ξt := (xt − E[xt|qt
1]). First, observe that the joint

process {et, ξt} is Markov if the quantizer is time invariant.
Hence, we have the following dynamics:

et+1 = aξt + wt, ξt+1 = aξt −Q(et) + wt (9)

Hence, by the Comparison theorem [10], there exists an ε > 0
and a bounded petite set C = {(e, ξ) : x2 + ξ2 ≤ 2E[w2

0/(1−
a2)]} such that (see [10])

E[e2
t+1 + ξ2

t+1|et, ξt] ≤ (1− ε)(e2
t + ξ2

t ) + E[w2
0]1et∈C ,

where 1(.) is the indicator function, and ε = 1 − a2. This
ensures that there exists an invariant distribution for the
Markovian joint process {et, ξt}, and hence for the marginal
et as well.

We now consider a scheme where the innovation process,

et = xt − aE[xt−1|qt−1
1 ],

is quantized at each time stage. The proof of the result below
uses the entropy power inequality, and it has a close connection
with the application of the Shannon lower bound as was first
used by Linder and Zamir [9] in the context of causal coding.

Theorem 4.5: For causal coding of the source given in (8)
with stable dynamics, a lower bound on the average rate R,
subject to an average distortion constraint D, is given by:

R(D) ≥ (1/2) log(a2 +
σ2

D
)

We further have the following:
Theorem 4.6: For causal coding of the source given in

(8) with stable dynamics, suppose innovations are uniformly
quantized to obtain a stationary error process. In the limit of
low distortion, such an encoder is at most 0.254 bits worse
than any (possibly noncausal) encoder.

Theorem 4.7: Consider causal coding of the source given
in (8) with unstable dynamics (|a| > 1). The use of a time-
invariant innovation quantizer leads to a transient Markov
chain, no matter how high the data rate is so long as it is
finite. Hence, limt→∞ et = ∞ almost surely.

V. CONCLUSION

Optimality of stationary quantizers under common random-
ization information between the encoder and the decoders over
all admissible quantizers is established. If common random-
ness is not available, then the optimal quantizer is a past-
dependent, non-stationary, recurrence based policy and there
is no loss due to the absence of common randomness. Further
numerical examples are currently under investigation.
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