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Abstract

In this paper, optimal control of linear time-invariant (LTI) systems over unreliable communication links is studied. The motivation of the
problem comes from growing applications that demand remote control of objects over Internet-type or wireless networks where links are prone
to failure. Depending on the availability of acknowledgment (ACK) signals, two different types of networking protocols are considered. Under a
TCP structure, existence of ACK signals is assumed, unlike the UDP structure where no ACK packets are present. The objective here is to mean-
square (m.s.) stabilize the system while minimizing a quadratic performance criterion when the information flow between the controller and
the plant is disrupted due to link failures, or packet losses. Sufficient conditions for the existence of stabilizing optimal controllers are derived.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the fundamental questions in control system theory
and design is the effect controller-plant communication has
on the performance of the control system. In this paper, the
medium of communication between the several components of
a control system is generically called a communication network.
The network is jointly used by sensor, actuator, and controller
nodes. The term networked control system (NCS) is used to
describe the combined system of controllers, actuators, sensors,
and the communication network that connects them together
(Tipsuwan & Chow, 2003; Walsh, Hong, & Bushnell, 2002;
Zhang, Branicky, & Phillips, 2001).
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0005-1098/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2006.03.011

As illustrated in Fig. 1, in an NCS, several components of
the system may communicate over the common network that
connects them together. Thus, there may be communication tak-
ing place between the sensor and the controller nodes, among
the sensors themselves, and the controller and the actuator
nodes. The purpose of this communication is to improve the
performance of the control system. The performance may be
a measurable quantity defined in terms of a performance crite-
rion, as in the case of optimal control or estimation, or it may
be a qualitative measure described as a desired behavior.

The presence of a network brings in constraints in the de-
sign of the control system, as information between the various
decision makers must be exchanged according to the rules and
dynamics of the network. Our goal in this paper is to study
communication network constraints characterized by link fail-
ures, and design the control system so as to do its best given
these constraints. The basic model we introduce here focuses
on the unreliable nature of the links in both directions; see also
Fig. 2. Some of the most relevant papers sharing this theme are
Eisenbeis (2004), Hadjicostis and Touri (2002), Imer, Yüksel,
and Başar (2004), and Sadjadi (2003).

In a network, link failures cause the information flow be-
tween the controller and the plant to be disrupted, which
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Fig. 2. An NCS with unreliable links.

results in control and/or measurement packets being lost. Pack-
ets may also be lost due to congestion. Link failures, on the
other hand, may occur due to the unreliable nature of the links,
such as in the case of wireless networks. Whatever the reason,
this disruption of communication has a deteriorating effect on
the NCS performance. Therefore, it is important to develop an
understanding of how much loss the control system can tolerate
before the system becomes unstable, or in the case of estima-
tion before the estimation error becomes unbounded. Also, if
the statistical description of the link failure process is given a
priori, a problem of interest is to determine the optimal control
and estimation policies under the link failure constraints.1

Note that, packet losses may occur both from the sensor to
the controller, and from the controller to the actuator. In the
first case, the measurement packets are lost and, therefore, the
controller has access to the state intermittently. In the latter
case, the control or actuation packets are lost, and this causes
the actuator to have access to the controls intermittently. One
has to define what happens if the actuator does not receive a
control packet at a given time. There are two potential actions
for the actuator in this case. First one is to apply “zero control”,
and the second one is to apply the “last available control”. The
latter action is equivalent to the zero-order hold (ZOH) action
in continuous time, whereas the former action can be justified
by observing that zero control would cost the least amount of
control energy among all possible control actions. In this paper,
we assume “zero control” action by the actuator in case the

1 The estimation problem has been studied in Nahi (1969) and Sinopoli
et al. (2003). Thus, here we concentrate on the control problem.

controller-actuator fails (Hadjicostis & Touri, 2002; Imer et al.,
2004; Sadjadi, 2003).

In Section 2, we model the unreliable nature of the links by
a Bernoulli process, where links fail, or packets are lost, inde-
pendently. The type of communication protocol used for plant-
controller communication affects the information structure of
the problem. More specifically, it is important to distinguish be-
tween the case when the controller receives an acknowledgment
for each control packet it sends to the actuator, and not. In the
Internet, for example, since every packet in transmission control
protocol (TCP) is acknowledged (Jacobson, 1988), the struc-
ture of the controller in this case is different than the case when
the control packets are sent over a best-effort, or user datagram
protocol (UDP) type network (Postel, 1980). With this stochas-
tic structure, and under the induced information structures, the
goal is to determine a stabilizing optimal control policy with
the objective of minimizing a quadratic performance criterion.

The rest of the paper is organized as follows. We introduce
the TCP and UDP information structures and the corresponding
optimal control problems in Section 2, where we also review
some of the most relevant work. The finite and infinite-horizon
optimal controllers under TCP and UDP information structures
are derived in Sections 3 and 4, respectively. We present some
numerical simulation results in Section 5, and the paper ends
with the concluding remarks of Section 6, where we also discuss
some future research directions.

2. Problem formulation

Consider the NCS shown in Fig. 2, where the links connect-
ing the sensor to the controller, and the controller to the actuator
are prone to failure.

The plant is described by the discrete-time dynamics

xk+1 = Axk + �kBuk + wk, k = 0, 1, . . . , (1)

where xk ∈ Rn is the state, uk ∈ Rm is the control. We assume
that m�n. The disturbances, wk ∈ Rn, are independent zero-
mean second-order random vectors, also independent of {�k},
and the initial state x0, which is a random vector with a given
probability distribution Px0 .

The stochastic process {�k} models the unreliable nature of
the link from the controller to the actuator. Basically, �k = 0
when this link fails, i.e., the control packet is lost, and �k = 1,
otherwise. Note that, this corresponds to the “zero control”
action by the actuator. We let {�k} be an i.i.d Bernoulli process
with P [�k = 0] = �, and P [�k = 1] = 1 − � := �̄.

The link from the sensor to the controller is prone to failure
as well, but potentially with a different probability, �. Thus, the
controller has access to the state intermittently

yk = �kxk, k = 0, 1, . . . . (2)

Here the process {�k} is an independent Bernoulli process with
parameter �, i.e., P [�k =0]=�, and P [�k =1]=1−� := �̄. We
assume that {�k} and {�k} are also independent of each other,
and both processes are also independent of the plant noise {wk},
and initial state x0.
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Note that in our formulation, when the controller–actuator
link fails the entire control vector is lost. Similarly, the failure
of the sensor–controller link causes the entire state vector to
be lost. This, although a realistic scenario in many cases, does
not capture the more general scenario in which packets are lost
with different probabilities on each sensor and actuator link.
This is a topic that will be addressed in the future.

Also, there is no measurement noise in this basic model.
The rationale for not including any measurement noise is the
assumption that the communication between the sensor and the
controller is taking place at the network layer, where the packets
sent are either received or lost. Alternatively, one can think of
the sensor and the controller connected through a binary erasure
channel with infinite capacity, i.e., no quantization or encoding
of the state (Tatikonda & Mitter, 2004).

Let Ik denote the information available to the controller at
time k. It is important to distinguish between two scenarios.
In the first one, the controller at time k knows if the control
at time k − 1, uk−1, has been successfully transmitted or not.
In the second case, the controller does not know if any of
the previous controls has been successfully transmitted or not.
In other words, �k−1 is part of the information set Ik of the
controller in the first case, whereas no �k belongs to any of
the information sets of the controller in the second case. Over
a network, the first information structure can be justified if
there is a mechanism in which acknowledgment packets are
generated by the actuator to signal the successful receipt of
control packets. In the Internet, since every packet in TCP is
acknowledged, we call this information structure ITCP

k . If, on
the other hand, the controller and the actuator are linked through
a best-effort or UDP network, it is not possible for the controller
to know if any of its past controls have been applied by the
actuator or not. We denote the resulting information vector of
this controller by IUDP

k . We have

IUDP
k = (y0, . . . , yk; u0, . . . , uk−1; �0, . . . , �k),

k = 1, 2, . . . ,

IUDP
0 = (y0, �0). (3)

In TCP, ITCP
k includes (�0, . . . , �k−1) as well, i.e.,

ITCP
k = (IUDP

k ; �0, . . . , �k−1), k = 1, 2, . . . ,

ITCP
0 = IUDP

0 .

Note that �k is included in the information set of both con-
trollers, as the controller can identify �k unless xk =0 in which
case no control action is required. Also, in both cases we as-
sume that the controller has access to its past actions.

Consider the class of policies consisting of a sequence of
functions � = {�0, �1, . . . , �N−1}, where N is the decision-
horizon, and each function �k maps the information vector IUDP

k

(or ITCP
k ) into some control space Ck , i.e., uk = �k(Ik). Such

policies are called admissible. We want to find an admissible

policy that minimizes the quadratic cost function

J� = E

{
xT
NFxN +

N−1∑
k=0

xT
k Qxk + �ku

T
k Ruk

}
(4)

subject to the system (1) and measurement (2) equations. We
assume that R > 0, Q�0, F �0. Note that the control uk is
penalized only if it is applied to the plant by the actuator.

In what follows, we first solve this optimization problem in
finite-horizon, and obtain the structure of the optimal control
under both TCP and UDP information structures. Subsequently,
we establish explicit conditions, and easy-to-check tests for the
existence and stabilizability properties of the infinite-horizon
controllers. But first, we review the relevant literature.

2.1. Relevant work

In its present form, the optimal control problem with TCP
information structure resembles the optimal quadratic control
of a jump linear system. Suppose, in addition to ITCP

k , �k is also
known at time k. In this case, the problem can be studied in the
framework of jump-linear systems (Chizeck & Ji, 1988). So-
lution of the jump linear quadratic Gaussian (JLQG) problem
relies on the fact that the so-called form process is observable.
The form process is the underlying Markov process that takes
values in a finite set. With the inclusion of �k into the informa-
tion state, the optimal controller can be obtained directly from
(Chizeck & Ji (1988)); also see Sengupta (2001). Here, how-
ever, we do not allow for any knowledge of �k at time k, even
in the TCP case.

Another way of looking at the problem is in the context
of uncertainty threshold principle (Athans, Ku, & Gershwin,
1977; Katayama, 1976; Koning, 1982; Ku & Athans, 1977). In
particular, if we assume perfect state measurements, i.e., �=0,
the linear system with the quadratic cost structure fits into the
framework of Koning (1982). When the controller has access to
the state intermittently, however, the solution of Koning (1982)
cannot be used.

A more recent attempt with a similar formulation is given in
Sadjadi (2003), where the information structure of the problem
is IUDP

k . However, rather than obtaining the optimal solution,
the author proposes to separate the estimation and control to
simplify the solution. The sub-optimal solution is then obtained
with an intuitive construction of a controller and an estimator.

This work also relates to a recent work by Sinopoli et al.
(2003), in which estimation counterpart of the problem posed
here, i.e., optimal estimation of an LTI system with intermittent
observations, is discussed. The problem of optimal recursive
estimation with missing observations was first introduced by
Nahi (1969).

3. Optimal control over TCP networks

3.1. Finite horizon optimal control

Consider the plant dynamics (1) along with the measurement
equation (2). The objective is to minimize the quadratic cost
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(4) over � = {�0(I
TCP
0 ), . . . , �N−1(I

TCP
N−1)}. From the dynamic-

programming (DP) equation (Bertsekas, 1995), we obtain the
cost to go from stage N − 1

JN−1(I
TCP
N−1) = E{xT

N−1KN−1xN−1|ITCP
N−1}

+ E{eT
N−1PN−1eN−1|ITCP

N−1}
+ E{wT

N−1FwN−1},
where ek := xk − x̂k is the state estimation error, and the
estimator x̂k is given by

x̂k = E{xk|ITCP
k }.

The optimal policy for the last stage is

u∗
N−1 = −(R + BTFB)−1BTFAE{xN−1|ITCP

N−1},
where KN−1 and PN−1 are given by

PN−1 = �̄ATFB(R + BTFB)−1BTFA,

KN−1 = ATFA + Q − PN−1.

The DP for the next stage yields

JN−2(I
TCP
N−2) = min

uN−2
E{xT

N−1KN−1xN−1

+ �̄uT
N−2RuN−2 + xT

N−2QxN−2

+ eT
N−1PN−1eN−1|ITCP

N−2}
+ E{wT

N−2KN−1wN−2}
+ E{wT

N−1FwN−1}. (5)

Note that we can exclude the last term from the minimization
with respect to uN−2, as there is no dual effect of the control
(Shalom & Tse, 1974), i.e., xk − E{xk|ITCP

k } is not a function
of the past control uk−1 due to the acknowledgments in TCP.
Proceeding similarly, we obtain the optimal policy for every
stage

u∗
k = GkE{xk|ITCP

k },
where the matrix Gk is given by

Gk = −(R + BTKk+1B)−1BTKk+1A

with the matrices Kk given recursively by the Riccati equation
(RE)

Pk = �̄ATKk+1B(R + BTKk+1B)−1BTKk+1A, (6)

Kk = ATKk+1A − Pk + Q (7)

with initial conditions KN =F , PN =0. Since the separation of
estimation and control holds, the estimator part of the controller
can be designed separately, and in our case, since there is no
measurement noise, it takes the following form, where x̂0 =
EPx0

{x0} if �0 = 0, otherwise x̂0 = x0

x̂k =
{

Ax̂k−1 + �k−1Buk−1, �k = 0,

xk, �k = 1.

3.2. Infinite horizon optimal control

Since noise is present, in order to achieve a finite cost as
the number of decision stages increases indefinitely, we change
the performance criterion to the infinite-horizon average cost
criterion given by

J� = lim sup
N→∞

1

N
E

{
N−1∑
k=0

xT
k Qxk + �ku

T
k Ruk

}
.

We first investigate the asymptotic properties of the matrix RE
(6)–(7), which by substituting for Pk , and reversing the time
index, can be written as

Kk+1 = ATKkA − �̄ATKkB(R + BTKkB)−1

× BTKkA + Q

In Katayama (1976), a necessary and sufficient condition for
stability of this equation is given when B is invertible, which
we restate here for convenience.

Lemma 1. Let B be square and of full rank, and (A, Q1/2) be
observable. Then, {Kk} converges to a unique positive definite
steady-state solution K if and only if

√
�A is asymptotically

stable.

Requiring B to be invertible is rather restrictive, as it means
that the control is of the same dimension as the state, but it is
useful to have an explicit condition of stability in terms of � for
the special case when B is invertible. A weaker condition for
convergence, when B is not necessarily invertible, is derived in
Koning (1982), which we state in the next lemma.

Lemma 2. Let (A, Q1/2) be observable. Then, the RE Kk con-
verges to a unique positive definite steady-state solution K if
and only if the following RE converges from the initial condi-
tion �0 = I

�k+1 = AT�kA − �̄AT�kB(BT�kB)−1BT�kA.

In the case when B is invertible, using Lemma 1, we con-
clude that the sequence {Kk} generated by the RE (6)–(7) will
converge if and only if

max
i

|�i (A)| < 1√
�

, (8)

where �i (A) is an eigenvalue of A. Thus, as the failure rate � be-
comes larger, the bound becomes tighter, reaching the stability
condition of A, when � = 1. When B is not invertible, a similar
statement can be made, however there is no explicit condition
that one can impose on the eigenvalues of A in the form of (8).

Next, we investigate the stability of the closed-loop system.
Using the TCP estimator from Section 3.1, we first write a
recursion for the state estimation error

ek =
{

Aek−1 + wk−1, �k = 0,

0, �k = 1.
(9)
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As it turns out, the mean-square (m.s.) stability of the estimation
error is independent of that of the state, xk , in this case. So, we
arrive at the following:

Theorem 3. Let (A, Q1/2) be observable. Suppose

�m := max
i

|�i (A)| < 1√
�

and (�, A, B) are such that the RE, �k , given in Lemma 2
converges from �0 = I , or in case B is invertible eigenvalues
of A are such that

�m < min

{
1√
�
,

1√
�

}
. (10)

Then:

(a) There exists K > 0 such that for every K0 �0, limk→∞Kk=
K . Furthermore K is the unique solution of the algebraic
matrix equation

K = ATKA + Q − �̄ATKB(R + BTKB)−1BTKA

within the class of positive semidefinite matrices.
(b) The corresponding closed-loop (CL) system is stable; that

is, the 2n-dimensional system [xk ek]T remains bounded
in the m.s. sense.

Proof. Part (a) follows from Lemma 1 (or Lemma 2 if B is not
invertible). For part (b), from (9), we see that E{‖ek‖2} remains
bounded if and only if the spectral radius of A is bounded by

�m <
1√
�

.

Now, the closed-loop system evolves according to

xk+1 = (A + �kBG)xk − �kBGek + wk ,

where G = −(R + BTKB)−1BTKA. Note that, the estima-
tion error covariance E{‖ek‖2} is uniformly bounded. Thus, the
state, xk , will remain bounded, if and only if the linear system

�k+1 = (A + �kBG)�k (11)

with the initial condition �0 = x0, is stable in the m.s. sense.
By (10), and Lemma 1, the sequence generated by the RE

converges. Thus by the DP equation (or direct substitution) we
can verify the following useful equality:

K = �̄GTRG + �ATKA + �̄(A + BG)T

× K(A + BG) + Q. (12)

We will now show that the system (11) is m.s. stable, which in
turn will imply that E{‖xk‖2} is bounded. We have for all k,
by using (12)

E{�T
k+1K�k+1 − �T

k K�k} = E{�T
k (�ATKA − K)�k}

+ E{�̄�T
k (A + BG)TK

× (A + BG)�k}
= − E{�T

k (Q + �̄GTRG)�k}.

Hence

E{�T
k+1K�k+1}

= E{�T
0 K�0} −

k∑
i=0

E{�T
i (Q + �̄GTRG)�i}.

Since the left-hand side of this equation is bounded below by
zero

lim
k→∞ E{�T

k (Q + �̄GTRG)�k} = 0.

Since R > 0, in view of the observability assumption, we must
have E{‖�k‖2} → 0. Therefore, we conclude that E{‖xk‖2} is
bounded as k → ∞. �

4. Optimal control over UDP networks

4.1. Finite horizon optimal control

Consider the linear system dynamics (1)–(2) along with the
quadratic cost structure. Now, we want to find the optimal con-
troller under the UDP information structure, IUDP

k . It is easy
to see from the DP equation for the last stage that the optimal
control policy for the last stage is identical to that in the TCP
case:

JN−1(I
UDP
N−1) = E{xT

N−1KN−1xN−1|IUDP
N−1}

+ E{eT
N−1PN−1eN−1|IUDP

N−1}
+ E{wT

N−1FwN−1},
where KN−1 and PN−1 are as given in Section 3.1, and

u∗
N−1 = −(R + BTFB)−1BTFAE{xN−1|IUDP

N−1}.
The DP equation for period N − 2 is identical to (5) with ITCP

N−2
replaced by IUDP

N−2. However, this time we cannot claim that
the control does not have dual effect (Shalom & Tse, 1974).
In order to see the extent of past control uN−2’s effect on the
future state estimation error, we expand (5), and after some
algebra we arrive at the following equation:

JN−2(I
UDP
N−2) = E{xT

N−2A
TKN−1AxN−2|IUDP

N−2}
+ E{xT

N−2QxN−2|IUDP
N−2}

+ �E{eT
N−2A

TPN−1AeN−2|IUDP
N−2}

+ �̄ min
uN−2

[uT
N−2B

TKN−1BuN−2

+ uT
N−2(R + ��BTPN−1B)uN−2

+ 2x̂T
N−2A

TKN−1BuN−2]
+ E{wT

N−2KN−1wN−2}
+ E{wT

N−1FwN−1}. (13)

Minimization in (13) yields, with x̂k = E{xk|IUDP
k }:

u∗
N−2 = − (R + BT(KN−1 + ��PN−1)B)−1

× BTKN−1Ax̂N−2.
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Substituting the control back, we obtain

JN−2(I
UDP
N−2) = E{xT

N−2KN−2xN−2|IUDP
N−2}

+ E{eT
N−2PN−1eN−2|IUDP

N−2}
+ E{wT

N−2KN−1wN−2}
+ E{wT

N−1FwN−1}.
Proceeding similarly we obtain: u∗

k = Gkx̂k , where

Gk = −(R + BT(Kk+1 + ��Pk+1)B)−1BTKk+1A (14)

with Kk and Pk given recursively by the coupled REs

Pk = �̄ATKk+1B(R + BT(Kk+1 + ��Pk+1)B)−1

× BTKk+1A + �ATPk+1A, (15)

Kk = ATKk+1A − Pk + �ATPk+1A + Q (16)

with initial conditions KN = F , PN = 0.
Note that, although the control has a dual effect (Shalom &

Tse, 1974) under the UDP information structure, the optimal
estimator can still be designed separately

x̂k =
{

Ax̂k−1 + �̄Buk−1, �k = 0,

xk, �k = 1,
(17)

where x̂0 = EPx0
{x0} if �0 = 0, otherwise x̂0 = x0.

4.2. Infinite horizon optimal control

We again replace the objective function with the infinite-
horizon average cost criterion given by

J� = lim sup
N→∞

1

N
E

{
N−1∑
k=0

xT
k Qxk + �ku

T
k Ruk

}
.

Let us start by investigating the asymptotic properties of the
coupled REs (15)–(16). First, we present a negative result,
which shows the necessity of the condition of Theorem 3.

Lemma 4. Let (A, Q1/2) be observable. Suppose

max
i

|�i (A)|� min

{
1√
�
,

1√
�

}
.

Then, {Pk} and {Kk} generated by (15)–(16) diverge as k→∞.

Proof. Reversing the time, from (15)–(16) we have

Pk+1 = �ATPkA + (1 − �)AT(Kk − Mk)A,

Kk+1 = �ATKkA + (1 − �)ATMkA + Q, (18)

where

Mk = Kk − KkB(R + BT(Kk + ��Pk)B)−1BTKk

�Kk − KkB(R + BTKkB)−1BTKk := M̄k .

It is known that under the assumption of (A, Q1/2) observable,
M̄k �0. Thus,

Kk+1 ��ATKkA + Q. (19)

It follows from (19) that since (A, Q1/2) is observable, if
√

�A

is not asymptotically stable, {Kk} diverges as k → ∞. Also,
since Kk − Mk �0,

Pk+1 ��ATPkA

which indicates that unless
√

�A is asymptotically stable, {Pk}
will diverge. �

Hence, we conclude that the condition (10) of Theorem 3 is
also necessary for the convergence of the REs (15)–(16).

In order to find a sufficient condition for asymptotic stability
of the RE (15)–(16), we proceed as in Koning (1982), where
it has been shown that the m.s. stabilizability of the system (1)
with a stationary control law of the form

uk = Gx̂k ,

where x̂k is the optimal estimator given by (17), is sufficient for
the convergence of the REs (15)–(16) from K0 =0, and P0 =0.
Then, one can relate the m.s. stabilizability of the system (1) to
an auxiliary optimal control problem of minimizing a norm of
the terminal state, E{‖xN‖2}, for a given N �n, where n is the
dimension of the state. Note that the solution of this problem
may not be unique, and it corresponds to the optimal controller
under the UDP information structure with Q=R=0, and F =I .
Thus, we arrive at the following result.

Lemma 5. Let (A, Q1/2) be observable. Then, the coupled REs
(15)–(16) converge if and only if the following coupled REs
converge from the initial condition �0 = I, 	0 = 0

�k+1 = − �̄AT�kB(BT(�k + ��	k)B)−1BT�kA

+ AT�kA, (20)

	k+1 = �̄AT�kB(BT(�k + ��	k)B)−1BT�kA

+ �AT	kA. (21)

Proof. The proof follows from Theorem 5 of Koning (1982),
and the preceding discussion. �

For a given pair of failure probabilities (�, �), Lemma 5 pro-
vides a test for checking the convergence of the REs (15)–(16)
from an arbitrary initial condition K0 = F �0. However, ana-
lytical calculation of the stability region is not possible due to
the nonlinear nature of the REs (20)–(21). Nevertheless, as we
show next, in the case when B is invertible, it is possible to find
sufficient conditions for the convergence of these equations by
bounding the recursion of (�k, 	k) from above by a linear re-
cursion. For this purpose, we first state a rather obvious, but
useful, result.

Lemma 6. Let the matrix recursions

Xk+1 = T1(Xk, Yk), Yk+1 = T2(Xk, Yk)
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are given, where X, Y are symmetric matrices of the same di-
mension. Suppose there exist monotonically increasing func-
tions L1(X, Y ), L2(X, Y ) such that for all symmetric X, Y

T1(X, Y )�L1(X, Y ),

T2(X, Y )�L2(X, Y ).

Then, starting with X̄0 =X0, Ȳ0 =Y0, we have Xk �X̄k , Yk � Ȳk

for all k�0 where X̄k+1 = L1(X̄k, Ȳk), Ȳk+1 = L2(X̄k, Ȳk).

Proof. The proof follows by induction. Say at time k, we have
Xk �X̄k, Yk � Ȳk . Then

Xk+1 = T1(Xk, Yk)�L1(Xk, Yk)�L1(X̄k, Ȳk) = X̄k+1,

Yk+1 = T1(Xk, Yk)�L2(Xk, Yk)�L2(X̄k, Ȳk) = Ȳk+1. �

The next lemma shows how to bound the recursions of
(�k, 	k) from above by linear recursions when B is n×n, and
invertible.

Lemma 7. Let B be invertible. Then, the sequence of matrices
(�̄k, 	̄k) obtained from the linear recursions

�̄k+1 = �AT�̄kA + ��̄�AT	̄kA, (22)

	̄k+1 = �̄AT�̄kA + �AT	̄kA (23)

with the initial condition (�̄0, 	̄0) = (I, 0) are such that

�k ��̄k, 	k �	̄k for all k�0,

where (�k, 	k) are generated by (20)–(21).

Proof. Using the property that B is invertible, the updates
(20)–(21) can be simplified to

�k+1 = AT�kA − �̄AT�k(�k + ��	k)
−1�kA,

	k+1 = �AT	kA + �̄AT�k(�k + ��	k)
−1�kA.

Note that, the update for 	k can be written as

	k+1 = �̄AT�1/2
k �1/2

k (�k + ��	k)
−1�1/2

k �1/2
k A

+ �AT	kA.

Next, we claim that for all k�0

�1/2
k (�k + ��	k)

−1�1/2
k �I .

To see this, let LT
k = �1/2

k , and rewrite the inequality as

LT
k (LkL

T
k + ��	k)

−1Lk �I .

The inequality follows from the fact that 	k �0, ∀k�0.
The update for �k can similarly be written as

�k+1 = − �̄AT[�k − �k(�k + ��	k)
−1�k]A

+ �AT�kA.

Now, we claim that

�k − �k(�k + ��	k)
−1�k ���	k .

Let 
k = ��	k . Then the condition is equivalent to

�k − �k(�k + 
k)
−1�k �
k ,

where �k > 0, and 
k �0. If 
k = 0, the inequality holds with
equality. If 
k > 0, we use the matrix inversion lemma to rewrite
the inequality as

�−1
k + 
−1

k �
−1
k ⇒ �−1

k �0

thus completing the proof. �

Remark 8. If A is scalar, the condition for convergence of the
linear recursions (22)–(23) is given by

�

(
A2

[
� ��̄�
�̄ �

])
< 1

which can be expressed as

|A| <
(

1

�2(2 − �)�

)1/4

, (24)

�2(2 − �)�A4 − (� + �)A2 + 1 > 0. (25)

In general, the convergence of the REs (15)–(16) is not suf-
ficient for the optimal UDP controller to be stabilizing. How-
ever, under the observability assumption it can be shown that
the closed-loop system is m.s. stable.

Theorem 9. Let (A, Q1/2) be observable. Suppose that the
REs (20)–(21) converge from the initial condition (I, 0). Then:

(a) There exist K > 0, P > 0 such that for every K0 �0 and
P0 = 0, we have

lim
k→∞ Kk = K, lim

k→∞ Pk = P .

Furthermore K, P are the unique solutions of the alge-
braic matrix equations

P = �̄ATKB(R + BT(K + ��P)B)−1BTKA

+ �ATPA.

K = ATKA − P + �ATPA + Q

within the class of positive semidefinite matrices.
(b) The corresponding closed-loop system is stable; that is,

the 2n-dimensional system [xk ek]T remains bounded in
the m.s. sense.

Proof. Part (a) of the proof follows from the preceding discus-
sion. For part (b), first note that for a given n × n matrix S, we
have

E{eT
k Sxk + xT

k STek|Ik}
= E{xT

k (S + ST)xk − x̂T
k (S + ST)x̂k|Ik}

= E{(xk − x̂k)
T(S + ST)(xk − x̂k)|Ik}

= E{eT
k (S + ST)ek}. (26)
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Now, write

E{xT
k+1Kxk+1 − xT

k Kxk + eT
k+1Pek+1 − eT

k P ek}
= −E{xT

k (Q + �̄GTRG)xk + �̄eT
k GTRGek}, (27)

where we made use of (26), and the following equalities:

K = �ATKA + �̄(A + BG)TK(A + BG)

+ �̄GT(R + ��BTPB)G + Q,

P = �̄ATKA − �̄(A + BG)TK(A + BG) + �ATPA

− �̄GT(R + ��BTPB)G

which can be verified by direct substitution.
Summing (27) over k yields

E{xT
k+1Kxk+1 + eT

k+1Pek+1}
= E{xT

0 Kx0 + eT
0 Pe0}

−
k∑

i=0

E{xT
i (Q + �̄GTRG)xi}

+
k∑

i=0

E{eT
i (�̄GTRG)ei}. (28)

Since, for Z�0, �E{xT
k Zxk}�E{eT

k Zek}, from (28) we can
write

E{xT
k+1Kxk+1 + eT

k+1Pek+1}
�E{xT

0 Kx0 + eT
0 Pe0}

−
k∑

i=0

E{xT
i (Q + �̄�̄GTRG)xi}.

Since the left-hand side of this inequality is bounded below by
zero, it follows that

lim
k→∞ E{xT

k (Q + �̄�̄GTRG)xk} = 0.

Since R > 0, in view of the observability assumption, we must
have E{‖xk‖2}, and E{‖ek‖2} bounded unless � = 1 or � = 1.

�

Before closing our account on this section, we illustrate the
range of link failure probabilities, (�, �), for which the system
can be stabilized under the optimal TCP and UDP controllers.
In Fig. 3 we plot the stability region in the �–� plane for a
scalar plant with A = 2, A = 1.4, and A = 1.1. The solid lines
in Fig. 3 is the condition (25) of Remark 8, and the system
can be stabilized if the actual failure probabilities on the links
are between this curve, and the � and � axis. Note that this
curve represents only a sufficient condition for the optimal UDP
controller to be stabilizing. The dashed lines in Fig. 3 describe
the region of failure probabilities for which the TCP controller
can stabilize the same plant. This condition is both necessary
and sufficient for the optimal TCP controller to be stabilizing
as per Theorem 3.

Note that, as the plant becomes more open-loop unstable,
the stability region becomes smaller. This is an expected result,
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Fig. 3. Region of failure probabilities for which the optimal TCP (dashed)
and UDP (solid) controllers can stabilize a plant with A = 2, 1.4, and 1.1.

because intuitively the more open-loop unstable a plant is, the
more frequently we need to observe and control it.

5. A numerical example

In this section, we present some numerical results we ob-
tained in Matlab to compare the performance of the optimal
controllers in the TCP and UDP cases as the link failure prob-
abilities, � and �, are varied. Consider the following open-loop
unstable scalar plant:

xk+1 = 2xk + �kuk + wk , (29)

where A = 2, and B = 1. Let the noise process, {wk}, be zero-
mean with variance �2

w = 1. The initial state is also zero-mean
with variance �2

x0
= 1.

If we let Q=R = 1, the RE in the TCP case is equivalent to

(1 − 4�)K2 − 4K − 1 = 0

with the positive solution

K = 2 + √
4 + (1 − 4�)

1 − 4�

assuming 1 − 4� > 0, i.e., � < 1
4 . In terms of �, the gain of the

infinite horizon TCP controller can be calculated as

G = − 2K

1 + K
= 4 + 2

√
4 + (1 − 4�)

3 − 4� + √
4 + (1 − 4�)

.

In the UDP case, the coupled REs are given by

(1 − 4�)(1 − 4� − 4� + 7��)P 2

− (1 − 4�)(14 − 8�)P + 4(1 − �) = 0,

1
3 ((1 − 4�)P − 1) = K .

One can solve for (K, P ) in the above equation, and substitute
it into the expression for the gain of the infinite horizon UDP
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Fig. 4. Typical sample path of the plant state, xk , under optimal TCP and
UDP controllers.

controller to find the optimal stationary feedback control policy
in the UDP case.

Note that for the estimator to be stable, in the TCP case, we
need |A| < 1/

√
�, which for A = 2 implies that � < 1

4 .
We next simulate the optimal control laws for both types

of protocols, as we vary � and �. The UDP controller seems
to stabilize the plant only when approximately 0�� < 0.25
and 0�� < 0.25 − �, whereas the TCP controller has a larger
stability region in the �-� plane, as expected.

We fix the decision horizon, N, to N =100, and simulate the
linear system (29) under the TCP and UDP controllers. Fig. 4
shows the typical sample path behavior of the state, xk , under
the TCP (solid curve), and UDP (dashed curve) controllers.
In Fig. 4, the drop probabilities on the links are taken to be
(�, �) = (0.15, 0.10).

Finally, we compare the sample path average costs under
both controllers by averaging 300-stage average sample path
cost over 1000 sample paths of the plant process. This yields

J̄ TCP ≈ 15.77, J̄ UDP ≈ 25.44.

We clearly have J̄ TCP < J̄ UDP, since the TCP controller has
access to more information than the UDP controller, resulting
in a smaller average cost in the TCP case.

6. Conclusions and discussion on some extensions

In this paper, we introduced the problem of optimally con-
trolling a linear discrete-time plant when some of the measure-
ment and control packets are missing. We made the assumption
that the packet loss processes are simple independent Bernoulli
processes with control and measurement packets being lost
independent across time. In this setting, we showed that the
optimal control depends on the information structure of
the controller, which in turn depends on the characteristics

of the underlying network. Under a network structure that
supports acknowledgements, we have shown that the optimal
control law that minimizes a quadratic performance criterion is
linear, and can be obtained by dynamic programming. More-
over, the RE that describes the evolution of the controller gain
is a modified version of the standard RE with a scalar parame-
ter that accounts for the packet loss probability on the network
links. If the underlying network does not support acknowledg-
ment packets, we have seen that the optimal control remains
linear, if there is no noise in the observations. However, with
no acknowledgments, the REs that describe the evolution of
the controller gain become a coupled set of two matrix recur-
sions, and we derived conditions for the convergence of these
coupled REs.

There are several ways the results of this paper can be ex-
tended. We enumerate below some specific problems:

(1) One can investigate the case when the actuator applies the
“last available control”, as opposed to “zero control”, when
the control packet is lost. This extension requires extending
the state–space model of the system to

xk+1 = Axk + �kBuk + (1 − �k)B�k + wk ,

�k+1 = �k�k + (1 − �k)uk ,

where �k is the state variable that keeps track of the last
applied control by the actuator. Defining a new state x̄k :=
[xk �k]T, we can write the above system in state–space
form as follows:

x̄k+1 =
[
An×n (1 − �k)Bn×m

0m×n �kIm×m

]
x̄k

+
[

�kB

(1 − �k)Im×m

]
uk +

[
In×n

0m×n

]
wk ,

where Im×m, and 0m×n denote the m × m identity matrix,
and m×n zero matrix, respectively. The optimal controller
in the TCP case can be derived following along the lines
of the derivations of Section 3.1. Since we have access to
�k−1, there is no dual-effect, hence the only difference be-
tween this case and the zero-control case of Section 3.1
is the randomness of the plant matrices (A(�k), B(�k))

through �k . Therefore, the REs (6)–(7) describing the opti-
mal TCP controller will remain the same with the matrices
(A, B) replaced by their counterparts (Ā, B̄)

Ā =
[
A �B

0 (1 − �)I

]
,

B̄ =
[
(1 − �)B

�I

]
.

The UDP case is more involved due to the dual nature of
the control in this case. In this case, one has to follow along
the lines of the derivations of Section 4.1 by expanding
the future estimation error terms in the current cost-to-go
function. This expansion needs to take into account the
random nature of the plant matrices (A(�k), B(�k)).
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Fig. 5. Two-state Markov-chain model for packet drops.

(2) Another extension of this paper is to study the noisy mea-
surements case, where the measurement equation (2) is
replaced by

yk = �k(xk + vk)

where {vk} is a zero-mean i.i.d. Gaussian random process.
Note that only the sensor measurements are noisy, not the
packet drops. This problem can be easily solved under
the TCP information structure, and the state estimator
can be shown to be linear in the best estimate of the state
because of the acknowledgments in TCP. The UDP case
is more difficult due to the dual nature of the control.

(3) In general, the link failure process {�k} can be correlated.
This correlation can be modeled as a two-state Markov
chain, where state HC corresponds to high congestion
(HC), and state LC corresponds to low congestion (LC),
as shown in Fig. 5. Now given the transition probabili-
ties, (�LL, �HH ), between these states, the problem is to
determine the optimal controller under the TCP and UDP
information structures. In the TCP case, since at time k,
the controller has access to �k−1, the solution can be ob-
tained by a direct extension of the derivation of Section
3.1. If we do not have access to �k’s, on the other hand,
the derivation is analogous to the one in Section 4.1. As
in the derivation of the optimal UDP controller for the un-
correlated case, one needs to expand the future estimation
error terms in the cost-to-go function of the current stage
to see their effect on the current cost. The quadratic nature
of the cost-to-go functions will be preserved, however the
coupled REs describing the evolution of the cost will be
more involved containing the probabilities (�, �LL, �HH ).
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