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Abstract—1t is known that fixed rate adaptive quantizers
can be used to stabilize an open-loop-unstable linear system
driven by unbounded noise. These quantizers can be designed
so that they have near-optimal rate, and the resulting system
will be stable in the sense of having an invariant probability
measure, or ergodicity, as well as the boundedness of the state
second moment. However, results on the minimization of the
state second moment for such quantizers, an important goal in
practice, do not seem to be available. In this paper, we construct
a two-part adaptive coding scheme that is asymptotically
optimal in terms of the second moments as the data rate grows
large. The first part, as in prior work, leads to ergodicity (via
positive Harris recurrence) and the second part attains order
optimality of the invariant second moment, resulting in near
optimal performance at high rates.

[. INTRODUCTION

We consider the linear system
Tep1 = Ay + bup + dy, (1)

where |a| > 1, b # 0, and d; is a sequence of i.i.d. Gaussian
random variables d; ~ N(0,02). The state variable z; is
driven by the noise d; and the aim is to control the state
through the action u;. The system is open-loop-unstable but
is stabilizable.

First suppose that the system is fully observed. If one
minimizes the average quadratic cost of the state, E [27],
over any time horizon (with no penalty on control) then the
optimal control is u; = —7z; and the optimal cost is o2
(via a Riccati equation optimality argument with no cost on
control [1]). In contrast, here we assume that the controller
only has access to x; through a discrete noiseless channel of
capacity C bits.
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Fig. 1. Block diagram of the communication and control loop.
Thus, the data rate is fixed, and we assume zero coding
delay. In this setup, it becomes necessary to describe not
just a control policy, but also a coding scheme with which
to communicate information about the current state variable.
For systems of this nature, various authors have obtained
the smallest channel capacity above which stabilization is
possible, under various assumptions on the system and the

admissible coders and controllers. This result is usually
referred to as a data-rate theorem, and in the scalar case (1)
we consider, it reduces to simply C' > log |a|. Some of the
earliest works in this context are [2] and [3]. More general
versions of the data-rate theorem have been proven in [4]
and [5]. For noisy systems and mean-square stabilization,
or more generally, moment-stabilization, analogous data-rate
theorems have been proven in [6] and [7], see also [8], [9].

In [10], [11], a joint fixed-rate coding and control scheme
is given which stabilizes the system (1) while being nearly
rate-optimal, in that the rate used satisfies only C' > log(|a|+
1). This is achieved using an adaptive uniform quantization
scheme, where the quantizer bin sizes ‘“zoom” in and out
exponentially to track the state x;. Here, the notion of
stability is ergodicity and finiteness of all limiting system
moments. By increasing a sampling period 7' the achievable
rate = log(|a|” + 1) gets arbitrarily close to C' > log]al
[12, Theorem 2.3]. The same result also applies to multi-
dimensional systems [12]. Furthermore, this scheme leads to
a closed loop system which is positive Harris recurrent, and
hence, ergodic. For related recent fixed-rate constructions,
we refer the reader to [13] and [14]. We also note that there
has been a large literature on optimal networked control, see
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24].

However, despite being near rate-optimal for achieving
stability (i.e., finite system moments), the scheme in [10],
[11] has not been shown to be asymptotically second-
moment optimal as the data rate grows large.

In this paper, we present a variation on the coding and
control scheme used in [10], [11] by including an additional
quantization stage, which is fixed in time, unlike the first
stage of the coding scheme. Crucially utilizing the ergodicity
results of the first coding stage, we show that this two-part
coding scheme attains second-moment optimality with near
optimal rate of convergence. While multi-stage quantization
schemes have been studied before in the source coding
literature [25], our implementation is novel in that one stage
of the code is time-adaptive and stabilizing. An inspiration
for this approach also comes to us from Berger [26] and
Sahai [27].

In this paper, we show that this new scheme retains key
stability and ergodicity properties ensured by the original
one-stage scheme, closely appealing to the existing argu-
ments made in [10], [11]. In our main results, Theorems
3.4 and 3.6, we show that the new scheme is asymptotically
second-moment optimal, i.e., as the data rate goes to infinity,
the system second moment converges to the optimum o2
at a rate which is arbitrarily close to order-optimal in a



polynomial sense. We also illustrate this convergence by
numerical results.

II. PRELIMINARIES
A. Quantization

To communicate over a finite capacity channel, it is
necessary to employ quantization schemes. We will work
with the following class of quantizers, as introduced in [10],
[11]. For a given bin size A > 0 and even number of bins
M > 2, we define the modified uniform quantizer Qf‘/[ by,

Al2]+4, ifee [-4AYLA)
YA-2, ifz=%A 2)
0, if |z] > ZA.

Qi (z) =

This quantizer uniformly quantizes x € [—%A, %A] into
M bins of size A and maps all larger x to zero. This requires
M + 1 output levels.

This quantizer is almost as simple as possible (aside from
the overload symbol, this is typical uniform quantization),
and its use leads to stability of the closed-loop process with
near rate-optimality, as discussed in Section L.

We will consider two primary applications of this class
of quantizers. First, we consider adaptive quantizers, whose
bin sizes vary with time. Fix an even number of bins K > 2
and let {At}fi o be a sequence of strictly positive bin sizes.
We will then make use of the adaptive modified uniform
quantizer Qﬁ‘.

Secondly, we consider quantizers fixed in time, whose bin
size is a function of the number of bins. For a given (even)
number of bins N > 2, we choose a bin size A( N) and

. . A o .
consider the quantizer Q™. To distinguish this from the

adaptive case, we denote Uy := Qﬁ“\”. We also allow for
N = 0, for which we write Uy = 0.

B. System Description

Recall the linear system (1) with the information con-
straints of Figure 1. Since the system is open-loop-unstable,
any fixed quantization policy will make the system transient.
We will consider a two-part coding scheme, where the first
part is adaptive and the second is fixed. The adaptive part
will yield stability, and the fixed part will yield an optimal
rate of convergence.

Suppose {A¢},°, is a sequence such that A, is a
function of only A; and the indicator random variable
1 {lel< KA} Also assume that both the encoder and the

decoder (controller) know Ag. Then so long as Qﬁt (z¢) is
sent over the channel, it is possible to synchronize knowledge
of A; between the quantizer and the controller, since || <
KAy if and only if Q%" (z) # 0.

We now describe the proposed communication and control
scheme. For {A},°, as above, we calculate the adaptive
quantizer output QIA{ (z¢) and the adaptive system error
€ =T — QIA(‘ (z¢). Then, using a fixed (i.e., non-adaptive)
quantizer Uy with bin size A( N) as in Section II-A, we
calculate the fixed quantizer output Uy (e;). We then send

Q%" (;) and Uy /(e;) across the noiseless channel using a
total of C' = log, (K + 1) + logy (NN 4 1) bits.
The controller then applies the control given by

a

Uy = —g ( IA(t (I’f) —+ UN(Et)) .
This coding and control scheme is illustrated below.
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Fig. 2. Block diagram of the two-stage coding and control scheme.

We note that the term Up(e;) distinguishes our control
scheme from [10], [11]. This control is chosen to mirror the
optimal fully observed control, where Q%" () 4+ Un (e;) is
a good estimate of the true state x;. By (1), this results in
the state dynamics

Tiy1 = a(zy — Q}A(t () — Un(er)) +di

= CL(Gt — UN((if)) + dt- (3)
In the case N = 0, this reduces to [10], [11] with
Ti41 = CL(I’t — Qﬁt (IIZ’t)) —+ dt- (4)

We briefly motivate the given scheme. For the bin update
rules we will describe below, the pair (z:, A;) forms a
Markov chain. The update dynamics (4) with no fixed
quantization (/N = 0) ensure that the system is stochastically
stable and ergodic, due to results of [11].

Our main contribution is analyzing the performance of the
proposed two-stage scheme. Through an intricate stochastic
stability analysis, we ultimately prove that the addition of
a fixed quantization stage leads to optimal convergence
of the second moment with near-optimality in the rate of
convergence.

Finally, we describe the bin update dynamics. As in [10],
[11], a simple zooming scheme is employed. Assuming that
K > |a| (which ensures stability), choose % < a <1,
6 >0 and L > 0. The update is:

(la] + 0) Ay, if |z¢] > %At
App1 = § 0y, if o] < AL A > L &)
At, if \xt\ S %At,At < L.

The above rules imply that A; > «L. We choose an arbitrary
initial Ay > 0.

Then we consider the process {¢:},~, = {(@s, Ar)},oy
with the dynamics described above. This process is a Markov



chain. The state space of this process highly depends on the
following mild “countability condition” utilized in [10], [11].

Condition A. There exist relatively prime integers j, k > 1
such that o/ (|a| + 6)* = 1. Equivalently, log,,(|a| + 6) is
rational.

We restrict our analysis to the case where Condition A
holds. We let the state space for A; be

Qa = {Oéj(|a/‘ + 5)kA0 Ij,k S Zzo} .

The state space for the Markov chain {(z,
R x A-

Ay)}2, is then

C. Stochastic Stability

Suppose {¢:};o, is a Markov chain with state space
X, where X is a complete separable metric space and
its Borel sigma algebra is denoted B(X). The transition
probability is denoted by P, so that for any ¢ € X and
A € B(X), the probability of moving in one step from
state ¢ to the set A is given by P(¢r11 € A | ¢pr = @) =
P(¢,A). The n-step transitions are obtained in the usual
way, P(¢ryn € A | ¢ = ¢) = P"(p, A) for any n > 1.
The transition law acts on measurable functions f : X — R
and measures £ on B(X) via

/P¢,dy (y), forall ¢ € X

and
JP(A) = / 1(d$)P(, A), for all A € B(X).
X

A probability measure 7 on B(X) is called invariant if 7P =
7, that is:

/ m(dp)P(p, A) = w(A), for all A € B(X).
X

For any initial probability measure v on B(X) we can
construct a stochastic process with transition law P and
¢o ~ v. We let P, denote the resulting probability measure
on the sample space, with the usual convention that v = d
(i.e., v({¢}) = 1) when the initial state is ¢ € X. When
v = 7 the resulting process is stationary.

There is at most one stationary solution under the follow-
ing irreducibility assumption. For a set A € B(X) we denote,

Ta:=min{t >1:¢, € A}. 6)

Definition 2.1. Ler ¢ denote a o-finite measure on B(X).
(i) The Markov chain is called ¢-irreducible if for any ¢ €
X and B € B(X) satisfying ¢(B) > 0 we have

P¢(TB<OO)>O.

(ii)) A (-irreducible Markov chain is Harris recurrent if
Py (1 < o00) =1 for any ¢ € X and any B € B(X)
satisfying ¢(B) > 0. It is positive Harris recurrent if in
addition there is an invariant probability measure 7.

Notably, the positive Harris recurrence property leads to
ergodicity of the closed-loop process: for every initial state
and every g € Lq(m), the following holds almost surely:

By oo & Sy 9(¢x) = [ 7(dr)g(¢). This almost sure
sample path convergence also holds in expectation under
mild Lyapunov conditions [28] (which will be the case in
our analysis).

IT1I. ANALYSIS OF SCHEME
A. Supporting Lemma on Optimality at High—Rates

For the class of fixed quantizers Uy introduced in Section
II-A, we present the following result bounding the expected
MSE of a family of well-behaved random variables.

Lemma 3.1. Suppose {Xn}~_, are random variables sat-
isfying the following uniform moment bound:

E[|XN|"] < By forallm=1,2, .. (7)

where {B,,}~_, is independent of N. Let ¢ > 0 and set
the bin size for Uy as A(yy = AN~ I+ge , for fixed A > 0.

Then we have
1
E[(Xy —Un(Xn))’] =0 (Nzg> ,
i.e., there exists a constant C' > 0 which depends on ¢ with

E[(Xn —Un(XN))?)] SCN7*¢, forall N > 2.

Proof: For brevity, denote Yy = Xy — Un (X ). First
note that when |Xy| < %NA(N), we have [Yy| < %A(N).
Therefore,

E [Y]%I{‘XN‘S%NA(N)}} < 1A%, = 1aIN2e (3

Next we will consider the region |Xy| > $NA(y). Here,
note that Yy = Xy since Uy (Xy) = 0. Therefore,

9 _ 2
E {YNl{lXND%NA(N)}} =E [XNI{\XND%NA(N)} '

24¢€

We then apply Holder’s inequality with conjugates and

2+e€.
B

2
E [XN1{|XN|>%NA<N>}}

P 1+1e] 2+¢
2+$ 2+4¢ 2
< B [|xn[?+] E[(1{|XN>%NA(N)}) ]

£
2+¢

= B [|Xy 27 P(Xn] > INAW) T )

: 4 me
Now, choose an integer m > 2 + = such that — e <

—2. First, note that by Jensen’s inequality and the uniform
moment bound (7),

FE |:|XN‘2+%j|m S E[|XN|m]7}L(2+%)2iE S (Bm)% .

Secondly, note that by Markov’s inequality and the uniform
moment bound, for any v > 0 we have
EXNn|™]

P(|Xn|>u) < o

< Bpu™™

Therefore,

P(|XN| > %NA(N)) 2te



We conclude that the product in (9) is upper bounded by

2 2m

7 (GNAW) T

2

2 2 1 T 2+e
— Bm 7n+2+5 <%AN2€>

(Bm)™ (Bum

3

me

(
= ( (34) - N7
< (Bm %JrQiE (%A),grs _N—2
< (Bp)w e (LA) T N2 (10)

Combining (8) and (10) gives the upper bound O (N~2%¢),
completing the proof. 0

The above lemma will allow us, via the second part of
our code, to bound the rate at which the MSE for a random
variable decreases to zero as we increase the number of
quantization bins V.

B. System Stability and Rate Optimality

In this section, we characterize the system limiting second
moment in terms of the data rate and establish key stability
properties of the system. Recall that C' is the data rate of our
noiseless channel.

Consider the limiting second moment lim; o, F [27].
It is obvious from the state update equation (3) that
limy_,o0 E [27] > 02, so we wish to derive bounds for
the “rate” at which limy_,c E [27] —0? — 0 as C — oo.
To make this precise, we will say that the limiting second
moment converges (to o) at a rate 7 > 0 if

lim sup 2"¢ (lim E [ch] — 02) < 00.

C—oo t—o0
The following result implies that regardless of the choice of
encoding/control scheme, any such rate satisfies r < 2.

Lemma 3.2. The following lower bound on the limiting
second moment holds:

2 2
g2 2O

t—o0

Proof: This result follows directly from [29, Theorem
11.3.2] (via entropy-power inequality) in which the system
(1) is considered (with b = 1) for control across a general
memoryless channel of capacity C. The theorem provides a
lower bound on C' in terms of the limiting second moment,
which when applied to our system, provides a lower bound
on the invariant second moment. O

The remaining contributions of this section are as follows.
First, we establish key stability results (positive Harris re-
currence and ergodicity) of our coding and control scheme.
Secondly, we show that for any € > 0 an appropriate choice
of Ay ensures that the limiting second moment converges
at a rate r > 2 — . In this sense and in view of the previous
lemma, we provide a scheme which is arbitrarily close to
order-optimal in the data rate C' among all possible schemes.

As stated earlier, we will assume that Condition A holds.
Consider the case where N = 0. By [11, Theorem 3.1], if
K > |al, then {(x,A)},~, is a positive Harris recurrent

Markov chain with unique invariant measure 7. We offer the
following extension:

Theorem 3.3. For all N > 0, {(z¢,A)},, is positive
Harris recurrent.

Sketch of Proof: The case N > 2 is different from the
case of no fixed quantization only in that the state update
dynamics are decreased deterministically. This allows us to
extend the proof program due to [11] for positive Harris
recurrence for the case N = 0 with only minor modifications
to some of the intermediate expressions. O

Now suppose that the system is positive Harris recurrent
with fixed parameters (a,0?, K, L,a,§) and given N > 2
(this is possible so long as K > |a|). Let 7 be the resulting
invariant measure depending on N, and let (z},, AY) ~ 7n.
Since the adaptive quantization error e; is a deterministic
function of (z;, A;), this invariant measure will also induce a
stationary distribution for e;, which we denote by ey ~ 7§/

Theorem 3.4. For all N > 2, for every initial condition,

lim E[z?] = E[(zy)?] = /WN(dl',dA)(EQ.

t—00
Proof: This result follows from [11, Theorem 2.1(iii)]
and the drift criteria we establish in Section III-C. O]

To show that we can achieve r arbitrarily close to 2, we
will apply Lemma 3.1 to the stationary adaptive error ey,
so it will be necessary to show that ey admits uniformly
bounded moments:

Lemma 3.5. The stationary adaptive error {ey}x_, has
uniformly bounded moments, i.e.,

Ellen|™] < By forallm=1,2,...
for some {B,}.-_, independent of N.

Remark. While this result is not surprising, the proof pro-
gram is quite involved. We discuss this in further detail in
Section III-C.

Finally, it follows from Lemma 3.1 that we can achieve a
rate 7 > 2 — ¢, for any € > 0.

Theorem 3.6. Choose any € > 0 and set the bin size for
Un as Ay = AN=3¢ for fixed A > 0. Then we have

El@y)?] —0?=0 <N21> ,

i.e., there exists C' > 0 which depends on €, such that

(1)

E[(zy)?] — 0> <CN**¢, forall N >2.

Remark. This implies a rate of convergence r > 2 — ¢ since
C and N are related by 2¢ = (N + 1)(K + 1).

Proof: Let (z%,AYN) ~ 7n and let ey = z¥ —
]A(N (xy) so that ey ~ 757. Now let 2’ be the one-step

pushforward of x%; using ey, that is

¥ =aleny —Upn(en)) + Z, (12)



where Z ~ N(0,0?) is independent of e . Since we started
under the invariant measure, z’ is distributed identically to
. Furthermore, since E [€3 ] is finite by Lemma 3.5, it
follows from (12) that E [(z%)?] = E [(2')?] is finite. For
brevity, let gy = ey — Un(en), then by total expectation:

E[(@y)] =E[@)] =E[E[(=)* | en]]
=F [E [a2q]2\, +2aqnZ + 7% | eN]]
=a’E [¢¥] + 2aE [qN] E [Z] + E [ Z27]

= a’E [(BN — UN(EN))Q} + o2

Therefore, E [(z)?] — 0 = do’FE [(eN - UN(eN))Q}
Since ey has uniformly bounded moments, Lemma 3.1
implies that our choice of Ay causes this MSE to be
O (72==)- The result follows since the optimality gap is
linearly related to this MSE. O

C. Proof Program for Uniformly Bounded Moments

Here we give a brief overview of the proof program for
Lemma 3.5. First, we remark that if the invariant state z7;
admits moments uniformly bounded in N, so too does ey
and Lemma 3.5 follows. This follows since for ey =z —
Qﬁf"(x}kv) we have |en| < |z4|.

To show that the state admits uniformly bounded moments,
we introduce a set of random-time Lyapunov drift criteria
and show that if these criteria are satisfied, we can upper
bound the expectation of functions under invariant measure.
As in Section II-C, we consider a quite general Markov chain
{¢:},2, with state space X. First, suppose that {7; : i € N}
is a sequence of strictly increasing stopping times with
To = 0. Then for a measurable function V' : X — (0, 00),
measurable functions f,d : X — [0,00), a constant b and a
set C' C B(X), we say that {(bt},fi o satisfies the random-time
Lyapunov drift criteria if for all z = 0,1, 2,

E[V(ér..,) | Fr.] <V(T) — d(¢7.) + blig, ey

and
Tey1—1

E| Y f(6) | Fr| <dor).

=T,

13)

These drift criteria can be used to establish important stabil-
ity properties, in combination with irreducibility and other
conditions (see [11, Theorem 2.1]).

Finally, we apply this to our system which we know to
be positive Harris recurrent. The stopping times we choose
are those in which the system (z;, A;) is “in-view” of the
adaptive quantizer, i.e.,

77Q+1 = min {t > 77€ : |1’t| S %At} .

Let m > 1 be arbitrary and choose arbitrary v € (0, 1—a™).
Let 8 > 0 and D > 0, then set

Viz,A) =A™, d(xz,A) = yA™,
f@,A) =48 (&) [z|™,  C={(x,A): A< D}.

We have the following key supporting result (for a proof,
please see [30]):

Proposition 3.7. There exists choice of (8 sufficiently small,
D sufficiently large, and b sufficiently large, all independent
of N, so that the system {(x¢, Ay)},~, satisfies the random-
time Lyapunov drift criteria (13) for the above choice of
(V,d, f,b,C). It follows that

Elay|™ < 2 (£)"

and so the state admits uniformly bounded moments. By our
initial discussion, so too does the adaptive error ep.

=: B,,

This completes the proof sketch for Lemma 3.5.
IV. A SIMULATION

Let us note that a key issue in a numerical simulation
here is that for ¢ too close to 0, it is not feasible to effec-
tively demonstrate the rate of convergence. To be precise,
suppose N < 22/¢. Then the quantizer support size satisfies
1NA(y) < A. Therefore, all schemes with less than 22/¢
bins will fail to quantize the region (—o0, A)U (4, ). As a
direct result of this, the overload distortion will not go to zero
as N increases up to this point. This is especially problematic
for small €. As an example, suppose € = 0.001. We would
then require our fixed quantizer to have N >> 22990 bins in
order to demonstrate the convergence rate O (N 1999, It
is infeasible on typical computing software (e.g. MATLAB)
to simulate a scheme with this many bins. In view of this,
we now proceed with an example simulation. To ensure that
the convergence is observable, we modestly choose € = 1 so
that the rate of convergence is at worst O (1/N). The system
parameters are @ = 2 and 02 = 1. K = 16 bins are used
to stabilize the system, with zooming parameters o = 0.5,
6 = 0.2, and L = 1. We start the simulation from z¢ = 0,
Ag = L. With the parameters above, the system was run for
all N € {10,12,... 100} and the average second moment
was recorded. The second moment achieved in each trial for
N is shown below. As the convergence is at worst O (1/N),
we include an estimate of this order for the tail of the data.

Simulated second mament

11t ! — — —Estimate: 1 + 1.67. N %6

System Second Moment

Fig. 3. Convergence to the optimum o2 = 1. The order of convergence is
approximately O (N *1'066) for the tail end of the data, overlaid in red.
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