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Abstract—We consider the problem of optimal zero-delay
coding and estimation of a stochastic dynamical system
over a noisy communication channel under three estima-
tion criteria concerned with the low-distortion regime. The
criteria considered are (i) a strong and (ii) a weak form of
almost sure stability of the estimation error as well as (ii)
asymptotic quadratic stability in expectation. For all three
objectives, we derive lower bounds on the smallest channel
capacity C0 above which the objective can be achieved with
an arbitrarily small error. We first obtain bounds through
a dynamical systems approach by constructing an infinite-
dimensional dynamical system and relating the capacity
with the topological and the metric entropy of this system.
We also consider information-theoretic and probability-
theoretic approaches to address the different criteria. Fi-
nally, we prove that a memoryless noisy channel in general
constitutes no obstruction to asymptotic almost sure state
estimation with arbitrarily small errors, when there is no
noise in the system. The results provide new solution meth-
ods for the criteria introduced (e.g., standard information-
theoretic bounds cannot be applied for some of the criteria)
and establish further connections between dynamical sys-
tems, networked control, and information theory, especially
in the context of nonlinear stochastic systems.

Index Terms—Dynamical systems, information theory,
metric entropy, nonlinear systems, state estimation,
topological entropy.

I. INTRODUCTION

IN THIS article, we study the problem of optimal coding and
estimation of a stochastic dynamical system over a noisy

communication channel. This is a fundamental and classical
problem in stochastic and networked control, information and
communication theory, and estimation theory. Accordingly, this
problem has an extensive history and literature which we present
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S. Yüksel is with the Department of Mathematics and Statistics,
Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail:, yuksel@
mast.queensu.ca).

Digital Object Identifier 10.1109/TAC.2019.2937732

Fig. 1. Coding and state estimation over a noisy channel with feedback.

further below once we have added more specificity to the setup
considered in the article and have stated the problem.

In this article, we consider nonlinear stochastic systems given
by an equation of the form

xt+1 = f(xt, wt). (1)

Here xt is the state at time t and (wt)t∈Z+ is an independent and
identically distributed (i.i.d.) sequence of random variables with
common distribution wt ∼ ν, modeling the noise. In general, we
assume that

f : X × W → X

is a Borel measurable map, where (X, d) is a complete metric
space and W a measurable space, so that for any w ∈ W , the
map f(·, w) is a homeomorphism of X . We further assume that
x0 is a random variable on X with an associated probability
measure π0 , stochastically independent of (wt)t∈Z+ . We use
the notations

fw (x) = f(x,w), fx(w) = f(x,w)

so that fw : X → X and fx : W → X .
System (1) is connected over a possibly noisy channel with

finite capacity to an estimator, as shown in Fig. 1. The estimator
has access to the information it has received through the channel.
A source coder maps the source symbols (i.e., state values)
to corresponding channel inputs. These inputs are transmitted
through the channel, which we assume to be discrete with input
alphabet M and output alphabet M′.

We refer by a coding policy Π, to a sequence of functions
(γe

t )t∈Z+ which are causal such that the channel input at time
t, qt ∈ M, under Π is generated by a function of its local infor-
mation, i.e.,

qt = γe
t (Ie

t )

where Ie
t = {x[0,t], q

′
[0,t−1]} and qt ∈ M, the channel input al-

phabet given by M = {1, 2, . . . ,M}, for 0 ≤ t ≤ T − 1. Here,
we use the notation x[0,t−1] = {xs : 0 ≤ s ≤ t − 1} for t ≥ 1.

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on September 16,2020 at 08:12:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6591-4223
https://orcid.org/0000-0001-6099-5001
mailto:kawanchr123@gmail.com
mailto:yuksel@mast.queensu.ca
mailto:yuksel@mast.queensu.ca
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The channel maps qt to q′t in a stochastic fashion so that
P (q′t |qt , q[0,t−1], q

′
[0,t−1]) is a conditional probability measure

on M′ for all t ∈ Z+ . If this expression is equal to P (q′t |qt), the
channel is said to be memoryless, i.e., the past variables do not
affect the channel output q′t given the current channel input qt .

The receiver, upon receiving the information from the chan-
nel, generates an estimate x̂t at time t, also causally: An admissi-
ble causal estimation policy is a sequence of functions (γd

t )t∈Z+

such that x̂t = γd
t (q′[0,t]) with

γd
t : (M′)t+1 → X, t ≥ 0.

We often classify such coding and estimation policies as zero-
delay policies, since the encoder and the estimator operate in-
stantaneously and do not wait for future data to arrive prior
to selecting their outputs. Such policies are crucial in delay-
sensitive applications, such as networked control systems. This
is unlike much of the information theory literature in the con-
text of Shannon theory. We provide a detailed literature review
below on zero-delay coding.

For a given ε > 0, we denote by Cε the smallest channel
capacity above which there exist an encoder and an estimator
so that one of the following estimation objectives is achieved:

E1) Eventual almost sure stability of the estimation error:
There exists T (ε) ≥ 0 so that

sup
t≥T (ε)

d(xt, x̂t) ≤ ε a.s.

E2) Asymptotic almost sure stability of the estimation error:

P
(
lim sup

t→∞
d(xt, x̂t) ≤ ε

)
= 1.

E3) Asymptotic quadratic stability of the estimation error in
expectation:

lim sup
t→∞

E[d(xt, x̂t)2 ] ≤ ε.

We are interested in characterizations of Cε and, in particular
C0 := limε↓0 Cε .

A. Literature Review and Contributions

In a recent work [20], we investigated the same problem for
the special case involving only deterministic systems and dis-
crete noiseless channels. In this article, we will provide further
connections between the ergodic theory of dynamical systems
and information theory by answering the problems posed in
the previous section and relating the answers to the concepts
of either metric or topological entropy. Our findings comple-
ment and generalize our results in [20] since here we consider
stochasticity in the system dynamics and/or the communication
channels.

As we note in [20], optimal coding of stochastic processes is a
problem that has been studied extensively: in information theory
in the context of per-symbol cost minimization, in dynamical
systems in the context of identifying representational and equiv-
alence properties between dynamical systems, and in networked
control in the context of identifying information transmission

requirements for stochastic stability or cost minimization. As
such, for the criteria laid out in (E1)–(E3) above, the results
in our article are related to the efforts in the literature in the
following three general areas.

Dynamical Systems and Ergodic Theory: Historically, there
has been a symbiotic relation between the ergodic theory of
dynamical systems and information theory (see, e.g., [7] and
[43] for comprehensive reviews). Information-theoretic tools
have been foundational in the study of dynamical systems,
for example, the metric (also known as Kolmogorov–Sinai or
measure-theoretic) entropy is crucial in the celebrated Shannon–
McMillan–Breiman theorem as well as two important repre-
sentation theorems: Ornstein’s (isomorphism) theorem and the
Krieger’s generator theorem [7] and [12], [17], [36], [37]. The
concept of sliding block encoding [11] is a stationary encoding
of a dynamical system defined by the shift process, leading to
fundamental results on the existence of stationary codes which
perform as good as the limit performance of a sequence of
optimal block codes. For topological dynamical systems, the
theory of entropy structures and symbolic extensions answers
the question to which extent a system can be represented by a
symbolic system (under preservation of some topological struc-
ture), cf. [7] for an overview of this theory. Entropy concepts
have extensive operational practical usage in identifying limits
on source and channel coding for a large class of sources [11],
[13], [43]. We also refer the reader to [10] for a more general
overview of the concept of entropy and its applications in var-
ious branches of applied mathematics, mathematical physics,
and engineering.

Networked Control and Stochastic Stability Under Informa-
tion Constraints: In networked control, there has been a re-
current interest in identifying limitations on state estimation
and control under information constraints. The results in this
area have typically involved linear systems, and in the nonlin-
ear case, the studies have only been on deterministic systems
estimated/controlled over deterministic channels, with few ex-
ceptions. For linear systems, data-rate theorem type results have
been presented in [28], [31], [33], [44], and [49].

The papers [23], [24], [29], [30], [39] studied state estimation
for nonlinear deterministic systems and noise-free channels. In
[23] and [24], Liberzon and Mitra characterized the critical data
rate C0 for exponential state estimation with a given exponent
α ≥ 0 for a continuous-time system on a compact subset K of
its state-space. As a measure for C0 , they introduced a quantity
called estimation entropy hest(α,K), which equals the topo-
logical entropy on K in case α = 0, but for α > 0 is no longer
a purely topological quantity. The paper [19] provided a lower
bound on hest(α,K) in terms of Lyapunov exponents under the
assumption that the system preserves a smooth measure. In [29],
[30], Matveev and Pogromsky studied three estimation objec-
tives of increasing strength for discrete-time nonlinear systems.
For the weakest one, the smallest bit rate was shown to be equal
to the topological entropy. For the other ones, general upper and
lower bounds were obtained which can be computed directly in
terms of the linearized right-hand side of the equation generating
the system.
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A further closely related paper is due to Savkin [41], which
uses topological entropy to study state estimation for a class of
nonlinear systems over noise-free digital channels. In fact, our
results can be seen as stochastic analogs of some of the results
presented in [41], which show that for sufficiently perturbed
deterministic systems, state estimation with arbitrarily small
error is not possible over finite-capacity channels.

A related problem is the control of nonlinear systems over
communication channels. This problem has been studied in few
publications, and mainly for deterministic systems and/or de-
terministic channels. Recently, [53] studied stochastic stabil-
ity properties for a more general class of stochastic nonlinear
systems building on information-theoretic bounds and Markov-
chain-theoretic constructions. However, these bounds do not
distinguish between the unstable and stable components of the
tangent space associated with a dynamical nonlinear system,
while the entropy bounds established in this article make such
a distinction, but only for estimation problems and in the low-
distortion regime.

Zero-Delay Coding Over Communication Channels: In our
setup, we have causality as a restriction in coding and decoding.
Zero-delay coding is an increasingly important research area of
significant practical relevance, as we review in [20]. Notable
papers include the classical works by Witsenhausen [48], Wal-
rand and Varaiya [47], and Teneketzis [46]. The findings of [47]
have been generalized to continuous sources in [52] (see also
[25] and [3], where the latter imposes a structure a priori); and
the structural results on optimal fixed-rate coding in [48] and
[47] have been shown to be applicable to setups when one also
allows for variable-length source coding in [15]. Structural re-
sults on coding over noisy channels have been studied in [27],
[46], [47], [50] among others. Related work also includes [1],
[14], [27], [50] which have primarily considered the coding of
discrete sources. A few works [1], [3], [14], [25], [50] have con-
sidered infinite horizon problems and, in particular, [50] has es-
tablished the optimality of stationary and deterministic policies
for finite aperiodic and irreducible Markov sources. A related
lossy coding procedure was introduced by Neuhoff and Gilbert
[35], called causal source coding, which has a different op-
erational definition, since delays in coding and decoding are
allowed so that efficiencies through entropy coding can be uti-
lized. Further discussions on the literature are available in [1],
[15], [25], and [34]. Among those that are most relevant to our
article is [26], where causal coding under a high rate assump-
tion for stationary sources and individual sequences was studied,
though only in a source coding context.

The setup with Gaussian channels is a special case studied
extensively for the coding of linear systems. We will not consider
such a setup in this article, though we note that explicit results
have been obtained for a variety of criteria in the literature.

Contributions: In view of this literature review, we make the
following contributions. We establish that for (E1), the topologi-
cal entropy of a properly defined infinite-dimensional dynamical
system defining the stochastic evolution of the process provides
lower bounds; for (E2), a lower bound is provided by the metric
entropy; and for (E3), the metric entropy of this system also pro-
vides a lower bound under a restriction on the class of encoders

considered. Through a novel analysis, we also provide achiev-
ability results for the case where the only stochasticity is in the
communication channel and the initial state. We also establish
impossibility results when the system is sufficiently mixing due
to the noise. We show that our results reduce to those reported
in [20] for deterministic systems. An implication is that the rate
bounds may not depend continuously on the noise, i.e., an ar-
bitrarily small noisy perturbation of the system dynamics may
lead to a discontinuous change in the rate requirements for each
of the criteria. Throughout the analysis, we provide further con-
nections between information theory and dynamical systems by
identifying the operational usage of entropy concepts for the
three different estimation criteria.

II. PRELIMINARIES

Notation: All logarithms in this article are taken to the base 2.
We write |E| for the cardinality of a set E. By N, we denote the
set of positive integers. We write Z for the set of all integers and
Z+ = N ∪ {0}. By 1A , we denote the characteristic function
of a set A. We write Bε(x) for the open ball of radius ε > 0
centered at x ∈ RN . If f : X → Y is a measurable map between
measurable spaces (X,F) and (Y,G), we write f∗ for the push-
forward operator associated with f on the space of measures on
(X,F), i.e., for any measure μ on (X,F), f∗μ is the measure
on (Y,G) defined by (f∗μ)(G) := μ(f−1(G)) for all G ∈ G.

A. Entropy Notions for Dynamical Systems

In the following, we explain the notions of topological and
metric entropy for dynamical systems. Metric entropy was first
introduced by Kolmogorov and Sinai in the 1950s as a measure-
theoretic invariant of dynamical systems that preserve a prob-
ability measure on their state-space. In information-theoretic
terms, metric entropy measures the expected average (over time)
growth of uncertainty about the initial state of the system as time
tends to infinity. In the 1960s, an analogous notion of topological
entropy was introduced by Adler, Konheim, and McAndrew for
dynamical systems in the topological category. While it has no
direct information-theoretic interpretation, topological entropy
turns out to be the supremal metric entropy, when all probabil-
ity measures preserved by the system are considered at once.
For further details about these concepts and their operational
meaning, we refer the reader to the excellent survey [17] and
the monograph [7].

Let f : X → X be a continuous map on a metric space (X, d)
and write fi for its iterates, i.e., f 0 = idX and fi+1 = f ◦ fi

for i ≥ 0. For a compact set K ⊂ X , we say that E ⊂ K is
(n, ε; f)-separated for some n ∈ N and ε > 0 if for all x, y ∈
E with x �= y, d(fi(x), f i(y)) > ε for some i ∈ {0, 1, . . . ,
n − 1}. We write rsep(n, ε,K; f) for the maximal cardinality
of an (n, ε; f)-separated subset of K and define the topological
entropy htop(f,K) of f on K by

hsep(f, ε,K) := lim sup
n→∞

1
n

log rsep(n, ε,K; f)

htop(f,K) := lim
ε↓0

hsep(f, ε,K).
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If X is compact and K = X , we omit the argument K and
call htop(f) the topological entropy of f . Alternatively, one
can define htop(f,K) using (n, ε)-spanning sets. A set F ⊂ X
(n, ε)-spans another set K ⊂ X if for each x ∈ K there is
y ∈ F with d(fi(x), f i(y)) ≤ ε for i = 0, 1, . . . , n − 1. Let-
ting rspan(n, ε,K; f) (or rspan(n, ε,K) if the map f is clear
from the context) denote the minimal cardinality of a set
which (n, ε)-spans K, the topological entropy of f on K
satisfies

htop(f,K) = lim
ε↓0

lim sup
n→∞

1
n

log rspan(n, ε,K; f).

If f : X → X is a measure-preserving map on a probability
space (Ω,F , μ), i.e., f∗μ = μ, its metric entropy hμ(f) is de-
fined as follows. Let A be a finite measurable partition of X .
Then, the entropy of f with respect to A is defined by

hμ(f ;A) := lim
n→∞

1
n

Hμ

(
n−1∨

i=0

f−iA
)

. (2)

Here
∨

denotes the join operation, i.e.,
∨n−1

i=0 f−iA is the par-
tition of X consisting of all intersections of the form A0 ∩
f−1(A1) ∩ . . . ∩ f−n+1(An−1) with Ai ∈ A. For any partition
B of X , Hμ(B) = −

∑
B∈B μ(B) log μ(B) is the Shannon en-

tropy of B. The existence of the limit in (2) follows from a
subadditivity argument. The metric entropy of f is then defined
by

hμ(f) := sup
A

hμ(f ;A)

the supremum taken over all finite measurable partitions A
of X . If f is continuous, X is compact metric, and μ is er-
godic, there is an alternative characterization of hμ(f) due to
Katok [16]:

For any n ∈ N, ε > 0 and δ ∈ (0, 1) put

rspan(n, ε, δ)

:= min {rspan(n, ε;A) : A ⊂ X Borel, μ(A) ≥ 1 − δ} .

Then, for every δ ∈ (0, 1), it holds that

hμ(f) = lim
ε↓0

lim sup
n→∞

1
n

log rspan(n, ε, δ).

Topological and metric entropy are related to each other via a
variational principle [32]: for a continuous map f : X → X on
a compact metric space X ,

htop(f) = sup
μ

hμ(f)

the supremum taken over all f -invariant Borel probability mea-
sures μ, i.e., such with f∗μ = μ.

If two maps f : X → X and g : Y → Y on compact metric
spaces X and Y satisfy h ◦ f = g ◦ h with a homeomorphism
h : X → Y , they are called topologically conjugate and h is
called a topological conjugacy. In this case, htop(f) = htop(g).
If h is only a continuous surjection from X to Y , then g is called
a topological factor of f and htop(g) ≤ htop(f).

B. Entropy Notions for Random Variables

The (Shannon) entropy of a random variable X taking values
in a finite or countable set X is defined by

H(X) := −
∑

x∈X

P (X = x) log P (X = x)

where by convention 0 · log 0 = 0. H(X) is a measure for the
uncertainty of the outcome of a random experiment described
by X . If X and Y are two discrete random variables with values
in X and Y , respectively, the conditional entropy of X given
Y = y0 is defined by

H(X|Y = y0)

:= −
∑

x∈X

P (X = x|Y = y0) log P (X = x|Y = y0).

The conditional entropy of X given Y is defined by

H(X|Y ) :=
∑

y∈Y

P (Y = y)H(X|Y = y).

Observe that H(X|Y ) ≤ H(X), i.e., additional knowledge can
only decrease the uncertainty about X . Moreover, H(X|Y ) =
H(X) if and only if X and Y are independent.

The mutual information of two discrete random variables X
and Y is defined by

I(X;Y ) := H(X) − H(X|Y ).

The number I(X;Y ) is a measure for how much of the
uncertainty of X is removed by knowing Y . It holds that
I(X;Y ) = I(Y ;X). Moreover, I(X;Y ) = 0 if and only if X
and Y are independent. There also exists a conditional version
of mutual information: if X,Y , and Z are three discrete random
variables, the conditional mutual information of X and Y given
Z is defined by

I(X;Y |Z) := H(X|Z) − H(X|Y,Z).

If X is an RN -valued random variable whose associated
probability measure has a density pX , its differential entropy
is defined by

h(X) := −
∫

RN

pX (x) log pX (x)dx

if the integral exists. Similarly to the discrete case, also a condi-
tional version of differential entropy, denoted by h(X|Y ), can
be defined. Moreover, we can introduce the mutual information
I(X;Y ) for two RN -valued random variables with densities in
an analogous way as in the discrete case.

Finally, we can also define the conditional entropy and the
mutual information for random variables of mixed type, i.e.,
we can talk about h(X|Y ), when X is continuous- and Y is
discrete-valued, for instance. In general, if X and Y are any two
random variables with values in X and Y , respectively, we can
define their mutual information by

I(X;Y ) := sup
Q 1 ,Q 2

I(Q1(X), Q2(Y ))

where the supremum is taken over all quantizers Q1 , Q2 (i.e.,
finite-valued measurable maps) on X and Y , respectively.
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III. DYNAMICAL SYSTEMS APPROACH

In order to use the concepts of topological and metric entropy,
defined for deterministic maps, we associate a shift map with
the given stochastic system (1). More precisely, we consider the
space XZ+ of all sequences in X , equipped with the product
topology. We write x̄ = (x0 , x1 , x2 , . . .) for the elements of
XZ+ and we fix the product metric

D(x̄, ȳ) :=
∞∑

t=0

1
2t

d(xt, yt)
1 + d(xt, yt)

(3)

where d(·, ·) is the given metric on X . A natural dynamical
system on XZ+ is the shift map θ : XZ+ → XZ+ , (θx̄)t ≡
xt+1 , which is continuous with respect to the product topology.
An analogous shift map is defined on W Z+ and denoted by ϑ.

In the following, we assume that the channel is noiseless. In
particular, its capacity is given by C = log |M|, where M =
M′ is the coding alphabet. We will derive lower bounds on C0
for the objectives (E1)–(E3).

Observing that the sequence of random variables (xt)t∈Z+

forms a Markov chain, when x0 is fixed, the following lemma
shows how a stationary measure of this Markov chain defines
an invariant measure for θ. Its proof is given in the Appendix.

Lemma 3.1: Let π be a stationary measure of the Markov
chain (xt)t∈Z+ . Then, an invariant Borel probability measure Θ
for θ is defined on cylinder sets by

Θ(B0 × B1 × · · · × Bn × X [n+1,∞))

:=
∫

B0 ×B1 ×···×Bn

π(dx0)P (dx1 |x0) . . . P (dxn |xn−1)

where B0 , B1 , . . . , Bn are arbitrary Borel sets in X . Here

P (xn+1 ∈ B|xn = x) = P (f(xn , w) ∈ B|xn = x)

= ν((fx)−1(B)).

The support of Θ is contained in the closure of the set of all
trajectories, i.e.,

suppΘ ⊂ clT

with

T :=
{

x̄ ∈ XZ+ : ∃wt ∈ W with xt+1 ≡ f(xt, wt), t ∈ Z+

}
.

We will also need the following characterization of topologi-
cal entropy.

Lemma 3.2: Let f : X → X be a homeomorphism on a
compact metric space (X, d). Fix ε > 0 and n0 ∈ N. For
n > n0 we say that a set E ⊂ X is (n, ε;n0)-separated
if d(fi(x), f i(y)) > ε for some i ∈ {n0 , n0 + 1, . . . , n − 1},
whenever x, y ∈ E with x �= y. We write rsep(n, ε;n0 , f) for
the maximal cardinality of an (n, ε;n0)-separated set. Then, for
any choice of n0(ε) ∈ N, ε > 0, we have

htop(f) = lim
ε↓0

lim sup
n0 (ε)<n→∞

1
n

log rsep(n, ε;n0(ε)). (4)

The proof of the above lemma can also be found in the
Appendix.

Theorem 3.3: Consider the estimation objective (E1):

sup
t≥T (ε)

d(xt, x̂t) ≤ ε a.s. (5)

Let C0 denote the smallest channel capacity above which this
objective can be achieved for every ε > 0 for a fixed initial mea-
sure π0 which is stationary under the Markov chain (xt)t∈Z+ .
Let Θ = Θ(π0) be the measure introduced in Lemma 3.1. Then,
the following holds: If suppΘ is not compact, we have C0 = ∞.
Otherwise we have

C0 ≥ htop(θ|suppΘ).

Proof: Assume that for some ε > 0, the objective (5) is
achieved by a coder-estimator pair via a noiseless channel of
capacity C = log |M|. Then, for every k ∈ N, we define the
set

Ek := {(x̂0 , x̂1 , . . . , x̂k−1) : qt ∈ M, 0 ≤ t ≤ k − 1}

of all possible estimation sequences of length k the estimator
can generate in the time interval [0, k − 1].

Assume to the contrary that there exists a measurable set
A ⊂ XZ+ of positive measure α := Θ(A) > 0 so that for every
x̄ = (xt)t∈Z+ ∈ A there is t ≥ T (ε) with d(xt, x̂t) > ε in case
the sequence (xt) is realized as a trajectory of the system. If G :
X × W Z+ → XZ+ is the map from the proof of Lemma 3.1,
mapping a pair (x0 , w̄) to the corresponding trajectory, then the
preimage G−1(A) is measurable in X × W Z+ with π0 × νZ+ -
measure α > 0. This contradicts the assumption that the almost
sure estimation objective (5) is achieved. Hence, the set

T̃ :=
{
x̄ ∈ XZ+ : d(xt, x̂t) ≤ ε for all t ≥ T (ε)

}

has measure one and consequently is dense in suppΘ.
Choose τ = τ(ε) large enough so that

∞∑

t=τ

1
2t

≤ ε.

Let E ⊂ suppΘ be a finite (k, 5ε;T (ε))-separated set for some
k > T (ε). Since T̃ is dense in suppΘ, a small perturbation
of E yields a (k, 5ε;T (ε))-separated set in T̃ with the same
cardinality as E (using that θ is continuous). Hence, we may
assume E ⊂ T̃ . We define a map α : E → Ek+τ by assign-
ing to (xt)t∈Z+ ∈ E the estimation sequence generated by the
estimator when it receives the signals qt = qt(x0 , . . . , xt) for
t = 0, 1, . . . , k + τ − 1.

Assuming α(x̄) = α(ȳ) for some x̄, ȳ ∈ E, we find for
T (ε) ≤ t ≤ k that

D(θt(x̄), θt(ȳ))

≤
τ−1∑

s=0

1
2s

d(xt+s , yt+s)
1 + d(xt+s , yt+s)

+
∞∑

s=τ

1
2s

≤
τ−1∑

s=0

1
2s

d(xt+s , x̂t+s) +
τ−1∑

s=0

1
2s

d(ŷt+s , yt+s) + ε

≤ 2ε + 2ε + ε = 5ε
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implying x̄ = ȳ, since E is (k, 5ε;T (ε))-separated. Hence, the
map α is injective.

The set suppΘ is a closed subset of the complete metric space
(XZ+ ,D). Hence, it is also a complete metric space. If we as-
sume that suppΘ is not compact, it thus follows that suppΘ is
not totally bounded, implying that (k, 5ε;T (ε))-separated sub-
sets of suppΘ of arbitrarily large (finite) cardinality exist, when
ε is sufficiently small. Hence, Ek+τ must be infinite, leading
to the contradiction |M| = ∞. Consequently, in this case, the
estimation problem cannot be solved via a channel of finite
capacity.

Now assume that suppΘ is compact. Choosing a maximal
(k, 5ε;T (ε))-separated set E for the dynamical system θ|suppΘ :
suppΘ → suppΘ, we obtain the inequality

rsep(k, 5ε;T (ε)) ≤ |Ek+τ | ≤ |M|k+τ .

This implies

lim sup
k→∞

1
k

log rsep(k, 5ε;T (ε)) ≤ log |M| = C.

Using Lemma 3.2, the result follows by letting C → Cε and
ε ↓ 0. �

Remark 3.4: To make the statement of the theorem clearer,
let us consider the two extreme cases when there is no noise and
when there is only noise:

i) If the system is deterministic, i.e., xt+1 = f(xt) for a
homeomorphism f : X → X of a compact metric space
X , then π0 is an invariant measure of f . Moreover,
P (xt ∈ B|xt−1 = x) = 1 if f(x) ∈ B and 0 otherwise,
implying

Θ(B0 × B1 × · · · × Bn × X [n+1,∞))

= π0
(
B0 ∩ f−1(B1) ∩ f−2(B2) ∩ . . . ∩ f−n (Bn )

)
.

From this expression, we see that the support of Θ is
contained in the set T of all trajectories of f (which in
this case coincides with its closure), as already proved in
Lemma 3.1. The map h : T → X defined by h(x̄) := x0 ,
is easily seen to be a homeomorphism, which conjugates
θ|T and f . That is, the following diagram commutes:

T θ−→ T
h ↓ ↓ h

X −→
f

X

Since h∗Θ = π0 and conjugate systems have the same
entropy, our theorem implies

C0 ≥ htop(f, suppπ0). (6)

The right-hand side of this inequality is finite under
mild assumptions, e.g., if f is Lipschitz continuous on
suppπ0 and suppπ0 has finite lower box dimension (see
[2, Thm. 6.1.2]). These conditions are in particular satis-
fied when f is a diffeomorphism on a finite-dimensional
manifold. However, one should be aware that even on a
compact interval, there exist continuous maps with in-
finite topological entropy on the support of an invariant

measure. The lower bound (6) has already been derived
in [20, Thm. 3.1], and in fact for the deterministic case
considered here the bound was shown to be tight.

ii) Assume that X = W is compact and the system is given
by xt+1 = wt , i.e., the trajectories are only determined by
the noise. In this case, with π0 := ν, the measure Θ is the
product measure νZ+ . Hence, C0 is bounded below by
the topological entropy of the shift on W Z+ restricted to
suppνZ+ = (suppν)Z+ . This number is finite if and only
if suppν is finite and in this case is given by log |suppν|.

If the system is not deterministic, then usually C0 = ∞. In
fact, this is always the case if the estimator is able to recover
the noise to a sufficiently large extent. The following corollary
treats the case, when the noise can be recovered completely
from the state trajectory.

Corollary 3.5: Additionally to the assumptions in Theorem
3.3, suppose that W and X are compact and fx : W → X
is invertible for every x ∈ X so that (x, y) �→ (fx)−1(y) is
continuous. Then, for (E1),

C0 ≥ htop(Φ|supp(π0 ×ν Z+ )) ≥ htop(ϑ|suppν Z+ ) (7)

where Φ : X × W Z+ → X × W Z+ is the skew-product map
(x, w̄) �→ (fw 0 (x), ϑw̄). As a consequence, C0 = ∞ whenever
suppν contains infinitely many elements.

Proof: We consider the map h : XZ+ → W Z+ , x̄ �→ w̄ =
(wt)t∈Z+ with

wt = (fxt )−1(xt+1).

If we equip W Z+ with the product topology, h becomes continu-
ous. Indeed, if the distance of two points x̄1 , x̄2 ∈ XZ+ is small,
then the distances dX (x̄1

t , x̄
2
t ) are small for finitely many values

of t. Hence, by the uniform continuity of (x, y) �→ f−1
x (y) on the

compact space X × X , also the distances dW (h(x̄1)t , h(x̄2)t)
can be made small for sufficiently many values of t, guarantee-
ing that D(h(x̄1), h(x̄2)) becomes small, where D is a product
metric on W Z+ .

The map G : X × W Z+ → XZ+ , used in the proof of
Lemma 3.1, satisfies

h(G(x0 , w̄)) = w̄ for all (x0 , x̄) ∈ X × W Z+

because we can write

G(x0 , w̄) = (x0 , f
x0 (w0), fx1 (w1), fx2 (w2), . . .).

Consequently, G—as a map from X × W Z+ to the space T of
trajectories—is invertible with

G−1(x̄) = (x0 , h(x̄)).

From the assumptions, it follows that G is continuous, hence
G is a homeomorphism and T is compact. By the proof of
Lemma 3.1, we have θ ◦ G = G ◦ Φ, where Φ is the skew-
product map Φ(x, w̄) = (f(x,w0), ϑw̄) and G∗(π0 × νZ+ ) =
Θ. Hence, G is a topological conjugacy between θ|suppΘ and
Φ|supp(π0 ×ν Z+ ) , implying

C0 ≥ htop(θ|suppΘ) = htop(Φ|supp(π0 ×ν Z+ )).
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Since the projection map π : (x, w̄) �→ w̄ exhibits ϑ as a topo-
logical factor of Φ and π∗(π0 × νZ+ ) = νZ+ , the second in-
equality in (7) follows. �

Example 3.6: Let X = W = S1 = R/Z. Let f(x,w) =
x + w mod 1 and let π0 = ν be the normalized Lebesgue mea-
sure on S1 . In this case, the map fx : S1 → S1 , w �→ x + w,
is obviously invertible and (x, y) �→ (fx)−1(y) = x − y is con-
tinuous. Hence, C0 = ∞ for the estimation objective (E1).

Theorem 3.7: Consider the estimation objective (E2)

P

(
lim sup

t→∞
d(xt, x̂t) ≤ ε

)
= 1. (8)

Let C0 denote the smallest channel capacity above which this
objective can be achieved for every ε > 0 for a fixed initial
measure π0 which is stationary and ergodic under the Markov
chain (xt)t∈Z+ . Let Θ = Θ(π0) be the measure introduced in
Lemma 3.1. Then, if suppΘ is compact, we have

C0 ≥ hΘ(θ).

Proof: First observe that the ergodicity of π0 implies the er-
godicity of Θ. Indeed, it is well known that the product measure
π0 × νZ+ is ergodic for the skew-product Φ if π0 is ergodic
(cf. [22]). Since G∗(π0 × νZ∗) = Θ and θ ◦ G = G ◦ Φ, this
implies the ergodicity of Θ. Now consider a noiseless channel
with input alphabetM and a pair of coder and decoder/estimator
which solves the estimation problem (E2) for some ε > 0. For
every x̄ ∈ XZ+ and δ > ε, let

T (x̄, δ) := inf
{

k ∈ N : sup
t≥k

d(xt, x̂t) ≤ δ

}

where the infimum is defined as +∞ if the corresponding set is
empty. Note that T (x̄, δ) depends measurably on x̄. Define

BK (δ) := {x̄ ∈ suppΘ : T (x̄, δ) ≤ K} ∀δ > ε,K ∈ N

and observe that these sets are measurable. From (8), it follows
that for every δ > ε

lim
K→∞

Θ(BK (δ)) = Θ

(
⋃

K∈N

BK (δ)

)

= 1.

Fixing a K large enough so that Θ(BK (δ)) > 0, Katok’s char-
acterization of metric entropy yields the assertion, which is
proved with the same arguments as in the proof of Theorem 3.3,
using the simple fact a maximal (n, ε)-separated set contained
in some set K also (n, ε)-spans K. �

In the following, we consider (E3). To obtain a lower bound,
we restrict the encoder to have finite memory and be periodic.

Theorem 3.8: Consider the estimation objective (E3)

lim sup
t→∞

E[d(xt, x̂t)2 ] ≤ ε (9)

for an initial measure π0 which is stationary and ergodic under
the Markov chain (xt)t∈Z+ . Additionally, assume that there
exists τ > 0 so that the coder map δt is of the form

qt = δt(x[t−τ +1,t]) (10)

and is periodic so that δt+τ ≡ δt . Further assume that the esti-
mator map is of the form

x̂t = γt(q[t−τ +1,t])

and also γt+τ ≡ γt . Then, if the support of the measure
Θ = Θ(π0), introduced in Lemma 3.1, is compact, the smallest
channel capacity C0 above which (E3) can be achieved for every
ε > 0 satisfies

C0 ≥ hΘ(θ).

Proof: First note that we would obtain a lower bound on C0
if we allowed the periodic encoders to be of the form

qt = δt(x[t−τ +1,∞)) (11)

i.e., if we allow the encoder to have noncausal access to the
realizations of xt . Note that every encoder policy of the form
(10) would be of the form (11). We keep the structure of the
decoder as is.

The criterion (E3) considered in this article implies (E3) con-
sidered in [20] with the distortion metric d being the product
metric D introduced in (3) for the dynamical system θ and
p = 2: This follows since lim supt→∞ E[(d(xt, x̂t)2 ] ≤ ε im-
plies that with x̄t = (xt, xt+1 , . . .) and ˆ̄xt = (x̂t , x̂t+1 , . . .), we
have

lim sup
t→∞

E[D(x̄t , ˆ̄xt)2 ]

= lim sup
t→∞

E

⎡

⎣

( ∞∑

i=0

2−i d(xt+i , x̂t+i)
1 + d(xt+i , x̂t+i)

)2
⎤

⎦

≤ lim sup
t→∞

E

⎡

⎣4

( ∞∑

i=0

2−(i+1) d(xt+i , x̂t+i)
1 + d(xt+i , x̂t+i)

)2
⎤

⎦

≤ 4 lim sup
t→∞

∞∑

i=0

2−(i+1)E

[(
d(xt+i , x̂t+i)

1 + d(xt+i , x̂t+i)

)2
]

(12)

≤ 4
∞∑

i=0

2−(i+1) lim sup
t→∞

E

[(
d(xt+i , x̂t+i)

1 + d(xt+i , x̂t+i)

)2
]

≤ 4
∞∑

i=0

2−(i+1) lim sup
t→∞

E

[(
d(xt+i , x̂t+i)2

1

)]

= 4
∞∑

i=0

2−(i+1) lim sup
t→∞

E[d(xt+i , x̂t+i)2 ]

≤ 4
∞∑

i=0

2−(i+1)ε

= 4ε =: ε̄. (13)

In particular, ε̄ → 0 as ε → 0. Thus, if (E3) can be achieved for
every ε > 0, (E3) considered in [20] can also be achieved for
every ε > 0. Here, we apply Jensen’s inequality in (12).

Thus, if the encoder is of the form (11), the problem can
be viewed as an instance of [20, Thm. 5.2] for the dynamical
system θ.
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Under the stated periodicity assumption and (11), [20,
Thm. 5.2] directly implies that C0 ≥ hΘ(θ). �

Three remarks are in order.
Remark 3.9: It is worth noting here that for a determin-

istic dynamical system, the property of being ergodic is
typically very restrictive; however, for a stochastic system, er-
godicity is often very simple to satisfy: the presence of noise
often leads to strong mixing conditions which directly leads to
ergodicity.

Remark 3.10: The discussion in Theorem 3.8 leads to an
interesting relation between the classical information-theoretic
problem of optimally encoding (noncausally) sequences of ran-
dom variables and metric entropy of an infinite-dimensional
dynamical system defined via the shift operator. A close look
at the proof of [20, Thm. 5.1] reveals that under a stationarity
and ergodicity assumption, when the channel is noise-free, the
lower bound presented in Theorem 3.8 is essentially achievable,
provided that the encoder has noncausal access to the source
realizations and in particular a large enough look-ahead is suf-
ficient for an approximately optimal performance. Note though
that the decoder is still restricted to be zero-delay.

Remark 3.11: Besides our results in [20], a related study to
the approach of this section is due to Savkin [41]. This article is
concerned with nonlinear systems of the form

x(t + 1) = F (x(t), ω(t))

where ω(t) is interpreted as an uncertainty input or a distur-
bance. However, no statistical structure is imposed on ω so that
the system can be regarded as deterministic (thus, the formu-
lation is distribution-free). A characterization of the smallest
channel capacity C0 above which the state x(t) can be esti-
mated with arbitrary precision and for every initial state x(0)
in a specified compact set via a noiseless channel is given by
[41, Thm. 3.1]. A close inspection of this result shows that it
characterizes C0 precisely as the topological entropy of the as-
sociated shift operator acting on system trajectories. Moreover,
[41, Thm. 3.2] shows that under mild assumptions on the system,
the entropy of this operator is infinite, and hence observation via
a finite-capacity channel is not possible.

IV. INFORMATION-THEORETIC AND

PROBABILITY-THEORETIC APPROACH

In this section, we consider a much broader class of chan-
nels, the so-called Class A type channels (see [51, Def. 8.5.1]).
We restrict ourselves to systems with state-space X = RN and
provide lower bounds of the channel capacity for the objectives
(E2) and (E3), using information-theoretic methods.

Definition 4.1: A channel is said to be of Class A type, if
1) it satisfies the following Markov chain condition:

q′t ↔ qt , q[0,t−1], q
′
[0,t−1] ↔ {x0 , ws : s ≥ 0},

i.e., almost surely, for all Borel sets B,

P (q′t ∈ B|qt , q[0,t−1], q
′
[0,t−1] , x0 , {ws}s≥0)

= P (q′t ∈ B|qt , q[0,t−1], q
′
[0,t−1])

for all t ≥ 0, and

2) its capacity with feedback is given by

C = lim
T →∞

max
{P (qt |q [ 0 , t−1 ] ,q

′
[ 0 , t−1 ] ), 0≤t≤T −1}

1
T

I(q[0,T −1] → q′[0,T −1])

where the directed mutual information is defined by

I(q[0,T −1] → q′[0,T −1]) :=
T −1∑

t=1

I(q[0,t] ; q′t |q′[0,t−1])

+ I(q0 ; q′0)

Discrete noiseless channels and memoryless channels belong
to this class; for such channels, feedback does not increase
the capacity [5]. Class A type channels also include finite-state
stationary Markov channels which are indecomposable [38] and
non-Markov channels which satisfy certain symmetry properties
[42]. Further examples can be found in [6] and [45].

Theorem 4.2: Consider system (1) with state-space X =
RN . Suppose that

lim sup
T →∞

1
T

T −1∑

t=1

h(xt |xt−1) > −∞

and h(xt) < ∞ for all t ∈ Z+ . Then, the smallest channel ca-
pacity Cε above which (E3) can be achieved over a Class A type
channel satisfies

Cε ≥
(

lim sup
T →∞

1
T

T −1∑

t=1

h(xt |xt−1)

)

− N

2
log(2πeε).

This, in particular, implies C0 = ∞ for the smallest channel
capacity C0 above which (E3) can be achieved for every ε > 0.
That is, (E3) cannot be achieved for every ε > 0 over a finite-
capacity Class A type channel.

Proof: Let (εt)t∈Z+ be a sequence of nonnegative real
numbers so that E[‖xt − x̂t‖2 ] ≤ εt for all t ∈ Z+ and
lim supt→∞ εt ≤ ε. Observe that for every t ≥ 1, we have

I(q′t ; q[0,t]|q′[0,t−1])

= H(q′t |q′[0,t−1]) − H(q′t |q[0,t], q
′
[0,t−1])

= H(q′t |q′[0,t−1]) − H(q′t |q[0,t], xt , q
′
[0,t−1])

≥ H(q′t |q′[0,t−1]) − H(q′t |xt, q
′
[0,t−1])

= I(xt ; q′t |q′[0,t−1]). (14)

Here, (14) follows from the assumption that the channel is of
Class A type. Define

RT := max
P ( q t |q [ 0 , t−1 ] , q ′

[ 0 , t−1 ]
)

0≤t≤T −1

1
T

T −1∑

t=0

I(q′t ; q[0,t]|q′[0,t−1]).
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Now consider the following identities and inequalities:

lim
T →∞

RT

≥ lim sup
T →∞

1
T

(
T −1∑

t=1

I(xt ; q′t |q′[0,t−1])) + I(x0 ; q′0)

)

= lim sup
T →∞

1
T

T −1∑

t=1

(
h(xt |q′[0,t−1]) − h(xt |q′[0,t])

)

≥ lim sup
T →∞

1
T

T −1∑

t=1

(
h(xt |x[0,t−1], q

′
[0,t−1]) − h(xt |q′[0,t])

)

= lim sup
T →∞

1
T

T −1∑

t=1

h(xt |x[0,t−1], q
′
[0,t−1]) − h(xt − x̂t |q′[0,t])

≥ lim sup
T →∞

1
T

T −1∑

t=1

(
h(xt |x[0,t−1], q

′
[0,t−1]) − h(xt − x̂t)

)

≥ lim sup
T →∞

1
T

T −1∑

t=1

(h(xt |x[0,t−1], q
′
[0,t−1]) −

N

2
log(2πeεt))

= lim sup
T →∞

1
T

(
T −1∑

t=1

h(xt |xt−1)

)

− N

2
log(2πeε). (15)

Here, the second inequality uses the property that entropy
decreases under conditioning on more information. The
second equality follows from the fact that x̂t is a func-
tion of q′[0,t] , and the last inequality follows from that
fact that among all real random variables X that satisfy
a given second moment constraint E[X2 ] ≤ ε, a Gaussian
maximizes the entropy and the differential entropy in this
case is given by 1

2 log(2πeε). Using the fact that for an
N -dimensional vector X = (X1 , . . . , XN )T , h(X) =
h(X1) +

∑N
i=2 h(Xi |X[1,i−1]) ≤

∑N
i=1 h(Xi), it follows with

E[‖xt − x̂t‖2 ] ≤ εt that h(xt − x̂t) ≤ N
2 log(2πeεt). The final

equality then follows from the fact that conditioned on xt−1 , xt

and q′[0,t−1] are independent. For the final result, in (15), taking
the limit as ε → 0, log(ε) → −∞, and C0 = ∞ follows. �

Theorem 4.3: Suppose that X ⊂ RN and the system given
by xt+1 = f(xt, wt) satisfies

P (xt+1 ∈ B|xt = x) ≤ Kλ(B)

for all Borel sets B ⊂ RN , where λ denotes the Lebesgue mea-
sure, K ∈ R+ , and wt is an i.i.d. noise process. Then, the small-
est channel capacity C0 above which (E2) can be achieved for
every ε > 0 satisfies C0 = ∞. That is, (E2) cannot be achieved
for every ε > 0 over a finite-capacity Class A type channel.

A special case for the above is a system of the form

xt+1 = f(xt) + wt

where wt ∼ ν with the noise measure ν admitting a bounded
density function.

Proof: Given a finite alphabet channel with |M′| < ∞, for a
given time t > 0 under any encoding and decoding policy, there
exists a finite partition of the state-space X for encoding xt

leading to x̂t . Thus, there exists ε̄ > 0 so that for all ε ∈ (0, ε̄),
for each set

At(q′0 , . . . , q
′
t) :=

{
x ∈ RN : d

(
x, x̂t(q′0 , . . . , q

′
t−1 , q

′
t)
)
≥ ε
}

where q′0 , . . . , q
′
t ∈ M′, we find that

P
(
xt ∈ At(q′0 , . . . , q

′
t)
∣
∣x[0,t−1], q

′
[0,t−1]

)

=
∑

q ′∈M′

P
(
q′t = q′|x[0,t−1], q

′
[0,t−1]

)

× P
(
xt ∈ At(q′0 , . . . , q

′
t)
∣
∣x[0,t−1], q

′
[0,t−1], q

′
t = q′

)

≥ 1 −
∑

q ′∈M′

P
(
q′t = q′|x[0,t−1], q

′
[0,t−1]

)

× P
(
d(xt, x̂t(q′0 , . . . , q

′
t−1 , q

′))<ε
∣
∣x[0,t−1], q

′
[0,t−1], q

′
t =q′

)

≥ 1 − |M′|Kλ(Bε(0)) > 0.

This implies that

P

(
xt ∈ At(q′0 , . . . , q

′
t)
∣
∣
∣
∣x[0,t−1], q

′
[0,t−1]

)
> 0 (16)

uniform over all realizations of x[0,t−1], q
′
[0,t−1] .

Let

η :=
∞∑

t=1

1{xt ∈At (q ′
0 ,...,q ′

t )}.

Our goal is to show that η = ∞ almost surely, leading to the
desired conclusion. Let

τ(1) = min{t > 0 : xt ∈ At(q′0 , . . . , q
′
t)}

and for z > 1, z ∈ N, let

τ(z) = min{t > τ(z − 1) : xt ∈ At(q′0 , . . . , q
′
t)}.

It follows that P (τ(1) < ∞) = 1 by a repeated use of (16), since
the event τ(1) = ∞ would imply that the event (whose prob-
ability is lower bounded by (16)) would be avoided infinitely
many times, leading to a zero measure. Thus, P (η ≥ 1) = 1.
By a repeated use of (16) and induction if P (η ≥ k − 1) = 1,
we find that

P (η ≥ k) = P (η ≥ k, η ≥ k − 1)

= P (τ(1) < ∞|Fτ (k−1))P (η ≥ k − 1) = 1

where Fτ (k−1) is the σ-field generated by {xs, q
′
s} up to time

τ(k − 1). Thus, for every k ∈ N, P (η ≥ k) = 1, and it follows
by continuity in probability that P (η = ∞) = limk→∞ P (η ≥
k) = 1. Hence, for any finite communication rate, almost sure
boundedness is not possible for arbitrarily small ε > 0. �

V. ACHIEVABILITY BOUNDS

A. Coding of Deterministic Dynamical Systems Over
Noisy Communication Channels

In this section, we show that for a noise-free system, a discrete
memoryless noisy communication channel is no obstruction for

Authorized licensed use limited to: Queen's University. Downloaded on September 16,2020 at 08:12:05 UTC from IEEE Xplore.  Restrictions apply. 
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achieving the objectives (E2) and (E3) with finite capacity. More
precisely, we prove the following theorem.

Theorem 5.1: Consider a nonlinear deterministic system
xt+1 = f(xt) given by a continuous map f : X → X on a
compact metric space X , estimated via a discrete memoryless
channel (DMC). Then, for the asymptotic estimation objectives
(E2) and (E3), the smallest channel capacity C0 above which
these objectives can be achieved for every ε > 0 satisfies

C0 ≤ htop(f).

Proof: It suffices to prove the result for (E2), since for a com-
pact metric space, (E2) implies (E3); therefore, the construction
below also applies for the objective (E3).

Without loss of generality, we may assume that htop(f) < ∞,
since otherwise the statement trivially holds. Then, it suffices to
show that for any ε > 0, the estimation objective can be achieved
whenever the channel capacity satisfies C > htop(f). Since the
capacity of a DMC can take any positive value, it follows that
Cε ≤ htop(f) for every ε > 0 and thus C0 ≤ htop(f).

Now, consider a channel with capacity C > htop(f) and fix
ε > 0. Recall that the input alphabet is denoted by M and the
output alphabet by M′. By the random coding construction of
Shannon [9], we can achieve a rate R satisfying

htop(f) < R < C (17)

with a sequence of increasing sets {1, . . . , Mn} of input mes-
sages so that for all n

2nR ≤ Mn and lim
n→∞

1
n

log Mn = C. (18)

Furthermore, there exists a sequence of encoders En :
{1, . . . , Mn} → Mn , yielding codewords xn (1), . . ., xn (Mn ),
and a sequence of decoders Dn : (M′)n → {1, . . . ,Mn} so
that

P (Dn (q′[0,n−1]) �= c|q[0,n−1] = xn (c)) ≤ e−nE (R)+o(n)

uniformly for all c ∈ {1, . . . , Mn}. Here, o(n)
n → 0 as n →

∞ and E(R) > 0. In particular, we observe that with cn ∈
{1, . . . , Mn} being the message transmitted and Dn (q′[0,n−1])
the decoder output

P (Dn (q′[0,n−1]) �= cn )

=
∑

c∈{1,...,Mn }
P (Dn (q′[0,n−1]) �= c|q[0,n−1] = xn (c))

× P (q[0,n−1] = xn (c))

≤ e−nE (R)+o(n) .

This also implies that the bound holds even when the messages
to be transmitted are not uniformly distributed. Thus, for the
sequence of encoders and decoders constructed above, we have

∑

n

P (Dn (q′[0,n−1]) �= cn ) ≤
∑

n

e−nE (R)+o(n) < ∞.

The Borel–Cantelli Lemma then implies

P
({

Dn (q′[0,n−1]) �= cn infinitely often
})

= 0. (19)

Now we choose δ ∈ (0, ε) so that, by uniform continuity,

d(x, y) < δ ⇒ d(f(x), f(y)) < ε for all x, y ∈ X.
(20)

Furthermore, we choose N sufficiently large so that

rspan(n, δ) ≤ Mn for all n ≥ N. (21)

This is possible, because by (17) and (18), for every n ∈ N, we
have

lim sup
n→∞

1
n

log rspan(n, δ) ≤ htop(f)

< R =
1
n

log 2nR ≤ 1
n

log Mn.

Let Sj be a (j, ε)-spanning set of cardinality rspan(j, δ) and fix
injective functions

ιj : Sj → {1, . . . , Mj}.

In fact, by possibly enlarging the set Sj , we can assume that ιj
is bijective. For any a ∈ X , let x∗

j (a) denote a fixed element of
Sj satisfying d(ft(x∗(a)), f t(a)) ≤ δ for 0 ≤ t ≤ j − 1.

Define sampling times by

τ0 := 0 and τj+1 := τj + j + 1 for j ≥ 0.

In the following, we specify the coding scheme. In this coding
scheme, the encoder from τj to τj+1 − 1 encodes the informa-
tion regarding the orbit of the state from τj+1 to τj+2 − 1. For
all j ≥ N , at time τj , use the input ιj+1(x∗

j+1(f
j+1(xτj

)))
for the encoder, where xτj

is the state at time τj . Then,
xj+1(ιj+1(x∗

j+1(f
j+1(xτj

)))) is sent during the next j + 1
units of time. This is possible by (21). For j < N , it is not
important what we transmit.

Let the estimator apply x∗
j+1 ◦ ι−1

j+1 to the output of
the decoder, obtaining an element yj+1 ∈ Sj+1 , and use
yj+1 , f(yj+1), . . . , f j (yj+1), f j+1(yj+1) as the estimates dur-
ing the forthcoming time interval of length τj+2 − τj+1 =
τj+1 − τj + 1 = j + 2. Then, δ < ε (20), and the fact that Sj+1
is (j + 1, δ)-spanning implies that the desired estimation accu-
racy is achieved, provided that there was no error in the trans-
mission. Now (19) implies that after a finite random time, there
are no more errors in the transmission. By the analysis above,
the errors will be uniformly bounded by ε. Hence, the objective
(E2) is achieved. �

The proof above crucially depends on the fact that the system
is deterministic. The theorem is essentially a possibility result
and we note that the proof does not make use of the fact that the
encoder has access to the realizations of the channel output. For
linear systems, a constructive proof is given in [31, Thm. 6.4.1].
We present this result for completeness. It provides a positive
answer to the question whether the estimation objective (E2)
can be achieved, when no noise is present in the system.

Theorem 5.2: Consider the noiseless linear system

xt+1 = Axt (22)

with A ∈ RN ×N, estimated over a memoryless erasure channel
with finite capacity. Then, the smallest channel capacity C0
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above which (E2) can be achieved for every ε > 0 satisfies

C0 ≤
N∑

i=1

max{0, log�|λi |�} (23)

where λ1 , . . . , λN are the eigenvalues of A.
For completeness, we also note that [40, Cor. 5.3 and

Thm. 4.3] shows that for a discrete memoryless channel, it
suffices that C >

∑
|λi |≥1 log |λi | for the existence of encoder

and controller policies leading to almost sure stability.
Remark 5.3: An implication on the achievability for

noncausal codes over discrete memoryless channels: In
Section III, we utilized the fact that one can view a stochastic
dynamical system as a deterministic one using the shift operator.
Building on a similar argument as that in the proof of Theorem
3.8, it can be shown that (E2) considered in this article implies
and is implied by (E2) considered in [20] with the distortion met-
ric d being the product metric D introduced in (3) for the dynam-
ical system θ. Therefore, provided that the encoder has access
to future realizations of the state sequence, the proof of Theo-
rem 5.1 implies an achievability result: If the encoder has non-
causal access to the source realizations, for (E2), we have C0 ≤
htop(θ|suppμ), and this can be achieved through the construction
in the proof of Theorem 5.1 using an encoder which has non-
causal access to the future state realizations. Note though that the
decoder is still restricted to be zero-delay. We note that in tradi-
tional Shannon theory, block codes are allowed to be noncausal.

VI. EXAMPLES

Example 6.1: Consider the diffeomorphism fA : T 2 → T 2

on the 2-torus T 2 = R2/Z2 , induced by the linear map

A =
(

2 1
1 1

)
(24)

i.e., fA (x + Z2) = Ax + Z2 . Note that the inverse of fA is
given by fA−1 , which is well defined, since det A = 1. The map
fA is known as Arnold’s Cat Map, and is one of the simplest
examples of an Anosov diffeomorphism.

Since det DfA (x) ≡ det A ≡ 1, the map fA is area-
preserving. The eigenvalues of the matrix A are given by

γ1 =
3
2
− 1

2

√
5 and γ2 =

3
2

+
1
2

√
5

and satisfy |γ2 | > 1 > |γ1 |. It is well known that both the topo-
logical entropy and the metric entropy of fA with respect to
Lebesgue measure are given by log |γ2 | > 0. Hence, Theorem
5.1 yields

C0 ≤ log
∣
∣
∣
∣
3
2

+
1
2

√
5
∣
∣
∣
∣ ≈ 1.3885

for (E2) to be achieved over a DMC.
Now, suppose we have additive noise for the Cat Map so

that xt+1 = f(xt, wt) with f(x,w) = Ax + w (mod Z2), with
w ∼ ν which admits a density supported on T 2 . In this case, the
map fx : T 2 → T 2 , w �→ Ax + w, is invertible and (x, y) �→
(fx)−1(y) = y − Ax is continuous. By Corollary 3.5, C0 =
∞ for the estimation objective (E1), under a stationary initial

measure. For the objective (E2), it can be shown that, under
corresponding initial measure conditions, Theorem 3.7 leads to
C0 = ∞.

In the following, we consider a system without noise for
which an explicit estimate for the metric entropy is available.

Example 6.2: We consider the map

f(x, y) = (5 − 0.3y − x2 , x), f : R2 → R2 .

There exists a natural (physical) invariant measure π0 on the
nonwandering set of f , i.e., the set of all points (x, y) so that for
every neighborhood U of (x, y), there is n ≥ 1 with fn (U) ∩
U �= ∅. A numerical approximation of the metric entropy hπ0 (f)
is given in [8, Ex. 6.4], namely

hπ0 (f) ≈ 0.655.

According to Theorems 3.7 and 3.8, hπ0 (f) ≤ C0 for the esti-
mation objectives (E2) and (E3).

VII. DISCUSSION AND CONCLUDING REMARKS

In this article, we considered three estimation objectives for
stochastic nonlinear systems xt+1 = f(xt, wt) with i.i.d. noise
(wt), assuming that the estimator receives state information via
a noisy channel of finite capacity.

1) For noiseless channels, assuming that the initial mea-
sure π0 is stationary, we proved that C0 is bounded
below by either the topological or the metric entropy
of a shift dynamical system on the space of trajectories
(Theorems 3.3, 3.7, and 3.8).

2) For systems on Euclidean space and noisy chan-
nels, we provided information-theoretic and probability-
theoretic conditions enforcing C0 = ∞. In particular,
Theorem 4.2 shows that C0 = ∞ for the quadratic sta-
bility objective, whenever

lim sup
T →∞

1
T

T −1∑

t=1

h(xt |xt−1) > −∞. (25)

We have a corresponding negative result under (E2) in
Theorem 4.3 for noisy systems which are sufficiently
irreducible. Since h(xt |xt−1) is a measure for the un-
certainty of xt given xt−1 , condition (25) means that the
noise on the long run (in average) influences the state
process in a substantial way. Similarly to the results in
Section III, this means that the noise makes the space
of relevant trajectories too large (or too complicated) to
estimate the state with arbitrarily small error over a finite-
capacity channel.

3) Compared with our earlier work [20], our results reveal
that the rate requirements are not robust with respect to
the presence of noise: That is, even an arbitrarily small
noise level may lead to drastic effects in the rate re-
quirements. However, the metric or topological entropy
bounds are always present and our lower bounds reduce
to those established in [20]. We also note that the metric
entropy definition for random dynamical systems [22] in
the ergodic theory literature is not the answer to the op-
erational questions we proposed in this article, unlike the
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one for the deterministic case which precisely answered
the operational question related to (E2).

4) In Section V-A, we assumed that the system is determin-
istic with a compact state-space, but the channel is noisy.
We proved that in this case, C0 is bounded from above by
the topological entropy of the system for the asymptotic
almost sure objective (thus, leading to an achievability re-
sult). Our result strictly generalizes the previously known
results in the literature which have considered only linear
systems, to our knowledge.

5) Some of the ideas used in this article can also be applied to
the study of stochastic stabilization over digital channels
for noisy nonlinear systems of the form

xt+1 = f(xt, wt , ut)

with ut being a control variable. The preprint [21] in-
troduces a notion of stabilization entropy that is tai-
lored to derive lower bounds on the necessary chan-
nel capacity for the control objective of generating an
asymptotically mean stationary state process. This no-
tion of entropy combines the idea of invariance entropy
[4], [18] with Katok’s characterization of metric entropy
used in Section III.

APPENDIX

This Appendix contains the proofs of Lemmas 3.1 and 3.2,
used in Section III.

Proof: (of Lemma 3.1) We consider the map

G : X × W Z+ → XZ+

which maps a pair (x0 , w̄) with w̄ = (wt)t∈Z+ to the trajec-
tory (xt)t∈Z+ obtained by xt+1 := f(xt, wt). We claim that
this map is measurable and its associated push-forward operator
on measures maps π × νZ+ to Θ. To prove that G is measur-
able, consider a cylinder set A = B0 × · · · × Bn × X [n+1,∞)

in XZ+ . Then

G−1(A)

= {(x0 , w̄) : x0 ∈ B0 , G(x0 , w̄)1 ∈ B1 , . . . , G(x0 , w̄)n ∈ Bn}.

Hence, G−1(A) can be expressed as the preimage of B0 × · · · ×
Bn ⊂ Xn+1 under the map

(x0 , w̄) �→ (x0 , fw 0 (x0), fw 1 ◦ fw 0 (x0), . . . , fwn −1

◦ · · · ◦ fw 0 (x0)).

To show that this map is measurable, it suffices to show that each
component is a measurable map. This follows from the fact that
the projection W Z+ → Wn+1 to the first n + 1 components is
measurable and f is measurable. Hence, we have proved that G
is measurable. To see that G∗(π × νZ+ ) = Θ, observe that for

a set of the form A = B0 × B1 × X [2,∞) , we have

π × νZ+ ({(x0 , w̄) : x0 ∈ B0 , fw 0 (x0) ∈ B1})

=
∫

X

∫

W Z+
νZ+ (dw̄)π(dx0)1B0 (x0)1B1 (fw 0 (x0))

=
∫

B0

π(dx0)
∫

W

ν(dw)1B1 (fw (x0))

=
∫

B0

π(dx0)ν({w ∈ W : fw (x0) ∈ B1})

= Θ(B0 × B1 × X [2,∞)). (26)

For more general cylinder sets, the claim follows inductively.
The fact that suppΘ is contained in clT follows from:

Θ(clT ) = G∗[π × νZ+ ](clT ) = π × νZ+ (G−1(clT ))

≥ π × νZ+ (G−1(T ))

= π × νZ+ (G−1(G(X × W Z+ )))

π × νZ+ (X × W Z+ ) = 1.

Finally, we show that Θ is θ-invariant. To this end, note that the
map Φ : X × W Z+ → X × W Z+ , (x, w̄) �→ (f(x,w0), ϑw̄),
satisfies θ ◦ G = G ◦ Φ. Using that

π × νZ+ (Φ−1(A × B))

= π × νZ+ ({(x0 , w̄) : fw 0 (x0) ∈ A, ϑw̄ ∈ B})

= π × νZ+

(
⋃

x0 ∈X

{x0} × ((fx0 )−1(A) × B)

)

=
∫

X

π(dx0)ν({w : f(x0 , w) ∈ A})νZ+ (B)

= νZ+ (B)
∫

X

π(dx)P (x,A)

= π(A)νZ+ (B) = π × νZ+ (A × B)

i.e., Φ∗(π × νZ+ ) = π × νZ+ , we find that

θ∗Θ = θ∗G∗(π × νZ+ ) = G∗Φ∗(π × νZ+ )

= G∗(π × νZ+ ) = Θ

completing the proof. �
Proof: (of Lemma 3.2) Any (n, ε;n0(ε))-separated set is

trivially (n, ε)-separated, hence rsep(n, ε) ≥ rsep(n, ε;n0(ε)),
implying the inequality “≥” in (4). Conversely, assume that E
is (n, ε)-separated and put E′ := f−n0 (ε)(E). Then, |E′| = |E|
and E ′ is (n0(ε) + n, ε;n0(ε))-separated. This implies

n + n0(ε)
n

1
n + n0(ε)

log rsep(n0(ε) + n, ε;n0(ε))

≥ 1
n

log rsep(n, ε).
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Letting n → ∞ on both sides, we find that

lim sup
n0 (ε)<n→∞

1
n

log rsep(n, ε;n0(ε)) ≥ hsep(f, ε).

Finally, letting ε ↓ 0, the desired inequality follows. �
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[25] T. Linder and S. Yüksel, “On optimal zero-delay quantization of vector
Markov sources,” IEEE Trans. Inform. Theory, vol. 60, no. 10, pp. 5975–
5991, Oct. 2014.

[26] T. Linder and R. Zamir, “Causal coding of stationary sources and individ-
ual sequences with high resolution,” IEEE Trans. Inform. Theory, vol. 52,
no. 2, pp. 662–680, Feb. 2006.

[27] A. Mahajan and D. Teneketzis, “Optimal design of sequential real-time
communication systems,” IEEE Trans. Inform. Theory, vol. 55, no. 11,
pp. 5317–5338, Nov. 2009.

[28] A. S. Matveev, “State estimation via limited capacity noisy communi-
cation channels,” Math. Control Signals Syst., vol. 20, no. 1, pp. 1–35,
2008.

[29] A. Matveev and A. Pogromsky, “Observation of nonlinear systems via
finite capacity channels: Constructive data rate limits,” Automatica, vol.
70, pp. 217–229, 2016.

[30] A. Matveev and A. Pogromsky, “Observation of nonlinear systems via
finite capacity channels. Part II: Restoration entropy and its estimates,”
Automatica, vol. 70, 217–229, 2016.

[31] A. S. Matveev and A. V. Savkin, Estimation and Control Over Commu-
nication Networks. Control Engineering. Boston, MA, USA: Birkhäuser
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