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Abstract— In stochastic control applications, typically only
an ideal model (controlled transition kernel) is assumed and
the control design is based on the given model, raising the
problem of performance loss due to the mismatch between
the assumed model and the actual model. Toward this end,
we study continuity properties of discrete-time stochastic con-
trol problems with respect to system models (i.e., controlled
transition kernels) and robustness of optimal control policies
designed for incorrect models applied to the true system. We
study both fully observed and partially observed setups under
an infinite horizon discounted expected cost criterion. We show
that continuity and robustness cannot be established the under
weak convergence of transition kernels in general, but that the
expected induced cost is robust under total variation in that
it is continuous in the mismatch of transition kernels under
convergence in total variation. By imposing further assumptions
on the measurement models and on the kernel itself, we show
that the optimal cost can be made continuous under weak
convergence of transition kernels as well. Using these continuity
properties, we establish convergence results and error bounds
due to mismatch that occurs by the application of a control
policy which is designed for an incorrectly estimated system
model to a true model, thus establishing positive and negative
results on robustness. Compared to the existing literature, we
obtain refined robustness results that are applicable even when
the incorrect models can be investigated under weak conver-
gence and setwise convergence criteria (with respect to a true
model), in addition to the total variation criteria. These lead
to practically important results on empirical learning in (data-
driven) stochastic control since often, in many applications,
system models are learned through training data.

I. INTRODUCTION

A. Preliminaries

Robustness is a desired property for the optimal control
of stochastic or deterministic systems when a given model
does not reflect the actual system perfectly, as is usually
the case in practice. In many stochastic control applications,
typically only an ideal model (controlled transition kernel)
is assumed and the control design is based on the given
model, raising the problem of performance loss due to the
mismatch between the assumed model and the actual model.
With this goal, in this paper we study continuity properties
of discrete-time stochastic control problems with respect
to system models (i.e., controlled transition kernels) and
robustness of optimal control policies designed for incorrect
models applied to the true system.

We start with defining the probabilistic model of the
problem. X ⊂ R

m denotes the state space of a partially
observed controlled Markov process. We let X to be a Borel
set. Thus, the state elements of the model, {Xt, t ∈ Z+},
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live in X. Here and throughout the paper Z+ denotes
the set of non-negative integers and N denotes the set of
positive integers. Y ⊂ R

n is also a Borel set denoting
the observation space of the model. The state is observed
through an observation channel Q. The observation channel,
Q, is defined as a stochastic kernel (regular conditional
probability) from X to Y, such that Q( · |x) is a probability
measure on the (Borel) σ-algebra B(Y) of Y for every
x ∈ X, and Q(A| · ) : X → [0, 1] is a Borel measurable
function for every A ∈ B(Y). A decision maker (DM) can
observe the output of the channel Q, and it only has access
to the observations {Yt, t ∈ Z+}, and chooses its actions
from U, the action space which is a Borel subset of some
Euclidean space. An admissible policy γ is a sequence of
control functions {γt, t ∈ Z+} such that γt is measurable
with respect to the σ-algebra generated by the information
variables

It = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0},

where
Ut = γt(It), t ∈ Z+ (1)

are the U-valued control actions and

Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t− 1}.

We define Γ to be the set of all such admissible policies.
The progress of the system is determined by (1) and the

following relationships:

Pr
(

(X0, Y0) ∈ B
)

=

∫

B

P (dx0)Q(dy0|x0), B ∈ B(X×Y),

where P is the (prior) distribution of the initial state X0, and

Pr

(

(Xt, Yt) ∈ B

∣

∣

∣

∣

(X,Y, U)[0,t−1] = (x, y, u)[0,t−1]

)

=

∫

B

T (dxt|xt−1, ut−1)Q(dyt|xt), B ∈ B(X×Y), t ∈ N,

where T is the transition kernel of the model which is a
stochastic kernel from X×U to X.

Using stochastic realization results (see Lemma 1.2 in [1],
or Lemma 3.1 of [2]), dynamics of the system can also
be represented in a functional form equivalent to the above
relationships as follows: we can consider a dynamical system
described by the discrete-time equations

Xt+1 = f(Xt, Ut,Wt), Yt = g(Xt, Vt) (2)

for some measurable functions f, g, with {Wt} being an
independent and identically distributed (i.i.d) system noise
process and {Vt} an i.i.d. disturbance process, which are
independent of X0 and each other. Here, the first equation



represents the transition kernel T as it gives the relation
of the most recent state and action variables to the up-
coming state. From this representation it can be seen that
the probabilistic nature of the kernel is determined by the
function f and the probability model of the noise Wt. The
second equation represents the communication channel Q,
as it describes the relation between the state and observation
variables.

We let the objective of the agent(decision maker) be the
minimization of the infinite horizon discounted cost,

Jβ(P, T , γ) = E
T ,γ
P

[

∞
∑

t=0

βtc(Xt, Ut),

]

for some discount factor β ∈ (0, 1), over the set of admissible
policies γ ∈ Γ, where c : X×U → R is a Borel-measurable
stage-wise cost function and E

T ,γ
P denotes the expectation

with initial state probability measure P and transition kernel
T under policy γ. Note that P ∈ P(X), where we let P(X)
denote the set of probability measures on X.

We define the optimal cost for the discounted infinite
horizon setup as a function of the priors and the transition
kernels as

J∗
β(P, T ) = inf

γ∈Γ
Jβ(P, T , γ).

The focus of the paper will be to address the following
problems:
Problem P1: Continuity of J∗

β(P, T ) under the conver-
gence of the transition kernels. Let {Tn, n ∈ N} be a
sequence of transition kernels which converge in some sense
to another transition kernel T . Does that imply that

J∗
β(P, Tn) → J∗

β(P, T )?

Problem P2: Robustness to incorrect models. A problem
of major practical importance is robustness of an optimal
controller to modeling errors. Suppose that an optimal policy
is constructed according to a model which is incorrect: how
does the application of the control to the true model affect
the system performance and does the error decrease to zero
as the models become closer to each other? In particular,
suppose that γ∗

n is an optimal policy designed for Tn, an
incorrect model for a true model T . Is it the case that if
Tn → T then Jβ(P, T , γ∗

n) → J∗
β(P, T )?

Problem P3: Empirical consistency of learned proba-
bilistic models and data-driven stochastic control. Let
T (·|x, u) be a transition kernel given previous state and
action variables x ∈ X, u ∈ U, which is unknown to the
decision maker (DM). Suppose, the DM builds a model for
the transition kernels, Tn(·|x, u), for all possible x ∈ X, u ∈
U by collecting training data (e.g. from the evolving system).
Do we have that the cost calculated under Tn converges
to the true cost (i.e., do we have that the cost obtained
from applying the optimal policy for the empirical model
converges to the true cost as the training length increases)?

We refer the reader to Section II-B for a flavor of the
application models.

In Section II, we introduce the convergence criteria for
controlled transition kernels are introduced. In Section III,
continuity properties of the optimal cost are studied. Building
on these results, we will analyze the robustness of the optimal

control problem with respect to incorrectly estimated system
models/kernels in Section IV. Finally, we apply our results
to the setup where a system model is learned through the
collection of empirical data in Section V.

B. Literature review

A common approach to robustness in the literature has
been to design controllers that works sufficiently well for all
possible uncertain systems under some structured constraints,
such as H∞ norm bounded perturbations (see [3], [4]).
The design for robust controllers has often been developed
through a game theoretic formulation where the minimizer
is the controller and the maximizer is the uncertainty. The
connections of this formulation to risk sensitive control
were established in [5], [6]. Using Legendre-type transforms,
relative entropy constraints came in to the literature to
probabilistically model the uncertainties, see e.g. [7, Eqn.
(4)].

For distributionally robust stochastic optimization prob-
lems, it is assumed that the underlying probability measure
of the system lies within an ambiguity set and a worst case
single-stage optimization is made considering the probability
measures in the ambiguity set. To construct ambiguity sets,
[8], [9] use the Wasserstein metric (see Section II), [10] uses
the Prokhorov metric which metrizes the weak topology, [11]
uses the total variation distance and [12] works with relative
entropy. Further related studies include [13] which studies
the optimal control of systems with unknown dynamics for
a Linear Quadratic Regulator setup. [14] considers stochastic
uncertainties while [15] considers deterministic structured
uncertainties in robust control; some connections of these
with our paper can be seen in the examples presented in
Section II-B. Related work also includes [16], [17].

For a more detailed discussion on the literature, we refer
the reader to the long version of this paper [18].

Contributions. (i) Compared to the existing literature,
we obtain strictly refined robustness results: We show that
continuity and robustness cannot always be established under
weak convergence of transition kernels (or approximate
models) to a true kernel in general, but that the optimal cost
is continuous in the transition kernels under the convergence
in total variation. By imposing further assumptions on the
measurement models and on the actual kernel itself, we
also show that the optimal cost can be made continuous
under weak convergence of transition kernels. (ii) Using
the continuity findings in (i), we establish bounds on the
mismatch error that occurs due to the application of a control
policy which is designed for an incorrectly estimated system
model in terms of a distance measure between true model and
the incorrect one; and thus we establish robustness properties
due to mismatch. On the other hand, we show that robustness
may not hold under weak convergence in the sense that as the
assumed model and the true model converge to one another,
the loss due to mismatch may not go to zero. (iii) The
findings lead to consequential positive results on empirical
learning in (data-driven) stochastic control (see Section V)
since often, in many applications, system models are learned
through empirical data.



II. SOME EXAMPLES AND CONVERGENCE CRITERIA FOR

TRANSITION KERNELS

A. Convergence of probability measures and convergence
criteria for transition kernels.

Before presenting convergence criteria for transition ker-
nels, we first review convergence of probability measures.
Two important notions of convergences for sets of probability
measures to be studied in the paper are weak convergence
and convergence under total variation. For some N ∈ N

a sequence {µn, n ∈ N} in P(RN ) is said to converge to
µ ∈ P(RN ) weakly if

∫

RN

c(x)µn(dx) →

∫

RN

c(x)µ(dx) (∗)

for every continuous and bounded c : RN → R.
For probability measures µ, ν ∈ P(RN ), the total varia-

tion metric is given by

‖µ− ν‖TV = sup
f :‖f‖∞≤1

∣

∣

∣

∣

∫

f(x)µ(dx)−

∫

f(x)ν(dx)

∣

∣

∣

∣

,

where the supremum is taken over all measurable real f
such that ‖f‖∞ = supx∈RN |f(x)| ≤ 1. A sequence {µn}
is said to converge in total variation to µ ∈ P(RN ) if ‖µn−
µ‖TV → 0.

We should note that the convergence of two probability
measures under relative entropy distance implies the con-
vergence in total variation through Pinsker’s inequality [19,
Lemma 5.2.8].

Another metric for probability measures is the Wasserstein
distance. In general, convergence in the Wasserstein distance
of order 1 implies weak convergence (in particular this
metric bounds from above the Bounded-Lipschitz metric [20,
p.109]). Considering these relations, our results in this paper
can be directly generalized to the relative entropy distance
or the Wasserstein distance.

Building on the above, we introduce the following con-
vergence notions for (controlled) transition kernels.

Definition 1. For a sequence of transition kernels {Tn, n ∈
N}, we say that

(i) Tn → T weakly if Tn(·|x, u) → T (·|x, u) weakly, for
all x ∈ X and u ∈ U.

(ii) Tn → T under the total variation distance if
Tn(·|x, u) → T (·|x, u) under total variation, for all
x ∈ X and u ∈ U.

B. Examples

Let a controlled model be given as

xt+1 = F (xt, ut, wt),

where {wt} is an i.i.d. noise process. As it is stated earlier,
the probabilistic nature of the transition kernel is affected by
the function F and the probability model of the noise wt. In
the following, we sometimes assume the function F is not
known perfectly or the exact probability model of the noise
is unknown or both of them are unknown simultaneously.

(i) Let {Fn} denote an approximating sequence for F , so
that Fn(x, u, w) → F (x, u, w) pointwise. Assume that
the probability measure of the noise is known. Then,
corresponding kernels Tn converges weakly to T .

(ii) Much of the robust control literature deals with the
following type of uncertain deterministic systems:
F̃ (xt, ut) = F (xt, ut) + ∆F (xt, ut), where F (·) rep-
resents the nominal model and ∆F (·) is the model un-
certainties(see e.g. [21], [15], [13]). For these systems,
xt+1 = F̃ (xt, ut), can be viewed to be a special case
of the analysis here in view of the discussion in (i):
For such deterministic systems, pointwise convergence
of F̃ to F , i.e. ∆F (xt, ut) → 0, ∀xt, ut, can be viewed
as weak convergence for deterministic systems in the
context of the discussion in (i). It is evident, however,
that total variation convergence would be too strong
for such a convergence criterion, since δF̃ (·) → δF (·)

weakly but ‖δF̃ − δF ‖TV = 2 for all ∆F (xt, ut) > 0.
(iii) Let F (xt, ut, wt) = f(xt, ut) + wt be such that the

function f is known and w ∼ µ is not known correctly,
an incorrect model µn is assumed. If µn → µ weakly
or in total variation then the corresponding transition
kernels Tn converges in the same sense to T .

(iv) Suppose now that F and the probability model of wt

is unknown and they are assumed to be Fn and µn. If
µn → µ weakly and Fn(x, u, wn) → F (x, u, w) for all
(x, u) ∈ X × U and for wn → w, then the transition
kernel Tn corresponding to the model Fn converges
weakly to the one of F , T .

(v) These studies will be used and analyzed in detail in Sec-
tion V, where data-driven stochastic control problems
will be considered. We will make the point that, for
empirical learning weak convergence is a naturally ap-
plicable convergence criterion, whereas the applicability
of convergence and robustness under stronger notions
such as total variation require non-trivial knowledge on
and restrictions for the system model.

The analysis in the paper will thus provide robustness
results for a large class of control systems as studied in the
aforementioned examples.

III. CONTINUITY OF OPTIMAL COST WITH RESPECT TO

CONVERGENCE OF TRANSITION KERNELS

In this section, we will study the continuity of optimal
discounted cost under the convergence of transition kernels.

A. Absence of continuity under weak convergence

The following result shows that the optimal discounted
cost may not be continuous under the weak convergence of
transition kernels.

Theorem 1. Let Tn → T weakly then it is not necessarily
true that J∗

β(P, Tn) → J∗
β(P, T ) even when the prior distri-

butions are same, the measurement channel Q is continuous
in total variation and c(x, u) is continuous and bounded in
X×U.

Proof. We prove the result with a counter example. Let X =
U = Y = [−1, 1] and c(x, u) = (x − u)2, the observation
channel is chosen to be uniformly distributed over [-1,1],
Q ∼ U([−1, 1]), the initial distributions of the state variable
are chosen to be same as P ∼ δ1 that is X0 = 1 and the
transition kernels are defined to be,

T (x1|x, u) = δ−1(x)[
1

2
δ1 +

1

2
δ−1] + δ1(x)[

1

2
δ1 +

1

2
δ−1]



+ (1− δ−1(x))(1− δ1(x))δ0

Tn(x1|x, u) = δ−1(x)[
1

2
δ(1−1/n) +

1

2
δ(−1+1/n)]

+ δ1(x)[
1

2
δ(1−1/n) +

1

2
δ(−1+1/n)]

+ (1− δ−1(x))(1− δ1(x))δ0.

It can be seen that Tn → T weakly according to Definition
1(i).

Under this setup the optimal discounted costs can be found
as,

J∗
β(P, T ) =

∞
∑

k=1

ET [β
kX2

k ] =

∞
∑

k=1

βk =
β

1− β

J∗
β(P, Tn) =

∞
∑

k=1

ETn
[βkX2

k ] = β[
1

2
(1−

1

n
)2 +

1

2
(−1 +

1

n
)2].

Then we have J∗
β(P, Tn) → β 6= β

1−β .

B. A sufficient condition for continuity under weak conver-
gence

In the following, we will establish some regularity prop-
erties for the optimal cost in the space of transition kernels.

Assumption 1. (a) The stochastic kernel T (dx1|x0 =
x, u0 = u) is weakly continuous in (x, u).

(b) The observation channel Q(dy|x) is continuous in total
variation (Density admitting noise additive channels
satisfy this property, e.g. AWGN channels).

(c) The stage-wise cost function c(x, u) is non-negative,
bounded and continuous on X×U.

(d) U is compact.

Lemma 1. Suppose a sequence of transition kernels Tn
satisfies the following; {Tn(·|xn, un), n ∈ N} converges
weakly to T (·|x, u) for any sequence {xn, un} ⊂ X × U

and x, u ∈ X × U such that (xn, un) → (x, u). Under
Assumption 1

sup
γ∈Γ

|Jβ(P, Tn, γ)− Jβ(P, T , γ)| → 0

Proof sketch.

sup
γ∈Γ

|Jβ(P, Tn, γ)− Jβ(P, T , γ)| ≤

∞
∑

t=0

βt sup
γ∈Γ

∣

∣

∣

∣

ET
P

[

c
(

Xt, γ(Y[0,t])
)

]

− ETn

P

[

c
(

Xt, γ(Y[0,t])
)

]

∣

∣

∣

∣

.

Using Assumption 1, it can be shown that (see [18, Appendix
A.1]) for any t ≥ 0:

sup
γ∈Γ

∣

∣

∣
ET

P

[

c
(

Xt, γ(Y[0,t])
)

]

− ETn

P

[

c
(

Xt, γ(Y[0,t])
)

]

∣

∣

∣
→ 0.

To show this, we use the total variation continuity of the
channel, which allows us to work on fixed observation
realizations y ∈ Y. Hence, we use the argument that
Tn(·|xt, γ(y[0, t])) → T (·|xt, γ(y[0, t])) weakly uniformly
over γ as γ(y[0, t]) takes values from a compact space (U)
for fixed observations.

Using the dominance of the discount factor for large time
steps, the result follows.

Theorem 2. Under the conditions of Lemma 1

lim
n→∞

|J∗
β(Tn, P )− J∗

β(T , P )| = 0.

Proof. We start with the following bound,

|J∗
β(Tn)− J∗

β(T )|

≤ max

(

Jβ(Tn, γ
∗)− Jβ(T , γ∗), Jβ(T , γ∗

n)− Jβ(Tn, γ
∗
n)

)

where γ∗ and γ∗
n are the optimal policies respectively for T

and Tn. Both terms inside of max go to 0 by Lemma 1.

C. Continuity under total variation

We now propose a result that gives an upper bound for
the rate of convergence. For the result we will make use of
strategic measures . For stochastic control problems, strategic
measures are defined (see Schäl [22], also [23], [24]) as
the set of probability measures induced on the product
spaces of the state and action pairs by measurable control
policies: Given an initial distribution on the state, and a
policy, one can uniquely define a probability measure on
the infinite product space consistent with finite dimensional
distributions, by Ionescu Tulcea theorem [25]. Now, define a
strategic measure under a policy γn = {γn

0 , γ
n
1 , · · · , γ

n
k , · · · }

as a probability measure defined on B(X×Y ×U)Z+ by:

P
γn

T (d(x0, y0, u0), d(x1, y1, u1), · · · )

= P (dx0)Q(dy0|x0)1{γn(y0)∈du0}T (dx1|x0, u0)

×Q(dy1|x1)1{γn(y0,y1)∈du1} · · ·

Theorem 3. If the cost function c is bounded,

|J∗
β(P,Tn)− J∗

β(P, T )| ≤

‖c‖∞
β

(β − 1)2
sup

x∈X,u∈U

‖Tn(.|x, u)− T (.|x, u)‖TV .

Proof sketch. We start with the following bound as before,

|J∗
β(P, Tn)− J∗

β(P, T )|

≤ max

(

Jβ(Tn, γ
∗)− Jβ(T , γ∗), Jβ(T , γ∗

n)− Jβ(Tn, γ
∗
n)

)

.

Then we have

|Jβ(P, Tn, γ)− Jβ(P, T , γ)| (3)

≤
∑

k

βk‖c‖∞‖P γ
Tn
(d(x, y, u)[0,k])− P

γ
T (d(x, y, u)[0,k])‖TV .

The result follows from the following relation (see [18,
Appendix A.3]):

‖P γ
Tn
(d(x, y, u)[0,k])− P

γ
T (d(x, y, u)[0,k])‖TV

≤ k sup
x∈X,u∈U

‖T (.|x, u)− Tn(.|x, u)‖TV . (4)

IV. ROBUSTNESS TO INCORRECT TRANSITION KERNELS

Suppose we design an optimal policy, γ∗
n, for a transition

kernel, Tn, assuming it is the correct model and apply the
policy to the true model whose transition kernel is T . In this
section,we ask the following question: Does the cost caused
by γ∗

n converge to the true optimal cost as Tn converges in
some sense to T ?



A. Total variation

We propose a result for bounding our loss that arises
because of applying the incorrectly calculated policy to the
actual model.

Theorem 4. Suppose the stage-wise cost function c(x, u) is
bounded in X×U, then

|Jβ(P, T ,γ∗
n)− J∗

β(P, T )| ≤

2‖c‖∞
β

(β − 1)2
sup

x∈X,u∈U

‖T (.|x, u)− Tn(.|x, u)‖TV

for a fixed prior distribution P ∈ P(X), where γ∗
n is the

optimal policy designed for the transition kernel Tn.

Proof. We begin with the following,

|Jβ(T , γ∗
n)− J∗

β(T )|

≤ |Jβ(T , γ∗
n)− Jβ(Tn, γ

∗
n)|+ |Jβ(Tn, γ

∗
n)− Jβ(T , γ∗)|

The second term is bounded using Theorem 3. For the first
term, we use the inequalities 3 and 4.

B. Weak convergence

Theorem 5. Under the conditions of Lemma 1

|Jβ(P, T ,γ∗
n)− J∗

β(P, T )| → 0

for a fixed prior distribution P ∈ P(X), where γ∗
n is the

optimal policy designed for the transition kernel Tn.

Proof. We write

|Jβ(T , γ∗
n)− J∗

β(T )|

≤ |Jβ(T , γ∗
n)− Jβ(Tn, γ

∗
n)|+ |Jβ(Tn, γ

∗
n)− Jβ(T , γ∗)|.

The first term goes to 0 by Lemma 1. For the second term
we use Theorem 2.

C. Fully observed models

We now present results for the case where the controller
has access to state directly. Notice also that fully observed
models can be viewed as partially observed with the mea-
surement channel thought to be

Q(·|x) = δx(·), (5)

which is only weakly continuous, thus it does not satisfy As-
sumption 1(b). The following result shows that the sufficient
conditions for partially observed case cannot guarantee ro-
bustness for the fully observed case under weak convergence
and also shows that the robustness is not a direct consequence
of continuity.

Theorem 6. (i) Under the conditions of Lemma 1 (weak
convergence of kernels), J∗

β(Tn) → J∗
β(T ).

(ii) Even if the conditions of Lemma 1 holds, the model may
not be robust, i.e. it is not always true that Jβ(T , γ∗

n) →
J∗
β(T ).

(iii) The continuity result in Theorem 3 and the robustness
result in Theorem 4 apply to this case since the fully
observed model may be viewed as a partially observed
model with the measurement channel Q given in (5).

For a proof, please see [18].

V. IMPLICATIONS FOR DATA-DRIVEN LEARNING

METHODS IN STOCHASTIC CONTROL

In practice, one might try to learn the transition ker-
nel of the chain from the observed data. This can be
done using the empirical history of the process, i.e. up
to a finite time horizon N , the state and action sequence
{x1, u1, x2, u2, · · · , xN , uN} can be used to infer some
information about the transition laws of the process.

Let us briefly discuss the case where a random variable
is repeatedly observed, buts its probability measure is not
known apriori. Let {(Xi), i ∈ N} be an X-valued i.i.d
random variable sequence generated according to some dis-
tribution µ. Defining for every (fixed) Borel set B ⊂ X, and
n ∈ N, the empirical occupation measures

µn(B) =
1

n

n
∑

i=1

1{Xi∈B},

one has µn(B) → µ(B) almost surely (a.s.) by the strong
law of large numbers. Also, µn → µ weakly with probability
one ([26], Theorem 11.4.1). However, µn can not converge to
µ in total variation, in general. On the other hand, if we know
that µ admits a density, we can find estimators to estimate
µ under total variation [27].

Corollary 1 (to Theorem 3 and Theorem 4). Suppose we
are given the following dynamics for finite state space X,
and finite action space U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt)

where {wt} and {vt} are i.i.d.noise processes and the noise
models are unknown. Suppose that there is an initial training
period so that under some policy, every x, u pair is visited
infinitely often if training were to continue indefinitely, but
that the training ends at some finite time. Let us assume
that, through this training, we empirically learn the transition
dynamics such that for every (fixed) Borel B ⊂ X, for every
x ∈ X, u ∈ U and n ∈ N, the empirical occupation measures
are

Tn(B|x0 = x, u0 = u) =

∑n
i=1 1{Xi∈B,Xi−1=x,Ui−1=u}
∑n

i=1 1{Xi−1=x,Ui−1=u}

.

Then we have that

J∗
β(Tn) → J∗

β(T ), Jβ(T , γ∗
n) → J∗

β(T )

with probability 1, where γ∗
n is the optimal policy designed

for Tn.

Proof. We have that Tn(·|x, u) → T (·|x, u) weakly for every
x ∈ X, u ∈ U almost surely by law of large numbers. Since
the spaces are finite, we have Tn(·|x, u) → T (·|x, u) under
total variation. Therefore, by Theorem 3 and Theorem 4, the
result follows.

The following holds for more general spaces.

Corollary 2 (to Theorem 5 and Theorem 2). Suppose we
are given the following dynamics with state space X and
compact action space U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt)

where {wt} and {vt} are i.i.d.noise processes and the noise
models are unknown. Suppose that f(x, u, w) : W → X



is invertible for all (x, u) and f(x, u, w) is continuous and
bounded on X×U×W. We construct the empirical measures
for the noise process wt such that for every (fixed) Borel
Bw ⊂ W, and for every n ∈ N, the empirical occupation
measures are

µn(Bw) =
1

n

n
∑

t=0

1{f−1
xi−1,ui−1

(xi)∈Bw} (6)

where f−1
xi−1,ui−1

(xi) denotes the inverse of
f(xi−1, ui−1, w) : W → X for given (xi−1, ui−1).

Using the noise empirical measures, we can construct the
empirical transition kernels such that for any (x0, u0) and
every (fixed) Borel Bx ⊂ X

Tn(Bx|x0, u0) = µn(f
−1
x0,u0

(Bx)). (7)

If the measurement channel represented by the function g is
continuous in total variation then

J∗
β(Tn) → J∗

β(T ), Jβ(T , γ∗
n) → J∗

β(T )

with probability 1, where γ∗
n is the optimal policy designed

for Tn .

Proof. We have µn → µ weakly with probability one where
µ is the true model. It can be shown that the transition
kernels are such that Tn(·|xn, un) → T (·|x, u) weakly for
any (xn, un) → (x, u). Similarly, it can be also shown that
Tn(·|x, u) and T (·|x, u) are weakly continuous on (x, u).
Thus, by Theorem 5 and Theorem 2 if c(x, u) is bounded
and U is compact, the result follows.

Corollary 3 (to Theorem 3 and Theorem 4). Suppose we
are given the following dynamics for a general state space,
X, and action space, U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt)

where {wt} and {vt} are i.i.d.noise processes and the noise
models are unknown however it is known that the noise wt

admits a continuous probability density function.
Suppose that f(x, u, w) : W → X is invertible for all

(x, u) . It can be shown that we can construct estimators
for the noise process wt which estimates the true model
consistently under total variation. We can then also construct
the estimators for the kernels, T̃n, as in 7.

Then independent of the channel

J∗
β(T̃n) → J∗

β(T ), Jβ(T , γ∗
n) → J∗

β(T )

where γ∗
n is the optimal policy designed for T̃n .

Proof. By [27] we can estimate µ in total variation so that
almost surely limn→∞ ‖µn −µ‖TV = 0. One can show that
the convergence of µn to µ under total variation metric im-
plies the convergence of T̃n to T in total variation uniformly
over all x ∈ X and u ∈ U i.e. limn→∞ supx,u ‖T̃n(·|x, u)−
T (·|x, u)‖TV = 0.Thus, by Theorem 3 and Theorem 4, the
result follows.

VI. CONCLUSION

We studied regularity properties of optimal stochastic
control on the space of transition kernels, and practical im-
plications of these on robustness of optimal control policies
designed for an incorrect model applied to an actual system,
and applications to empirical learning.
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