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Stochastic Stabilization of Partially Observed and
Multi-Sensor Systems Driven by Unbounded Noise Under

Fixed-Rate Information Constraints

Andrew P. Johnston and Serdar Yüksel

Abstract—We investigate the stabilization of unstable multidimensional
partially observed single-sensor and multi-sensor (single-controller) dis-
crete-time linear systems driven by unbounded noise and controlled over
discrete noiseless channels. Stability is achieved under fixed-rate commu-
nication requirements that are asymptotically tight in the limit of large
sampling periods. Through the use of similarity transforms, sampling and
random-time drift conditions we obtain a coding and control policy leading
to the existence of a unique invariant distribution and finite secondmoment
for the sampled state. We obtain tight necessary and sufficient conditions
for the general multi-sensor case under an assumption related to the Jordan
form structure of such systems. In the absence of this assumption, we give
sufficient conditions for stabilization.

Index Terms—Networked control systems, quantization, stability, sto-
chastic systems.

I. INTRODUCTION

Networked control systems are becoming increasingly common-
place, with recent focus on the design of such systems being on the
settings with multiple decision makers connected over rate-limited
information channels. The goal for the design of such systems is either
stabilization or optimization given information limitations. For a
detailed review of the literature for the design of such systems, see [1],
[2]. This technical note investigates stabilization of such networked
control systems where the system to be stabilized is driven by noise
with unbounded support and the communication channel between the
sensors and the controller is a discrete noiseless channel with rate
constraints.

A. Problem Statement

In this technical note, we consider the class of multi-sensor LTI dis-
crete-time systems with both plant and observation noise. The system
equations are given by

(1a)

(1b)

where and are the state and control action variables
at time respectively. The observation made by sensor at time
is denoted by . The matrices and random vectors

are of compatible size.
We require that and each are sequences of i.i.d. random

vectors drawn from a distribution , with finite moments in each
component for some , which admits a probability density that
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Fig. 1. Multi-sensor system with finite-rate communication channels.

is positive on every (non-empty) open set. At time , and each
are independent of each other and the state . The initial state, , is
drawn from the distribution.
Assumption 1.1: We require controllability and joint observ-

ability. That is, the pair is controllable and the pair

is observable but the individual
pairs may not be observable.
The setup is depicted in Fig. 1. The observations are made by a set of
sensors and each sensor sends information to the controller through

a finite capacity channel. At each time stage , we allow sensor
to send an encoded value for some

. In addition, the controller can send a feedback value
at times , where is the period of our coding policy and
. The value is seen by all sensors at time . We define

the rate at time as . The coding scheme is
applied periodically with period and so the rate for all time stages
is specified by . The average rate
is , accounting for the encoded and
feedback signals. For the case with a single sensor, can be taken
to be zero in the rate expression, as we discuss further in the technical
note.
Information Structure: For a process we define

. At time , each sensor maps its information
. The controller maps

its information .
We denote the indicator function of an event by . Unless oth-

erwise stated, all vectors are assumed to be column vectors. For any
we write where is the th entry. We

define the absolute value operation for vectors as the component-wise
absolute value. That is, . For a matrix

, we denote its transpose by and determinant by . We
let denote the set of eigenvalues of . The norm is denoted by

and defined as .
Definition 1.2: For and we write if
for all . We write otherwise.
The observability matrix of sensor is

, the unobservable space is
and the observable subspace is defined to be

for .
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B. Brief Literature Review

Due to space limitations, we are unable to give a fair account of
the literature. We refer the reader to [1], [2] and [3] where this note
builds on ([3] also contains the proofs of some of the results which
are not included here). Of particular importance, [4] and [5] obtained a
fundamental lower bound on the average rate of the information trans-
mission for quadratic (mean-square) stabilization as we discuss in the
following. For the system (1), letting be the set of eigenvalues of
, this bound is

(2)

Various publications have studied the characterization of minimum
information requirements for multi-sensor and multi-controller linear
systems with various topologies of decentralization and the funda-
mental bounds have been extensively studied in [1], [6]–[20]. These
contributions do not consider the noisy case with multi-sensor settings,
as well as ergodicity properties for multi-dimensional systems. When a
linear system is driven by unbounded noise, the analysis is particularly
difficult since a bounded quantizer range leads to a transient state
process (see for example Theorem 7.3.1 in [2] or Proposition 5.1
in [4]). In such a noisy setup, for single-sensor systems, a stability
result of the form was given for noisy
systems with unbounded support in [4], which uses a variable-rate
quantizer. A fixed-rate scheme was presented in [15] for a scalar noisy
system using martingale theory, which achieved the lower bound
plus an additional symbol required for encoding. The existence of an
invariant distribution was established under the coding and control
policy presented, along with a finite second moment of the state; that
is, . Authors in [21] considered a general
random-time stochastic drift criteria for Markov chains and applied it
to erasure channels in a similar spirit. Variable-rate coding schemes for
time-varying channels were considered in [17]. Authors in [22] studied
conditions for stabilization when the control actions are uniformly
bounded, the controlled multi-dimensional system is marginally stable
and is driven by noise with unbounded support. The multi-sensor
setting with unbounded noise has not been studied to our knowledge.
In view of the literature, the contributions of this note are as follows:

(i) The case where the system is multi-dimensional and driven by un-
bounded noise over a noiseless discrete-channel has not been studied
to our knowledge, regarding the existence of an invariant distribution,
ergodicity and finite moment properties. (ii) We give sufficient condi-
tions for multi-sensor systems with both system noise and observation
noise with unbounded support, which has not been treated previously
(see [1] for a review). Even though our approach builds on the program
in [15] and [21], a more general class of stopping times is introduced
in this technical note, as more tedious constructions are needed for the
vector, partially observed and decentralized settings.

II. SINGLE-SENSOR SYSTEMS

Consider the class of single-sensor LTI discrete-time systems with
both plant and observation noise. The system equations are given by

(3)

where , and are the state, control action
and observation at time respectively. The matrices and the
noise vectors are of compatible size. The initial state, , has a
finite moment as in the noise variables. We label the eigenvalues
of as . Without loss of generality, we assume that is in
real Jordan normal form and that for all .
Assumption 2.1: The pair is controllable and the pair

is observable.

The observations are made by the sensor and sent to the controller
through a finite capacity channel. At each time stage , we allow the
sensor to send an encoded value for some .
We define the rate of our system at time as . Now,
suppose that the channel is used periodically, every time stages. The
rate for all time stages is then specified by . The av-
erage rate is

(4)

Information Structure: At time , the sensor maps its information
. The controller maps its information

.
Our main result for single-sensor systems is the following:
Theorem 2.2: There exists a coding and control policy with average

rate for some
which gives:
(a) the existence of a unique invariant distribution for ;
(b) , .
Theorem 2.3: The average rate in Theorem 2.2 achieves the

minimum rate (2) asymptotically for large sampling periods. That is,
.

A. Coding and Control Policy

For now, assume that has only one eigenvalue ; that is, this eigen-
value is repeated. We will see later that this assumption is without loss
of generality. Let for some parameter and con-
sider the following scalar -bin uniform quantizer. Assuming
that is even, this is defined for as

if

if
if

where is the bin size. The set is called
the granular region while the set
is called the overflow region. If the state is in the granular region, that
is if then we say the quantizer is perfectly-zoomed.
Otherwise, we say it is under-zoomed [15].
We write our quantizer as the composite function

. The encoder and decoder
for are

if
if
if

if
otherwise.

At time , we associate with each component a bin size . Let

. We will be applying our control policy to system (8)
where is a meaningful estimate of the state . Let our fixed rate
be for all . Choose any invertible function

. We then choose the encoded value

if for all
otherwise.

Upon receiving , the controller knows . The controller
forms the estimate as , where

if
otherwise.
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We assume without loss of generality that is a Jordan block with
eigenvalue . From the real Jordan canonical form, we know that
can be written as

. . .

. . .

. . .

. . .

when and , respectively. In the complex case we write
for some and define

The update equations are

(5a)
if
otherwise

(5b)

for some and with

(6a)

if ,
otherwise

(6b)

for some and . Note that if we define
then for all and all .

Bin Ordering: We set , for some . First let
. For any we can choose and such that
for all . With our update equations and our choice of
we get that the ordering is preserved over all time stages. That is,

for all and .
Now let . We choose for all odd. Thus, we

have divided the complex modes into their conjugate pairs and set their
initial bin sizes to be equal. Our initial condition implies that

for all odd and . For any we can choose and
such that for all and .

Control Action: Under our information structure, the update (5) can
be applied at the sensor and the controller. At time the controller has
access to and the control action is picked as .

B. Outline of Proof of Theorem 2.2

In this subsection, we outline the supporting results and key steps in
proving our main result for single-sensor systems, Theorem 2.2.
Lemma 2.4: We can sample every time stages and apply a sim-

ilarity transform to in (3) to obtain with for
some invertible matrix . This new state satisfies the following system
of equations:

(7)

The control action is chosen arbitrarily by the controller
and the elimination of the matrix can be justified by sampling. The
estimate at time is known by the sensor.
At time , and are independent of but may be correlated

with each other. For , the vectors and are indepen-
dent. The matrix is in real Jordan normal form and has eigenvalues

.

By a slight abuse of notation, we will rewrite system (7) as

(8)

where , and are the state, control action
and observation at time , respectively.
Remark 2.5: In case of multiple Jordan blocks, we can apply our

control policy to each Jordan block. In all remaining theorems of this
section, we will work with system (8). Where necessary, we will dis-
tinguish between the real and complex eigenvalue cases.
Lemma 2.6: The process is Markov.
Section II-A gives our control policy in terms of the parameters ,

and .
Lemma 2.7: For appropriate choices of , and , we can form a

countable state space for . The process is an irre-
ducible and aperiodic Markov chain on , see [21] for a similar
construction.
Define the sequence of stopping times, with and,

These are the times when all quantizers are perfectly-zoomed. We as-
sume that this is satisfied at time . This technical condition is
justified by showing that the process moves to such a per-
fectly zoomed state in a random time which is dominated by a geo-
metric distribution (see the proof of Proposition 3.2 in [21]).
Lemma 2.8: If is even, then the following hold.
(a) For any and any polynomial of finite degree there

exists a sufficiently large such that

for all and for all .
(b) Let be equivalent to stating that for all

. Then

uniformly in .
We define the compact sets

for some where is a component of as described in
Section II-A. Note that at the stopping time , if then

, for all , and thus
and .
Lemma 2.9: For some , , the following drift condition

holds:

(9)

For , the above also holds with in place of .
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For , we say that and are a conjugate pair if is odd.
To simplify notation in the complex eigenvalue case we find it conve-
nient to define for any , the set of vectors ,
if is odd, , if is even, for . Note that

for odd. We are only concerned with the case when is
even.
Theorem 2.10: Let . For , there exists a such that

(10)

If then the above holds for .
For , with , there exists a such that

If then the above holds for .
Proof of Theorem 2.2: [(a)] We know from Lemmas 2.6 and 2.7 that

the process is an irreducible and aperiodic Markov chain.
The set is small (see [21]). Using Lemma 2.9 we can apply The-
orem 5.1 with , the Markov chain and the functions

, and as given in Lemma 2.9
to get that is positive Harris recurrent and has a unique in-
variant distribution.
[(b)] Suppose that . We will apply Theorem 5.1 with ,

the Markov chain and the functions ,
, . From Lemma 2.9,

we get

Lemma 2.10 holds for and thus

where we have used the ordering of bin sizes as described in
Section II-A.
Thus, by Theorem 5.1 and so

. This implies that Theorem 2.10 holds for
as mentioned in the proof and theorem statement. The finite

second moment of all components then follows by induction.
In the complex case, we have that the drift condition (9) in Lemma

2.9 also holds with in place of since they are equal. Choosing
the functions ,

, , we obtain the result.

III. MULTI-SENSOR SYSTEMS

This is the main problem of the technical note, as stated in
Section I-A. Let us label the Jordan blocks of as . Let
be the (possibly generalized) eigenspace corresponding to . That is,
if are the (possibly generalized) eigenvectors associ-
ated with then and has dimension .

A. Case With a Technical Assumption on Observability

Assumption 3.1: Each eigenspace is observed by some sensor. That
is, for each there exists a such that .
The following is the main result of this subsection:
Theorem 3.2: Under Assumption 3.1, there exists a coding and con-

trol policy with average rate

for some which gives:
(a) the existence of a unique invariant distribution for ;
(b) , .
Theorem 3.3: The average rate in Theorem 3.2 achieves the

minimum rate (2) asymptotically for large sampling periods. That is,
.

The proof of Theorem 3.2 is basically an application of the Jordan
normal transformation together with Assumption 3.1.
Proof of Theorem 3.2: Under Assumption 3.1, we can assign

each eigenspace to some sensor . Let
denote the eigenspaces assigned to sensor and let us write

where each is a

generalized eigenvector. We put ,

and .
We apply the similarity transform to (1) and define

, and to get

(11)

We now look at the estimation of the state by the sensors.

For convenience, let us write where

and
with . Let us write
where each . With our construction above, under As-
sumption 3.1, we have for each that
for some real coefficients . Consider the first time stages.
By putting , it follows that:

where is some noise term. We will use the same notation for
that we use for . As in Lemma 2.4 for the single-sensor case,

we can use the next time stages to apply a control action. We then
apply the above scheme repeatedly and sample every time stages.
Furthermore, since is the Jordan normal transformation matrix, it
follows that where each is a
Jordan block. Since we can apply another Jordan transformation to this
sampled system, we can assume without loss of generality that is
actually in Jordan form and each is actually a Jordan block.
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To simplify notation, we write

where each is a Jordan block,
where and similarly for , , and . From the above,
we can also see that for each , there exists a such that is
known by sensor at time .
Thus our system is equivalent to the following subsystems:

where for each , there exists a sensor which knows at
time and is chosen by the controller.
As in Section II-A, we let be the vector of bin sizes at time and

define the sequence of stopping times

The feedback value is chosen as

if for some ,
otherwise,

so that the policy as in Section II-A is implementable at the sensors and
at the controller. This reduces the problem to the single-sensor case and
we obtain the result.

B. Sufficient Conditions for the General Multi-Sensor Case

Here, we do not assume Assumption 3.1. In this case, the lower com-
ponents of the state act as noise for the upper components. In partic-
ular, we need to bound these lower modes when all quantizers are per-
fectly-zoomed to achieve (b) of Lemma 2.8. To do this, we must have
that the bin sizes of the lower modes are small compared with the upper
ones. With many different eigenvalues, we cannot guarantee this in the
general case. For this case, we obtain a sufficient condition. Toward
this end, we have the following theorem which extends the classical
observability canonical decomposition [23] to the decentralized case.
Theorem 3.4: [3] Under Assumption 1.1, there exists a matrix

such that if we define and then

. . .
(12a)

...
. . .

(12b)

where the ’s denote irrelevant submatrices, each and
each .
Below, we give a sufficient rate and an alternative assumption for sta-

bility. For Theorem 3.5 below, let us write
where is given in (12).
Theorem 3.5: There exists a coding and control policy which gives:
(a) the existence of a unique invariant distribution for ;
(b) , ,
and with average rate in the limit of large sampling periods

Proof of Theorem 3.5: The proof follows that of Theorem 2.2. The
main difference is that we define

and the bin numbers for some
and treat the lower components of the state as noise. We present

the coding and the control policy in detail below.
Clearly, we could also achieve (a) and (b) in Theorem 3.5 with

where .
Theorem 3.6: If the eigenvalues of in (12) are ordered

in decreasing magnitude then Theorem 3.2 holds without Assumption
3.1. That is, the theorem holds if for and we
have that when .
Proof of Theorem 3.6: The proof follows directly from that of The-

orem 3.5. Since the eigenvalues are ordered in decreasing magnitude,
we can maintain the ordering of the bin sizes given in (13) without in-
creasing the rate. Specifically, in the Proof of Theorem 3.5 we see that

for all , .
Coding and Control Policy for the General Case: Consider the

system (1). Sampling, observing and controlling as in the proof of
Theorem 2.2 and applying the transformation where is
given in Theorem 3.4, we obtain the system

We do not relabel the variables (for example ) by a slight abuse of
notation. In the above, is block upper triangular with the blocks

descending along the diagonal and each
as in (12a) of Theorem 3.4. Since we can always apply a block trans-
formation to in which each of the blocks is the Jordan tranformation
of , we can assume without loss of generality that each is in
real Jordan normal form and we write
where each is a Jordan block.
Let us write

where

and with

and each . We will use the same notational convention for all
relevant vectors in this section. Namely, we will follow this convention
for , , , and for which will be specified.
From the proof of Theorem 3.4, we know that the rows of are

taken from the row spaces of and we can see how is
known by sensor at time .
Let us denote the eigenvalue of by and define

Let for some . Let
where each is the identity matrix of appro-

priate size so that . Let .
Let be the bin size corresponding to the component at

time . We let . Let our fixed rate for sensor

be for all . Choose any invertible
function
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if for all ,

otherwise.

We then choose the encoded value shown in the equation at the top
of the page. Upon receiving , the controller knows

. The controller forms the estimate as

, where

and

if ,
otherwise.

Bin Ordering: From (12a) of Theorem 3.4, we can write

where each . We can
further write where

and with
and each . Recall from the

proof of Theorem 3.4 that .
Let us denote the entries of by and define the entry

with maximum absolute value as . We set
, for some . For any , by our coding and

control policy (and in particular the choice of ) given above,
we can choose such that the following ordering is maintained for
all :

(13)

(14)

(15)

Informally, we order the bins within Jordan blocks , within sensor
blocks , and also between sensor blocks .

IV. CONCLUSION

We presented a coding and control policy which achieves the min-
imum rate asymptotically in the limit of large sampling periods for
single-sensor andmulti-sensor systems (under the assumption that each
eigenspace is observed by some sensor) driven by unbounded noise
having distributions with a finite moment. In the absence of the
aforementioned observability assumption, we obtained sufficient con-
ditions. We established the existence of a unique invariant distribution
for the sampled state and a finite second moment of the state. Future
work includes the extension to noisy channels as well as multi-con-
troller systems, which introduce further intricacies in view of the pres-
ence of signaling among the controllers [2].

APPENDIX
STOCHASTIC STABILITY

Let be a Markov chain with a complete separable
metric state space . Let
denote the transition probability from to the set . For this chain,
a probability measure is invariant on the Borel space if

, for all .
In the following, let denote the filtration generated by the random

sequence . Define a sequence of stopping times ,
measurable on the filtration described above, which is assumed to be
non-decreasing, with .
1) Theorem 5.1: (Theorem 2.1 and Remark 2.1 of [21]): Suppose

that we have a -irreducible and aperiodic Markov chain . Suppose
moreover that there are functions , ,

, for some , small set on which is bounded,
constant and consider:

(16)

(17)

If and (16) holds then is positive Harris recurrent with a unique
invariant distribution . If , (16), (17) hold and is positive
Harris recurrent with some unique invariant distribution then we get
that .
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Variable-Order Fractional Operators for Adaptive Order
and Parameter Estimation

Milan R. Rapaić and Alessandro Pisano

Abstract—Adaptive parameter estimation schemes for linear fractional-
order processes of commensurate type are illustrated in the present note.
A gradient-based scheme for commensurate order estimation is outlined
first, and a combined gradient/least-squares scheme for simultaneously es-
timating the commensurate order and the remaining process parameters is
finally considered. A key feature of the proposed schemes is the utilization
of appropriate variable-order fractional filters. Theoretical results are val-
idated by means of thoroughly discussed simulation examples.

Index Terms—Adaptive estimation, fractional calculus, variable-order
systems.

I. INTRODUCTION

Mathematical models utilizing concepts and formalisms of fractional
calculus have become increasingly popular in various areas of science
and engineering during the last few decades [6], [12]. Fractional con-
trol design is an active field of research with several well-established
linear and nonlinear methodologies (see, e.g., [6], [12]). Various iden-
tification techniques targeting fractional-order models, have recently
emerged both in the time [1], [2], [9]–[11], [13] and in the frequency
[5], [21] domain. Instrumental variable method has been utilized in
[22]–[24], Kalman filtering in [18] and the use of modulating functions
was considered in [7]. On-line methods for estimation of the commen-
surate order are given in [16].
Two distinct, yet closely related, problems are considered within

the present work. A gradient-based approach to commensurate order
estimation, assuming that all other process parameters are known, is
presented first. This approach provides a continuous estimate of the
system’s commensurate order that eventually, under certain conditions,
converges to the actual value. Some preliminary results in this regard
were previously reported in [16]. The presented methodology involves
the use of variable-order fractional operators [3], [17], [20]. A simulta-
neous order and parameter estimation procedure is subsequently illus-
trated, where a gradient-based algorithm is used to identify the com-
mensurate order and the least-squares procedure is used to identify
other process parameters. The two algorithms run in parallel in a syn-
ergic fashion. Note that a two-stage algorithm for simultaneous estima-
tion of the process order and parameters, conceptually similar to that
proposed in this technical note, has already been investigated in [22]
and [23]. In comparison to the result presented there, formal conditions
ensuring the convergence of the estimation procedure are provided in
the present work. These conditions can be seen as generalizations of
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