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1. Introduction

Partially observed Markov decision problems (POMDPs) offer a practically rich and relevant and mathematically
challenging model. Even in the most basic setup of finite state-action models, the analysis and computation of opti-
mal solutions is complicated. The existence of optimal policies is, in general, established via converting or reducing
the original partially observed stochastic control problem to a fully observed Markov decision problem (MDP) with
probability measure valued (belief) states, leading to a belief MDP. However, computing an optimal policy for this
fully observed model and so for the original POMDP using classical methods (such as dynamic programming, pol-
icy iteration, linear programming) is not simple even if the original system has finite state and action spaces because
the state space of the fully observed (reduced) model is always uncountable. Furthermore, when the dynamics are
not known, learning theoretic methods are not as comprehensively and conclusively studied as the fully observed
counterpart for MDPs, mainly because of the technical subtleties as we discuss further.

1.1. On Approximation Methods

The problem of approximate optimality is significantly more challenging compared with the fully observed counter-
part. Most of the studies in the literature are algorithmic and computational contributions. These include Porta et al.
[27] and Zhou and Hansen [44], which develop computational algorithms, utilizing structural convexity/concavity
properties of the value function under the discounted cost criterion. Vlassis and Spaan [36] provide an insightful algo-
rithm that may be regarded as a quantization of the belief space; however, no rigorous convergence results are pro-
vided. Smith and Simmons [32] and Pineau et al. [26] also present quantization-based algorithms for the belief state,
in which the state, measurement, and the action sets are finite.

For partially observed setups Saldi et al. [30], building on Saldi et al. [29], introduce a rigorous approximation
analysis (and explicit methods for quantization of probability measures) after establishing weak continuity condi-
tions on the transition kernel defining the belief MDP via the nonlinear filter (Feinberg et al. [5], Kara et al. [15]) and
show that finite model approximations obtained through quantization are asymptotically optimal and the control
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policies obtained from the finite model can be applied to the actual system with asymptotically vanishing error as
the number of quantization bins increases. Another rigorous set of studies is from Zhou et al. [42, 43] in which the
authors provide an explicit quantization method for the set of probability measures containing the belief states, in
which the state space is parametrically representable under strong density regularity conditions. The quantization
is done through the approximations as measured by the Kullback-Leibler divergence (relative entropy) between
probability density functions. Subramanian and Mahajan [33] present a notion of approximate information variable
and study near optimality of policies that satisfy the approximate information state property.

We refer the reader to the survey papers by Lovejoy [19], White [38], and Hansen [8] and the recent book by
Krishnamurthy [16] for further structural results as well as algorithmic and computational methods for approxi-
mating POMDPs. Notably, for POMDPs, Krishnamurthy [16] presents structural results on optimal policies under
monotonicity conditions of the value function in the belief variable.

1.2. On Learning for POMDPs
Learning in POMDDPs is challenging for the reasons discussed: if one attempts to learn optimal policies through
empirical observations, then the analysis and convergence properties become significantly harder to obtain as the
observations progress in a non-Markovian fashion and the belief state is uncountable. Jaakkola et al. [12] study a
learning algorithm for POMDPs with average cost criteria in which a policy improvement method is proposed
using random polices and the convergence of this method to local optima is given. McCallum [20] and Lin and
Mitchell [18] propose the same approach as we use in this paper, and they use a finite memory of history to con-
struct learning algorithms. They provide extensive experimental results; however, both lack a rigorous convergence
or approximation result.

A natural, though optimistic, suggestion to attempt to learn POMDDPs is to ignore the partial observability and
pretend the noisy observations reflect the true state perfectly. For example, for infinite horizon discounted cost
problems, one can construct Q iterations as

Q1 Wi w) = (1 — age(yr, wi)) Qi ux) + (i, uk) (Ck(]/k/ uy) + pmin Qk(Yk+1,U)>, 1)

where ;. represents the observations and u; represents the control actions. We can further improve this algorithm
by using not only the most recent observation, but a finite window of past observations and control actions because
we can infer information on the true state from the past data. Two main problems with this approach are that (i)
first, the (Y, Uy) process is not a controlled Markov process (as only (X, Uy) is), and the cost realizations Cy(yx, 1)
depend on the observation process in a random and time-dependent fashion, and hence, the convergence of this
approach does not follow directly from usual techniques (Jaakkola et al. [11], Tsitsiklis [34]), and (ii) second, even if
the convergence is guaranteed, it is not immediate what the limit Q values are or whether they are meaningful at
all. In particular, it is not known what MDP model gives rise to the limit Q values.

Singh et al. [31] study (1), that is, the Q learning algorithm for POMDPs, by ignoring the partial observability and
constructing the algorithm using the most recent observation variable (for which the state, action, and measurement
spaces were all assumed finite) and establish convergence of this algorithm under mild conditions (notably that the
hidden state process is uniquely ergodic under the exploration policy, which is random and puts positive measure
to all action variables). In our paper, we consider memory sizes of more than zero for the information variables and
a continuous state space, and thus, the algorithm in Singh et al. [31] can be seen as a special case of our setup. Differ-
ent from our work, however, Singh et al. [31] does not study what the limit of the iterations mean and, in particular,
whether the limit equation corresponds to some MDP model. In this paper, we rigorously construct the approxi-
mate belief MDP that the limit equation satisfies, which gives an operational and practical conclusion regarding the
analysis of the algorithm. Furthermore, we use different window sizes, which turns out to be crucial for the per-
formance of the learned policy: using longer window sizes reveals the intimate connection between the approxi-
mate learning problem and the nonlinear controlled filter stability problem that we study in detail. This ultimately
leads to near optimality of the N-window variation of (1) with an explicit approximation and robustness error
bound as a function of N and a computable/boundable coefficient related to filter stability.

Another motivation for our study is the following: often one deals with problems in which not only the specifica-
tion of an MDP is unknown, but whether the problem is an MDP in the first place may not be known. The simplest
extension perhaps is that of a POMDP in which one is tempted to view the measurements as the state or finite win-
dow of measurement and actions as the state. A question that has not been resolved fully is whether a Q learning
algorithm for such a setup indeed converges, and the next question is, if it does, to what does it converge. Our
answer to the first question is positive under mild conditions, and the second question is, under filter stability
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conditions, that the convergence is to near optimality with an explicit error bound between the performance loss
and the memory window size.

1.3. On Finite Memory Approximations and Relations with Controlled Filter Stability

In our paper, we see, perhaps not surprisingly, that filter stability is an essential ingredient for the learning algo-
rithm to arrive at optimal or near optimal solutions. In other words, how fast the process forgets its initial prior dis-
tribution when updated with the information variables is a key aspect for the performance of the approximate Q
values determined using most recent information variables. Unlike fully observed systems, the system (belief
MDP) states cannot be visited infinitely often for POMDPs because there are uncountably many belief states and
the measurements collected should somehow present approximate information on the belief states through condi-
tions related to filter stability. We make this intuition precise in our paper. We also note that, in optimal control
theory, it is a standard result that (time-invariant) output feedback control performs poorly compared with state-
feedback and, in the absence of observability, this holds for all memory lengths.

We end the literature review section by mentioning particularly related studies on finite memory control for
POMDPs. White and Scherer [39] is a particularly related work that studies approximation techniques for POMDPs
using finite memory with finite state, action, and measurements. The POMDP is reduced to a belief MDP, and the
worst and best case predictors prior to the N most recent information variables are considered to build an approxi-
mate belief MDP. The original value function is bounded using these approximate belief MDPs that use only finite
memory, in which the finiteness of the state space is critically utilized. Furthermore, a loss bound is provided for a
suboptimally constructed policy that only uses finite history, in which the bound depends on a specific ergodicity
coefficient (which requires restrictive sample path contraction properties). In this paper, we consider more general
signal spaces and more relaxed filter stability requirements and, in particular, establish explicit rates of convergence
results. We also rigorously construct the finite belief MDP considering the approximate Q learning algorithm,
whereas White and Scherer [39] only focus on the approximation aspect of POMDDPs.

In Yu and Bertsekas [40], the authors study near optimality of finite window policies for average cost problems in
which the state, action, and observation spaces are finite; under the condition that the liminf and limsup of the aver-
age cost are equal and independent of the initial state, the paper establishes the near optimality of (nonstationary)
finite memory policies. Here, a concavity argument building on Feinberg [4] (which becomes consequential by the
equality assumption) and the finiteness of the state space are crucial. The paper shows that, for any given € > 0,
there exists an e-optimal finite window policy. However, the authors do not provide a performance bound related
to the length of the window, and in fact, the proof method builds on convex analysis.

In a recent paper (Kara and Yiiksel [14]), we establish near optimality of finite window policies using a different
approach by considering the belieft MDP directly and quantizing the belief space with a nearest neighbor map
(under a metric on probability measures that induces the weak convergence topology) that uses finite window
information variables. In particular, the results in that paper did not establish the convergence of a Q learning algo-
rithm and, strictly speaking, required the knowledge of the belief state to choose the nearest element from the finite
set. As we see later, the approximate Q learning algorithm does not necessarily choose the nearest element from the
finite set induced by the window information variables. Thus, in this paper, we explicitly only use the memory vari-
ables directly for the approximation. We also note that the approximation method presented in Kara and Yiiksel
[14] only works for a restricted values of the discount factor, which depends on the system components and the fil-
ter stability terms, whereas the method used in this paper does not put any restrictions on the discount factor. On
the other hand, in Kara and Yiiksel [14] one can relax filter stability to be under weak convergence; in our current
paper, we consider filter stability under total variation.

Similar to Kara and Yiiksel [14], our analysis here also makes explicit connections with filter stability; that is, how
fast the controlled process forgets its initial distribution as it observes the information variables from the system. In
the literature, there are various sets of assumptions to achieve filter stability. Two main approaches are:

e The transition kernel is sufficiently ergodic, forgetting the initial measure and, therefore, passing this insensitiv-
ity (to incorrect initializations) on to the filter process. This condition is often tailored toward control-free models.

e The measurement channel provides sufficient information about the underlying state, allowing the filter to
track the true state process. This approach is typically based on martingale methods and, accordingly, does not
often lead to rates of convergence for the filter stability problem but only asymptotic filter stability.

We use the recent results in the controlled filter stability literature presented in McDonald and Yiiksel [23] for
exponential filter stability and McDonald and Yiiksel [22, 24] for asymptotic filter stability.

In a recent study (Golowich et al. [7]), a finite memory-based approximate planning method is studied for
POMDPs, and the relation between the performance of the approximation and the filter stability is established simi-
lar to this paper and Kara and Yiiksel [14]. To achieve filter stability, a restrictive rank condition is used for the
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observation channel, and a polynomial convergence rate is achieved as opposed to the general filter stability setup
we consider here, which includes exponential or asymptotic filter stability conditions. The approach in Golowich
et al. [7] to deal with the filter stability is specifically tailored toward finite state spaces, whereas we present results
for possibly continuous state spaces, and our analysis in approximation is explicit for any filter stability error of the
form given in L; (see Equation (16)). The setup in Golowich et al. [7] can be viewed as a particular instance in which
the state and action spaces are finite and the measurement channel has a restrictive invertibility condition. Further-
more, here, we also present a reinforcement learning algorithm using finite memory variables. We also emphasize
that explicit filter stability conditions are provided in McDonald and Yiiksel [23, theorem 3.3] for exponential filter
stability and McDonald and Yiiksel [24, theorem 3.6] for asymptotic filter stability (the latter, via the examples in
McDonald and Yiiksel [21, section 3], also includes a rank condition for finite models).

We highlight that one key contribution of the paper is the construction of an alternative belief MDP reduction
introduced in Section 3, which provides a structure to the finite memory approximations. The alternative reduction
technique leads to an explicit and rigorous error analysis by changing the topology and the construction of the state
space of the reduced model with no restrictions on the discount parameter g € (0, 1) unlike Kara and Yiiksel [14].

1.4. Contributions

i. In Section 3.1, we provide an alternative belief MDP reduction method that is tailored toward finite memory
approaches. In Section 3.2, we construct an approximate model using the alternative belief MDP reduction (see
Figure 1). In particular, in Theorems 2 and 3, we establish bounds for the difference between the value functions of
the original POMDP model and the approximate model and for the performance loss of the policy obtained using
the approximate belief-MDP when it is used in the original model. We show that the policy obtained using the
approximate model uses finite memory feedback variables to choose the control actions. Furthermore, Theorems 2
and 3 reveal the close connection between the finite memory approximation method and the controlled filter stabil-
ity problem through a filter stability term L; defined in (16).

ii. In Section 4, we present a Q learning algorithm that uses finite memory feedback variables. In Theorem 4, we
show that the Q iterations constructed using finite history variables converge under mild ergodicity assumptions
on the hidden state process, and the limit fixed point equation corresponds to the optimal solution for the approxi-
mate belief-MDP model introduced in Section 3.2.

iii. We, finally, in Section 5, provide a particular result to guarantee exponential stability for controlled filter prob-
lems, which, in turn, implies that the error resulting from the finite memory approximation and learning methods
decays to zero exponentially fast as the memory size increases under explicit filter stability conditions to be pre-
sented (Corollaries 2 and 3).

In Section 6, we provide numerical examples that verify both the Q learning convergence and near optimality
results.

2. Partially Observed Markov Decision Processes and Belief MDP Reduction

Let X C R™ denote a Borel set that is the state space of a partially observed controlled Markov process for some
m € N. Here and throughout the paper, Z, denotes the set of nonnegative integers, and N denotes the set of
positive integers. Let Y be a finite set denoting the observation space of the model, and let the state be observed

Figure 1. Construction of the finite-window approximate MDP from the finite-window belief-MDP. The quantization of the
finite window MDP model leads to the collapse of the first coordinate to a fixed measure.

Yo, W03 Y1, U5 Y2, Ui Y3, Us - 5 Yt—1, W—13Yt — gl Y [ ADMISSIBLE POLICY

[P L ety BELIEF REDUCTION

ThN_SYt—Ns U= NG Y1y U= 13 Yt — gl Y L FINITE WINDOW BELIEF REDUCTION

i Quantizing the prior m_y_

T YN U NG Y-, U 15Yt — Y T APPROXIMATE FINITE WINDOW MDP
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through an observation channel O. The observation channel, O, is defined as a stochastic kernel (regular conditional
probability) from X to Y such that O(:|x) is a probability measure on the power set P(Y) of Y for every x € X, and
O(Al): X — [0,1] is a Borel measurable function for every A € P(Y). A decision maker is located at the output of
the channel O, and hence, it only sees the observations {Y;, t € Z, } and chooses its actions from U, the action space
that is also a finite set. An admissible policy ) is a sequence of control functions {y,, t € Z, } such that y, is measurable
with respect to the g-algebra generated by the information variables I; = {Y[o s, Ujo—11}, t€N, Iy ={Yo}, where

uf = V{-(If)/ te Z+/ (2)

are the U-valued control actions and Yy = {Ys, 0<s <t}, U1 ={U;, 0<s<t —1}.
We define I' to be the set of all such admissible policies. The update rules of the system are determined by (2) and
the following relationships:

Pr(X, Yo) € B) = [ uldxo)Oldolxo), B e BOXX ),
B
where p is the (prior) distribution of the initial state X, and
PH(X, Y1) € BI(XY, Wy = (e g, 1) = [ T(ilxios, ur-1)O ),
B
BeB(X XY),teN, where 7 is the transition kernel of the model that is a stochastic kernel from X x U to X. Note
that, although Y is finite, we here use the integral sign instead of the summation sign for notational convenience by
letting the measure to be sum of Dirac-delta measures (and, as we discuss later in the paper, our analysis also holds

for continuous measurement spaces). We let the objective of the agent (decision maker) be the minimization of the
infinite horizon discounted cost,

®)

]ﬁ(:ul T/ 7/) = EZ/V [Z ﬁtC(Xt, ut)
=0

for some discount factor g€ (0,1) over the set of admissible policies y € I', where ¢: XX U — R is a Borel-
measurable stage-wise cost function and E,, 77 denotes the expectation with initial state probability measure y and
transition kernel 7 under policy y. Note that 1 € P(X), where we let P(X) denote the set of probability measures
on X. We define the optimal cost for the discounted infinite horizon setup as a function of the priors and the transi-
tion kernels as

For the analysis of partially observed MDPs, a common approach is to reformulate the problem as a fully observed
MDP, in which the decision maker keeps track of the posterior distribution of the state X, given the available history
I;. In the following section, we formalize this approach.

2.1. Reduction to Fully Observed Models Using Belief States
2.1.1. Convergence Notions for Probability Measures. For the analysis of the technical results, we use different
notions of convergence for sequences of probability measures.

Two important notions of convergence for sequences of probability measures are weak convergence and conver-
gence under total variation. For a complete, separable, and metric space X, for a sequence {u,,n € N} in P(X) is
said to converge to u € P(X) weakly if [y c(x)u,(dx) = [(c(x)u(dx) for every continuous and bounded ¢: X — IR.
One important property of weak convergence is that the space of probability measures on a complete, separable,
metric (Polish) space endowed with the topology of weak convergence is itself complete, separable, and metric
(Parthasarathy [25]). One such metric is the bounded Lipschitz metric (Villani [35]), which is defined for u,v e

P(X) as
Pp(1,v) = sup / fdu — / fav|, @)

[Iflp<1
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where

~ F) W)
Il = i + s 55

and ||fll = sup,ex If (¥)]-
For probability measures 1, v € P(X), the total variation metric is given by

I = vllry =2 sup |u(B) —v(B)| = sup
BeB(X) Flflles1

7

[ reoutan — [ foman

where the supremum is taken over all measurable real f such that ||f]|., = sup, . |f(x)| < 1. A sequence p,, is said to
converge in total variation to u € P(X) if [|u,, — ptlry — 0.

2.1.2. Construction of the Belief MDP and Some Regularity Properties. It is by now a standard result that, for opti-
mality analysis, any POMDP can be reduced to a completely observable Markov decision process (Rhenius [28],
Yushkevich [41]), whose states are the posterior state distributions or beliefs of the observer or the filter process;
that s, the state at time ¢ is

Zt 1= PI"{Xt (S '|Y0, LY, U, .., llt,l} S P(X) (5)

We call this equivalent process the filter process. The filter process has state space Z = P(X) and action space U.
Here, Z is equipped with the Borel o-algebra generated by the topology of weak convergence (Billingsley [1]).
Under this topology, Z is a standard Borel space (Parthasarathy [25]). Then, the transition probability 7 of the filter
process can be constructed as follows (see also Hernandez-Lerma [9]). If we define the measurable function

F(z,u,y) =F(-|lz,u,y) = PH{Xp1 €1 Zy =2z, U; = u, Y1 =y}

from P(X) X U X Y to P(X) and use the stochastic kernel P(-|z,u) = Pr{Y41 € -|Z; =z, U; = u} from P(X) x U to
Y, we can write 1] as

A6l = | Vscume Py1z ) ©
The one-stage cost function ¢ : P(X) X U — [0, 00) of the filter process is given by
C(z,u) = / c(x, u)z(dx), 7)
X

which is a Borel measurable function. Hence, the filter process is a completely observable Markov process with the
components (Z,U,¢,n).
For the filter process, the information variables are defined as

I ={Zpy Ups 1y}, teN, Io = {Zo}.

It is well-known that an optimal control policy of the original POMDP can use the belief Z; as a sufficient statistic
for optimal policies (see Rhenius [28], Yushkevich [41]), provided they exist. More precisely, the filter process is
equivalent to the original POMDP in the sense that, for any optimal policy for the filter process, one can construct a
policy for the original POMDP that is optimal. On existence, we note the following.

By the recent results in Feinberg et al. [6] and Kara et al. [15], the transition model of the belief MDP can be shown
to satisfy weak continuity conditions on the belief state and action variables, and accordingly, we have that the
measurable selection conditions (Hernandez-Lerma and Lasserre [10, chapter 3]) apply. Notably, we state the
following.

Assumption 1.

i. The transition probability T (-|x,u) is weakly continuous in (x,u), that is, for any (x,,u,) — (x,u), T(:|xn, ty) —
T (-|x, 1) weakly.

ii. The observation channel O(-|x) is continuous in total variation, that is, for any x, — x, O(:|x,) — O(:|x) in total
variation.

Assumption 2. The transition probability T (-|x,u) is continuous in total variation in (x, u), that is, for any (x,,u,) —
(x,u), T(-|x,, tun) = T (-|x,u) in total variation.
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Theorem 1.

i. (Feinberg et al. [6]) Under Assumption 1, the transition probability n(-|z,u) of the filter process is weakly continuous in
(z, u).

ii. (Kara et al. [15]) Under Assumption 2, the transition probability 1(-|z,u) of the filter process is weakly continuous in
(z, u).

Under these weak continuity conditions and appropriate conditions on the stage-wise cost function (e.g.,
bounded and continuous ¢ with Assumption 1 or bounded ¢ with Assumption 1), the measurable selection condi-
tions (Hernandez-Lerma and Lasserre [10, chapter 3]) apply and a solution to the discounted cost optimality equa-
tion exists, and accordingly, an optimal control policy exists.

This policy is stationary (in the belief state). If we denote this optimal belief policy by ¢ : P(X) — U, we can then
find a policy y on the partially observed setup such that

YWiom) = PP (X € | Yjo ) = Yiou)) = Prth”).

Hence, the policy y can be used as an optimal policy for the partially observed MDP.

Even though, the belief MDP approach provides a strong tool for the analysis of POMDDPs, it is usually too com-
plicated computationally. The belief space Z = P(X) is always uncountable even when X, Y and U are finite. Fur-
thermore, the information variables I; grows with time, and the computation of the belief state Pr(X; € -|I;) can
become intractable. Therefore, approximation of the belief MDP is usually needed. In the following section, we pro-
vide an alternative fully observed MDP approach and present approximation results that only make use of a finite
history of the information variables.

3. An Alternative Finite Window Belief MDP Reduction and Its Approximation
3.1. An Alternative Finite Window Belief MDP Reduction
In this section, we construct an alternative fully observed MDP reduction with the condition that the controller has
observed at least N information variables, using the predictor from N stages earlier and the most recent N informa-
tion variables (that is, measurements and actions). This new construction allows us to highlight the most recent
information variables and compress the information coming from the past history via the predictor as a probability
measure valued variable. In what follows, we sometimes consider the case with n = 1 for some of the proofs to
make the presentation less complicated. The general case follows from identical arguments.

For the remainder of the paper, to emphasize the prior distribution of the starting state variable, we use the fol-
lowing notation for conditional probabilities on state and observation variables.

Definition 1. Assume that the initial state X, has a prior distribution u € P(X). Then, for the conditional distribu-
tion of X; given the past observation and action variables {y;,...,yo}, {ti-1,..., 10}, we define

PY(Xy €1y, Yo, U1, ... uho) := Pr(Xy € |y, ..., Yo, Up—1, - - ., Up)-

Given that xg has a prior distribution u € P(X), we define the following for the conditional distribution of Y,
given the past observation and action variables {y;_1,...,yo}, {#i—1,..., uo}:

PE(Yy € |Yi1,- - Yo, i1, - - - Uo) := Pr(Yy € -|yi-1, ..., Yo, U1, - ., Up).
Consider the following state variable at time ¢:
2= (m 1Y), (8)
where, for N > 1,
1, N = PrXi-N € |Yt-N-1,-- -, Y0, Ut—N-1,- .., Up),
Ii\r ={yt,- - YN, U1, U N

and IV = y; for n = 0 with p being the prior probability measure on X,. The state space with this representation is
2 =P(X) x YN*! x UN, where we equip Z with the product topology in which we consider the weak convergence
topology on the P(X) coordinate and the usual (coordinate) topologies on YN*! x UN coordinates.
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This new state representation can be mapped to the belief state z; defined in (5). Consider the map 1: Z —
P(X), for some 2; = (11, IN):

l)b(it) = ll)(n;_N/I?]) = Pn;N(Xt €- |I{\]) = Pn;N(Xf € |]/t/~ . ~/]/t—N/ U N-1/-- '/uthfl)
= P‘u(Xt € '|]/t/ .. -/]/Orut—lz .. 'ruo) =2t

such that the map ¢ acts as a Bayesian update of 7, ,, using IV. Using this map, we can define the stage-wise cost

function and the transition probabilities. Consider the new cost function ¢ : Z x U — IR, using the cost function ¢ of
the belief MDP (defined in (7)) such that

6(21‘1 Mt) = é(nt_fNr If\]/ Mt) = E(’jb(nt_fN/I?])/ ut)

=/C(xt/”t)Pn’iN(dxth/tw--/]/t—N/”t—l/-n/ut—N)- (9)
X

Furthermore, we can define the transition probabilities as follows: for some A € B(Z) such that
A=Bx{}, ni1 0t -, -Nn+1}, B e B(P(X)),
we write
Pr(2t+1 EAlit, .. .,ﬁo,ut, .. .,uo)
=Pr(m, N €B, 011 Ui nir Bt oo N1 TG N -+ T8 Yt - -2 YO, Uty - - -, Up)
= L vt ttni) =y it i)
X ]l{G(n;N,y,,N,ut,N)EB}Pn'iN (]?Hl |]/tr o YN Uty e, Ur—N)
=Pr(m,_ N €B, 011U nar Bt oo N TG N Yt oo YN Uity - Ug—N)

=Pr(Zu1 € AlZy,uy)

= [ fazalz,u),
A
where the map G is defined as

G(T(;fl\]/yt—N/ ut—N) = G(PH(Xt—N € |yt—N—1/ Yo, U-N=-1,- - ruo)ryt—Nr uf—N)

= P‘u(Xt—NJrl € 'lyt—Nl .. -/]/O/ut—N/ .. ~/u0)'

Hence, /) defines a controlled transition model for the new states %;,; € Z. Then, we have a proper fully observed
MDP with the cost function ¢, transition kernel ), and state space Z.

Note that any policy ¢ : P(X) — U defined for the belief MDP can be extended to the newly defined finite win-
dow belief MDP using the map 1 and defining ¢ := ¢ o ¢ such that

D) = p(Y(2)).

Thus, if an optimal policy can be found for the belief MDP, say ¢, the policy ¢ = ¢" o1 is an optimal policy for
the newly defined MDP.

We now write the discounted cost optimality equation for the newly constructed finite window belief MDP.
Note that, with the alternative approach, the state Z can only be written if we have at least N information varia-
bles. Therefore, given that the decision maker observed at least N information variables, we write the following
fixed-point equation:

Ji(2) = min (a(z,u) +B / JyGAEE |2,u)).
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We can rewrite this fixed-point equation in a different form; for notational ease, assume n = 1. If Z has the form
(115, Y1, Y0, to), then we can rewrite

J5(t Y1, Y0, 1o)
= min (C(no /Y1, Yo, o, 1) + By;]ﬁ(ﬂf (19, Yo, o), Y2, Y1, u1)P™ (12 |]/1/]/()/u1/u0)> : (10)

This representation plays an important role in the analysis of the problem. Note that the policy ¢~ = ¢" o ¢ satis-
fies this fixed-point equation. o
The following fixed-point equation can also be defined for any policy ¢ : Z — U:

D) =EC,H@)+6 [ D12 HE),
where Jg(Z, ¢) denotes the value function under the policy ¢ for the initial point 2.

3.2. Approximation of the Finite Window Belief MDP .
We now approximate the MDP constructed in the previous section. Consider the following set Zi for a fixed
" e P(X):

ZN =1, yiony uon-11)  Yiony € YN ugon-1 € UV} (11)

such that the state at time t is 2} = (7", V). Compared with the state £; = (11, ,, IN) defined in (8), this approximate
model uses 7" as the predictor no matter what the real predictor at time t — N is.
The cost function is defined in the usual manner so that

e, up) = (', I up) = E((r*, 1Y), uy)
= /xc(xt, u)P™(dxi Yty - YN U1, U N)-
We define the controlled transition model by
AN ER1EY w) = NG, TN |70, 1Y ) = 7 (POX), I |7, 1Y, ). (12)

For simplicity, if we assume n = 1, then the transitions can be rewritten for some I}, = (7,,,,7,, i) and IN = (y;,
Y1, Ue-1):

ﬁN(n*/]?Hl/}?yﬁt|7T*/]/t/]/t—1/ut—1/ut) = ﬁ(P(X)/yt+1r]}tlﬁt|n*/ytryt—1/ut71/ut)
= Viy=g, =t P G Y2, Yo, e 1) (13)
Denoting the optimal value function for the approximate model by | ;Ia\] , we can write the following fixed-point equation:

JiE) =min | 2% +p Y JIEONE 120 | (14)

sNezM,
By assuming n = 1 again, we can rewrite the fixed-point equation for some 2€] = (7", 1, Yo, Uo) as
I3 (1 1,90, o) = min | (7, y1, Yo, o, u1) + B> T3 (7T, ya, 41, 80)P™ (y2 |y, yo, 1, 0) |- (15)
uelU oY

Because everything is finite in this setup, we can assume the existence of an optimal policy ¢ that satisfies this
fixed-point equation. Note that both ];3\] and ¢" are defined on the finite set ZAif However, we can simply extend

them to the set Z by defining
AN . 3N .
]ﬁ (Z) :]ﬁ (7'(/}/1/]/0/”0) = ];i\](n /]/1/]/0,“0)

~“N,.. ~N .
X ¢ ()=¢ (1,y1,y0,10) := PN (7", 11,0, o)
forany Z = (1,11, Yo, 1t0) € Z.
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We later prove that Q value iterations using finite window of information variables converge to the Q values for
the approximate model constructed in this section. For n = 1, for example, Equation (15) is significant for the Q
value iteration.

Another point to note is that the policy ¢ only uses the most recent N information variables to choose the control
actions.

In what follows, we investigate the following differences:

T3 @) — T2,
52,07 — T;).

The first one is the difference between the optimal value function of the original model and that for the approximate
model. The second term is the performance loss resulting from the policy calculated for the approximate model
being applied to the true model.

Remark 1. We note that, in Saldi et al. [29], the authors study approximation methods for MDPs with continuous
state spaces by quantizing the state space and constructing a finite state MDP. In this section, we also construct a
finite state space, Z. ., by quantizing Z. In Saldi et al. [29], continuity properties of the transition kernel } are
used. However, estabhshmg regularity properties for # is challenging. Therefore, we follow a different approach,
and instead of working directly with 7}, we analyze the components of a partially observed MDP for the follow-
ing approximation results. We note that our quantization method is tailored toward filter stability and corre-
sponds to a uniform quantization when we endow the finite window belief MDP space Z = P(X) x YN*1 x UV
with the product topology of the weak convergence topology on P(X) and the usual (coordinate) topologies on
Y and U. We also note that our approach here then naturally applies to continuous (such as finite dimensional
real valued) but compact space valued measurement and action spaces as well as a uniform quantization can be
applied for all finite window belief MDP realizations.

3.2.1. leference in the Value Functions in Terms of a Uniform Filter Stability Error. In this section, we study the
difference | ] (z)— ] ).

Before the result, We introduce some notation. We first define the measurable policies with respect to the new
state space Z = P(X) x YN*! x UN by I". That is, a policy 7 € T' is a sequence of control functions {J,, t € Z,} such
that y/, is measurable with respect to the g-algebra generated by the information variables {Zo, ..., Z;}.

We now define the following bounding term:

LY = sup EZ(; [IP™ (Xesn € 1Y tpang, Ut een—11) — P*(Xeen € 1 Ypeeny, Upeen—1)lrv ], (16)
)7ef

which is the expected bound on the total variation distance between the posterior distributions of X;,x condi-
tioned on the same observation and control action variables Y|, ;.n7, Uj1+n—1] When the prior distributions of X;
are given by nt; and 7. The expectation is with respect to the random realizations of 7r; and Y{; sny, Ujten-1]
under the true dynamics of the system when the prior distribution of x, is given by 7, . This constant represents
the bound on the distance of two processes with different starting points when they are updated with the same
observation and action processes under same policy. This is related to the filter stability problem, which is dis-
cussed in Section 5.
For the remainder of the paper, we drop the N dependence and denote the term by L.

Theorem 2. For 2 = (i, 1Y), if a policy 9 acts on the first N step of the process that produces I}, we then have

EL 1 o)~ e 1) < Zﬁ L,

where L, is defined as in (16).
Proof. The proof can be found in Appendix B. O

3.2.2. Performance Loss Resulting from Approximate Pgllcy Being Applled to the True System in Terms of the
Filter Stability Error. We now study the difference Jg(Z,¢ ) — J; 8 (2), where (p is the optimal policy for the approxi-

mate model extended to the full space Z.
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Theorem 3. For 2y = (i, 1}), with a policy  acting on the first N steps,

EL 50,3 — el 11 < 20y S5pL

Proof. The proof can be found in Appendix C. O

Remark 2. In Kara and Yiiksel [14], we construct a finite state approximate belief MDP using the state space ZN
defined in (11). However, different from the approach we use in this paper, to determine the approximate states,
we used a nearest neighbor map to choose the closest element from the set Z to the P(X)-valued belief state z; :
=Pr{X; €-|Yy,..., Y, Uy,...,U;_1} under the bounded Lipschitz (BL) metric. We recall that the bounded Lipschitz
metric, ppy, for some 1, v € P(X) is given in (4). To find the closest element from Z , one needs to know the belief
state realization z;, and to calculate/update the belief state, the system dynamics need to be known. However, as
we see later, the Q learning algorithm presented here, using only the finite window information variables I}Y, con-
verges to the optimality equation of an approximate belief MDP that maps the belief state to an element from Z .
with matching finite window information rather than the closest element under the bounded Lipschitz metric.
Hence, the alternative belief MDP construction and the approximation setup we present in this section serves bet-
ter to analyze the approximate Q learning algorithm, which strictly uses the finite window memory variables. In
other words, one does not need to calculate the belief state, but only needs to keep track of the information varia-
bles IN for the approximation method introduced in this section. In particular, the state (1, y,IV) is always
mapped/quantized to (1%, IN), which can be done without the knowledge or computation of 7, as long as we
have IV available. Furthermore, in Kara and Yiiksel [14], because we directly work with the topology and the met-
rics on the space of probability measures, the distinction between different realizations of history variables might
be lost as we only care about the resulting posterior distribution on the hidden state variable; for example, differ-
ent realizations of history variables may produce the same posterior distribution. However, for the finite memory
Q learning iterations, it is key to be able to differentiate between the dlfferent realizations of finite memory feed-
back variables. Hence, in this paper, we put a different topology on Z by separating the finite memory variables
rather than directly working with probability measures. This approach helps us to distinguish between different
finite memory realizations.

On the other hand, one advantage of the approximation scheme used in Kara and Yiiksel [14] is that, because
of the nearest neighborhood map, one naturally arrives at a smaller approximation error. Furthermore, because
of the continuity properties of the nearest neighbor map under the BL metric, one is able to work with the weak
convergence topology; as such, we get an upper bound in terms of the BL metric, ppr, such that the bounding
term is

pp(PT(X; € '|y[t,t7N]/M[tfl,tfw])/lﬁ (Xi € 1Ype—ny U—16-N1) )

which is always dominated by the total variation metric that we use in this section.
The different formulations and the approximation approach are summarized in Figure 1.

4. Q lterations Using a Finite History of Information Variables and Convergence
Assume that we start keeping track of the last N + 1 observations and the last N control action variables after at least
N + 1 time steps. That is, at time t, we keep track of the information variables

IN _ {]/t/]/t—ll cee /]/th/ U1, .. /uth} lf N>0
“ly ifN=0.

We construct the Q value iteration using these information variables. In what follows, we drop the N dependence
on IV, and sometimes we use 1 = 1 for simplicity of the notation. For these new approximate states, we follow the
usual Q learning algorithm such that, forany I € YN*' x UN and u € U,

Qt+1(I/ u) = (1 - Oft(I/ u))Qt(I/ 1/[) + at(I/ M) <Ct(11 M) + ﬁInvm Qt(lirv))/ (17)

where I' = {Yei1,Yt, ..., Ye-N+1, Uty - . ., Ur—N+1}, We put the t dependence to emphasize that the distribution of Y1,
and hence, I are different for every .
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To choose the control actions, we use polices that choose the control actions randomly and independent of every-
thing else such that, at time ¢,

Uy =u;, W.p 0j

for any u; € U with g; > 0 for all 1.

We note that, for the convergence of the learning algorithm, it is sufficient for the hidden state process to con-
verge to its invariant distribution under the exploration policy. Hence, any policy that leads the hidden state proc-
ess to its invariant measure and visits every action with positive probability can be used for the exploration. For
example, the control action can also be chosen to be a function of the most recent measurement and randomized (as
long as all actions have positive probability of being selected for every measurement realization); this, again, leads
to a uniquely ergodic hidden state process under our assumptions.

The algorithm differs from the usual Q value iteration:

i. The distribution of I}, which is the consecutive N-window information variable when we hit the (I, u), is gener-
ally different for every t, and the pair (I, #) is not a controlled Markov process.

In other words, the controlled transitions are time-dependent; that is, if we assume n = 1, then for some [ =
(yt,ym,um) and u = uy,

Pr(ly = iy, v u) 12 = e Ye1, 1), 1) = Liymyr =y Pr(yesa [ Ve, ye o, the, 1)

is not stationary and might change at every time step ¢ because Pr(ys+1|yt, Yi—1, Ut, 4s—1) depends on the marginal dis-
tribution of x;_1 (x;_n in the general case).

ii. Here, we only observe the cost realizations of the underlying state process {x;}, and the control actions. For
example, if we assume that n = 1, then the cost we observe is c(x;, u;). However, c(x;, 1) depends on (I, u) pair ran-
domly and in a time dependent way so that, for some I = (y;, y;—1, 14;—1) and u = uy,

Cl,u) =c(x;,ur) €B, w.p. Pr(X; € {x:c(x,us) € BY|ys, i1, 1),

where Pr(dx; |y, yi—1,1;—1) can be seen as some pseudo-belief on the underlying state variable given I = (y;, yi—1,
1;_1), the most recent n = 1 information variables. In other words, Pr(dx;|y;, yi—1,u;—1) is the Bayesian update of
1;_1, the marginal distribution of the true state x;_; at the time step t — 1, using I = (¢, y;—1, 4¢—1), and thus, it is time-
dependent.

We observe that, if one assumes that the hidden state process {x;}, is positive Harris recurrent or at least admits a
unique invariant probability measure 7t* under a stationary exploration policy y, then the average of approximate
state transitions gets closer to

P (I [T, ue) = AN (7, L) | (727, 1), 1) (18)

with ﬁN defined as in (12) and (13). In particular, if we assume n = 1, then we write
P (Its1 = Wi, Vi u) e = e, Y1, 1), 1) = ]l{y;:y,,u;:u,}Pﬂ*(]/Hl |Ye, Y1, e, te—1), (19)
where P™ (yii1 | Vi, Vi1, s, t—1) denotes the distribution of 14,7 when the marginal distribution on x;_; is given by

the invariant measure 7t*.
We also have that the sample path averages of the random cost realizations get close to

C'(IL,u)=¢(n*, Iu) = /c(x, u)P™ (dx|I),
X

where P*(x|I) is the Bayesian update of 7" using I, and ¢(7*, I, u) is defined as in (9). If we assume 1 = 1, we can write
for some I = (y1,Yo,uo) and u = uy,

C*(y1,y0,u0,u1) = &(77°, (Y1, Yo, Uo), U1) = / c(x1,u1)P™ (dx1|y1, Yo, uo)- (20)
X
Now, consider the following fixed-point equation:

Q(Lu)=CLu)+pYy_ P(I'lluyminQ"(I',0), (1)
7

where P* is defined in (18) and C* is defined in (20).
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The existence of such fixed point follows from the usual contraction arguments. The same fixed equation can also
be written, for n = 1 and for I = (y1,yo, uo) and u = u,

Q" ((y1,yo,u0), u1) = C*((y1, Y0, o), u1) + B Z P™ (y2|y1, Yo, 11, Uo) Izl)fél[-[l;l Q ((y2,y1,u1),v). (22)

Y2 €Y

For the rest of the paper, we use the following notation:

V() = min Q'(I,v), (23)
Vi) := min Q,(1, v). (24)

We note that the stationary distribution 7t* does not have to be calculated by the decision maker. The Q value itera-
tions given in (17) only use the finite memory variables I, and 7" is not used in the iterations. We show that the
algorithm naturally converges to (21) if the state process is positive Harris recurrent or at least admits a unique
invariant probability measure " under a stationary exploration policy y, where 7t* is the stationary distribution of
the hidden state process x; under the exploration policy. The performance loss depends on the stationary distribu-
tion t* that is learned via the exploration policy; however, we establish further upper bounds that are uniform
over such 7", which decrease exponentially with the window size N (see Theorem 5, Equation (31), and Corollaries
2 and 3).

Assumption 3.
1. We set a;(I,u) = 0 unless (I;,u;) = (I, u). Furthermore,

1

O(t (I/ u) = .
1+ Zi:o L=t=uy

We note that this means oy (I, u) :% if Iy =L ux =u, if k is the instant of the kth visit to (I, u) as this is crucial in the
averaging of the Markov chain dynamics (see Remark 3).

2. Under every stationary {memoryless or finite memory exploration} policy, say y, the true state process, {X,},, is positive
Harris recurrent and in particular admits a unique invariant measure 1z,

3. During the exploration phase, every (I, u) pair is visited infinitely often.

Theorem 4. Under Assumption 3,

i. The algorithm given in (17) converges almost surely to Q*, which satisfies (21).

ii. For any policy y™ that satisfies Q*(I,yN(I)) = min, Q*(I, u), if we assume that the controller starts using y" at time t =
N (after observing at least N information variables), then denoting the prior distribution of Xy by mty conditioned on the first
N step information variables, we have

Es(rmie T — Ty, TR < 210k Sy
(1 - .B) =0

where Ly is defined in (16) such that

L :=sup E% 1P (Xesw € | Yieeany, Uptsn—11) — P™ (Xean € | Yt eny, Upteon—1)llrv ]
pel

and 1t is the invariant measure on x, under the exploration policy y.

Proof. For the proof of i, that is, for the convergence of Q learning, we separate the iterations into subiterations
that are linear (as in Jaakkola et al. [11], where this superposition principle of linear systems theory is utilized in
showing the convergence of standard Q learning algorithm). For the first part of the separated iterations, we use
the fact that the dynamic programming equation is a contraction to prove its convergence, which is similar to the
traditional Q learning algorithms. For the remaining part of the iteration, we analyze the asymptotic behavior of
I', in which we distinguish our analysis from the traditional Q learning algorithms: for the usual Q iterations,
one needs to study X; that is the consecutive state following some (x,u) pair, and we have that X; ~ 7 (-|x,u).
Thus, it is distributed independently and identically given (x,u), which allows one to use Robbins—-Monro type
algorithms to show the convergence. However, distributions of I! s are time-dependent and not controlled Mar-
kovian. To study the asymptotic behavior of I}, we construct a different pair process that is Markov, and we use
ergodicity properties of Markov chains.



Downloaded from informs.org by [67.193.163.26] on 18 May 2024, at 07:54 . For personal use only, all rights reserved.

Kara and Yuksel: Finite Memory Q Learning for POMDPs
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2066—-2093, © 2022 INFORMS 2079

We first prove that the process Q;, determined by the algorithm in (17), converges almost surely to Q*. We
define

At(lru) = Qt(li u) - Q*(I,M)

Ft(I,M) = Ct(I,M) +ﬁVt(Ii) — Q*(I,u)

Filu):=C(Lu) + B Vil)P'(Iy [T u) — Q*(L,u),
L

where (V, is defined in (23)).
Then, we can write the following iteration:

At+1(I/ M) = (1 - at(I/ u))At(Ir M) + at(l/ u)Ft(Il M).
Now, we write A; = O; + w; such that
Sea1(L ) = (1 — ap(Iu))0p(L ) + cep(I u)F (I, 1)
wt+1(1/ u) = (l - Oét(I, u))wt(ll M) + at(ll u)rt(ll u)/
wherer; := F; — Fy = pVi(I}) — B>, Vel))P* (I |1, u) + C(I,u) — C*(I,u). Next, we define
r(Lu) =BV (1) — B> V()P (I |1 u) + Co(I,u) — C'(L,u).
L
We further separate w; = u; + vy such that
ut+1(1/ u) = (1 - at(ll u))uf(I/ u) + af(ll u)et(ll 1/[)
Or+1 (I/ u) = (1 - at(ll u))vt(ll M) + at(I/ u)r:(ll M),

wheree; =1 —1;.
In Appendix A, we show that v¢(I, u) — 0 almost surely for all (I, u).
Now, we go back to the iterations:

Sl u) = (1 — ap(T, w))dp(I, 1) + (I, w)Fy(T, 1)
up(Lu) = (1 — a(L, w))u(I, u) + o (I, u)e (I, u)
(L u) = (1 — ap(L, w))o(L, u) + a(L w)ry(d, u).

Note that we want to show A; = 0; + u; + v, — 0 almost surely, and we have that v,(I, 1) — 0 almost surely for all
(I, u). The following analysis holds for any path that belongs to the probability one event in which v;(I,u) — 0.
For any such path and any given € > 0, we can find an N < oo such that ||v¢]|,, < € for all t > N as (I, u) takes values
from a finite set.

We now focus on the term 6; + u; for t > N:

(Or1 + tps1)(L10) = (1 — (T, ) (8¢ + 14g) (I, 1) + (L, ) (Fy + e)(I, ). (25)
Observe that, for ¢ > N,
(Fe + e u) = (Fy = r})(Lu) = BV(I}) — V(1)) < pmax [Qul,u) — QL w)] = BllAdl
< BlIoe + wulls + Be,

where the last step follows from the fact that v, — 0 almost surely. By choosing C < oo such that 3 := (C +1)/C < 1
for [|0¢ + u¢]|o, > Ce, we can write that

Bllos + 1 + €llo, < [%H(St + U] .-
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Now, we rewrite (25):
(041 + urs)(Lw) = (1 — (L, )0 + u) (L, ) + (L u)(Fy + e) (I, )
< (1 — oL )6 + ue)(I, 1) + (L, w)BlIOs + thello
<1164 + ] - (26)
Hence, maxp,((6¢+1 + u¢+1)(I, u)) monotonically decreases for ||0; + u||,, > Ce, and hence, there are two possibil-
ities: it either gets below Ce or it never gets below Ce, in which case, by the monotone nondecreasing property, it

converges to some number, say M; with M; > Ce.
First, we show that, once the process hits below Ce, it always stays there. Suppose ||0; + ]|, < Ce,

(01 + 1) (L u) < (1 — (L, 1)) (0 +ue)(L u) + (L, u)B([10: + uelle + €)
<(1— (I, u))Ce + ay(I,u)B(Ce +¢€)
=(1 - ay(l,u))Ce + ay(L,u)p(C+ 1)e
<(1—aLu)Ce+arl,u)Ce, (B(C+1)<C)
=Ce.

We now show that the latter, that is, with the limit being M; > Ce, is not possible. By (26), we have that, for all
(I, u),

Za,([,u)((ét +up)(,u) — Bl + thilloo) < (0 + to)(I, u) — thfLiorolf((st +ug)(Lu).
7

If, pointwise, (6; +u¢)(I,u) admits a limit, the maximum over (I, u) is attained by an individual (I, %) beyond a
finite index, and thus, we arrive at

>l u)([r + ttrlloo — By + trll) < (B0 + o) (I, 10) — Hminf(dy + ur)(L, ),
t

which is a contradiction as a; is not summable and the difference (||0; + t¢]|o — f|0; + t4t]|o0), beyond a finite number,
is bounded from below as 3 < 1.

Thus, it suffices to show that (6; + u;)(I, ) admits a limit. That this limit exists follows from Jaakkola et al. [11,
lemma 3] as (26) is an instance of bounded linear iteration under the assumption that ||6; + 1|, is bounded.

This shows that the condition ||; + u¢||,, > Ce cannot be sustained indefinitely for some fixed C (independent
of €). Hence, the (6; + u;) process converges to some value below Ce for any path that belongs to the probability
one set. Then, we can write ||6; + 1|, < Ce for large enough t. Because € > 0 is arbitrary, taking € — 0, we can
conclude that A; = 6; + u; + v, — 0 almost surely.

Therefore, the process Q;, determined by the algorithm in (17), converges almost surely to Q*.

For item (ii), recall that

Q'(Lu)=C'(Lu)+pY P'(h|Lu)yminQ'(L,v).
I

This fixed-point equation coincides with the DCOEs for the approximate belief MDP defined in (14) and (15).
Hence, using Theorem 3, any policy that satisfies Q*(I, ™ (I)) = min, Q*(I, u) we can write

EJs(re, TN — sy, TN < 00k S gy,
(1 - .B) =0

such that

L;:=sup E% [P (Xean € | Yieeang, Upen—11) — P™ (Xeen € | Yepeny, Uperen—1)llrv ],
pel

and 7" is the invariant measure on x; under the exploration policy y. O

A few remarks about the result are now in order.
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Remark 3. The learning rates for the standard Q learning algorithm require

D = oo,

o>t < oo.

In our case, we have a particular form. To justify this, we note that, although these standard two assumptions
on the learning rates may be sufficient for convergence of the algorithm, the limit fixed-point equation (if one
exists) is not necessarily useful. Consider the following example in which the state space is X ={—1, + 1} and
transitions are deterministic such that Pr(x;1 =1|x; =— 1) =1, Pr(x;4y1 =— 1]|x; =+1) =1 (leading to a periodic
Markov chain). If one chooses the learning rates as ay = 0, aary1 = 0y for every k such that oy is square summable
but not summable, then even though the algorithm converges, depending on the initial point, one of the transi-
tion models always dominates the other. To avoid such examples, we choose the learning rates to be “averaging”
through time.

Remark 4. We caution the reader that our result assumes that the cost starts running after time N; that is, the
effective cost is

E [i ﬁk’N c(x, uk)l . (27)
k=N

Of course, this criterion is also applicable if the system starts running prior to time —N and the costs become in
effect after time 0.

If this criterion is not applicable, and the first N stages are also crucial, (i) if § is large enough, we can conclude
that the first N stages are not as critical for the analysis as their contributions are minor in comparison with the
future stages for the criterion, which can also be seen by considering this equivalent criterion to (3) and noting
that, for large enough g, the contributions of the first N time stages become negligible:

(1 - pE [fj Be, uk)] |
k=0

(ii) On the other hand, if § is not large and if the cost starts running at time 0, then we can first run the Q learn-
ing algorithm to find the best N-window policies that optimize (27). The remaining question is to optimize

(28)
k=0

N-1
E [Z e, ui) + V(Ie)

as a finite-horizon optimal control problem with a terminal cost, and the terminal cost V can be estimated by (27)
via Theorems 2 and 4. The question then becomes how to select the first N actions, leading to a problem with a finite
search complexity for a finite horizon problem, without knowing the system dynamics. For this, one can run a Mar-
kov chain Monte Carlo algorithm in parallel simulations to find the optimal policy for the first N time stages.
Because the resulting policy minimizing (28) is at least as good as the first N-window policy under the optimal
(belief MDP) policy (which is not designed to optimize (28) but the original cost (3)), the bounds presented in Theo-
rem 3 are applicable even when the cost criterion includes the first N time stages.

Remark 5. For the convergence rate of the Q learning algorithm (17), it is clear that increasing the window size
increases the size of the state space, which, in turn, slows down the convergence speed of the iterations. The sam-
ple complexity in Q learning is studied extensively for various learning rates. For linear learning rates, ay =1, as
we use in this paper, the conclusion is that (see, e.g., Even-Dar et al. [3]) the sample complexity is in the order of

% when one seeks € optimality in expectation. Thus, the number of samples needed to get an e-near esti-

mate in expectation increases exponentially in the window size. However, we note that this is the number of
samples needed to get e-near to the limit Q value for the specific window size N, which gets closer to the optimal
Q value of the original POMDP exponentially fast with increasing N under suitable filter stability assumptions
(see Corollaries 2 and 3). We also note that, for different system parameters, it is shown that better convergence
speeds can be achieved with carefully chosen learning rates (see, e.g., Li et al. [17], Wainwright [37]). Hence, a
learning rate that is adaptive to the window size N and target total approximation error (in near optimality as
well as the error from sample complexity) can be used for a faster learning.
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5. On the Filter Stability and Convergence to Near Optimality Under Filter Stability
In this section, we discuss the (uniform filter stability) term L; defined in (16):

Ly :=sup EZJ IP™ (Xesn € | Y e pan), Uppen—1)) — Pt (Xean € | Y pany, Uptpen-1pllrv]-
pel

Before we introduce related definitions and notation, we again emphasize that, for the performance of the approxi-
mate model introduce in Section 3.2, L; plays a crucial role. As we note earlier, L; is a term related to controlled filter
stability, a general problem in which one is interested in how fast a process forgets its incorrect initial prior with
increasing observation and control variables over time. In particular, any quantitative result for controlled filter
stability bounding the errors given by L, can be used to study the performance of the approximation and the learn-
ing algorithm introduced in this paper.

We state this formally as follows.

Corollary 1. Suppose the following assumptions hold:

o Assumption 3 holds.

o Under the exploring policy, y, the state process {x;}, is irreducible.

e The POMDP is such that the filter is stable uniformly over priors in expectation under total variation, that is, Ly — 0 as
N — oo.

Then, for any policy y™ that satisfies Q*(I,yN(I)) = min, Q" (I, u), if we assume that the controller starts using y" at time
t = N (after observing at least N information variables), then denoting the prior distribution of Xy by 1ty conditioned on the
first N step information variables, we have

ElJs(rn, T,9™) = J3(y, T 1 — 0

as N — co.
Proof. The result follows directly from Theorem 4 and the definition of L; (see (16)). O

Notably, directly related to L;, recent results in the literature, in particular McDonald and Yiiksel [24, theorem 3.6;
23, theorem 3.3], present explicit and sufficient conditions on the controlled filter stability problem under the total
variation metric in expectation.

We first focus on McDonald and Yiiksel [23, theorem 3.3] and recall the Dobrushin coefficient for Markov kernels,
which provide exponential convergence rates for L;.

Definition 2. For a given prior measure pu on X, and a policy y, the one-step predictor process is defined as the
sequence of conditional probability measures

17 () = P4 (X € [ Yio 1), U1 = y(Yoe-11),
where P! is the probability measure induced by the prior y and the policy y, when u is the probability measure
on Xo.

Definition 3. The filter process is defined as the sequence of conditional probability measures
7 () = PEY(Xs € [ Yo, U1y = y(Yjor 1), (29)

where P is the probability measure induced by the prior y and the policy y.

Definition 4 (Dobrushin [2, Equation (1.16)]). For a kernel operator K : S; — P(S;) (that is, a regular conditional
probability from S, to S,) for standard Borel spaces Sy, S,, we define the Dobrushin coefficient as

oK) = infy > min(K(x,A), K(y, 4)), 60

i=1

where the infimum is over all x, y € S and all partitions {A;}/_; of S,.
We note that this definition holds for continuous or finite/countable spaces S; and S, and 0 < 6(K) <1 for any
kernel operator.
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Example 1. Assume, for a finite setup, we have the following stochastic transition matrix

=~

Il
Blw O Wi
=R TR T
M= N W

The Dobrushin coefficient is the minimum over any two rows in which we sum the minimum elements among
those rows. For this example, the first and the second rows give 2, the first and the third rows give 7, and the sec-
ond and the third rows give 1. Then, the Dobrushin coefficient is 1.

Let

O(T) := Eufj S(T(-] -, u)).

Theorem 5 (McDonald and Yiksel [23, theorem 3.3]). Assume that, for u,v € P(X), we have u < v. Then, we have
EFY [y — eyl < (1= 8(T))(2 — S(QNE* [IImh” — 777 llgv -

In particular, defining a := (1 — 5(T))(2 — 5(Q)), we have

RIS

TV] <2a".

The absolute continuity assumption, that is, y < v, can be interpreted as follows: assume that the true starting dis-
tribution is u, but we start the update from an incorrect prior v. The error can be fixed with the information
Yo, U[o,+—1], €ventually, as long as the incorrect starting distribution v puts on a positive measure to every event
that the real starting distribution u puts on a positive measure. However, if it is not the case, that is, if the incorrect
starting distribution v puts zero measure to some event that u puts positive measure to, information variables are
not sufficient to fix the starting error occurring from that zero measure event. Of course, this is not feasible as the
prior is not compatible with the measured data. In any case, in our setup, the incorrect prior serves as an approxi-
mation, and this can be made to satisfy the absolute continuity condition by design: this is the invariant measure on
the state under the exploration policy.

Recall that the Q learning iteration that uses finite window information variables learns the Q values for approxi-
mate states of the form (7, IV) instead of the true states (11, y, IV). Theorem 5 suggests that the approximation error
arising from using the stationary distribution, 7%, instead of 7, ,;, can be fixed with the information variables I if
7" captures the nonzero events of 7;_,, thatis, if 7,” \, < 7",

In particular, because 5(7) is a uniform Dobrushin coefficient over all control actions, the above bound is valid
under any control action process. Thus, if 7, < 7" for all f, then we can write

Ly =sup E%(; (1P (Xin € Yt eeny, Upton-11) — PH(Xesn € | Yt eny, Uptan—1))ll7v ]
pel

<2aN (31)
for all t.

Corollary 2 (To Theorems 4 and 5). Assume the following hold:

o Assumption 3 holds.

o The state space, X, is finite.

o Under the exploring policy, y, the state process {x;}, is irreducible.

ea:=(1-5(7))2-060))<1.

Then, for any policy y™ that satisfies Q*(I,yN(I)) = min, Q" (I, u), if we assume that the controller starts using y" at time
t = N (after observing at least N information variables), then denoting the prior distribution of Xy by 1ty conditioned on the
first N step information variables, we have

4 (o)
E T, T,7) — Ty, DI < %a’v.
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Proof. Note that, by Theorem 4,

Lt T/ = o, T < 21 Zﬁ

If the state process x; is irreducible under the exploring policy, then by Kac’s [13] lemma, we have that
w(x) >0, VxeX

Hence, using Inequality (31), we complete the proof. O

Corollary 3 (To Theorems 4 and 5). Assume the following hold:

o Assumption 3 holds.

e X C R™ for some m < co.

o The transition kernel T (-|xo,uo) admits a density function f with respect to a measure ¢ such that T (dx|xo,up) =
(1, x0, u0)P(dx1) and f(x1, X0, 140) > 0 for all x1,xo, Uo.

ea:=(1-3(T))2-050)<1.

Then, for any policy YN that satisfies Q*(I,N(I)) = min, Q*(I, u), if we assume that the controller starts using Y™ at time
t = N (after observing at least N information variables), then denoting the prior distribution of Xy by my conditioned on the
first N step information variables, we have

Al

[][S(HN/T VN) ]ﬁ( NIT)HN] (1—5)

Proof. Note that, by assumption, 7 (dx1 |xo, o) = f(x1, X0, 4o)P(dx1) and f(x1,x0,up) > 0 for all x1,xp, up, and hence,
under the exploration policy v, the state process x; is ¢-irreducible and admits a unique invariant measure, say
ni*. Using the assumptions, we can also write that, for any A € B(X) with ¢(A) > 0,

T(A) = /Z /A /{U F(er, o, o) (dug)p(dx )" (dxo) > O,

which implies that ¢ < 7r*. Note that the transition kernel 7 (-|x, 1) is absolutely continuous with respect to ¢ for
every (x, u), and thus, for the predictor r; at any time step ¢, we can write that 7, < ¢ < 7",
Hence, Inequality (31) and Theorem 4 concludes the proof. O

6. Numerical Study
In this section, we present a numerical study for the proven results.
The example we use is a machine repair problem. In this model, we have X, Y, U = {0, 1} with

1 machine is working at time ¢
. { 0 machine is not working at time ¢.
1 machine is being repaired at time ¢
" { 0 machine is not being repaired at time .
The probability that the repair is successful given initially the machine was not working is given by «:
Pr(xp1 =1|x; =0,u, = 1) = x.
The probability that the machine breaks down when in a working state is given by 0:
Pr(x; =0]x; =1,u, =0) =

The probability that the channel gives an incorrect measurement is given by e:

Pr(ys =1|x; =0) = Pr(y; =0|x; = 1) = €.
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The one-stage cost function is given by
R+ E x=0,u=1

x=0,u=0

c(x,u) =
0 x=1u=0
R x=1u=1,

where R is the cost of repair and E is the cost incurred by a broken machine.

We study the example with discount factor = 0.8 and present three different results by changing the other
parameters.

For the first case, we take e = 0.3, k = 0.8, 0 = 0.1 and R = 5, E = 1. For the exploring policy, we use a random policy
such that Pr(y(x) =0) =3 and Pr(y(x) =1) = % for all x. Under this policy, x; admits a stationary policy 7*(-) = 0.100(-)

We prove in Theorem 4 that the Q iteration given by (17) converges to the Q values of the approximate belief
MDP defined in (14). Defining

Vi) = rg'euﬂl} 0i1,v),

in Figure 2, we plot sup, | Vi(I) — ]/I;’(n*,l) | forn=0,1,2.
We now show the performance of " that is found using the Q values for different values of N. Recall that, in The-
orem 4, we show that

EUs(, T — Ty TR < 20 S g,
(1 - ,8) =0

where

Lt := sup E%[”Pn; (XN € '|Y[t,t+N]/ u[t,t+N71]) - Pn*(Xt+N € '|Y[t,t+N]/ u[t,t+N—1])||TV]'
yel

Figure 2. (Color online) Q value convergence for different window sizes.
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Figure 3. (Color online) Policy performance for different window sizes.

401 —— Performance loss

35 4 L

301
251
201
15 1
10 1
0.5 1

0.0 4 TR

For the examples, we use the following upper bound for L,

L:= sup sup EL[|IP"(Xn € “[Yjony, Uon-11) — P™ (Xn € | Yiony, Ujon-1))ll7v]
neP(X) pel

such that
2|cll
1-p)y

In Figure 3, to estimate J;(u, 7), we simply use the smallest value of Js(u, 7, yN ) among the different N values. Fur-
thermore, we scale the L Values to show the rate dependence between Jg(u, 7,y Ny — ]ﬁ(‘u, 7) and L more clearly.

It is clearly seen that the decrease rate for L dominates the decrease rate for the error.

For the second case, we takee = 0.1, k =0.9, 6 = 0.3 and R = 5, E = 1. For the exploring policy, we again use a ran-
dom policy such that Pr(y(x) = 0) =1 and Pr(y(x) = 1) =1 for all x. Under this policy, x; admits a stationary policy
7*(-) = 0.2900(-) + 0.7161(-).

Figure 4 shows the error between V(I) = min,Q(I,v) and ]/I;[ (*,I)forn=0,1,2.

Figure 5 shows Js(u, 7, ™) — J5(u, T) and scaled L.

In the third case, note that, for the previous examples, we had a := (1 — 5(7))(2 — 6(0)) > 1; however, the error still
decreases because the a > 1 condition is only a sufficient condition and the error still converges to zero even when o >
1 in some cases. For the last example, we set parameters so that & < 1. The parameters are chosen as follows:

Pr(x; =0]|xg=0,up=0)=0.9, Pr(x1=0[x0=0,up=1)=0.6
Pr(x; =0|xp =1,u9=0)=04, Pr(x;=0|xo=1,up=1)=0.1.

E[Jp(mn, T,y ) - Jp(m oy, T)IIy] <

Notice that we manipulated some of the parameters to make the « coefficient suitable for the purpose of the exam-
ple. For the measurement channel,

Pr(y:0|x=0):0.7, Pr(y:1|x:1)=

For the cost function, we choose R=3and E = 1.

We again use a random policy such that Pr(y(x) =0) = ;and Pr(y(x) =1) = % for all x. Under this policy, x; admits
a stationary policy 7*(-) = 0.420¢(-) + 0.58061 ().

The convergence of the Q values can be seen in Figure 6.

This setup gives a = 0.7. Figure 7 shows the error Jg(u, T, Ny — ];(y, 7T),L,and aN terms. We scale all of them to
make them start from the same point to emphasize the decrease rates.

7. Concluding Remarks and a Discussion

We study the convergence of an approximate Q learning algorithm for partially observed stochastic control systems
that uses finite window history variables. We provide sufficient conditions that guarantee the algorithm to con-
verge and then we provide the approximate belief-MDP model to which the limit fixed equation corresponds.
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Figure 4. (Color online) Q value convergence for different window sizes.
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Furthermore, we provide bounds for the approximate policy that is learned with the proposed algorithm in com-
parison with the true optimal policy that could be designed if the system and channel were known a priori. In par-
ticular, we obtain explicit error bounds between the resulting policy’s performance and the optimal performance as
a function of the memory length and a coefficient related to filter stability.

The setup we use for this paper focuses on continuous state space and finite observation and action spaces. An
immediate future direction is for continuous observation and action spaces, in which case, continuity properties of
the transition model 7 (-|x, u) on u and continuity properties of the channel O(dy|x) on x are crucial and sufficient
for consistent discretization of the observation and action spaces, leading to analogous stability results. One condi-
tion, for example, is that the channel be of the form [, O(dy|x) = [, f(x,y)dy for all Borel A with f continuous in both

variables.

Figure 5. (Color online) Policy performance for different window sizes.
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Figure 6. (Color online) Q value convergence for different window sizes.
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It is also our goal to generalize such results to multiagent problems in which finite history policies likely lead to
new insights toward tractable solutions in both stochastic team theory and game theory.

Appendix A. Proof of v(/,u)—0
We show that v(I, 1) — 0 almost surely for all (I, 1). We prove the claim only for the N = 1 case for simplicity and let I =
(y1,y0,10) and u = u; for some (y1,Yo, Uo, U1) € Y2 x U2 The proof for general N follows from essentially same steps. We
have
v (L) = (1 — (L u))oe(L, u) + o (L w)ry (I ).
When the learning rates are chosen such that a;(I,u) = 0 unless (I;, U;) = (I,u) and
1

Olt(l, l/l) = 7
1+ 3o Lt mn

Figure 7. (Color online) Policy performance for different window sizes.
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this term reduces to

1
RS RT)) I TN

t—1
k:O-ﬂ{lk,Uk:lru}

Ots1 (I/ Ll) =

Recall that

riLu) = BV (L) — B> V()P (L1 u) + Cell,u) — C'(Lu).

L

Hence, we first analyze the asymptotic behavior of
15 i= (Yea, Yi, U,
L, U = (Yie, Yier, U, U—n)-
To analyze the asymptotic behavior of these variables, we make use of the Markov chain theory. We show that
I, I, Ui, Xieo1 = {Yierr, Yi, Yeer, U, U1, Xi1}

form a Markov chain under the exploration policy y. Then, we use stationary distribution of this Markov chain to analyze
the asymptotic behavior of (I%, I, Uy). We write

Pr(Yie1, Yi, Yie1, U, Uk—1, Xi—1 [y V-1, - - - Yo, U1, - - -, U0, Xk—2, - - -, X0)
= Ty v ot a=ye e ) PT k1 1Y X1, i, 1) Pr(Xe—1 | Y1, Xk—2, 1x—2) 7 (Ug)
= Pr(Yiqr, Yi, U, Xi—1, Ur—2 [ Yk, Yr—1, Xk—2, Uk—1, Uk—2),

where we use y as the probability measure of the exploring policy. Earlier, we used that

Pr(Yis1 Wi, - - Y0, X1, -1 X0, -« - Uy - - - U0) = Pr(Yiee | Y, Xe—1, e, Ui—1)
Pr(Xx-alVk-1,- - Yo, Xk—2, -, Xo, U2 . ., tg) = Pr(Xe_1 |yk—1, X2, Uk—2).

Hence, the joint process (Y1, Yi, Yi—1, Uk, Uk_1, Xk—1) is a Markov chain. One can show that it has a unique invariant measure
under the assumption that the state process X admits a unique invariant measure under the exploration policy y.

We denote the stationary distribution of X, by 7" and denote the probability measure induced on the joint process
and marginals of the process by this stationary distribution by P with an abuse of notation. Then, for any measurable
function f,

t—oo

. 1 = ’o ’ A T ’ ’ ’ ’ ’

hm?Zf(Ik'Ik/ Uy, Xi) = /f(yzfylfy()/”v”wxo)P (dxt, Yo, Y1, Yo, o, 1)
k=0

In particular, we have that

j ——
— Vi 1 _ % () ’ ’ T (4, ’ ’ ’ ’
lim £ ~0 Vil )L =10 _ SV W Y DLy =y o 0,0} P (Yo, Y30 Yo, g, 1)
* / ’ 4 7 ’
oo 1 f ﬂ{y{,y{],u;,u{]=y1,yn,u1,un}Pn o, Y4, Y5, ug, uh)

t—1
? =0 IL{IkMIFL“}

SV Wy )P 1 = 1 = Yo, =, = )

P (yy = y1,Y4 = Yo, u) = U1, ufy = 1)

= > V' y1,u)P" (511, Yo, ua, o)
Y

=> V' I)P(Ih|1,u),
I
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where P™ (y2|y1,Y0, 11, 1o) is the distribution of y, when the xy’s marginal distribution is given by 7* and
P(I = (2,3, uD L) 1= Ly my iy P (2 Y1, y0, 11, 10)

as defined in (18) and (19).
Using similar arguments, one can also show that, for I = (y1,0,u0) and u = u;,

18 .
]}LI?oEkZﬂ)Ck/(IIM) =/Xc(x1,u1)P” (dx11y1,Y0,10)

= C*(ylr]/()/ U, ul) = C*(I/u)'

Thus, we have that
1644
v (L u) = ;;rk(l, ) =0
almost surely for all (I, u).

Appendix B. Proof of Theorem 2
Lemma B.1. We have that, for any 7,7 € P(X) and for any (y, )y, Ny = {yt, -, Ye=N Ut - .., Up_N)} € YV x UV,

IP™(Yis1 € '|(yfu)[t,t—N]) — P (Y € ‘|(y'u)[t,t—N])||TV
<IP™(X € |ype—ny, tpe—1,-n7) — P (Xt € 1yt e—ny, -1, —n)llry-

Proof. Let f be a measurable function of Y such that ||f||,, < 1. We write

/f(ym)P”(dymI(y,u)u,th]) - /f(yHl)Pn*(dyHl|(y’u)[ht*N])
= /f(ym)O(dym [xee1)T (x| e, 1) P™ (dx |]/[t,t—N]/u[t—1,t—N])

- /f(ym)O(dym [x141)7 (dxts1 |xt1ut)in (dxt|y[t,t—N]ru[t—1,t—N])

<P (Xs € -lype-np uie—1,0-n1) — P (Xe € -1ypee-ny te—1,0-n)llrv

at the last step, and we used the fact that [f(y1+1)O(dyii1|x141)7 (dxis1|x;,14¢) is bounded by one as a function of x; for
Iflle <1. Taking the supremum over all ||f||, <1 concludes the proof. O

Proof of the Main Theorem. Let 2y = (71;, 1,10, 10). Then, we write

T (&1) = I (2" y1, 0, o) = min (6(ﬂ*,y1,yo,uo, )+ B IY (0, ya,y1,u)P™ (2|1, o, Ml/u0)> :

y2€Y

Furthermore,

J5(z1) = Jp(rg , y1, Y0, o)

= min (5(no,y1,yo, U, U1) + ﬁz T3ty (129, Yo, 1), Y2, y1,u1)P™ (y21y1, Yo, w1, Mo)) -

€U oY

Note that, for any 7 € P(X), we have

N N, .
][5 (71/]/2/]/1,141) ZI‘B (77 /}/2/]/1,1!1) 2121(77 /}/2/]/1/1’[1)'

In particular, we have that

" ~N, .
J§ (0 y2,y1,u1) = T (m (109, Yo, o), Y2, Y1, 1)
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Hence, we can write the following:
=N . N A% Af
s 2o) — J5(20)| < max (77", y1, yo, o, 1) = E(1tg, Y1, Yo, o, 1)
1

+maxp| >IN, ya, y1,u)P™ alyr, yo, ua,u0) — Y Ty, 51, 4)P™ (Y2 |ya, o, 1, o)

mew €Y €Y

+maXﬁZ 1Ty (05 (75, o, o), Y2, v, 101) — Ty (7 Yo, o), Y, 1, 141) [P (2l ya, o, wr, o).

y2€Y

Note that, by the definition of ¢, we have

|e(*, 1,0, 10, u1) — E(riy, Y1, Yo, o, u1)| < llellIP™ (X € -[y1, o, o) — P (X1 € -|y1, Yo, 10)llry-

If we denote 21 = (117 (775, Y0, 40), Y2, Y1, 1), using Lemma B.1, we can write
<N . o . _
EL 175 o) — Jyo)l] < lellEL [P (X0 €Y1, Yo, Us) — P (Xy €13, Yo, Uo)lry ]

+ Ilpggﬁlllﬁ'llmE% [IIP™ (y21Y1, Yo, U1, Uo) — P™ (y2|Y1, Yo, Ur, Uo)liry]
1

+maxﬁE) LZ Uﬁ (21) = J3(ED)IP™ (y21Y1, Yo, U, Uo)

HeY

< (llclleo + BITE lso)Lo +maXﬁE LZ |]ﬁ (1) = J5ED)IP™ (y2] Y1, Yo, u1, Uo)

LeY

< (el + BT Nl)Lo + sup BEL [1Ty 21) — T3]

yel
where

L= SUPE [P (Xt € '|Y[t,t+N]/ u[t,t+N—1]) - P" (XN € '|Y[t,t+N]r u[t,t+N—1])||TV]~
yer

Then, following the same steps for Ei’a [|72’(21) - ]E(il)l] and repeating the procedure, one can see that

EL 17 o) — T30 l1 < (llle + BTN 1) S B'L.
t=0

Note that [[J]|. < ‘{C”” Hence, we can conclude

EL 7Y o) — TG0} _({' Cll Zﬁu 0

Appendix C. Proof of Theorem 3
We let 2o = (115, y1, Y0, Uo). We denote the minimum selector for the approximate MDP by

= ¢ (g y1, yo,10) = PN (T, v, o, o)

and write
][3(20/ (i)N) = ]/%(776/]/1/]/0/ Uo, (‘i)N)

= 6(ﬂ6/y1/y0/ Uo, ull\]) +5Z jlg(nf(na/yOI MO)/yZ/ylx ull\lr(i)N)Pna (]/2 |y1/]/0/ ull\ll uO)'

12€Y
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=N
Furthermore, we write the optimality equation for | g as follows

~N . nr % =N, _, _ o
]ﬁ (ZO) = C(ﬂ /ylry()/ Up, ull\]) + ﬁ Z ][3 (T[l (n() /]/0, MO)/yZ/ylr ui\])P (]/2 |]/1/]/0, ua\]/ uO)'

1Y

Hence, denoting 2, := (n;(na ,Y0,U0), Y2, y1,u§\’ ) and using Lemma B.1, we can write that

P s~ 3N =N . P oriar— Af
Ex-[1po, &) =T Eo)ll < sup Ex-[16(r, Y1, Yo, Up, Un) — (1", Y1, Yo, Uo, Uh)]]
pel

+supE |:ﬁZ]/%(le )P0 (y2| Y1, Yo, Uy, Up) — ﬁZ]ﬁ(Zl)Pn(y2|Y1,Y0,U1,Uo)
pel 1Y €Y

<llelle SuPEy [IP™ (X1 € |1, Yo, Up) — P (X1 €| Y1, Yo, Up)llrv]

b4 el

~N 5 - "
+Bllf s lleo sup Exc- [IIP™ (y21Y1, Yo, Us, Uo) — P™ (y2] Y1, Yo, Uz, Uo)llry ]

pel
+psupEL [1]p(21,0") — T )]
pel
< lelleaLo + Bl Lo + Bsup Ex [1Js(21,$™) = Ty G111

yel

Following the same steps for EZG[Uﬁ(il,qNbN) —721(21)|] and repeating the same procedure with ||j;\]”oo < l{C“E, one can con-
clude that

£ Lo ") - Ty @oll < 0 Zﬁu 1

Now, we go back to the theorem statement to write

E (20, @) — JEo)l] < EX[1]p(2,6") — T3 @)1 + EX[1T5 @) — J3(2)1]
- 2lells
(- )Zﬁ

The last step follows from (C.1) and Theorem 2. O
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