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Abstract The authors study an approximation method for partially observed Markov decision pro-

cesses (POMDPs) with continuous spaces. Belief MDP reduction, which has been the standard ap-

proach to study POMDPs requires rigorous approximation methods for practical applications, due to

the state space being lifted to the space of probability measures. Generalizing recent work, in this

paper the authors present rigorous approximation methods via discretizing the observation space and

constructing a fully observed finite MDP model using a finite length history of the discrete observations

and control actions. The authors show that the resulting policy is near-optimal under some regularity

assumptions on the channel, and under certain controlled filter stability requirements for the hidden

state process. The authors also provide a Q learning algorithm that uses a finite memory of discretized

information variables, and prove its convergence to the optimality equation of the finite fully observed

MDP constructed using the approximation method.

Keywords Filter stability, POMDP, reinforcement learning, stochastic control.

1 Introduction

Partially Observed Markov Decision Problems (POMDPs) offer a practically rich and rele-

vant, and mathematically challenging model. Analysis of optimality and computation of solu-

tions become complex even for finite models. Hence, approximations are required for efficient

(near) optimality and control analysis. We present a brief review in the following.
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Most of the studies in the literature are algorithmic and computational contributions such

as [1, 2]. These studies develop computational algorithms, utilizing structural convexity/concav-

ity properties of the value function under the discounted cost criterion. [3] provides an insightful

algorithm which may be regarded as a quantization of the belief space; however, no rigorous

convergence results are provided. [4, 5] also present quantization based algorithms for the belief

state, where the state, measurement, and the action sets are finite.

Rigorous approximation techniques for POMDPs have mostly focused on finite state or finite

observation models. Some works that study POMDPs with continuous state or observation

spaces include [6–9].

[6, 7] introduce a rigorous approximation analysis after establishing weak continuity condi-

tions on the transition kernel defining the (belief-MDP) via the non-linear filter (see [10, 11]),

and it is shown that the finite model approximations obtained through quantization are asymp-

totically optimal as the number of quantization bins increases. The finite model is constructed

by choosing a finite number of belief points which are sufficiently close to any point in the orig-

inal belief space, however, this may not be an easy task in general, as the belief space consists

of probability measures.

Another rigorous set of studies with continuous observation and state spaces is [8, 9] where

the authors provide an explicit quantization method for the set of probability measures contain-

ing the belief states, where the state space is parametrically representable under strong density

regularity conditions. The quantization is done through the approximations as measured by

Kullback-Leibler divergence (relative entropy) between probability density functions.

We refer the reader to the survey papers by [12–14] and [15] for further structural results

as well as algorithmic and computational methods for approximating POMDPs. Notably, for

POMDPs[15] presents structural results on optimal policies under monotonicity conditions of

the value function in the belief variable.

[16] studies near optimality of finite window policies for average cost problems where the

state, action and observation spaces are finite; under the condition that the liminf and limsup

of the average cost are equal and independent of the initial state, the paper establishes the

near-optimality of (non-stationary) finite memory policies. In another related direction, [17]

studies finite memory approximation techniques for POMDPs with finite state, action and

measurements. The POMDP is reduced to a belief MDP and the worst and best case predictors

prior to the N most recent information variables are considered to build an approximate belief

MDP. The original value function is bounded using these approximate belief MDPs that use

only finite memory, where the finiteness of the state space is critically used.

Our paper generalizes several recent studies [18–21] and the review paper [22]. In these

studies, finite memory approximations as well as quantized belief approximations are studied,

and near optimality of the approximations and their associated Q learning algorithms are pro-

vided under certain controlled filter stability assumptions, both for discounted and average cost

criteria. However, the methods provided in these papers are tailored towards finite observation

spaces, and the efficiency of the algorithms can be affected significantly for large observation

spaces. The current paper addresses this gap.



240 KARA ALI DEVRAN · BAYRAKTAR ERHAN · YÜKSEL SERDAR

We dedicate this paper to Professor Peter E. Caines, who has shaped stochastic control the-

ory fundamentally in a variety of directions. In the context of this paper on control with partial

information, the contributions of Professor Caines in a variety of contexts include: Filtering

theory and associated stability analysis[23], partially observable jump parameter systems[24],

control with Poisson measurements[25], mean-field games with noisy measurements[26], observer

design for automata[27], and filtering in Riemannian manifolds[28]. A particular connection with

our current paper is that observability entails filter stability (see [29–31]) which then leads to

near optimality of sliding window control policies, not unlike the case in classical stochastic

linear systems theory[23] where observability implies near optimality of finite memory output

feedback. Our paper makes this analysis precise for a large class of systems.

Contributions In this paper we develop rigorous approximations and learning results for

POMDPs with Borel state, action, and measurement spaces. Furthermore, under regularity

conditions, we obtain rigorous (finite dimensional) approximations, and under explicit filter

stability conditions, we obtain near optimality bounds of finite window based policies which

then leads to finite model approximations.

Notably, we quantize either the state space or the measurement space, noting that it is well

known by now that action spaces can be quantized with arbitrarily low loss in performance

under weak continuity conditions (see [32] and [33, Theorem 3.16]).

Quantization of the hidden state space results in a belief state process which takes values

from a simplex. Hence, the problem can be solved via this simplex valued approximate belief

state and leads to a finite-dimensional filter which can be computer with relative ease. We

present sufficient conditions to guarantee the near optimality of this discretization method in

Section 3.

Furthermore, in Section 4, we study the performance of finite window based policies and

relate the performance loss due to finite window restriction to controlled filter stability.

In Section 5, towards a finite model approximation, we quantize the measurements and

obtain performance loss bounds due to the approximations of the measurements to finite ones.

This quantization leads to a garbling of information and therefore the performance loss can be

obtained with such a perspective, as we show in the paper.

The analysis above culminates in a joint analysis of the performance loss due to measurement

quantization and finite window restriction in Section 6.

By quantizing the measurement space we are able to utilize refined filter stability conditions.

In particular, discretization on the observation variables results in an approximate non-linear

filter where the conditioning is based on a less informative information process. We present

explicit conditions under which the approximate filter is stable as well. This in turn implies

near-optimality of the discretized finite-window information variables.

Finally, Section 7 applies the analysis above to reinforcement learning via finite memory

Q-learning, which is shown to converge to near optimality under the conditions noted above.

Compared to the results in the literature, this paper is the first one to our knowledge which

considers the case with continuous space measurements and establishes explicit conditions on the

near optimality of finite window policies, and also with a learning algorithm under convergence



NEAR OPTIMAL APPROXIMATIONS FOR POMPDS 241

guarantees to near optimality.

Before we start out analysis, building on [34], we first review some technical tools we will

need along the paper.

For the analysis of the technical results, we will use different notions of convergence for

sequences of probability measures.

Two important notions of convergence for sequences of probability measures are weak con-

vergence and convergence under total variation. For some N ∈ N, a sequence {μn, n ∈ N}
in P(X) is said to converge to μ ∈ P(X) weakly if

∫
X
c(x)μn(dx) →

∫
X
c(x)μ(dx) for every

continuous and bounded c : X → R.

For probability measures μ, ν ∈ P(X), the total variation metric is given by

‖μ− ν‖TV = 2 sup
B∈B(X)

|μ(B) − ν(B)| = sup
f :‖f‖∞≤1

∣
∣
∣
∣

∫
f(x)μ(dx) −

∫
f(x)ν(dx)

∣
∣
∣
∣,

where the supremum is taken over all measurable real f such that ‖f‖∞ = supx∈X |f(x)| ≤ 1.

A sequence μn is said to converge in total variation to μ ∈ P(X) if ‖μn − μ‖TV → 0.

Finally, for probability measures μ, ν ∈ P(X) with finite first order moments (that is,
∫
‖x‖ dν and

∫
‖x‖ dμ are finite), the first order Wasserstein distance is defined as

W1(μ, ν) = inf
Γ (μ,ν)

E[|X − Y |] = sup
f :Lip(f)≤1

∣
∣
∣
∣

∫
f(x)μ(dx) −

∫
f(x)ν(dx)

∣
∣
∣
∣,

where Γ (μ, ν) denotes the all possible couplings of X and Y with marginals X ∼ μ and Y ∼ ν,

and

Lip(f) := sup
e�=e′

f(e)− f(e′)
‖e− e′‖ ,

and the second equality follows from the dual formulation of the Wasserstein distance (see [35,

Remark 6.5]). Note that the weak convergence and the Wasserstein convergence are equivalent

if the underlying space is compact.

We can now define the following regularity properties for the transition kernels:

• T (·|x, u) is said to be weakly continuous in (x, u), if T (·|xn, un) → T (·|x, u) weakly for

any (xn, un) → (x, u).

• T (·|x, u) is said to be continuous under total variation in (x, u), if ‖T (·|xn, un)−T (·|x, u)‖TV
→ 0 for any (xn, un) → (x, u).

• T (·|x, u) is said to be continuous under the first order Wasserstein distance in (x, u), if

W1(T (·|xn, un), T (·|x, u)) → 0,

for any (xn, un) → (x, u). To ensure continuity of T with respect to the first order

Wasserstein distance, in addition to weak continuity, we may assume that there exists a

function g : [0,∞) → [0,∞) such that as t→ ∞, g(t)t ↑ ∞, and

sup
(x,u)∈K×U

∫
g(‖y‖) T (dy|x, u) <∞,
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for any compact K ⊂ X. Note that the latter condition implies uniform integrability

of the collection of random variables with probability measures T (dx1|X0 = xn, U0 =

un) as (xn, un) → (x, u), which coupled with weak convergence can be shown to imply

convergence under the Wasserstein distance.

Example 1.1 Some example models satisfying these regularity properties are as follows:

(i) For a model with the dynamics xt+1 = f(xt, ut, wt), the induced transition kernel T (·|x, u)
is weakly continuous in (x, u) if f(x, u, w) is a continuous function of (x, u), since for any

continuous and bounded function g
∫
g(x1)T (dx1|xn, un) =

∫
g(f(xn, un, w))μ(dw)

→
∫
g(f(x, u, w))μ(dw) =

∫
g(x1)T (dx1|x, u),

where μ denotes the probability measure of the noise process. If we also have that X is

compact, the transition kernel T (·|x, u) is also continuous under the first order Wasserstein

distance.

(ii) For a model with the dynamics xt+1 = f(xt, ut) + wt, the induced transition kernel

T (·|x, u) is continuous under total variation in (x, u) if f(x, u) is a continuous function of

(x, u), and wt admits a continuous density function.

(iii) In general, if the transition kernel admits a continuous density function f so that T (dx1|x, u)
= f(x1, x, u)λ(dx1), then T (dx1|x, u) is continuous in total variation. This follows from

an application of Scheffé’s Lemma (see [36, Theorem 16.12]). In particular, we can write

that

‖T (·|xn, un)− T (·|x, u)‖TV =

∫

X

|f(x1, xn, un)− f(x1, x, u)|λ(dx1) → 0.

(iv) For a model with the dynamics xt+1 = f(xt, ut, wt), if f is Lipschitz continuous in (x, u)

pair such that, there exists some α <∞ with

|f(xn, un, w) − f(x, u, w)| ≤ α (|xn − x|+ |un − u|) ,

we can then bound the first order Wasserstein distance between the corresponding kernels

with α:

W1 (T (·|xn, un), T (·|x, u)) = sup
Lip(g)≤1

∣
∣
∣
∣

∫
g(x1)T (dx1|xn, un)−

∫
g(x1)T (dx1|x, u)

∣
∣
∣
∣

= sup
Lip(g)≤1

∣
∣
∣
∣

∫
g(f(xn, un, w))μ(dw) −

∫
g(f(x, u, w))μ(dw)

∣
∣
∣
∣

≤
∫

|f(xn, un, w) − f(x, u, w)|μ(dw)

≤α (|xn − x|+ |un − u|) .
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2 Partially Observed Markov Decision Processes and Standard Solu-

tion Methods

Let X ⊂ Rm denote a Borel set which is the state space of a partially observed controlled

Markov process for some m ∈ N. Let Y ⊂ Rn be another Borel set denoting the observation

space of the model, for some n ∈ N, and let the state be observed through an observation

channel O. The observation channel, O, is defined as a stochastic kernel (regular conditional

probability) from X to Y, such that O( · |x) is a probability measure on the sigma algebra

B(Y) of Y for every x ∈ X, and O(A| · ) : X → [0, 1] is a Borel measurable function for every

A ∈ B(Y).

We will assume that the channel admits a density function g(x, y) with respect to a reference

measure λ(dy) ∈ P(Y) such that

O(dy|x) = g(x, y)λ(dy).

U ⊂ Rk denotes the action space for some k ∈ N.

An admissible policy γ is a sequence of control functions {γt, t ∈ Z+} such that γt is

measurable with respect to the σ-algebra generated by the information variables

Ht = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0},

where Ut = γt(It), t ∈ Z+, are the U-valued control actions and Y[0,t] = {Ys, 0 ≤ s ≤
t}, U[0,t−1] = {Us, 0 ≤ s ≤ t − 1}. When we consider a particular realization of the infor-

mation variables, we use the notation ht. We define Γ to be the set of all such admissible

policies. The update rules of the system are determined by the following relationships:

Pr
(
(X0, Y0) ∈ B

)
=

∫

B

μ(dx0)O(dy0|x0), B ∈ B(X×Y),

where μ is the (prior) distribution of the initial state X0, and

Pr
(
(Xt, Yt) ∈ B | (X,Y, U)[0,t−1] = (x, y, u)[0,t−1]

)
=

∫

B

T (dxt|xt−1, ut−1)O(dyt|xt),

B ∈ B(X×Y), t ∈ N, where T is the transition kernel of the model which is a stochastic kernel

from X × U to X. We let the objective of the agent (decision maker) be the minimization of

the infinite horizon discounted cost,

Jβ(μ,O, γ) =

∞∑

t=0

βtEO,γμ [c(Xt, Ut)] , (1)

for some discount factor β ∈ (0, 1), over the set of admissible policies γ ∈ Γ , where c : X×U → R

is a Borel-measurable stage-wise cost function. EO,γμ denotes the expectation with initial state

probability measure μ, under the transition kernel T the channel O and the policy γ. Note

that μ ∈ P(X), where we let P(X) denote the set of probability measures on X. We define

the optimal cost for the discounted infinite horizon setup as a function of the priors and the

measurement channel as



244 KARA ALI DEVRAN · BAYRAKTAR ERHAN · YÜKSEL SERDAR

J∗
β(μ,O) = inf

γ∈Γ
Jβ(μ,O, γ).

The solution of the problem in its current formulation requires one to find a control over

the information variables

ht = {y0, · · · , yt, u0, · · · , ut−1}.

Hence, the length of the information grown over time. In particular, the space It lives in,

Yt × Ut−1 grows exponentially. This leads one to use compressed versions of the original

information variable It. A generic solution method for POMDPs then involves a compression

scheme

ht → zt, (2)

where the new state space Z does not grow over time and zt defines controlled Markov chain

lets one to use standard methods to solve the optimal control problem. Ideally, the compression

map (2) is without loss of optimality. However, one might also work with lossy compression

maps with controllable loss bounds, where the compressed state zt computationally appealing,

which will be the main focus of this paper.

In what follows, we will introduce different compression schemes, and present approxima-

tions with provable error bounds.

We start by introducing the most commonly used approach for the compression of the

original information state, where the decision maker keeps track of the posterior distribution of

the state Xt given the available history ht. In the following section, we formalize this approach.

2.1 Reduction to Fully Observed Models Using Belief States

It is by now a standard result that, for optimality analysis, every POMDP can be reduced

to a completely observable Markov decision process (see [37, 38]), whose states are the posterior

state distributions or beliefs of the observer or the filter process; that is, the state at time t is

zt := Pr{Xt ∈ · |Y0, · · · , Yt, U0, · · · , Ut−1} ∈ P(X). (3)

We call this equivalent process the filter process . The filter process lives in Z := P(X) such

that {zt}t ⊂ P(X). Therefore, the state space of the new model can be viewed as Z = P(X)

and the action space remains as U. Here, Z is equipped with the Borel σ-algebra generated

by the topology of weak convergence[39]. Then, the transition probability η of the filter process

can be constructed as follows. If we define the measurable function

F (z, u, y) := Pr{Xt+1 ∈ · |Zt = z, Ut = u, Yt+1 = y}

from P(X) × U × Y to P(X) and use the stochastic kernel P ( · |z, u) = Pr{Yt+1 ∈ · |Zt =

z, Ut = u} from P(X)×U to Y, we can write η as

η( · |z, u) =
∫

Y

1{F (z,u,y)∈ · }P (dy|z, u). (4)
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The one-stage cost function c̃ : P(X)×U → [0,∞) of the filter process is given by

c̃(z, u) :=

∫

X

c(x, u)z(dx), (5)

which is a Borel measurable function. Hence, the filter process is a completely observable

Markov process with the components (Z,U, c̃, η).
It is well known that an optimal control policy of the original POMDP can use the belief Zt

as a sufficient statistic for optimal policies (see [37, 38]), provided they exist. More precisely, the

filter process is equivalent to the original POMDP in the sense that for any optimal policy for the

filter process, one can construct a policy for the original POMDP which is optimal. Existence

then follows under measurable selection conditions, e.g., satisfied by the aforementioned weak

Feller continuity of the belief MDP (see [40]). In particular, this applies when the belief-MDP

is weak Feller (see [10, 11]), the action spaces are compact and the cost function is continuous

and bounded.

Even though, the belief MDP approach provides a strong tool for the analysis of POMDPs,

solution of POMDPs may not be computationally feasible in general. This stems from mainly

two reasons:

• Computation of the belief state ht → zt = P (Xt · |ht) is not tractable in general, except

for a few special cases, e.g., Kalman filter for linear and Gaussian additive noise dynamics,

or for finite models.

• The belief space Z = P(X) is always uncountable even when X, Y and U are finite.

Thus, even one is able to track and compute the belief state, the solution of the control

may not be practical.

Therefore, approximation of the belief-MDP is usually needed.

2.2 Discretization of Action Sets

For a weak Feller belief MDP (see [10, 11]), [33, Theorem 3.16] (see also [41]) has established

near optimality of finite action policies. If U is compact, a finite collection of action sets can be

constructed, with arbitrary approximation error. Accordingly, we will assume that the action

spaces are finite in the following.

3 Approximation via Quantization of the (Hidden) State Space

The first approach we present builds on the discretization of the hidden state space X. This

methods will rely on the model knowledge.

We first focus on the discretization of the observation variables. For the discretization, we

choose disjoint subsets {Ai}Mi=0 ⊂ X such that ∪iAi = X. We define a finite set

XM := {x0, · · · , xM}.

Furthermore, the discretization map ψX : X → X̂M is defined such that
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ψX(x) = xi, if x ∈ Ai. (6)

In other words, the discretization checks what bin or set x belongs to and maps it to the

representative element of that bin.

Using this discretization scheme, we introduce appropriately normalized transition and chan-

nel kernels T̂ and Ô, following and generalizing (see [6] and [33, Chapter 4]): We first choose a

weighting measure π(·) ∈ P(X). For some x ∈ Ai, we define

T̂ (·|x, u) =
∫

Ai

T (·|z, u)πi(dz), Ô(·|x) =
∫

Ai

O(·|z)πi(dz), (7)

where πi(·) = π(·)
π(Ai)

. Note that the approximate channel density can be written similarly as

ĝ(x, y) =

∫

Ai

g(z, y)πz(dz).

We also define the following auxiliary cost function:

ĉ(x, u) =

∫
c(z, u)πi(dz).

These approximate kernel and functions can be seen to defined either on the finite set X̂ or on

the original space X by extending them as constant over the quantization bins.

We define the infinite horizon discounted cost for this approximation by

Ĵβ(μ, Ô, γ) =
∞∑

t=0

βtÊ
̂O,γ
μ [ĉ(Xt, Ut)] , (8)

for some discount factor β ∈ (0, 1), over the set of admissible policies γ ∈ Γ , where Ê
̂O,γ
μ

denotes the expectation with initial state probability measure μ and the transition kernel for

the discretized model T̂ and the channel Ô under policy γ. We define the optimal cost for the

discretized model by

Ĵ∗
β(μ, Ô) = inf

γ∈Γ
Ĵβ(μ, Ô, γ).

The above construction implies the following immediate result.

Assumption 3.1 We assume that

a. |c(x, u)− c(x′, u)| ≤ Kc‖x− x′‖, for some Kc <∞ and ‖c‖∞ <∞.

b. W1 (T (·|x, u), T (·|z, u)) ≤ KT ‖x− z‖, for all u ∈ U.

c. ‖O(·|x) −O(·|z)‖TV ≤ KO‖x− z‖, (or |g(x, y)− g(z, y)| ≤ KO‖x− z‖),

for all x, z ∈ X for some Kf <∞.
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Lemma 3.2 Under Assumption 3.1, we have that

W1

(
T (·|x, u), T̂ (·|x, u)

)
≤ KTLX,

‖O(·|x) − Ô(·|x)‖TV ≤ KOLX, (|g(x, y)− ĝ(x, y)| ≤ KOLX),

where

LX = max
i∈{1,··· ,M}

sup
x,z′∈Ai

‖x− z‖. (9)

Proof The proof can be found in Appendix A.1.

The following result will be critical to prove the main result of this section:

Lemma 3.3 Under Assumption 3.1, we have that

∣
∣
∣E

[
c(Xt, γ(Y[0,t]))

]
− Ê

[
ĉ(Xt, γ(Y[0,t]))

]∣∣
∣ ≤ KO‖c‖∞LX

t∑

n=0

n∑

m=0

Km
T +KcLX

t∑

n=0

Kn
T ,

for any policy γ ∈ Γ where E and Ê represent the expectation operators respectively under the

models (T , O) and (T̂ , Ô).

Proof The proof can be found in Appendix A.2.

Proposition 3.4 Under Assumption 3.1, if we further assume that βKT < 1, we can the

write

Jβ(μ0, O, γ)− Ĵβ(μ0, Ô, γ) ≤
KO‖c‖∞LX

(1 − β)2(1 − βKT )
+

KcLX

(1− β)(1 − βKT )
,

for any admissible policy γ ∈ Γ .

Proof Note that we have

Jβ(μ0, O, γ) =

∞∑

t=0

βtEγμ0

[
c(Xt, γ(Y[0,t]))

]
, Ĵβ(μ0, Ô, γ) =

∞∑

t=0

βtÊγμ0

[
ĉ(Xt, γ(Y[0,t]))

]
.

Hence the result is a direct application of Lemma 3.3.

3.1 Near Optimal Policy Construction Based on Finite State Space

Recall that the control of the partially observed system can be reduced to the control of a

belief MDP. For the belief state based control, the decision maker calculates and applies the

optimal policy γ∗(·) : P(X) → U, by tracking the belief state

πt = Pr(Xt ∈ ·|Y[0,t], U[0,t]).

As a result of discretization of the hidden state space, the agent can construct the conditional

probabilities on the finite state space X̂, using the observations. At time t, the belief state on

X̂ can be written as
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π̂t(i) = Pr(X̂t = i|y[0,t], u[0,t−1])

=

∑
x̂t−1

ĝ(i, yt)T̂ (i|x̂t−1, ut−1)π̂t−1(x̂t−1)
∑

x̂t−1

∑
x̂t
ĝ(x̂t, yt)T̂ (x̂t|x̂t−1, ut−1)π̂t−1(x̂t−1)

=: G(π̂t−1, yt, ut−1)(i), (10)

and thus the decision maker can track the belief state via these iterations. Furthermore, the

control policy can be solved for the belief state on the simplex P(X̂) ⊂ R|̂X| using the belief

MDP that corresponds to the transition and channel model T̂ , and Ô (or the channel density

ĝ(x̂, y)). The resulting policy γ̂ : P(X̂) → U can also be realized as a mapping from ht =

{y[0,t], u[0,t−1]} to U since the belief at any time t is also a function of ht, i.e.,

γ̂(π̂t) = γ̂(Pr(X̂t ∈ ·|y[0,t], u[0,t−1])).

One can then directly apply Proposition 3.4 to find an upper-bound for the performance loss

of the approximate control policy:

Theorem 3.5 Under Assumption 3.1, if we further assume that βKT < 1, we can the

write

Jβ(μ0, O, γ̂)− J∗
β(μ0, O) ≤

2KO

(1− β)2(1− βKT )
LX +

2Kc

(1− β)(1 − βKT )
LX,

where γ̂ is the optimal policy for the control problem based on the discretized hidden state space

X̂. Note that the first term above represent the realized accumulated cost if one applies the

policy based on the the finite space for the true system, whereas the second term is the optimal

cost that can be achieved for the correct model under admissible policies.

Proof We write

Jβ(μ0, O, γ̂)− J∗
β(μ0, O) ≤

∣
∣
∣Jβ(μ0, O, γ̂)− Ĵ∗

β(μ0, Ô)
∣
∣
∣+

∣
∣
∣Ĵ∗
β(μ0, Ô)− J∗

β(μ0)
∣
∣
∣ .

The first term is bounded by Proposition 3.4 as both costs are induced by the same policy

γ̂. For the second term, we can also use Proposition 3.4 with the following extra step: If

Ĵ∗
β(μ0, Ô) > J∗

β(μ0, O),

∣
∣
∣Ĵ∗
β(μ0, Ô)− J∗

β(μ0, O)
∣
∣
∣ ≤ Ĵβ(μ0, Ô, γ

∗)− J∗
β(μ0, O),

if Ĵ∗
β(μ0, Ô) ≤ J∗

β(μ0, O), we can then write

∣
∣
∣Ĵ∗
β(μ0, Ô)− J∗

β(μ0, O)
∣
∣
∣ ≤ Jβ(μ0, O, γ̂)− Ĵ∗

β(μ0, Ô),

where we used the fact that J∗
β(μ0, O) = Jβ(μ0, O, γ

∗) and Ĵ∗
β(μ0, Ô) = Ĵβ(μ0, Ô, γ̂), and the

fact that γ̂ and γ∗ are optimal for the corresponding models, so using any other policy increases

the cost. Hence, in either case, we can use Proposition 3.4 which concludes the proof.
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3.2 Asymptotic Analysis

In this section, we analyze the performance of the hidden state discretization method asymp-

totically. For this part, rather than choosing an arbitrary quantization scheme, we will work

with a particularly constructed quantization scheme. We assume here that X is compact, and

for some n ∈ N, we select a finite set (whose existence is guaranteed under the compactness

assumption) X̂n = {xn,1, · · · , xn,kn} such that

min
1,··· ,kn

‖x− xn,i‖ < 1/n, for all x ∈ X.

That is, X̂n is a 1/n net in X. We choose the construction sets Ai’s, in a nearest neighbor way

such that

max
i

sup
x,x′∈Ai

‖x− x′‖ < 1/n.

We will construct the approximate transition and channel kernels in the same way as (3.1).

But, we will denote them by T̂n and Ôn to emphasize their dependence on n ∈ N.

Furthermore, instead of using Assumption 3.1 with Lipschitz continuity we will assume the

following:

Assumption 3.6 We assume that

i. c(x, u) is continuous in (x, u).

ii. T (·|x, u) is weakly continuous in (x, u).

iii. The channel O(·|x) is total variation continuous in x.

Remark 3.7 Under the density assumption on the channel O(·|x), we will sometimes

equivalently use the assumption that g(x, y) is continuous in x.

The following then is a direct implication of Assumption 3.6, see also [42, Theorem 16].

Lemma 3.8 Let U be finite. Recall that U is assumed finite, with arbitrarily small loss.

Under Assumption 3.6, we have that

T̂n(·|xn, u) → T (·|x, u),

weakly for every xn → x, and for every u ∈ U. Furthermore,

‖Ôn(·|xn)−O(·|x)‖TV → 0,

for every xn → x, and for every u ∈ U.

Theorem 3.9 Under Assumption 3.6, we can then write

Jβ(μ0, O, γ̂n) → J∗
β(μ0, O),

where γ̂n is the optimal policy for the control problem based on the discretized hidden state space

X̂n and models T̂n and Ôn.

Proof The proof follows similar steps as in the proof of Theorem 3.5, also see [43, Theo-

rem 4.4] where only transition discrepancy is considered.
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3.3 A Discussion on the Hidden Space Discretization

One can construct a belief MDP model based on the discretization of the hidden state space,

and using the transition and channel models introduced in (7). This approximation results in

a fully observed control problem where the state space is the simplex on X̂ where |X̂| =M .

As a result of this approximation, the belief state on the finite space can be computed itera-

tively using (10). Although, the resulting state space is continuous even after the discretization

of the hidden space, one can apply further quantization directly on the resulting simplex to

find near optimal controllers defined on a finite space; (see [44, Section 5]). Notably, observe

that [45, Theorem 2.6] relates the Wasserstein error with the quantization diameter.

We also note that the hidden state space discretization indirectly approximates the belief

space P(X) as well. In particular, for the finite space X̂ = {x1, · · · , xM}, all the probability

measures that assign the same measure to the quantization bins, Bi’s, form an equivalence class

after the discretization of the hidden space. That is if P,Q ∈ P(X) are such that P (Bi) = Q(Bi)

for all i ∈ {1, · · · ,M} then we group P and Q together (and all the other measures that have

the same property). Hence, the methods in [6, 33] and the Wasserstein and weak continuity of

the belief kernel (see [11, 18, 19]) as an alternative approach to establish near optimality.

However, we should recall that this approximation relies on the knowledge of the model. In

particular, the belief state on the finite set X̂ is computed with the model knowledge. Hence,

combining this approximation method with learning methods may not be possible if one only

has access to the noisy observation, y[0,t], and control action, u[0,t], variables for learning period,

the estimation of the kernels T (·|x, u) and O(·|x) is possible if one has access to the hidden

state process as well.

Hence, in what follows, we will focus on alternative compression schemes that uses finite

memory information variables.

4 Finite Memory Based Compression

In this section, we will focus on compression schemes using the finite memory information

variables. We note that unlike the methods in Section 3, we keep the hidden state X as it is,

and do not discretize it for the techniques used in this section.

4.1 An Alternative Finite Window Belief-MDP Reduction

The construction in this section will build on [21]. The belief MDP reduction reveals that

for the optimal performance, belief state is a sufficient knowledge about the system, hence,

one needs to keep track of all the past observation and actions variables. In this section,

we will focus on the effect of the finite memory use on the performance decrease as opposed

to the full memory of the past. To this end, we construct an alternative fully observed MDP

reduction using the predictor from N stages earlier and the most recent N information variables

(that is, measurements and actions). This new construction allows us to highlight the most

recent information variables and compress the information coming from the past history via the

predictor as a probability measure valued variable.
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Consider the following state variable at time t:

ẑt = (π−
t−N , h

N
t ), (11)

where, for N ≥ 1

π−
t−N = Pμ(Xt−N ∈ ·|yt−N−1, · · · , y0, ut−N−1, · · · , u0),
hNt = {yt, · · · , yt−N , ut−1, · · · , ut−N},

and hNt = yt for N = 0 with μ being the prior probability measure on X0. Above, we use the

notation

Pμ(Xt−N ∈ ·|yt−N−1, · · · , y0, ut−N−1, · · · , u0) := Pr(Xt−N ∈ ·|yt−N−1, · · · , y0, ut−N−1, · · · , u0),

which is the posterior distribution of Xt−N conditioned on {yt−N−1, · · · , y0, ut−N−1, · · · , u0}
with a prior distribution μ ∼ X0.

The state space with this representation is Ẑ = P(X)×YN+1×UN where we equip Ẑ with

the product topology where we consider the weak convergence topology on the P(X) coordinate

and the usual (coordinate) topologies on YN+1 ×UN coordinates.

We can now define the stage-wise cost function and the transition probabilities. Consider

the new cost function ĉ : Ẑ × U → R, using the cost function c̃ of the belief MDP (defined

in (5)) such that

ĉ(ẑt, ut) = ĉ(π−
t−N , h

N
t , ut) =

∫

X

c(xt, ut)P
π−
t−N (dxt|yt, · · · , yt−N , ut−1, · · · , ut−N). (12)

In particular, noting that

π−
t−N = Pμ(Xt−N ∈ ·|yt−N−1, · · · , y0, ut−N−1, · · · , u0),

we have

P π
−
t−N (dxt|yt, · · · , yt−N , ut−1, · · · , ut−N ) = Pμ(dxt|yt, · · · , y0, ut−1, · · · , u0),

which implies

ĉ(ẑt, ut) = ĉ(π−
t−N , h

N
t , ut) =

∫

X

c(xt, ut)P
π−
t−N (dxt|yt, · · · , yt−N , ut−1, · · · , ut−N)

=

∫

X

c(xt, ut)P
μ(dxt|yt, · · · , y0, ut−1, · · · , u0).

Furthermore, we can define the transition probabilities for N = 1 as follows: For some

A ∈ B(Ẑ) such that

A = B × {ŷt+1, ŷt, ût}, B ∈ B(P(X)), ŷt+1, ŷt, ût ∈ Y2 ×U

conditioned on a path of state and action variables ẑt, · · · , ẑ0, ut, · · · , u0, we write



252 KARA ALI DEVRAN · BAYRAKTAR ERHAN · YÜKSEL SERDAR

Pr(Ẑt+1 ∈ A|ẑt, · · · , ẑ0, ut, · · · , u0)
=Pr(Π−

t ∈ B, Yt+1 = ŷt+1, Yt = ŷt, Ut = ût|π−
[0,t−1], y[0,t], u[0,t])

=1{yt=ŷt,ut=ût,G(π−
t−1,yt−1,ut−1)∈B}P

π−
t−1(ŷt+1|yt, yt−1, ut, ut−1)

=Pr(Π−
t ∈ B, Yt+1 = ŷt+1, Yt = ŷt, Ut = ût|π−

t−1, yt, yt−1, ut, ut−1)

=Pr(Ẑt+1 ∈ A|ẑt, ut) =:

∫

A

η̂(dẑt+1|ẑt, ut), (13)

where the map G is defined as

G(π−
t−1, yt−1, ut−1) = Pμ(Xt ∈ ·|yt−1, · · · , y0, ut−1, · · · , u0).

Hence, we have a proper fully observed MDP, with the cost function ĉ, transition kernel η̂

and the state space Ẑ. Furthermore, we denote by Γ̂ , the set of admissible policies for the new

state model defined in this section.

We now write the discounted cost optimality equation for the newly constructed finite

window belief MDP.

J∗
β(ẑ) = inf

u∈U

(

ĉ(ẑ, u) + β

∫
J∗
β(ẑ1)η̂(dẑ1|ẑ, u)

)

. (14)

This construction results in a fully observed control problem with a state space Ẑ that does

not grow over time, and is without loss of optimality. However, the first coordinate of the state

variable ẑt = (π−
t−N , h

N
t ), which is the predictor at time t −N , requires the model knowledge

and can be practically hard to track much like the belief state. Therefore, we introduce an

approximation method in the following section that maps this predictor to a fixed point and

keeps the finite window information variables untouched.

4.2 Approximation of the Finite Window Belief-MDP

The alternative belief MDP model constructed in the previous section lives in the state

space

Ẑ = {π, y[0,N ], u[0,N−1] : π ∈ P(X), y[0,N ] ∈ YN+1, u[0,N−1] ∈ UN},

where the first coordinate summarizes the past information, and the second and the last coor-

dinates carry the information from the most recent N time steps.

Consider the following set ẐN
π∗ for a fixed π∗ ∈ P(X),

ẐN
π∗ = {π∗, y[0,N ], u[0,N−1] : y[0,N ] ∈ YN+1, u[0,N−1] ∈ UN},

such that the state at time t is ẑNt = (π∗, hNt ). Compared to the state ẑt = (π−
t−N , h

N
t ) defined

in (11), this approximate model uses π∗ as the predictor, no matter what the real predictor at

time t−N is.

The cost function is defined as

ĉ(ẑNt , ut) = ĉ(π∗, hNt , ut) =
∫

X

c(xt, ut)P
π∗
(dxt|yt, · · · , yt−N , ut−1, · · · , ut−N ). (15)
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We define the controlled transition model for some ẑNt+1 = (π∗, hNt+1) and ẑ
N
t = (π∗, hNt ),

η̂N (ẑNt+1|ẑNt , ut) = η̂N (π∗, hNt+1|π∗, hNt , ut) := η̂(P(X), hNt+1|π∗, hNt , ut), (16)

where η̂ is the transition kernel of the alternative finite window belief MDP reduction, see (13).

In words, starting from the state ẑNt = (π∗, hNt ) under the action ut, for any possible future

state under the dynamics of the true world (i.e., η̂), we apply a crude quantization for the first

coordinate and map any π−
t−N+1 ∈ P(X) to π∗.

For simplicity, if we assume N = 1, then the transitions can be rewritten for some hNt+1 =

(ŷt+1, ŷt, ût) and h
N
t = (yt, yt−1, ut−1)

η̂N (π∗, ŷt+1, ŷt, ût|π∗, yt, yt−1, ut−1, ut) = η̂(P(X), ŷt+1, ŷt, ût|π∗, yt, yt−1, ut−1, ut)

= 1{yt=ŷt,ut=ût}P
π∗
(ŷt+1|yt, yt−1, ut, ut−1). (17)

We denote the optimal value function for the approximate model by JNβ . We also denote

by φN an optimal policy for the resulting approximate model. Note that both JNβ and φN are

defined on the set ẐN
π∗ . However, we can simply extend them to the set Ẑ by defining for any

ẑ = (π, y1, y0, u0) ∈ Ẑ (assuming N = 1),

J̃Nβ (ẑ) = J̃Nβ (π, y1, y0, u0) := JNβ (π∗, y1, y0, u0),

φ̃N (ẑ) = φ̃N (π, y1, y0, u0) := φN (π∗, y1, y0, u0).

Another interpretation of the extension is the following: Since the predictor π∗ is fixed φN can

be thought as a map from hNt to U, hence it maps the most recent N information variables to

the control actions. At any given time, one can simply choose the control action by looking at

the most recent N information variables according to φN and ignore the past. See Figure 1 for

a comparison of finite memory belief reduction

γ ut

πt−N− ; yt−N , ut−N ; · · · , yt−1, ut−1; yt

y0, u0; y1, u1; y2, u2; y3, u3; · · · ; yt−1, ut−1; yt

γ ut

πt utγ

ADMISSIBLE POLICY

BELIEF REDUCTION

FINITE WINDOW BELIEF REDUCTION

π̂; yt−N , ut−N ; · · · ; yt−1, ut−1; yt ut APPROXIMATE FINITE WINDOW MDPγ

Quantizing the prior πt−N−

Figure 1 Construction of the Finite-Window Approximate MDP from the Finite-Window Belief-

MDP[21]. The quantization of the finite window MDP model leads to the collapse of the

first coordinate to a fixed measure

We define the following constant:

Lt := sup
γ̂∈ ̂Γ

Eγ̂
π−
0

[
‖P π

−
t (Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])

− P π
∗
(Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])‖TV

]
, (18)
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which is the expected bound on the total variation distance between the posterior distributions

of Xt+N conditioned on the same observation and control action variables Y[t,t+N ], U[t,t+N−1]

when the prior distributions ofXt are given by π−
t and π∗. Above, Γ̂ denote the set of admissible

policies for the alternative finite window based state model defined in Subsection 4.1.

Proposition 4.1 (see [21, Theorem 3.3]) Let X0 ∼ μ and consider HN
0 = {Y0, · · · , YN , U0,

· · · , UN−1} with a policy γ̂ acting on the first N steps. For Ẑ0 = (μ,HN
0 ),

Eγ̂μ

[∣
∣
∣Jβ(Ẑ0, φ̃

N )− J∗
β(Ẑ0)

∣
∣
∣
]
≤ 2‖c‖∞

(1− β)

∞∑

t=0

βtLt,

where Jβ(Ẑ0, φ̃
N ) is the cost under the finite window policy φ̃N , and J∗

β(Ẑ0) is the optimal value

function for the initial point Ẑ0 (see (14)). Furthermore, the expectation is with respect to the

random realizations of HN
0 .

The finite memory approximation method we have presented in this section results in a

compression scheme with a loss of optimality since the information prior to time t − N is

ignored. This loss, on the other hand, is controllable with the term Lt (18). Furthermore, the

state space of this approximation is YN ×UN−1 where N is fixed and thus the state space does

not grow over time. To track this finite memory state, the controller does not have to perform

an extra compression step and can simply use the finite memory variables as they are.

However, for continuous observation spaces, the finite memory approximation will still not

be leading to a finite model. To this end, in the next section, we will focus on the discretiza-

tion of the observation space. We first focus on the observation discretization without the

finite memory requirement, and then we combine the observation discretization with the finite

memory method.

5 Quantization of Observations and Loss in Performance

The belief MDP reduction reveals that for the optimal performance, belief state is a sufficient

knowledge about the system That is, at any given time t, the controller can use

zt := Pr{Xt ∈ · |Y0, · · · , Yt, U0, · · · , Ut−1} ∈ P(X).

Hence, one needs to keep track of all the past observation and control action variables. Even

when the memory is not a constraint, computation of the belief state is not trivial as the

observation space is assumed to be continuous.

We first focus on the discretization of the observation variables. For the discretization, we

choose disjoint subsets {Bi}Mi=0 ⊂ Y such that ∪iBi = Y. We define a finite set

YM := {y0, · · · , yM}.

Furthermore, the discretization map ψY : Y → ŶM is defined such that

ψY(y) = yi, if y ∈ Bi. (19)
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In other words, the discretization checks what bin or set y belongs to and maps it to the

representative element of that bin. Selection of the disjoint sets depends on the application and

the control problem.

Using the discretization procedure, one can define a further POMDP model, which uses a

channel, say Ô(·|x), defined on the finite space ŶM . Note that this channel is different than

the one introduced in (7), but we use the same notation. For any yi ∈ ŶM

Ô(yi|x) = O(Bi|x). (20)

This channel is clearly degraded with respect to the original channel, since yi is conditionally

independent of x given the original observation y.

Therefore, for prior distribution on x0 given by μ, one can define the optimal cost under the

discrete observations by

J∗
β(μ, Ô) = inf

γ̂∈ ̂Γ
Jβ(μ, Ô, γ),

where the policies, γ̂ ∈ Γ̂ are measurable with respect to the σ-algebra generated by the new

information variables where the observations take values from the finite set ŶM .

5.1 Effect of Observation Discretization

In this section, we study the effect of observation discretization on the optimal value. Recall

that the original channel is modeled as a stochastic kernel and denoted by O(dy|x). Further-

more, we assume that this channel admits a density function with respect to a reference measure

λ(dy) such that

O(dy|x) = g(x, y)λ(dy).

The observation space discretization is introduced in Section 5, and the resulting channel is

denoted by Ô, which is defined on the finite space ŶM such that for any yi ∈ ŶM

Ô(yi|x) = O(Bi|x),

where Bi’s are the quantization bins (or the aggregate sets). We will further assume that the

observation space Y ⊂ Rn is compact. Our goal in this section is to find bounds for the term

inf
γ̂∈ ̂Γ

Jβ(μ, Ô, γ̂)− inf
γ∈Γ

Jβ(μ,O, γ),

where Γ̂ is the set of policies that use the discretized observations, and Γ is the policies that

use the original observations, and μ is the prior distribution of x0. Furthermore, the first term

is greater as Ô is a degraded channel in comparison to O.

We define the following notation, denoting the uniform error bound due to the discretization

of the observations

LY = max
i∈{1,··· ,M}

sup
y,y′∈Bi

|y − y′|. (21)

We now state the assumptions and the result formally.
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Assumption 5.1 • O(dy|x) = g(x, y)λ(dy), and g(y, x) is continuous in y for every

x ∈ X.

• Stage-wise cost function c(x, u) is bounded such that supx,u c(x, u) := ‖c‖∞ <∞.

Assumption 5.2 • Y ⊂ Rn is compact.

• O(dy|x) = g(x, y)λ(dy), and g(y, x) is Lipschitz in y, such that |g(x, y) − g(x, y′)| ≤
αY|y − y′| for every y, y′ ∈ Y and x ∈ X for some αY <∞.

• Stage-wise cost function c(x, u) is bounded such that supx,u c(x, u) := ‖c‖∞ <∞.

Theorem 5.3 Under Assumption 5.1,

lim
LY→0

(
J∗
β(μ, Ô)− J∗

β(μ,O)
)
= 0,

where J∗
β(μ, Ô) := inf γ̂∈ ̂Γ Jβ(μ, Ô, γ̂) and J

∗
β(μ,O) := infγ∈Γ Jβ(μ,O, γ).

Theorem 5.4 Under Assumption 5.2,

J∗
β(μ, Ô)− J∗

β(μ,O) ≤
β

(1− β)2
‖c‖∞αYLY.

Proof We will only prove Theorem 5.4, the proof for Theorem 5.3 follows from almost

identical steps.

We start by introducing a new channel O′(dy|x) acting on the original observation space

Y. The new channel is conditionally independent of everything else given the output of the

discrete channel Ô, and it gives a uniformly distributed (with respect to the measure λ(dy))

random value from Bi if the output of the finite channel Ô is yi. Hence, the new channel O′

admits a density function, say g′, with respect to λ, such that for some y′ ∈ Bi

g′(x, y′) =
O(Bi|x)
λ(Bi)

=
1

λ(Bi)

∫

Bi

g(x, y)λ(dy).

Note also that, since we assume thatY is compact, the subsets Bi’s are bounded and the uniform

distribution is well defined on these sets. Using the assumption that g(x, y) is Lipschitz in y,

we can conclude that

|g′(x, y)− g(x, y)| ≤ αY max
i

sup
y,y′∈Bi

|y − y′| ≤ αYLY. (22)

This new channel is introduced only for mathematical convenience, in order to define the de-

graded POMDP on the same observation space as the original POMDP model. Furthermore,

since the only information one can infer about the hidden state x, is through the discrete ob-

servations yi, the channel O′ is a garbling of the channel Ô. Hence, it is a direct consequence

of Blackwell’s informativeness theorem[46] that

J∗
β(μ,O

′) ≥ Jβ(μ, Ô).
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In fact, one can show that the costs are indeed equal, however, we will only use the inequality as

it is sufficient for our purpose. Furthermore, since O′ sends values from the original observation

space Y, the POMDP model with O′ also uses the policies from the set Γ . Therefore, denoting

the optimal policy designed for the original channel O by γ∗, if we apply this policy for the

channel O′, we get a larger cost, i.e., Jβ(μ,O
′, γ∗) ≥ J∗

β(μ,O
′). Hence, for the rest of the proof,

we will assume that both models use the same policy.

By [47, Theorem 6.2] we establish the following relation:

|Jβ(μ,O′, γ)− Jβ(μ,O, γ)| ≤
∑

k

βk‖c‖∞k sup
x∈X

‖O′(.|x)−O(.|x)‖TV .

Furthermore, using (22), we can write that

sup
x∈X

‖O′(.|x)−O(.|x)‖TV ≤ αYLY,

which concludes the proof.

6 Near Optimality of Finite Memory Feedback with Approximated

Discrete Observations

Although, the observations are discretized, the resulting belief state still takes values from

the space of probability measures and the sufficient information for the optimal control of

the POMDP with the finite observation space, requires the controller to keep track of all the

history. Therefore, as the next step of the approximation, we only focus on a finite memory of

the information variables. We restrict the controller to use the new information variables

ĤN
t = {Ŷ[t−N,t], U[t−N,t−1]},

where Ŷt takes values from the finite set ŶM . If we denote the set of policies that use ĤN
t , by

Γ̂N , the question we ask is the following: Can we find bounds on

inf
γN∈ ̂ΓN

Jβ(μ, Ô, γ
N)− J∗

β(μ,O), (23)

that is what do we loose if we use a finite memory of discretized observations in comparison the

optimal cost of the original POMDP with continuous observations. This problem also motivates

the natural, though interesting, question: If one has a computational constraint, is it better

to use a finer discretization of the observation space, or use a longer memory by keeping the

dicretizaton rate the same.

To analyze the problem, we first discretize the observations. We then analyze the effect

of finite memory with the discretized observations. On the effect of the finite memory on the

performance, in Subsection 4.2, we have presented bounds on the loss if one only uses a fixed

length of most recent information variables. We remind that the presented results are be valid

for any channel model including the degraded channel model resulting from the observation

discretization.
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6.1 Combined Approximation Algorithm and the Near Optimality of the Approx-

imate Policies Under Filter Stability

In this section, we introduce the approximation methodology, which involves a combination

of observation space discretization and use of finite memory. We then provide an upper bound

on the performance loss when the approximation policy is applied in the original POMDP

model, in terms of the approximation parameters.

The approximation algorithm is as follows:

1) Pick disjoint subsets {Bi}Mi=1 ⊂ Y such that ∪iBi = Y. Furthermore, pick the represen-

tative observation set ŶM = {y1, · · · , yM}, and the discretization map ψY : Y → ŶM is

defined such that

ψY(y) = yi, if y ∈ Bi.

2) Define a new channel Ô(·|x) on the finite set ŶM such that for any yi ∈ ŶM ,

Ô(yi|x) = O(Bi|x).

3) Pick a window length N , and define a fully observed MDP, with state space ŶN
M ×UN−1,

the cost function is defined by (15), and the transition model defined by (16) or (17).

Note that, to define the cost and the transitions, the new channel Ô is used.

4) Solve the optimality equation for the finite fully observed MDP, to construct a policy γ̂N .

Theorem 6.1 Suppose Assumption 5.1 holds and the belief kernel η is weakly continuous

([10, 11]). Let X0 ∼ μ and consider HN
0 = {Y0, · · · , YN , U0, · · · , UN−1} with a policy γ̂ acting

on the first N steps. For Ẑ0 = (μ,HN
0 ) (recall (11)), if the policy found after the steps above,

γ̂N acts after the first N steps

lim
LY→0

Eγ̂μ

[
Jβ(Ẑ0, γ̂

N )− J∗
β(Ẑ0)

]
≤ 2‖c‖∞

(1− β)

∞∑

t=0

βtLt,

where Lt is the filter stability term for the original channel O and the expectation is with respect

to the random realizations of HN
0 .

Theorem 6.2 Suppose Assumption 5.2 holds. Let X0 ∼ μ and consider HN
0 = {Y0, · · · ,

YN , U0, · · · , UN−1} with a policy γ̂ acting on the first N steps. For Ẑ0 = (μ,HN
0 ) (recall (11)),

if the policy found after the steps above, γ̂N acts after the first N steps

Eγ̂μ

[
Jβ(Ẑ0, γ̂

N)− J∗
β(Ẑ0)

]
≤ β

(1− β)2
‖c‖∞αYLY +

2‖c‖∞
(1− β)

∞∑

t=0

βtLt,

where

LY := max
i

sup
y,y′∈Bi

|y − y′|,

Lt := sup
γ̂∈ ̂Γ

Eγ̂,
̂O

μ

[
‖P π

−
t (Xt+N ∈ ·|Ŷ[t,t+N ], U[t,t+N−1])− P π

∗
(Xt+N ∈ ·|Ŷ[t,t+N ], U[t,t+N−1])‖TV

]
,

and αY is the Lipschitz constant of the density function g of the channel O.



NEAR OPTIMAL APPROXIMATIONS FOR POMPDS 259

Proof [For Theorems 6.1 and 6.2] We first consider the marginal distribution of X2:

μ2(·) =
∫

T (·|x1, γ̂(y1, y0))O(dy1|x1)T (dx1|x0, γ̂(y0))O(dy0|x0)μ(dx0).

Note that we have

Eγ̂μ

[
J∗
β(Ẑ0)

]
= J∗

β(μ2, O).

We write

Eγ̂μ

[
Jβ(Ẑ0, γ̂

N)− J∗
β(Ẑ0)

]
≤ Eγ̂μ

[
Jβ(Ẑ0, γ̂

N )− J∗
β(μ2, Ô)

]
+ Eγ̂μ

[
J∗
β(μ2, Ô)− J∗

β(Ẑ0)
]

= Eγ̂μ

[
Jβ(Ẑ0, γ̂

N )− J∗
β(μ2, Ô)

]
+ Eγ̂μ

[
J∗
β(μ2, Ô)− J∗

β(μ2, O)
]
.

Note that γ̂N is the finite window policy for the channel Ô. The first difference is bounded by

Proposition 4.1. Therefore, the first bound is related to the controlled filter stability under the

discrete channel Ô. For the second term, we use Theorem 5.4.

For the proof of Theorem 6.1, the second term goes to 0, by Theorem 5.3. For the first

term, we again use Proposition 4.1 with the fact that the filter stability term under channel Ô

converges to the filter stability term under the channel O if the belief kernel η is weak Feller.

6.1.1 A Discussion on Theorem 6.2

One can observe that the first term in the upper bound presented in Theorem 6.2, is only

related to the observation discretization and is not affected by the finite memory use. The

result indicates that higher Lipschitz constants will lead to higher performance improvements

as the dicretization rate grows. Clearly, if the discretization rate is already high, increasing it

further will not make the same impact. For example, for a bounded observation space Y, if the

size of the chosen finite set is M , LY can be approximated by 1
M under uniform quantization.

Thus, increasing the size to M + 1 would result in

KαY

1

M
−KαY

1

M + 1
= KαY

1

M(M + 1)

decrease on the first term of the upper bound where K = β‖c‖∞
(1−β)2 .

The second term is related to the controlled filter stability under the discrete channel. This

term is affected by both the window length N , and the rate of the discretization. Increasing the

window length will clearly decrease the second term. The better discretization rate will change

the second term, since how informative the observations are will also impact the filter stability.

One can perform simulations to study the exact impact of the discretization on the controlled

filter stability. In the following, we will provide some upper bounds for the second term, using

Dobrushin coefficient (Definition 6.3) of the original channel O.

6.1.2 Further Upper-Bounds for Filter Stability via Dobrushin Coefficient

In this section, we discuss the term Lt term defined in (18).
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Definition 6.3 ([48, Equation 1.16]) For a kernel operator K : S1 → P(S2) (that is a

regular conditional probability from S1 to S2) for standard Borel spaces S1, S2, we define the

Dobrushin coefficient as:

δ(K) = inf

n∑

i=1

min(K(x,Ai),K(y,Ai)),

where the infimum is over all x, y ∈ S1 and all partitions {Ai}ni=1 of S2.

Note that for the channel O Dobrushin coefficient is readily defined, for the transition kernel

T , let

δ̃(T ) := inf
u∈U

δ(T (·|·, u)).

We now state the following corollary to Theorem 6.2 and [49, Theorem 3.3].

Corollary 6.4 Suppose Assumption 5.2 holds and let α := (1− δ̃(T ))(2− δ(O)) < 1. Let

X0 ∼ μ and consider HN
0 = {Y0, · · · , YN , U0, · · · , UN−1} with a policy γ̂ acting on the first N

steps. For the policy found with the algorithm presented in Subsection 6.1, γ̂N , acting after the

first N steps we can write that,

Eγ̂μ

[
Jβ(Ẑ0, γ̂

N)− J∗
β(Ẑ0)

]
≤ ‖c‖∞

(1 − β)2
(
βαYLY + 4αN

)
.

Proof [49, Theorem 3.3] implies that

Lt := sup
γ̂∈̂Γ

Eγ̂,
̂O

μ

[
‖P π

−
t (Xt+N ∈ ·|Ŷ[t,t+N ], U[t,t+N−1])− P π

∗
(Xt+N ∈ ·|Ŷ[t,t+N ], U[t,t+N−1])‖TV

]

≤ 2
(
(1− δ̃(T ))(2 − δ(Ô))

)N
.

Hence, we only need to show that

δ(Ô) ≥ δ(O).

However, this is a direct consequence of the definition of Dobrushin coefficient, since for any

discrete channel Ô, the quantization bins {Bi} forms a partition for Y.

Corollary 6.4 separates the effects of discretization and finite memory use, in two different

terms. However, we caution the reader that this is only done for an upper bound. In fact, we

do not bound the filter stability term of the discrete channel Ô, using the filter stability term

of the original channel O. Instead, we bound an upper bound of the filter stability term for Ô,

using an upper bound for the filter stability term of the channel O. This can be done since [49,

Theorem 3.3] favors “non-informative” channels.

6.1.3 Utilizing Finite Measurements via a Hilbert Projective Metric Based Bound

for Filter Stability

Via a somewhat different, and more direct, derivation, [20, Subsection 4.2 and Theorem 17]

presented the following alternative condition involving sample path-wise uniform filter stability

term

L
N

TV := sup
pi∈P(X)

sup
y[0,N ],u[0,N−1]

∥
∥
∥P π(·|y[0,N ], u[0,N−1])− P π

∗
(·|y[0,N ], u[0,N−1])

∥
∥
∥
TV

, (24)
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where π∗ has been fixed in Subsection 4.2. to show the following uniform error bound:

sup
z

∣
∣Jβ(z, γN)− J∗

β(z)
∣
∣ ≤ 2(1 + (αZ − 1)β)

(1− β)3(1 − αZβ)
‖c‖∞L

N

TV , (25)

for all β ∈ (0, 1) under a contraction condition, for some constant αZ defined in [20].

Accordingly, a further method, and one which leads to complementary conditions given the

above, for filter stability is via the Hilbert projective metric (see [50, Lemma 3.8]). Via the

Birkhoff-Hopf theorem, a controlled version of a contraction via the Hilbert metric[50] can be

utilized[19]:

Definition 6.5 (Mixing kernel) The non-negative kernel K defined on X is mixing, if

there exist a constant 0 < ε ≤ 1, and a non-negative measure λ on X, such that

ελ(A) ≤ K(x,A) ≤ 1

ε
λ(A),

for any x ∈ X, and any Borel subset A ⊂ X.

With

F (z, y, u)(·) = Pr {Xk+1 ∈ · | Zk = z, Yk+1 = y, Uk = u} ,

we note the following:

Assumption 6.6 1) O(y|x) ≥ ε > 0 for every x ∈ X and y ∈ Y.

2) The transition kernel T (.|., u) is a mixing kernel (see Definition 6.5) for every u ∈ U.

Lemma 6.7 (see [51]) Under Assumption 6.6, there exists a constant r < 1 such that

h(F (μ, y, u), F (ν, y, u)) ≤ rh(μ, ν), (26)

for every comparable μ, ν ∈ P(X) and for every u ∈ U and y ∈ Y where h is the Hilbert

projective metric. Here r =
1−ε2uε
1+ε2uε

, εu is the mixing constant of the kernel T (.|., u).
Theorem 6.8 (see [19]) Under Assumption 6.6, there exist a constant r < 1 and K such

that

L
N

TV ≤ rN−1K. (27)

Here, K = 2
log 3 suph(π1, π

∗
1) and r = supu∈U

1−ε2uε
1+ε2uε

where π1 = F (π0, y, u) and π
∗
1 = F (π∗, y, u)

and the supremum is taken over all π0, π
∗, y, u.

Corollary 6.9 (see [19]) Under Assumption 6.6, there exist a constant r < 1 and K such

that

Eγ̂
π−
0

[∣
∣
∣J̃Nβ

(
Ẑ0, φ̃

N
)
− J∗

β

(
Ẑ0

)∣
∣
∣
]
≤ 2‖c‖∞

(1 − β)2
rN−1K. (28)

Here, K = 2
log 3 supπ−

0 ,y,u
h(F (π−

0 .y, u), F (π
∗, y, u)) and r = supu∈U

1−ε2uε
1+ε2uε

.

The implication of the quantized approximation is that we can ensure that upon quantization

each bin can satisfy the condition that Ô(y|x) > ε > 0. That is, the original measurement kernel

may not satisfy the contraction condition but the finite measurement model may, leading to the

applicability of the bound above. Note that the conditions are complementary when compared

with those building on the Dobrushin coefficient based analysis above.
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6.2 Comparison of Discretization Rate and Finite Window Length

Consider, for example, the original channel O, is fully “non-informative” and provides a

random observation y uniformly distributed on Y, then the discretization of the observation

space will not lead to any improvement as the Lipschitz constant, αY = 0. However, using

a longer window, will improve the performance. In particular, for this case the Dobrushin

coefficient of the channel becomes δ(O) = 1, thus α = (1− δ(T̃ )).

For the other extreme case, we consider a “fully informative” channel. Since, we have a

density assumption on the channel, consider instead an additive channel of the from yt = xt+vt

where vt is a zero mean Gaussian with small variance. Note that, although we assume Y to be

compact, we can extend the analysis by focusing on high probability events on compact subsets.

For this case, finer quantization of the observation space will lead to greater improvements on

the performance as the Lipschitz constant of the density of the channel will be large. However, as

the channel is already informative, using a longer memory will not provide further information

on the hidden state x.

For the extreme cases, we observe that for “fully informative” channels it is better to increase

the discretization rate rather than increasing the window length. For “fully non-informative”

channels, however, one should increase the window length instead of increasing the discretization

rate. Even though, we observe this trend for the extreme cases, for general observation models,

one needs give a quantitative definition of an “informative” channel. [30, 52] study stochastic

observability for measurement channels for non-linear dynamics and establish the filter stability.

This notion can be used to further compare the effect of discretization and memory use for

“observable” channels. We should also note that increasing the size of the finite observation

set ŶM from M to M + 1, will increase the size of the state space of the fully observed MDP

constructed by the algorithm in Subsection 6.1 by a factor of
(
M+1
M

)N
, and increasing the

window size from N to N + 1 will increase the state space size by a factor of M × |U|.
Remark 6.10 We note that if the goal is only asymptotic convergence of the approx-

imation error, we can relax the geometric convergence conditions of the filter stability (and

only consider stochastic observability of the controlled kernels (see [30]) so that Lt → 0 as the

window length increases with no rate of convergence), U is compact (not necessarily finite)

and the density of the measurement kernels, denoted with f is only continuous in y, with no

Lipschitz regularity.

7 Q-Learning for the Approximate Models

7.1 Q-Learning Using Belief Discretization

We will first introduce a discretization based Q learning over the belief spaces. We first set

a finite number of quantization bins, {Z1, · · · , Zk} ⊂ P(X) such that ∪ki=1 = P(X). We use

the map Ψ : P(X) → {Z1, · · · , Zk} for quantization.

A natural way of choosing the quantization for the belief space is as follows: (i) Quantize

the hidden space X to a finite set, (ii) for the resulting simplex use further discretization over

the probability mass of the resulting bins (see [44]).
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Finally, we use the following Q learning algorithm over the finite set of quantization bins.

We denote the i to denote the quantization bin Zi:

Qk+1(i, u) = (1− αk(i, u))Qk(i, u) + αk(i, u)
(
Ck + βmin

v
Qk(ψ(πt+1), v)

)
.

This algorithm can be shown to converge under suitable ergodicity conditions on the belief

process (see [53, Subsection 3.4]). Furthermore, the near optimality of the learned policies can

be guaranteed using the weak continuity of the belief kernel (see [34, Section 3.3]).

We emphasize, however, that this algorithm assumes that the controller has access to the

belief process {πt}. In other words, the controller can map the the history ht to the belief state

πt, and this mapping can be challenging in general.

7.2 Q-Learning Using Finite Memory with Discrete Observations

In this section, we show that the proposed approximate model using the finite memory can

be learned using a Q learning algorithm.

Assume that we start keeping track of the last N + 1 observations and the last N control

action variables after at least N + 1 time steps. That is, at time t, we keep track of the

information variables

INt =

⎧
⎨

⎩

{yt, yt−1, · · · , yt−N , ut−1, · · · , ut−N}, if N > 0,

yt, if N = 0.

For every observation yt, we use the representative element from the finite ŶM , using the

map ψY (see (19)). With an abuse of notation, we use ψY(h
N
t ) to denote the finite history

information with discrete observations.

For these new approximate states, we follow the usual Q learning algorithm such that for

any I ∈ YN+1 ×UN and u ∈ U,

Qk+1(ψY(I), u) =(1 − αk(ψY(I), u))Qk(ψY(I), u)

+ αk(ψY(I), u)
(
Ck + βmin

v
Qk(ψY(I1), v)

)
, (29)

where I1 = {Yt+1, yt, · · · , yt−N+1, ut, · · · , ut−N+1} which are the finite memory information

variables we observe following I and the control u. Ck denotes the cost we observe at time time

k after we apply u, hence, if the hidden state is xk, we have Ck = c(xk, u).

To choose the control actions, we use polices that choose the control actions randomly and

independent of everything else such that at time t ut = ui, w.p. σi for any ui ∈ U with σi > 0

for all i.

Assumption 7.1 1) αt(ψY(I), u) = 0 unless (ψY(ht), ut) = (ψY(I), u). Furthermore,

αt(ψY(I), u) =
1

1 +
∑t
k=0 1{ψY(Ik)=ψY(I),uk=u}

.

We note that, this means that αk(ψY(I), u) = 1
k if ψY(Ik) = ψY(I), uk = u, if k is the

instant of the kth visit to (ψY(I), u).
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2) Under every stationary {memoryless or finite memory exploration} policy, say γ, the

true state process, {Xt}t, is positive Harris recurrent and in particular admits a unique

invariant measure π∗
γ .

3) During the exploration phase, every (ψY(I), u) pair is visited infinitely often.

Theorem 7.2 Under Assumption 7.1,

i) The algorithm given in (29) converges almost surely to some Q∗ which are the optimal Q

values of an MDP constructed in Subsection 4.2 with the discrete channel Ô.

ii) For any policy γN that is constructed using Q∗ if we assume that the controller has access

to at least N + 1 observations and N control action variables, when it starts acting, we have

Jβ(μ,O, γ
N )− J∗

β(μ,O) ≤
β

(1− β)2
‖c‖∞αYLY +

2‖c‖∞
(1− β)

∞∑

t=0

βtLt.

Proof The result is a direct implication of [21, Theorem 4.1]. In [21, Theorem 4.1], it is

shown that the Q learning using finite memory information variables for a POMDP with a finite

observation space, converges. The Q iterations constructed here then can be thought to learn

a POMDP model with the discrete channel Ô which has a finite observation space. Hence, (ii)

is a result of Theorem 6.2.

The positive Harris recurrence condition can be relaxed; please see [53] and [54, Lemma 6].

8 Concluding Remarks and a Discussion

We studied two approximation algorithms for POMDPs with continuous state and obser-

vation spaces. The first method discretizes the hidden state space and genrates a belief MDP

defined over a simplex. The near optimality of this method relies on the regularity of the transi-

tion and the channel kernel of the POMDP. Furthermore, this method is tailored more towards

settings where the model is known. The second method is done by dicretizing the observation

space and using finite memory of discrete information variables. The near optimality of this

method relies on the controlled filter stability under the discretized observations. Furthermore,

we provided a Q learning algorithm for the constructed approximate finite models.
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Appendix

A.1 Proof of Lemma 3.2

Consider some x ∈ Ai, we then write

W1

(
T (·|x, u), T̂ (·|x, u)

)
= sup

‖f‖Lip≤1

∣
∣
∣
∣

∫
f(x1)T (dx1|x, u)−

∫
f(x1)T̂ (dx1|x, u)

∣
∣
∣
∣

= sup
‖f‖Lip≤1

∣
∣
∣
∣

∫
f(x1)T (dx1|x, u)−

∫
f(x1)T (dx1|z, u)πi(dz)

∣
∣
∣
∣

≤ sup
‖f‖Lip≤1

∫

z∈Ai

∣
∣
∣
∣

∫

x1∈X

f(x1)T (dx1|x, u) −
∫
f(x1)T (dx1|z, u)

∣
∣
∣
∣πi(dz)
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≤
∫

z∈Ai

W1 (T (·|x, u), T (·|z, u))πi(dz)

≤ KT sup
z∈Ai

‖x− z‖ ≤ KTLX.

The proof for the bound on the approximate channel follows from identical steps.

A.2 Proof of Lemma 3.3

We start by defining the following functions for rotational convenience.

Fk(xt−k, y[0,t−k]) = E
[
c(Xt, γ(Y[0,t]))|xt−k, y[0,t−k]

]
,

F̂k(xt−k, y[0,t−k]) = Ê
[
ĉ(Xt, γ(Y[0,t]))|xt−k, y[0,t−k]

]
,

in particular

F0(xt, y[0,t]) = c(xt, y[0,t]), F̂0(xt, y[0,t]) = ĉ(xt, y[0,t]).

Furthermore, we are interested in the difference |E[Ft(x0, y0)]− Ê[F̂t(x0, y0)]|.
We first note the following due to iterated expectations

Fk(xt−k, y[0,t−k])

=E
[
c(Xt, γ(Y[0,t]))|xt−k, y[0,t−k]

]

=E
[
E
[
c(Xt, γ(Y[0,t]))|Xt−k+1, Y[0,t−k+1]

]
|xt−k, y[0,t−k]

]

=E
[
Fk−1(Xt−k+1, Y[0,t−k+1])|xt−k, y[0,t−k]

]

=

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)T (dxt−k+1|xt−k, γ(y[0,t−k])), (A.1)

which can also be written for the functions F̂k. Using this iterative form, we find an upper-

bound for the Lipschitz constant of Fk(xt−k, y[0,t−k]) with respect to xt−k uniformly over all

y[0,t−k]:

∣
∣Fk(xt−k, y[0,t−k])− Fk(x

′
t−k, y[0,t−k])

∣
∣

=

∣
∣
∣
∣

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)T (dxt−k+1|xt−k, γ(y[0,t−k]))

−
∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)T (dxt−k+1|x′t−k, γ(y[0,t−k]))

∣
∣
∣
∣

≤
∥
∥
∥
∥

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)

∥
∥
∥
∥
Lip

KT |xt−k − x′t−k|

≤ (KO‖c‖∞ + ‖Fk−1‖Lip)KT ‖xt−k − x′t−k‖,

where we used Assumption 3.1 (b) for the first inequality. For the last step, we used the

following:
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∣
∣
∣
∣

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)

∫
Fk−1(x

′
t−k+1, y[0,t−k+1])O(dyt−k+1|x′t−k+1)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)

−
∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|x′t−k+1)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|x′t−k+1)

−
∫
Fk−1(x

′
t−k+1, y[0,t−k+1])O(dyt−k+1|x′t−k+1)

∣
∣
∣
∣

≤‖Fk−1‖∞‖O(·|xt−k+1)−O(·|x′t−k+1)‖TV + ‖Fk−1‖Lip‖xt−k+1 − x′t−k+1‖
≤ (KO‖c‖∞ + ‖Fk−1‖Lip) ‖xt−k+1 − x′t−k+1‖.

One can then show that

‖Fk‖Lip ≤ KO‖c‖∞
(
KT + · · ·+Kk

T

)
+ ‖F0‖LipKk

T

= KO‖c‖∞
(
KT + · · ·+Kk

T

)
+KcK

k
T . (A.2)

The iterative form in (A.1) implies that

∣
∣
∣Fk(xt−k, y[0,t−k])− F̂k(xt−k, y[0,t−k])

∣
∣
∣

=

∣
∣
∣
∣

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)T (dxt−k+1|xt−k, γ(y[0,t−k]))

−
∫
F̂k−1(xt−k+1, y[0,t−k+1])Ô(dyt−k+1|xt−k+1)T̂ (dxt−k+1|xt−k, γ(y[0,t−k]))

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)T (dxt−k+1|xt−k, γ(y[0,t−k]))

−
∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)T̂ (dxt−k+1|xt−k, γ(y[0,t−k]))

∣
∣
∣
∣

+

∣
∣
∣
∣

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)T̂ (dxt−k+1|xt−k, γ(y[0,t−k]))

−
∫
F̂k−1(xt−k+1, y[0,t−k+1])Ô(dyt−k+1|xt−k+1)T̂ (dxt−k+1|xt−k, γ(y[0,t−k]))

∣
∣
∣
∣

≤
∥
∥
∥
∥

∫
Fk−1(xt−k+1, y[0,t−k+1])O(dyt−k+1|xt−k+1)

∥
∥
∥
∥
Lip

sup
x,u

W1(T (·|x, u), T̂ (·|x, u))

+ sup
x

∣
∣
∣
∣

∫
Fk−1(x, y[0,t−k+1])O(dyt−k+1|x)−

∫
F̂k−1(x, y[0,t−k+1])Ô(dyt−k+1|x)

∣
∣
∣
∣

≤ sup
x,u

W1(T (·|x, u), T̂ (·|x, u)) (‖Fk−1‖Lip +KO‖c‖∞) + ‖c‖∞ sup
x

‖O(·|x) − Ô(·|x)‖TV

+ ‖Fk−1 − F̂k−1‖∞
≤KTLX‖Fk−1‖Lip +KTKO‖c‖∞LX +KO‖c‖∞LX + ‖Fk−1 − F̂k−1‖∞,
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where we used Lemma 3.2. Using (A.2), we can find a further upper-bound as:

∥
∥
∥Fk − F̂k

∥
∥
∥
∞

≤KTLX

(
KO‖c‖∞

(
KT + · · ·+Kk−1

T

)
+KcK

k−1
T

)
+KTKO‖c‖∞LX

+KO‖c‖∞LX + ‖Fk−1 − F̂k−1‖∞
≤KO‖c‖∞LX

(
K2
T + · · ·+Kk

T

)
+KcK

k
TLX +KO‖c‖∞KTLX +KO‖c‖∞LX

+ ‖Fk−1 − F̂k−1‖∞

=KO‖c‖∞LX

k∑

m=0

(KT )
m +Kc(KT )

kLX + ‖Fk−1 − F̂k−1‖∞.

Denoting by Ak :=
∑k

m=0K
m
T , we can then write:

∥
∥
∥Fk − F̂k

∥
∥
∥
∞

≤ KO‖c‖∞LX

k∑

n=1

An +KcLX

k∑

n=1

(KT )
n + ‖F0 − F̂0‖∞

≤ KO‖c‖∞LX

k∑

n=1

An +KcLX

k∑

n=1

(KT )
n +KcLX

≤ KO‖c‖∞LX

k∑

n=0

An +KcLX

k∑

n=0

(KT )
n

= KO‖c‖∞LX

k∑

n=0

n∑

m=0

Km
T +KcLX

k∑

n=0

Kn
T .

The proof is completed.


