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Abstract. In stochastic control applications, typically only an ideal model (controlled transi-
tion kernel) is assumed and the control design is based on the given model, raising the problem of
performance loss due to the mismatch between the assumed model and the actual model. Toward
this end, we study continuity properties of discrete-time stochastic control problems with respect to
system models (i.e., controlled transition kernels) and robustness of optimal control policies designed
for incorrect models applied to the true system. We study both fully observed and partially observed
setups under an infinite horizon discounted expected cost criterion. We show that continuity can be
established under total variation convergence of the transition kernels under mild assumptions and
with further restrictions on the dynamics and observation model under weak and setwise convergence
of the transition kernels. Using these continuity properties, we establish convergence results and error
bounds due to mismatch that occurs by the application of a control policy which is designed for an
incorrectly estimated system model to a true model, thus establishing positive and negative results
on robustness. Compared to the existing literature, we obtain strictly refined robustness results
that are applicable even when the incorrect models can be investigated under weak convergence and
setwise convergence criteria (with respect to a true model), in addition to the total variation crite-
ria. These entail positive implications on empirical learning in (data-driven) stochastic control since
often system models are learned through empirical training data where typically a weak convergence
criterion applies but stronger convergence criteria do not.
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1. Introduction.

1.1. Preliminaries. In this paper, we study continuity properties of stochastic
control problems with respect to transition kernels and applications of these to ro-
bustness of optimal control policies applied to systems with incomplete or incorrect
probabilistic models.

We start with the probabilistic setup of the problem. Let \BbbX \subset \BbbR m denote a Borel
set which is the state space of a partially observed controlled Markov process. Here
and throughout the paper \BbbZ + denotes the set of nonnegative integers and \BbbN denotes
the set of positive integers. Let \BbbY \subset \BbbR n be a Borel set denoting the observation
space of the model, and let the state be observed through an observation channel
Q. The observation channel, Q, is defined as a stochastic kernel (regular conditional
probability) from \BbbX to \BbbY , such that Q( \cdot | x) is a probability measure on the (Borel)
\sigma -algebra \scrB (\BbbY ) of \BbbY for every x \in \BbbX , and Q(A| \cdot ) : \BbbX \rightarrow [0, 1] is a Borel measurable
function for every A \in \scrB (\BbbY ). A decision maker (DM) is located at the output of
the channel Q, and hence it only sees the observations \{ Yt, t \in \BbbZ +\} and chooses its
actions from \BbbU , the action space which is a Borel subset of some Euclidean space.

\ast Received by the editors August 17, 2018; accepted for publication (in revised form) January 13,
2020; published electronically April 27, 2020. Some of the results in this paper were presented at the
2018 IEEE Conference on Decision and Control.

https://doi.org/10.1137/18M1208058
Funding: This research was supported in part by the Natural Sciences and Engineering Research

Council (NSERC) of Canada.
\dagger Mathematics and Statistics, Queen's University, Kingston, Ontario, K7L 3N6 (16adk@queensu.

ca, yuksel@mast.queensu.ca).

1144

D
ow

nl
oa

de
d 

05
/1

7/
20

 to
 1

30
.1

5.
24

1.
16

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/18M1208058
mailto:16adk@queensu.ca
mailto:16adk@queensu.ca
mailto:yuksel@mast.queensu.ca


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUSTNESS TO INCORRECT STOCHASTIC MODELS 1145

An admissible policy \gamma is a sequence of control functions \{ \gamma t, t \in \BbbZ +\} such that \gamma t is
measurable with respect to the \sigma -algebra generated by the information variables

It = \{ Y[0,t], U[0,t - 1]\} , t \in \BbbN , I0 = \{ Y0\} ,

where

(1.1) Ut = \gamma t(It), t \in \BbbZ +,

are the \BbbU -valued control actions and

Y[0,t] = \{ Ys, 0 \leq s \leq t\} , U[0,t - 1] = \{ Us, 0 \leq s \leq t - 1\} .

We define \Gamma to be the set of all such admissible policies.
The update rules of the system are determined by (1.1) and the following rela-

tionships:

Pr
\bigl( 
(X0, Y0) \in B

\bigr) 
=

\int 
B

P (dx0)Q(dy0| x0), B \in \scrB (\BbbX \times \BbbY ),

where P is the (prior) distribution of the initial state X0, and

Pr

\biggl( 
(Xt, Yt) \in B

\bigm| \bigm| \bigm| \bigm| (X,Y, U)[0,t - 1] = (x, y, u)[0,t - 1]

\biggr) 
=

\int 
B

\scrT (dxt| xt - 1, ut - 1)Q(dyt| xt), B \in \scrB (\BbbX \times \BbbY ), t \in \BbbN ,

where \scrT is the transition kernel of the model which is a stochastic kernel from \BbbX \times \BbbU 
to \BbbX .

Using stochastic realization results (see Lemma 1.2 in [21] or Lemma 3.1 of [11]),
the process defined above can be represented in functional form as follows:

Xt+1 = f(Xt, Ut,Wt), Yt = g(Xt, Vt)(1.2)

for some measurable functions f, g with \{ Wt\} being an independent and identically
distributed (i.i.d.) system noise process and \{ Vt\} an i.i.d. disturbance process, which
are independent of X0 and each other. Here, the first equation represents the tran-
sition kernel \scrT as it gives the relation of the most recent state and action variables
to the upcoming state. From this representation it can be seen that the probabilistic
nature of the kernel is determined by the function f and the probability model of the
noise Wt. The second equation represents the measurement channel Q, as it describes
the relation between the state and observation variables. We let the objective of the
agent (decision maker) be the minimization of the infinite horizon discounted cost,

J\beta (P, \scrT , \gamma ) = E\scrT ,\gamma 
P

\Biggl[ \infty \sum 
t=0

\beta tc(Xt, Ut)

\Biggr] 

for some discount factor \beta \in (0, 1), over the set of admissible policies \gamma \in \Gamma , where

c : \BbbX \times \BbbU \rightarrow \BbbR is a Borel-measurable stagewise cost function and E\scrT ,\gamma 
P denotes the

expectation with initial state probability measure P and transition kernel \scrT under
policy \gamma . Note that P \in \scrP (\BbbX ), where we let \scrP (\BbbX ) denote the set of probability
measures on \BbbX .
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1146 ALI D. KARA AND SERDAR Y\"UKSEL

We define the optimal cost for the discounted infinite horizon setup as a function
of the priors and the transition kernels as

J\ast 
\beta (P, \scrT ) = inf

\gamma \in \Gamma 
J\beta (P, \scrT , \gamma ).

The focus of the paper will be to address the following problems.

Problem P1: Continuity of \bfitJ \ast 
\bfitbeta (\bfitP ,\bfscrT ) under the convergence of the tran-

sition kernels. Let \{ \scrT n, n \in \BbbN \} be a sequence of transition kernels which converge
in some sense to another transition kernel \scrT . Does that imply that

J\ast 
\beta (P, \scrT n) \rightarrow J\ast 

\beta (P, \scrT )?

Problem P2: Robustness to incorrect models. A problem of major practical
importance is robustness of an optimal controller to modeling errors. Suppose that an
optimal policy is constructed according to a model which is incorrect: how does the
application of the control to the true model affect the system performance and does
the error decrease to zero as the models become closer to each other? In particular,
suppose that \gamma \ast 

n is an optimal policy designed for \scrT n, an incorrect model for a true
model \scrT . Is it the case that if \scrT n \rightarrow \scrT , then J\beta (P, \scrT , \gamma \ast 

n) \rightarrow J\ast 
\beta (P, \scrT )?

Problem P3: Empirical consistency of learned probabilistic models and
data-driven stochastic control. Let \scrT (\cdot | x, u) be a transition kernel given previous
state and action variables x \in \BbbX , u \in \BbbU , which is unknown to the decision maker.
Suppose the DM builds a model for the transition kernels, \scrT n(\cdot | x, u), for all possible
x \in \BbbX , u \in \BbbU by collecting training data (e.g., from the evolving system). Do we have
that the cost calculated under \scrT n converges to the true cost (i.e., do we have that the
cost obtained from applying the optimal policy for the empirical model converges to
the true cost as the training length increases)?

1.2. Literature review. Robustness is a desired property for the optimal con-
trol of stochastic or deterministic systems when a given model does not reflect the
actual system perfectly, as is usually the case in practice.

A common approach in the literature has been to design controllers that work suf-
ficiently well for all possible uncertain systems under some structured constraints, such
as H\infty norm bounded perturbations (see [3, 58]). The design for robust controllers has
often been developed through a game theoretic formulation where the minimizer is the
controller and the maximizer is the uncertainty. The connections of this formulation
to risk sensitive control were established in [30, 15]. Using Legendre-type transforms,
relative entropy constraints came in to the literature to probabilistically model the
uncertainties (see, e.g., [41, equation (4)] or [15, equations (2)--(3)]. Here, one selects
a nominal system which satisfies a relative entropy bound between the actual mea-
sure and the nominal measure and solves a risk sensitive optimal control problem,
and this solution value provides an upper bound for the original system performance.
As such, a common approach in robust stochastic control has been to consider all
models which satisfy certain bounds in terms of relative entropy pseudodistance (or
Kullback--Leibler divergence); see, e.g., [15, 41, 40, 10] among others.

Other metrics or criteria, different from the relative entropy pseudodistance, have
also been used to quantify the uncertainty in the system models. Reference [51]
has studied a min-max formulation for robust control where the one-stage transition
kernel belongs to a ball under the total variation metric for each state action pair.
For distributionally robust stochastic optimization problems, it is assumed that the
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ROBUSTNESS TO INCORRECT STOCHASTIC MODELS 1147

underlying probability measure of the system lies within an ambiguity set and a
worst case single-stage optimization is made considering the probability measures in
the ambiguity set. To construct ambiguity sets, [9, 18] use the Wasserstein metric (see
section 1.3), [17] uses the Prokhorov metric which metrizes the weak topology, [50]
uses the total variation distance, and [34] works with relative entropy. [55, 29, 37] have
studied robust dynamic programming approaches through a min-max formulation for
fully observed finite state-action space models with uncertain transition probabilities.
Further related work with model uncertainty includes [38, 4, 56], with some further
work in the economics literature [26, 22]. In [33], an optimal filtering problem for a
control-free system with uncertainties in transition kernels and measurement channels
is considered.

Further related studies include [12], which studies the optimal control of systems
with unknown dynamics for a linear quadratic regulator setup and proposes an algo-
rithm to learn the system from observed data with quantitative convergence bounds.
[52] considers stochastic uncertainties while [47] considers deterministic structured
uncertainties in robust control; some connections between these and our paper can be
seen in the examples presented in section 1.3.2.

For fully observed models, [35, Theorem 5.1] establishes continuity results for
approximate models and gives a set convergence result for sets of optimal control
actions, but this set convergence result is inconclusive for robustness without further
assumptions on the true system model. Reference [36] is another related work which
studies continuity of the value function for fully observed models under a general met-
ric defined as the integral probability metric, which captures both the total variation
metric or the Kantorovich metric with different setups (which is not weaker than the
metrics leading to weak convergence). We also note that approximation methods for
stochastic control problems with standard Borel spaces through quantization, which
lead to finite models, can be viewed as approximations of transition kernels, but this
interpretation requires caution: indeed, [46, 1, 2], among many others, study approx-
imation methods for Markov decision processes (MDPs) where the convergence of
approximate models is satisfied in a particularly constructed fashion. In particular,
[46] presents a construction for the approximate models through quantizing the ac-
tual model with continuous spaces (leading to a finite space model), which allows for
continuity and robustness results with only a weak continuity assumption on the true
transition kernel which, in turn, leads to the weak convergence of the approximate
models. A detailed analysis of approximation methods for continuous state and ac-
tion spaces can be found in [44] for both fully observed and partially observed models.
However, these positive results on the weak convergence of approximate kernels to the
true one in such studies do not directly apply to the robustness of an arbitrary se-
quence of models which converges weakly to a true model, as our counterexamples in
this paper will demonstrate.

Related work also includes our recent studies [57, 32]. [57] considers various
topologies on the sets of observation channels and quantizers in partially observed
stochastic control and provides some supporting results. [32] presents robustness and
continuity properties for stochastic control problems with respect to the prior mea-
sures with fixed transition kernels; that is, the robustness only to initial priors is
studied in [32]. Different from these studies, here we study continuity in and robust-
ness to incorrect transition kernels, which requires significantly different analytical
tools due to the dynamic nature of the problems.

In section 1.4 we will present the contributions, which will also make the compar-
ison with the reviewed literature more explicit.
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1148 ALI D. KARA AND SERDAR Y\"UKSEL

1.3. Some examples and convergence criteria for transition kernels.

1.3.1. Convergence criteria for transition kernels. Before presenting con-
vergence criteria for controlled transition kernels, we first review the convergence of
probability measures. Three important notions of convergences for sets of probability
measures to be studied in the paper are weak convergence, setwise convergence, and
convergence under total variation. For N \in \BbbN , a sequence \{ \mu n, n \in \BbbN \} in \scrP (\BbbR N ) is
said to converge to \mu \in \scrP (\BbbR N ) weakly if\int 

\BbbR N

c(x)\mu n(dx) \rightarrow 
\int 
\BbbR N

c(x)\mu (dx)

for every continuous and bounded c : \BbbR N \rightarrow \BbbR . \{ \mu n\} is said to converge setwise to
\mu \in \scrP (\BbbR N ) if the above holds for all measurable and bounded c : \BbbR N \rightarrow \BbbR . For
probability measures \mu , \nu \in \scrP (\BbbR N ), the total variation metric is given by

\| \mu  - \nu \| TV = 2 sup
B\in \scrB (\BbbR N )

| \mu (B) - \nu (B)| = sup
f :\| f\| \infty \leq 1

| 
\int 

f(x)\mu (dx) - 
\int 

f(x)\nu (dx)| ,

where the supremum is taken over all measurable real f such that

\| f\| \infty = sup
x\in \BbbR N

| f(x)| \leq 1.

A sequence \{ \mu n\} is said to converge in total variation to \mu \in \scrP (\BbbR N ) if \| \mu n - \mu \| TV \rightarrow 0.
Total variation defines a stringent metric for convergence; for example, a sequence of
discrete probability measures does not converge in total variation to a probability
measure which admits a density function. Setwise convergence, though, induces a
topology on the space of probability measures which is not metrizable [20, p. 59].
However, the space of probability measures on a complete, separable, metric (Polish)
space endowed with the topology of weak convergence is itself complete, separable, and
metric [39]. We also note here that relative entropy convergence, through Pinsker's
inequality [23, Lemma 5.2.8], is stronger than even total variation convergence, which
has also been studied in robust stochastic control as reviewed earlier. Another met-
ric for probability measures is the Wasserstein distance: For compact spaces, the
Wasserstein distance of order 1, denoted by W1, metrizes the weak topology (see [53,
Theorem 6.9]). For noncompact spaces convergence in the W1 metric implies weak
convergence (in particular this metric bounds from above the bounded-Lipschitz met-
ric [53, p. 109]). Considering these relations, our results in this paper can be directly
generalized to the relative entropy distance or the Wasserstein distance. Building on
the above, we introduce the following convergence notions for (controlled) transition
kernels.

Definition 1. For a sequence of transition kernels \{ \scrT n, n \in \BbbN \} , we say that
(i) \scrT n \rightarrow \scrT weakly if \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) weakly for all x \in \BbbX and u \in \BbbU ,
(ii) \scrT n \rightarrow \scrT setwise if \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) setwise for all x \in \BbbX and u \in \BbbU ,
(iii) \scrT n \rightarrow \scrT under the total variation distance if \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) under

total variation for all x \in \BbbX and u \in \BbbU .

1.3.2. Examples. Let a controlled model be given as

xt+1 = F (xt, ut, wt),

where \{ wt\} is an i.i.d. noise process. The uncertainty on the transition kernel for
such a system may arise from lack of information on F or the i.i.d. noise process wt

or both:
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(i) Let \{ Fn\} denote an approximating sequence for F , so that Fn(x, u, w) \rightarrow 
F (x, u, w) pointwise. Assume that the probability measure of the noise is
known. Then, corresponding kernels \scrT n converge weakly to \scrT : If we denote
the probability measure of w with \mu , for any g \in Cb(\BbbX ) and for any (x0, u0) \in 
\BbbX \times \BbbU using the dominated convergence theorem we have

lim
n\rightarrow \infty 

\int 
g(x1)\scrT n(dx1| x0, u0) = lim

n\rightarrow \infty 

\int 
g(Fn(x0, u0, w))\mu (dw)

=

\int 
g(F (x0, u0, w))\mu (dw) =

\int 
g(x1)\scrT (dx1| x0, u0).

(ii) Much of the robust control literature deals with deterministic systems where
the nominal model is a deterministic perturbation of the actual model (see,
e.g., [47, 12]). The considered model is in the following form: \~F (xt, ut) =
F (xt, ut)+\Delta F (xt, ut), where F represents the nominal model and \Delta F is the
model uncertainty satisfying some norm bounds. For such deterministic sys-
tems, pointwise convergence of \~F to the nominal model F , i.e., \Delta F (xt, ut) \rightarrow 
0, can be viewed as weak convergence for deterministic systems by the discus-
sion in (i). It is evident, however, that total variation convergence would be
too strong for such a convergence criterion, since \delta \~F (xt,ut)

\rightarrow \delta F (xt,ut) weakly

but \| \delta \~F (xt,ut)
 - \delta F (xt,ut)\| TV = 2 for all \Delta F (xt, ut) \not = 0 where \delta denotes the

Dirac measure.
(iii) Let F (xt, ut, wt) = f(xt, ut) + wt be such that the function f is known and

wt \sim \mu is not known correctly and an incorrect model \mu n is assumed. If \mu n \rightarrow 
\mu weakly, setwise, or in total variation, then the corresponding transition
kernels \scrT n converge in the same sense to \scrT . Observe the following:\int 

g(x1)\scrT n(dx1| x0, u0) - 
\int 

g(x1)\scrT (dx1| x0, u0)

=

\int 
g(w0 + f(x0, u0))\mu n(dw0) - 

\int 
g(w0 + f(x0, u0))\mu (dw0).(1.3)

(a) Suppose \mu n \rightarrow \mu weakly. If g is a continuous and bounded function, then
g(\cdot +f(x0, u0)) is a continuous and bounded function for all (x0, u0) \in \BbbX \times \BbbU .
Thus, (1.3) goes to 0. Note that f does not need to be continuous. (b)
Suppose \mu n \rightarrow \mu setwise. If g is a measurable and bounded function, then
g(\cdot + f(x0, u0)) measurable and bounded for all (x0, u0) \in \BbbX \times \BbbU . Thus, (1.3)
goes to 0. (c) Finally, assume \mu n \rightarrow \mu in total variation. If g is bounded, (1.3)
converges to 0, as in item (b). As a special case, assume that \mu n and \mu admit
densities hn and h, respectively; then the pointwise convergence of hn to h
implies the convergence of \mu n to \mu in total variation by Scheff\'e's theorem.

(iv) Suppose now neither F nor the probability model of wt is known perfectly.
It is assumed that wt admits a measure \mu n and \mu n \rightarrow \mu weakly. For the
function F we again have an approximating sequence \{ Fn\} . If Fn(x, u, wn) \rightarrow 
F (x, u, w) for all (x, u) \in \BbbX \times \BbbU and for any wn \rightarrow w, then the transition
kernel \scrT n corresponding to the model Fn converges weakly to the one of F ,
\scrT : For any g \in Cb(\BbbX ),

lim
n\rightarrow \infty 

\int 
g(x1)\scrT n(dx1| x0, u0) = lim

n\rightarrow \infty 

\int 
g(Fn(x0, u0, w))\mu n(dw)

=

\int 
g(F (x0, u0, w))\mu (dw) =

\int 
g(x1)\scrT (dx1| x0, u0).
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In the analysis above we used a generalized dominated convergence result,
Lemma A.1, to be presented later building on [35, Theorem 3.5] and [49,
Theorem 3.5].

(v) Let again \{ Fn\} denote an approximating sequence for F and suppose now
Fx0,u0,n(\cdot ) := Fn(x0, u0, \cdot ) : \BbbW \rightarrow \BbbX is invertible for all x0, u0 \in \BbbX \times \BbbU 
and F - 1

(x0,u0),n
(\cdot ) denotes the inverse for fixed (x0, u0). It is assumed that

F - 1
(x0,u0),n

(x1) \rightarrow F - 1
x0,u0

(x1) pointwise for all (x0, u0). Suppose further that

the noise process wt admits a continuous density fW (w). The Jacobian ma-
trix, \partial x1

\partial w , is the matrix whose components are the partial derivatives of x1,
i.e., with x1 \in \BbbX \subset \BbbR m and w \in \BbbW \subset \BbbR m, it is an m \times m matrix with com-

ponents \partial (x1)i
\partial wj

, 1 \leq i, j \leq m . If the Jacobian matrix of derivatives \partial x1

\partial w (w)

is continuous in w and nonsingular for all w, then by the inverse function
theorem of vector calculus (see [25, section 1.11]), we have that the density
of the state variables can be written as

fX1,n,(x0,u0)(x1) = fW (F - 1
x0,u0,n(x1))

\bigm| \bigm| \bigm| \bigm| \partial x1

\partial w
(F - 1

x0,u0,n(x1))

\bigm| \bigm| \bigm| \bigm|  - 1

,

fX1,(x0,u0)(x1) = fW (F - 1
x0,u0

(x1))

\bigm| \bigm| \bigm| \bigm| \partial x1

\partial w
(F - 1

x0,u0
(x1))

\bigm| \bigm| \bigm| \bigm|  - 1

.

With the above, fX1,n,(x0,u0)(x1) \rightarrow fX1,(x0,u0)(x1) pointwise for all fixed
(x0, u0). Therefore, by Scheff\'e's theorem, the corresponding kernels
\scrT n(\cdot | x0, u0) \rightarrow \scrT (\cdot | x0, u0) in total variation for all (x0, u0).

(vi) These studies will be used and analyzed in detail in section 5, where data-
driven stochastic control problems will be considered where estimated models
are obtained through empirical measurements of the state action variables.

1.4. Summary of results and contributions. We now introduce the main
assumptions that will be occasionally used for our technical results in the paper.

Assumption 1.1.
(a) The sequence of transition kernels \scrT n satisfies the following: \{ \scrT n(\cdot | xn, un), n \in 

\BbbN \} converges weakly to \scrT (\cdot | x, u) for any sequence \{ xn, un\} \subset \BbbX \times \BbbU and
x, u \in \BbbX \times \BbbU such that (xn, un) \rightarrow (x, u).

(b) The stochastic kernels \scrT (\cdot | x, u) and \{ \scrT n(\cdot | x, u)\} n are weakly continuous in
(x, u).

(c) The stagewise cost function c(x, u) is nonnegative, bounded, and continuous
on \BbbX \times \BbbU .

(d) \BbbU is compact.

Assumption 1.2. The observation channel Q(\cdot | x) is continuous in total varia-
tion, i.e., if xk \rightarrow x, then Q( \cdot | xk) \rightarrow Q( \cdot | x) in total variation (only for partially
observed models).

Assumption 1.3.
(a) The sequence of transition kernels \scrT n satisfies the following: \{ \scrT n(\cdot | x, un), n \in 

\BbbN \} converges setwise to \scrT (\cdot | x, u) for any sequence \{ un\} \subset \BbbU and x, u \in \BbbX \times \BbbU 
such that un \rightarrow u.

(b) The stochastic kernels \scrT (\cdot | x, u) and \{ \scrT n(\cdot | x, u)\} n are setwise continuous in
u.
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(c) The stagewise cost function c(x, u) is nonnegative, bounded, and continuous
on \BbbU .

(d) \BbbU is compact.

Assumption 1.4.
(a) The sequence of transition kernels \scrT n satisfies the following: \| \scrT n(\cdot | x, un)  - 

\scrT (\cdot | x, u)\| TV \rightarrow 0 for any sequence \{ un\} \subset \BbbU and x, u \in \BbbX \times \BbbU such that
un \rightarrow u.

(b) The stochastic kernels \scrT (\cdot | x, u) and \{ \scrT n(\cdot | x, u)\} n are continuous in total vari-
ation in u.

(c) The stagewise cost function c(x, u) is nonnegative, bounded, and continuous
on \BbbU .

(d) \BbbU is compact.

In sections 2 and 3 we study continuity (Problem P1) and robustness (Problem
P2) for partially observed models. In particular we show the following:

\bullet Continuity and robustness do not hold in general under weak convergence of
kernels (Theorem 2.1).

\bullet Under Assumptions 1.1 and 1.2, continuity and robustness hold (Theorems
2.3, 3.3).

\bullet Continuity and robustness do not hold in general under setwise convergence
of the kernels (Theorem 2.4).

\bullet Continuity and robustness do not hold in general under total variation con-
vergence of the kernels (Example 4.1).

\bullet Under Assumption 1.4, continuity and robustness hold (Theorems 2.5, 3.2).
In section 4, we study continuity (Problem P1) and robustness (Problem P2) for

fully observed models. In particular we show the following:
\bullet Continuity and robustness do not hold in general under weak convergence of
kernels (Theorem 4.1, Example 4.1).

\bullet Under Assumption 1.1, continuity holds (Theorem 4.2), and under Assump-
tion 1.1, robustness holds if the optimal policies for every initial point are
identical (Theorem 4.4).

\bullet Continuity and robustness do not hold in general under setwise convergence
of the kernels (Theorems 4.5, 4.7).

\bullet Under Assumption 1.3, continuity holds (Theorem 4.6), and under Assump-
tion 1.3, robustness holds if the optimal policies for every initial point are
identical (Theorem 4.8).

\bullet Continuity and robustness do not hold in general under total variation con-
vergence of the kernels (Example 4.1).

\bullet Under Assumption 1.4, continuity and robustness hold (subsection 4.5).
Compared to the existing literature reviewed earlier, the above results use strictly

more relaxed and refined convergence criteria to study robustness. In section 5, these
results will be applied to arrive at positive and negative implications on empirical con-
sistency and data-driven learning in stochastic control since often system models are
learned through empirical training data where typically weak convergence criterion
applies (in an almost sure sense) but stronger convergence criteria do not.

2. Continuity of optimal cost with respect to convergence of transition
kernels (partially observed case). In this section, we will study continuity of
the optimal discounted cost under the convergence of transition kernels for partially
observed models.
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2.1. Weak convergence.

2.1.1. Absence of continuity under weak convergence. The following shows
that the optimal cost may not be continuous under weak convergence of transition
kernels.

Theorem 2.1. Let \scrT n \rightarrow \scrT weakly, then it is not necessarily true that J\ast 
\beta (P, \scrT n) \rightarrow 

J\ast 
\beta (P, \scrT ) even when the prior distributions are the same, the measurement channel Q

is continuous in total variation, and c(x, u) is continuous and bounded on \BbbX \times \BbbU .
Proof. We prove the result with a counterexample. Letting \BbbX = \BbbU = \BbbY = [ - 1, 1]

and c(x, u) = (x - u)2, the observation channel is chosen to be uniformly distributed
over [-1,1], Q \sim U([ - 1, 1]), the initial distributions of the state variable are chosen to
be same as P \sim \delta 1, where \delta x(A) := 1\{ x\in A\} for Borel A, and the transition kernels are

\scrT (\cdot | x, u) = \delta  - 1(x)

\biggl[ 
1

2
\delta 1(\cdot ) +

1

2
\delta  - 1(\cdot )

\biggr] 
+ \delta 1(x)

\biggl[ 
1

2
\delta 1(\cdot ) +

1

2
\delta  - 1(\cdot )

\biggr] 
+ (1 - \delta  - 1(x))(1 - \delta 1(x))\delta 0(\cdot ),

\scrT n(\cdot | x, u) = \delta  - 1(x)

\biggl[ 
1

2
\delta (1 - 1/n)(\cdot ) +

1

2
\delta ( - 1+1/n)(\cdot )

\biggr] 
+ \delta 1(x)

\biggl[ 
1

2
\delta (1 - 1/n)(\cdot ) +

1

2
\delta ( - 1+1/n)(\cdot )

\biggr] 
+ (1 - \delta  - 1(x))(1 - \delta 1(x))\delta 0(\cdot ).

In other words, for \scrT 

if xt \in \{ 1, - 1\} , then xt+1 = 1 or  - 1

else xt+1 = 0,

for \scrT n

if xt \in \{ 1, - 1\} , then xt+1 = 1 - 1

n
or  - 1 +

1

n

else xt+1 = 0

independent of the control, where the events noted above with or are equally likely.
It can be seen that \scrT n \rightarrow \scrT weakly according to Definition 1(i). Since the cost
function is mean square error, control does not affect the dynamics and the channel
is noninformative, and the optimal policy is

\gamma \ast 
k(y[0,k]) = E[Xk] =

\Biggl\{ 
0 if k > 0,

1 if k = 0.

Note that the cost function is continuous, and the measurement channel is continuous
in total variation. The optimal discounted costs can be found as

J\ast 
\beta (P, \scrT ) =

\infty \sum 
k=1

E\scrT 
P [\beta kX2

k ] =

\infty \sum 
k=1

\beta k =
\beta 

1 - \beta 
,

J\ast 
\beta (P, \scrT n) =

\infty \sum 
k=1

E\scrT n

P [\beta kX2
k ] = \beta 

\biggl[ 
1

2

\biggl( 
1 - 1

n

\biggr) 2

+
1

2

\biggl( 
 - 1 +

1

n

\biggr) 2\biggr] 
.

Then we have J\ast 
\beta (P, \scrT n) \rightarrow \beta \not = \beta 

1 - \beta .
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2.2. A sufficient condition for continuity under weak convergence. In
the following, we will establish and utilize some regularity properties for the optimal
cost with respect to the convergence of transition kernels.

Assumption 2.1.
(a) The stochastic kernel \scrT (\cdot | x, u) is weakly continuous in (x, u).
(b) The observation channel Q(\cdot | x) is continuous in total variation, i.e., if xk \rightarrow 

x, then Q( \cdot | xk) \rightarrow Q( \cdot | x) in total variation.
(c) The stagewise cost function c(x, u) is nonnegative, bounded, and continuous

on \BbbX \times \BbbU 
(d) \BbbU is compact.

It is a standard result that any partially observed Markov decision process can
be reduced to a (completely observable) MDP, whose states are the posterior state
distributions or beliefs of the observer; that is, the state at time t is Zt( \cdot ) := \sansP \sansr \{ Xt \in 
\cdot | Y0, . . . , Yt, U0, . . . , Ut - 1\} \in \scrP (\BbbX ). We call this equivalent MDP the belief-MDP, The
belief-MDP has state space \BbbZ = \scrP (\BbbX ) and action space \BbbU . Under the topology of
weak convergence, since \BbbX is a Borel space, \BbbZ is metrizable with the Prokhorov metric
which makes \BbbZ into a Borel space [39]. The transition probability \eta of the belief-MDP
can be constructed through nonlinear filtering equations [45, pp. 334--335]. The one-
stage cost function c of the belief-MDP is given by \~c(z, u) :=

\int 
\BbbX c(x, u)z(dx). By

[5, Proposition 7.30], the one stage cost function \~c of the belief-MDP is continuous
and bounded, that is, in Cb(\BbbZ \times \BbbU ), under Assumption 2.1(c). By [19, Theorem 3.7,
Example 4.1] (see also [31]), under Assumption 2.1, the stochastic kernel \eta for belief-
MDP is weakly continuous in (z, u). For an MDP with weakly continuous transition
probabilities and compact action spaces, it follows that an optimal control policy
exists: This follows because the discounted cost optimality operator T : Cb(\BbbZ ) \rightarrow Cb(\BbbZ )
(see, e.g., [28, Chapter 8.5]),

(T (f))(z) = min
u

(\~c(z, u) + \beta E[f(z1)| z0 = z, u0 = u]),(2.1)

is a contraction from Cb(\BbbZ ) to itself under the supremum norm. As a result, there
exists a fixed point, the value function, and an optimal control policy exists. In view
of this existence result, in the following we will consider optimal policies. We note
though that for the results which do not use the assumption, one may use \epsilon -optimal
policies without affecting the results.

Theorem 2.2. Under Assumptions 1.1 and 1.2,

sup
\gamma \in \Gamma 

| J\beta (P, \scrT n, \gamma ) - J\beta (P, \scrT , \gamma )| \rightarrow 0.

Proof.

sup
\gamma \in \Gamma 

| J\beta (P, \scrT n, \gamma ) - J\beta (P, \scrT , \gamma )| 

= sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \infty \sum 
t=0

\beta t

\biggl( 
E\scrT 

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] \biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 

\infty \sum 
t=0

\beta t sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| E\scrT 
P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] \bigm| \bigm| \bigm| \bigm| .
Recall that an admissible policy \gamma is a sequence of control functions \{ \gamma t, t \in \BbbZ +\} . At
the last step above, we make a slight abuse of notation; the sup at the first step is
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over all sequence of control functions \{ \gamma t, t \in \BbbZ +\} whereas the sup at the last step is
over all sequence of control functions \{ \gamma t\prime , t\prime \leq t\} , but we will use the same notation,
\gamma , in the rest of the proof. In Appendix A.1, we show the following for any t \geq 0:

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| E\scrT 
P

\biggl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \biggr] 
 - E\scrT n

P

\biggl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \biggr] \bigm| \bigm| \bigm| \rightarrow 0.(2.2)

For any \epsilon > 0, we choose a K < \infty such that
\sum \infty 

t=K+1 \beta 
k2\| c\| \infty \leq \epsilon /2. For the chosen

K, we choose an N < \infty such that

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| E\scrT 
P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] \bigm| \bigm| \bigm| \bigm| \leq \epsilon /2K

for all time stages t \leq K and for all n > N . Thus, we have that sup\gamma \in \Gamma 

\bigm| \bigm| J\beta (P, \scrT n, \gamma ) - 
J\beta (P, \scrT , \gamma ) \rightarrow 0 as n \rightarrow \infty .

Now we give the main result of this section.

Theorem 2.3. Suppose the conditions of Theorem 2.2 hold. Then

lim
n\rightarrow \infty 

| J\ast 
\beta (P, \scrT n) - J\ast 

\beta (P, \scrT )| = 0.

Proof. We start with the following bound:

| J\ast 
\beta (P, \scrT n) - J\ast 

\beta (P, \scrT )| 

\leq max

\biggl( 
J\beta (P, \scrT n, \gamma \ast ) - J\beta (P, \scrT , \gamma \ast ), J\beta (P, \scrT , \gamma \ast 

n) - J\beta (P, \scrT n, \gamma \ast 
n)

\biggr) 
,(2.3)

where \gamma \ast and \gamma \ast 
n are the optimal policies, respectively, for \scrT and \scrT n. Both terms go

to 0 by Theorem 2.2.

2.3. Absence of continuity under setwise convergence. We now show that
continuity of optimal costs may fail under the setwise convergence of transition kernels.
Theorem 4.5 in the next section establishes this result for fully observed models. As
we note later, a fully observed system can be viewed as a partially observed system
with the measurement being the state itself through (4.1), and therefore, in view of
space constraints, a separate proof will not be provided for the following result.

Theorem 2.4. Let \scrT n \rightarrow \scrT setwise. Then, it is not true in general that
J\ast 
\beta (P, \scrT n) \rightarrow J\ast 

\beta (P, \scrT ), even when \BbbX ,\BbbY , and \BbbU are compact and c(x, u) is continu-
ous and bounded in \BbbX \times \BbbU .

2.4. Continuity under total variation. We have the following results.

Theorem 2.5. Under Assumption 1.4

J\ast 
\beta (P, \scrT n) \rightarrow J\ast 

\beta (P, \scrT ).

Proof. We start with the following bound:

| J\ast 
\beta (\scrT n) - J\ast 

\beta (\scrT )| \leq max

\biggl( 
J\beta (\scrT n, \gamma \ast ) - J\beta (\scrT , \gamma \ast ), J\beta (\scrT , \gamma \ast 

n) - J\beta (\scrT n, \gamma \ast 
n)

\biggr) 
,

where \gamma \ast and \gamma \ast 
n are the optimal policies, respectively, for \scrT and \scrT n.
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We now study the following:

sup
\gamma \in \Gamma 

| J\beta (P, \scrT n, \gamma ) - J\beta (P, \scrT , \gamma )| 

= sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \infty \sum 
t=0

\beta t

\biggl( 
E\scrT 

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] \biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 

\infty \sum 
t=0

\beta t sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| E\scrT 
P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] \bigm| \bigm| \bigm| \bigm| .
In Appendix A.2 we show that for all t < \infty 

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| E\scrT 
P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] \bigm| \bigm| \bigm| \bigm| \rightarrow 0.(2.4)

For any \epsilon > 0, we choose a K < \infty such that
\sum \infty 

t=K+1 \beta 
t2\| c\| \infty \leq \epsilon /2. For the

chosen K, we choose an N < \infty such that

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| E\scrT 
P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
\leq \epsilon /2K

for all time stages t \leq K and for all n > N . Therefore, we have that for any given
\epsilon > 0, for n > N

sup
\gamma \in \Gamma 

\bigm| \bigm| J\beta (\scrT n, \gamma ) - J\beta (\scrT , \gamma )
\bigm| \bigm| < \epsilon .(2.5)

Thus, the result follows.

We now present a result on the rate of convergence. For stochastic control prob-
lems, strategic measures are defined [48] as the set of probability measures induced
on the product spaces of the state and action pairs by admissible control policies:
Given an initial distribution on the state, and a policy, one can uniquely define a
probability measure on the infinite product space consistent with finite dimensional
distributions, by the Ionescu--Tulcea theorem [27, Proposition C.10]. Now, define a
strategic measure under a policy \gamma n = \{ \gamma n

0 , \gamma 
n
1 , . . . , \gamma 

n
k , . . .\} as a probability measure

defined on \scrB (\BbbX \times \BbbY \times \BbbU )\BbbZ + by

P \gamma n

\scrT (d(x0, y0, u0),d(x1, y1, u1), . . .)

= P (dx0)Q(dy0| x0)1\{ \gamma n(y0)\in du0\} \scrT (dx1| x0, u0)Q(dy1| x1)1\{ \gamma n(y0,y1)\in du1\} . . . .

Next, with uniformity in the total variation convergence, Theorem 2.5 is enhanced.

Theorem 2.6. If the cost function c is bounded,

| J\ast 
\beta (P, \scrT n) - J\ast 

\beta (P, \scrT )| \leq \| c\| \infty 
\beta 

(\beta  - 1)2
sup

x\in \BbbX ,u\in \BbbU 
\| \scrT n(.| x, u) - \scrT (.| x, u)\| TV .

Proof. We start with the following bound as before:

| J\ast 
\beta (\scrT n) - J\ast 

\beta (\scrT )| \leq max

\biggl( 
J\beta (\scrT n, \gamma \ast ) - J\beta (\scrT , \gamma \ast ), J\beta (\scrT , \gamma \ast 

n) - J\beta (\scrT n, \gamma \ast 
n)

\biggr) 
,

where \gamma \ast and \gamma \ast 
n are the optimal policies, respectively, for \scrT and \scrT n.
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Then, with P \gamma 
\scrT n

and P \gamma 
\scrT denoting the strategic measures for two chains with a

policy \gamma and kernels \scrT n and \scrT , we have

| J\beta (\scrT n, \gamma ) - J\beta (\scrT , \gamma )| 

\leq 
\sum 
k

\beta k| 
\int 

c(xk, \gamma (y[0,k]))P
\gamma 
\scrT n
(dxk, dy[0,k]) - 

\int 
c(xk, \gamma (y[0,k]))P

\gamma 
\scrT (dxk, dy[0,k])| 

\leq 
\sum 
k

\beta k\| c\| \infty \| P \gamma 
\scrT n
(d(x, y, u)[0,k]) - P \gamma 

\scrT (d(x, y, u)[0,k])\| TV .

In Appendix A.3 we establish the following relation:

\| P \gamma 
\scrT n
(d(x, y, u)[0,k]) - P \gamma 

\scrT (d(x, y, u)[0,k])\| TV \leq k sup
x\in \BbbX ,u\in \BbbU 

\| \scrT n(.| x, u) - \scrT (.| x, u)\| TV .
(2.6)

Using this bound, we will have

\| J\ast 
\beta (\scrT n) - J\ast 

\beta (\scrT )| \leq 
\sum 
k

\beta k\| c\| \infty k sup
x\in \BbbX ,u\in \BbbU 

\| \scrT (.| x, u) - \scrT n(.| x, u)\| TV

= \| c\| \infty 
\beta 

(\beta  - 1)2
sup

x\in \BbbX ,u\in \BbbU 
\| \scrT (.| x, u) - \scrT n(.| x, u)\| TV .

3. Robustness to incorrect transition kernels (partially observed case).
Here, we consider the robustness problem P2: Suppose we design an optimal policy,
\gamma \ast 
n, for a transition kernel, \scrT n, assuming it is the correct model and apply the policy

to the true model whose transition kernel is \scrT . We study the robustness of the
suboptimal policy \gamma \ast 

n.

3.1. Total variation.

Theorem 3.1. Suppose the stagewise cost function c(x, u) is bounded in \BbbX \times \BbbU ,
then

| J\beta (P, \scrT , \gamma \ast 
n) - J\ast 

\beta (P, \scrT )| \leq 2\| c\| \infty 
\beta 

(\beta  - 1)2
sup

x\in \BbbX ,u\in \BbbU 
\| \scrT (.| x, u) - \scrT n(.| x, u)\| TV

for a fixed prior distribution P \in \scrP (\BbbX ), where \gamma \ast 
n is the optimal policy designed for

the transition kernel \scrT n.
Proof. We begin with the following:

| J\beta (\scrT , \gamma \ast 
n) - J\ast 

\beta (\scrT )| \leq | J\beta (\scrT , \gamma \ast 
n) - J\beta (\scrT n, \gamma \ast 

n)| + | J\beta (\scrT n, \gamma \ast 
n) - J\beta (\scrT , \gamma \ast )| .

The second term is bounded using Theorem 2.6. For the first term, we use the proof
of Theorem 2.6, where we showed that for any \gamma \in \Gamma 

| J\beta (\scrT , \gamma ) - J\beta (\scrT n, \gamma )| \leq \| c\| \infty 
\beta 

(\beta  - 1)2
sup

x\in \BbbX ,u\in \BbbU 
\| \scrT (.| x, u) - \scrT n(.| x, u)\| TV .

Thus, the result follows.

The next theorem gives an asymptotic robustness result.
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ROBUSTNESS TO INCORRECT STOCHASTIC MODELS 1157

Theorem 3.2. Under Assumption 1.4

| J\beta (P, \scrT , \gamma \ast 
n) - J\ast 

\beta (P, \scrT )| \rightarrow 0,

where \gamma \ast 
n is the optimal policy designed for the kernel \scrT n.

Proof. We write the following:

| J\beta (P, \scrT , \gamma \ast 
n) - J\ast 

\beta (P, \scrT )| \leq | J\beta (P, \scrT , \gamma \ast 
n) - J\ast 

\beta (P, \scrT n)| + | J\ast 
\beta (P, \scrT n) - J\ast 

\beta (P, \scrT )| .

The second term goes to 0 by Theorem 2.5 and the first term goes to 0 using (2.5)
again from the proof of Theorem 2.5.

3.2. Setwise convergence. Theorem 4.7 in the next section establishes the
lack of robustness under the setwise convergence of kernels. As we note later, a fully
observed system can be viewed as a partially observed system with the measurement
being the state itself (see (4.1)).

3.3. Weak convergence.

Theorem 3.3. Under Assumptions 1.1 and 1.2, | J\beta (\scrT , \gamma \ast 
n) - J\ast 

\beta (\scrT )| \rightarrow 0, where
\gamma \ast 
n is the optimal policy designed for the transition kernel \scrT n.

Proof. We write

| J\beta (\scrT , \gamma \ast 
n) - J\ast 

\beta (\scrT )| \leq | J\beta (\scrT , \gamma \ast 
n) - J\beta (\scrT n, \gamma \ast 

n)| + | J\beta (\scrT n, \gamma \ast 
n) - J\beta (\scrT , \gamma \ast )| .

The first term goes to 0 by Theorem 2.2. For the second term we use Theorem
2.3.

Remark 3.1. In this paper we study the case where the channel is known to
the controller; that is, the true channel model Q is available to the controller. For
the case where this is no longer true, the following analysis can be made. If the
transition kernel \scrT and the channel Q are not known, the controller would have
an approximating sequence \scrT nQn(xt+1, yt+1 \in \cdot \times \cdot | xt, ut) \in \scrP (\BbbX \times \BbbY ) for the true
joint measure \scrT Q(xt+1, yt+1 \in \cdot \times \cdot | xt, ut) \in \scrP (\BbbX \times \BbbY ) for all (xt, ut). The question
then becomes analyzing the convergence of \scrT nQn \rightarrow \scrT Q. Due to space constraints,
we do not present explicit results on this problem; however, we note that in [57], a
similar joint convergence is studied for convergence of measurement channels and fixed
model/prior distributions. The reader can refer to [57, Lemma 2.2] for an analysis
on the convergence of PQn \rightarrow PQ for a single stage problem, and for a multistage
problem, the following can be considered: With

| J\ast 
\beta (\scrT nQn) - J\ast 

\beta (\scrT Q)| \leq | J\ast 
\beta (\scrT nQn) - J\ast 

\beta (\scrT Qn)| + | J\ast 
\beta (\scrT Qn) - J\ast 

\beta (\scrT Q)| ,

[57, Theorem 6.2] presents sufficient conditions to guarantee the convergence of the
second term above. For the first term, the total variation convergence results in
this paper provide an analysis on the uniform convergence over a class of channels,
thus establishing positive results on continuity under the joint convergence of both
transition kernels and measurement channels.

4. Continuity and robustness in the fully observed case. In this sec-
tion, we consider the fully observed case where the controller has direct access to the
state variables. We present the results for this case separately, since here we cannot
utilize the regularity properties of measurement channels, which allows for stronger
continuity and robustness results. Similar to the discussions related to (2.1), that
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1158 ALI D. KARA AND SERDAR Y\"UKSEL

is, as the operator defined in (2.1) is a contraction and as it admits a fixed point
(value function), under measurable selection conditions due to weak or strong (set-
wise) continuity of transition kernels [27, section 3.3], for infinite horizon discounted
cost problems, optimal policies can be selected from those which are stationary and
deterministic. Therefore we will restrict the policies to be stationary and deterministic
so that Ut = \gamma (Xt) for some measurable function \gamma . Notice also that fully observed
models can be viewed as partially observed with the measurement channel thought
to be

Q(\cdot | x) = \delta x(\cdot ),(4.1)

which is only weakly continuous, and thus it does not satisfy Assumption 1.2.

4.1. Weak convergence.

4.1.1. Absence of continuity under weak convergence.
We start with a negative result.

Theorem 4.1. For \scrT n \rightarrow \scrT weakly, it is not necessarily true that J\ast 
\beta (\scrT n) \rightarrow 

J\ast 
\beta (\scrT ) even when the prior distributions are the same and c(x, u) is continuous and

bounded in \BbbX \times \BbbU .
Proof. We prove the result with a counterexample, similar to the model used in

the proof of Theorem 2.1. Letting \BbbX = [ - 1, 1], \BbbU = \{  - 1, 1\} , and c(x, u) = (x  - u)2,
the initial distributions are given by P \sim \delta 1, that is, X0 = 1, and the transition
kernels are

\scrT (\cdot | x, u) = \delta  - 1(x)

\biggl[ 
1

2
\delta 1(\cdot ) +

1

2
\delta  - 1(\cdot )

\biggr] 
+ \delta 1(x)

\biggl[ 
1

2
\delta 1(\cdot ) +

1

2
\delta  - 1(\cdot )

\biggr] 
+ (1 - \delta  - 1(x))(1 - \delta 1(x))\delta 0(\cdot ),

\scrT n(\cdot | x, u) = \delta  - 1(x)

\biggl[ 
1

2
\delta (1 - 1/n)(\cdot ) +

1

2
\delta ( - 1+1/n)(\cdot )

\biggr] 
+ \delta 1(x)

\biggl[ 
1

2
\delta (1 - 1/n)(\cdot ) +

1

2
\delta ( - 1+1/n)(\cdot )

\biggr] 
+ (1 - \delta  - 1(x))(1 - \delta 1(x))\delta 0(\cdot ).

It can be seen that \scrT n \rightarrow \scrT weakly according to Definition 1(i). Under this setup we
can calculate the optimal costs as follows:

J\ast 
\beta (\scrT n) =

1

n2
+

\infty \sum 
k=2

\beta k =
1

n2
+

\beta 2

1 - \beta 
,

and J\ast 
\beta (\scrT ) = 0. Thus, continuity does not hold.

We now present another counterexample emphasizing the importance of contin-
uous convergence in the actions. The following counterexample shows that without
the continuous convergence and regularity assumptions on the kernel \scrT , continuity
fails even when \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) pointwise (for x, u) in total variation (also set-
wise and weakly) and even when the cost function c(x, u) is continuous and bounded.
Notice that this example also holds for setwise and weak convergence.

Example 4.1. Assume that the kernels are given by

\scrT n(\cdot | x, u) \sim U([un, 1 + un]),

\scrT (\cdot | x, u) \sim 

\Biggl\{ 
U([0, 1]) if u \not = 1,

U([1, 2]) if u = 1,
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where \BbbU = [0, 1] and \BbbX = \BbbR . We note first that \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) in total variation
for every fixed x and u.

The cost function is in the following form:

c(x, u) =

\left\{               

2 if x \leq 1
e ,

2 - x - 1
e

0.1 if 1
e < x \leq 0.1 + 1

e ,

1 if 0.1 + 1
e < x \leq 1 + 1

e  - 0.1,

2 - 1+ 1
e - x

0.1 if 1 + 1
e  - 0.1 < x \leq 1 + 1

e ,

2 if 1 + 1
e < x.

Notice that c(x, u) is a continuous function.
With this setup, \gamma \ast (x) = 0 is an optimal policy for \scrT since on the [0, 1] interval

the induced cost is less than the cost induced on the [1, 2] interval. The cost under
this policy is

J\ast 
\beta (\scrT ) =

\infty \sum 
t=0

\beta t

\biggl( 
2\times 1

e
+

0.3

2
+ 0.9 - 1

e

\biggr) 
=

1

1 - \beta 

\biggl( 
1.05 +

1

e

\biggr) 
.

For \scrT n, \gamma \ast 
n(x) = e - 

1
n is an optimal policy for every n as e - 

1
n\times n = 1

e and thus
the state is distributed between 1

e < x \leq 1 + 1
e in which interval the cost is the least.

Hence, we can write

lim
n\rightarrow \infty 

J\beta (\scrT n, \gamma \ast 
n) =

\infty \sum 
t=0

\beta t

\biggl( 
0.3 + 1 - 0.2

\biggr) 
=

1.1

1 - \beta 
\not = 1

1 - \beta 

\biggl( 
1.05 +

1

e

\biggr) 
= J\ast 

\beta (\scrT ).

4.1.2. A sufficient condition for continuity under weak convergence. We
will now establish that if the kernels and the model components have some further
regularity, continuity does hold.

The assumptions of the following result are the same as the assumptions for the
partially observed case (Theorem 2.3) except for the assumption on the measurement
channel Q.

Theorem 4.2. Under Assumption 1.1, J\beta (\scrT n, \gamma \ast 
n) \rightarrow J\beta (\scrT , \gamma \ast ) for any initial

state x0, as n \rightarrow \infty .

Proof. We build on the proof of [43, Proposition 3.10]. We will use the successive
approximations for an inductive argument.

Recall discounted cost optimality operator T : Cb(\BbbZ ) \rightarrow Cb(\BbbZ ) from (2.1)

(T (v))(x) = inf
u
(c(x, u) + \beta E[v(x1)| x0 = x, u0 = u]),

which is a contraction from Cb(\BbbX ) to itself under the supremum norm and has a fixed
point, the value function.

For the kernel \scrT , we will denote the approximation functions by

vk(x) = T (vk - 1)(x)

and for the kernel \scrT n we will use vkn(x) to denote the approximation functions; notice
that the operator T also depends on n for the model \scrT n, but we will continue using
it as T in what follows.
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We wish to show that the approximation functions for \scrT n continuously converge
to the ones for \scrT . Then, for the first step of the induction we have

v1(x) = c(x, u\ast ) v1n(xn) = c(xn, u
\ast 
n),

and thus we can write

| v1(x) - v1n(xn)| \leq sup
u\in \BbbU 

\bigm| \bigm| c(x, u) - c(xn, u)
\bigm| \bigm| 

since c \in Cb(\BbbX \times \BbbU ) and the action space, \BbbU , is compact, and the first step of the
induction holds, i.e., limn\rightarrow \infty | v1(x) - v1n(xn)| = 0.

For the kth step we have

vk(x) = T (vk - 1)(x) = inf
u

\bigl[ 
c(x, u) + \beta 

\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u)

\bigr] 
,

vkn(xn) = T (vk - 1
n )(xn) = inf

u

\bigl[ 
c(xn, u) + \beta 

\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| xn, u)

\bigr] 
.

Note that the assumptions of the theorem satisfy the measurable selection criteria and
hence we can choose minimizing selectors [27, section 3.3]. If we denote the selectors
by u\ast and u\ast 

n, we can write

| vk(x) - vkn(xn)| 

\leq max

\biggl( \biggl[ 
| c(x, u\ast ) - c(xn, u

\ast )| + \beta | 
\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u\ast )

 - 
\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| xn, u

\ast )| 
\biggr] 
,\biggl[ 

| c(x, u\ast 
n) - c(xn, u

\ast 
n)| + \beta | 

\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u\ast 

n) - 
\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| xn, u

\ast 
n)| 

\biggr] \biggr) 
.

Hence, we can write

| vk(x) - vkn(xn)| 

(4.2)

\leq sup
u\in \BbbU 

\biggl[ 
| c(x, u) - c(xn, u)| + \beta | 

\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u) - 

\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| xn, u)| 

\biggr] 
,

and the first term goes to 0 as c(x, u) is continuous in x uniformly over all u \in \BbbU . For
the second term we write

sup
u\in \BbbU 

| 
\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u) - 

\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| xn, u)| 

\leq sup
u\in \BbbU 

| 
\int 
\BbbX 

\bigl( 
vk - 1(x1) - vk - 1

n (x1)
\bigr) 
\scrT n(dx1| xn, u)| 

+ sup
u\in \BbbU 

| 
\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u) - 

\int 
\BbbX 
vk - 1(x1)\scrT n(dx1| xn, u)| ,

where, here for the first term, by the induction argument for any x1
n \rightarrow x1,

\bigm| \bigm| vk - 1(x1) - 
vk - 1
n (x1

n)
\bigm| \bigm| \rightarrow 0 (i.e., we have continuous convergence). We also have that \scrT n(\cdot | xn, u) \rightarrow 
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\scrT (\cdot | x, u) weakly uniformly over u \in \BbbU as \BbbU is compact. Therefore, using Lemma A.1
the first term goes to 0. For the second term we again use that \scrT n(\cdot | xn, u) converges
weakly to \scrT (\cdot | x, u) uniformly over u \in \BbbU . With an almost identical induction argu-
ment it can also be shown that vk - 1(x1) is continuous in x1, and thus the second
term also goes to 0.

So far, we have showed that for any k \in \BbbN , limn\rightarrow \infty 
\bigm| \bigm| vkn(xn) - vk(x)

\bigm| \bigm| = 0 for any

xn \rightarrow x, in particular it is also true that limn\rightarrow \infty 
\bigm| \bigm| vkn(x) - vk(x)

\bigm| \bigm| = 0 for any x.
As we have stated earlier, it can be shown that the approximation operator T is

a contractive operator under supremum norm with modulus \beta and it converges to a
fixed point which is the value function. Thus, we have

\bigm| \bigm| J\beta (\scrT , \gamma \ast ) - vk(x)
\bigm| \bigm| \leq \| c\| \infty 

\beta k

1 - \beta 
,

\bigm| \bigm| J\ast 
\beta (\scrT n, \gamma \ast 

n) - vkn(x)
\bigm| \bigm| \leq \| c\| \infty 

\beta k

1 - \beta 
.(4.3)

Combining the results,

| J\beta (\scrT n, \gamma \ast 
n) - | J\beta (\scrT , \gamma \ast )| 

\leq | J\beta (\scrT n, \gamma \ast 
n) - vkn(x)| + | vkn(x) - vk(x)| + | J\beta (\scrT , \gamma \ast ) - vk(x)| .

Note that the first and the last term can be made arbitrarily small since (4.3) holds
for all k \in \BbbN ; the second term goes to 0 with an inductive argument for all k \in \BbbN .

4.1.3. Absence of robustness under weak convergence. The following re-
sult shows that the conditions that satisfy the continuity are not sufficient for robust-
ness in the fully observed models.

Theorem 4.3. Supposing \scrT n(\cdot | xn, un) \rightarrow \scrT (\cdot | x, u) weakly for every x \in \BbbX and
u \in \BbbU and (xn, un) \rightarrow (x, u), then it is not true in general that J\beta (\scrT , \gamma \ast 

n) \rightarrow J\beta (\scrT , \gamma \ast ),
even when \BbbX and \BbbU are compact and c(x, u) is continuous and bounded in \BbbX \times \BbbU .

Proof. We prove the result with a counterexample. Take \BbbX = [0, 2] and \BbbU =
\{ 0, 1, 2\} .

Suppose the kernels are given in the following form for n \geq 1:

\scrT n(\cdot | x, u) =\delta 1+1/n(\cdot )1\{ x\geq 1+1/n,u=1\} + \delta 1 - 1/n(\cdot )1\{ x\geq 1+1/n,u=0\} + \delta 1(\cdot )1\{ x\geq 1+1/n,u=2\} 

+ \delta 1 - 1/n1\{ x\leq 1 - 1/n,u=1\} + \delta 1+1/n1\{ x\leq 1 - 1/n,u=0\} + \delta 11\{ x\leq 1 - 1/n,u=2\} 

+ \delta 11\{ 1 - 1/n<x<1+1/n\} 

\scrT (\cdot | x, u) =\delta 1(\cdot ).

The cost function is given by

c(x, u) =

\Biggl\{ 
(x - 1)1x\geq 1 + 01x<1 if u = 0, 1,

3 if u = 2.

With this setup, an optimal policy for \scrT n when the initial state is x = 0 is given by

\gamma \ast 
n(x) =

\left\{     
1 if x \leq 1 - 1/n,

0 if x \geq 1 + 1/n,

2 otherwise.

When the initial state is 0, the cost under this policy is J\beta (\scrT n, \gamma \ast 
n) = 0; therefore the

policy \gamma \ast 
n is indeed optimal for \scrT n. An optimal policy for \scrT is given by \gamma (x) = 1,\forall x.
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Thus, the discounted cost values can be calculated as

J\beta (\scrT , \gamma \ast 
n) =

\infty \sum 
t=0

\beta tE[c(Xt, \gamma 
\ast 
n(Xt))] =

\infty \sum 
t=0

\beta tc(1, \gamma \ast 
n(1)) =

\infty \sum 
t=0

\beta t3 =
3

1 - \beta 
,

J\beta (\scrT , \gamma \ast ) = 0.

4.2. A sufficient condition for robustness under weak convergence. We
now present a result that establishes robustness if the optimal policies for every initial
point are identical. That is, for every n, \gamma \ast 

n is optimal for every x0 \in \BbbX (under the
model \scrT n). Notice that in the counterexample used for Theorem 4.3, \gamma \ast 

n is not optimal
if the initial point is between 1  - 1/n and 1 + 1/n. A sufficient condition for this
property is that \gamma \ast 

n solves the discounted cost optimality equation (DCOE) for every
initial point.

A policy \gamma \ast \in \Gamma solves the discounted cost optimality equation and is optimal if
it satisfies

J\ast 
\beta (\scrT , x) = c(x, \gamma \ast (x)) + \beta 

\int 
J\ast 
\beta (\scrT , x1)\scrT (dx1| x, \gamma \ast (x)).

Thus, a policy is optimal for every initial point if it satisfies the DCOE for all initial
points x \in \BbbX .

Theorem 4.4. Under Assumption 1.1, J\beta (\scrT , \gamma \ast 
n) \rightarrow J\beta (\scrT , \gamma \ast ) for any initial

point x0 if \gamma \ast 
n is optimal for any initial point for the kernel \scrT n.

Proof. Define the following operator for \gamma \ast 
n, an optimal policy for \scrT n,

(Tn(v))(x0) = c(x0, \gamma 
\ast 
n(x0)) + \beta 

\int 
v(x1)\scrT (dx1| x0, \gamma 

\ast 
n(x0)),(4.4)

which is a contraction from Cb(\BbbX ) to itself under the supremum norm with modulus
\beta and has a unique fixed point. One can show that the fixed point is J\beta (\scrT , \gamma \ast 

n).
In Appendix A.5 we show that

T k
n (J

\ast 
\beta (\scrT ))(xn) \rightarrow J\ast 

\beta (\scrT , x))(4.5)

for any fixed k < \infty as n \rightarrow \infty for some xn \rightarrow x, where T k
n denotes the operator Tn

applied k consecutive times.
Our next claim is that T k

n (J
\ast 
\beta (\scrT ))(x) \rightarrow J\beta (\scrT , \gamma \ast 

n, x) as k \rightarrow \infty . This is true as
Tn is a contraction with modulus \beta and J\beta (\scrT , \gamma \ast 

n) is its unique fixed point. Thus
T k
n (J

\ast 
\beta (\scrT ))(x) \rightarrow J\beta (\scrT , \gamma \ast 

n, x) as k \rightarrow \infty and this convergence is uniform over n as
the contraction rate \beta does not depend on n.

Now, we write

J\beta (\scrT , \gamma \ast 
n) - J\ast 

\beta (\scrT ) \leq | J\beta (\scrT , \gamma \ast 
n) - T k

n (J
\ast 
\beta (\scrT ))| + | T k

n (J
\ast 
\beta (\scrT )) - J\ast 

\beta (\scrT )| .

We can make the first term arbitrarily small by choosing k large enough uniformly
over n. For the chosen k, the second term goes to 0 as n \rightarrow \infty by (4.5).

Some remarks are in order.

Remark 4.1. For the partially observed case, the proof approach we use makes
use of policy exchange (e.g., (2.3)) and for this approach the total variation continuity
of channel Q(\cdot | x) is a key step to deal with the uniform convergence over policies. As
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we stated before, the channel for fully observed models can be considered in the form
of (4.1), which is only weakly continuous and not continuous in total variation. Thus,
it may lead to negative results as in Theorem 4.3. However, for the fully observed
models we can reach continuity and robustness (Theorems 4.2, 4.4) using the value
iteration approach. With this approach, instead of exchanging policies and analyzing
uniform convergence over all policies, we can exchange control actions (e.g., (4.2)) and
analyze uniform convergence over the action space \BbbU by using the discounted optimal-
ity operator (2.1). Hence, we are only able to show convergence over optimal policies
for the fully observed case, i.e., J\beta (\scrT n, \gamma \ast 

n) \rightarrow J\beta (\scrT , \gamma \ast ) or J\beta (\scrT , \gamma \ast 
n) \rightarrow J\beta (\scrT , \gamma \ast ),

where \gamma \ast 
n and \gamma \ast are optimal policies, whereas, for partially observed models, the

regularity of the channel allows us to show convergence over any sequence of policies,
i.e., sup\gamma \in \Gamma | J\beta (\scrT n, Q, \gamma ) - J\beta (\scrT , Q, \gamma )| \rightarrow 0.

Remark 4.2. As we have discussed in subsection 2.2, a partially observed model
can be reduced to a fully observed process where the state process (beliefs) becomes
probability measure valued. Consider the partially observed models with transition
kernels \scrT n and \scrT (with a channel Q) and their corresponding fully observed tran-
sition kernels \eta n and \eta : following the discussions and techniques in [16] and [31],
one can show that \eta n and \eta satisfy the conditions of Theorems 4.4 and 4.2, that is,
\eta n(\cdot | zn, un) \rightarrow \eta (\cdot | z, u) for any (zn, un) \rightarrow (z, u) under the following set of assump-
tions:

\bullet \scrT n(\cdot | xn, un) \rightarrow \scrT (\cdot | x, u) for any (xn, un) \rightarrow (x, u),
\bullet Q(\cdot | x) is continuous on total variation in x.

We remark that these conditions also agree with the conditions presented for the
continuity and robustness of the partially observed models (Theorems 2.3 and 3.3).

Remark 4.3. It can be shown that if we restrict the set of policies to an equicon-
tinuous family of functions, robustness can also be achieved: Under the conditions of
Theorem 4.2, in this case, | J\beta (\scrT , \gamma \ast 

n) - J\ast 
\beta (\scrT )| \rightarrow 0. A short proof for this result can

be found in Appendix A.4.

4.3. Setwise convergence.

4.3.1. Absence of continuity under setwise convergence. We give a neg-
ative result similar to Theorem 2.4.

Theorem 4.5. Letting \scrT n \rightarrow \scrT setwise, then it is not necessarily true that
J\ast 
\beta (\scrT n) \rightarrow J\ast 

\beta (\scrT ) even when c(x, u) is continuous and bounded in \BbbX \times \BbbU .
Proof. See Example 4.1.

4.3.2. A sufficient condition for continuity under setwise convergence.

Theorem 4.6. Under Assumption 1.3 J\beta (\scrT n, \gamma \ast 
n) \rightarrow J\beta (\scrT , \gamma \ast ) for any initial

state x0, as n \rightarrow \infty .

Proof. We use the same value iteration technique that we used to prove Theorem
4.2.

We wish to show that the approximation functions for \scrT n converge pointwise to
the ones for \scrT . Then, for the first step of the induction we have

v1(x) = inf
u

c(x, u), v1n(x) = inf
u

c(x, u),

and thus we can write

| v1(x) - v1n(x)| = 0.
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1164 ALI D. KARA AND SERDAR Y\"UKSEL

For step k we have

vk(x) = inf
u

\biggl[ 
c(x, u) +

\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u)

\biggr] 
,

vkn(x) = inf
u

\biggl[ 
c(x, u) +

\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| x, u)

\biggr] 
.

Note that the assumptions of the theorem satisfy the measurable selection criteria and
hence we can choose minimizing selectors [27, section 3.3]. If we denote the selectors
by u\ast and u\ast 

n, we can write

| vk(x) - vkn(x)| 

\leq max

\biggl( \biggl[ 
| c(x, u\ast ) - c(x, u\ast )| + | 

\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u\ast ) - 

\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| x, u\ast )| 

\biggr] 
,\biggl[ 

| c(x, u\ast 
n) - c(x, u\ast 

n)| + | 
\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u\ast 

n) - 
\int 
\BbbX 
vk - 1
n (x1)\scrT n(dx1| x, u\ast 

n)| 
\biggr] \biggr) 

.

For the first term we use [42, Theorem 20], since \scrT n(\cdot | x, u\ast ) \rightarrow \scrT (\cdot | x, u\ast ) setwise and
vk - 1
n \rightarrow vk - 1 pointwise.

For the second term, we use a contradiction argument. Assume that there exists
an \epsilon > 0 and some subsequence (identified with nk) such that

| 
\int 
\BbbX 
vk - 1(x1)\scrT (dx1| x, u\ast 

nk
) - 

\int 
\BbbX 
vk - 1
n (x1)\scrT nk

(dx1| x, u\ast 
nk
)| > \epsilon .(4.6)

Now, take a further subsequence u\ast 
n\prime 
k
of this sequence, which converges to some u

whose existence follows from the compactness of \BbbU . Notice that along this subsequence
\scrT (\cdot | x, u\ast 

n\prime 
k
) \rightarrow \scrT (\cdot | x, u) and \scrT n\prime 

k
(\cdot | x, u\ast 

n\prime 
k
) \rightarrow \scrT (\cdot | x, u). Thus, using the induction step

and [42, Theorem 20] the above term converges to 0 along the subsequence indexed
by n\prime 

k, which contradicts (4.6). The rest of the proof follows from the arguments in
Theorem 5.2.

4.3.3. Absence of robustness under setwise convergence. Now, we give a
result showing that even if the continuity holds under the setwise convergence of the
kernels, the robustness may not be satisfied.

Theorem 4.7. Supposing \scrT n(\cdot | xn, un) \rightarrow \scrT (\cdot | x, u) setwise for every x \in \BbbX and
u \in \BbbU and (xn, un) \rightarrow (x, u), then it is not true in general that J\beta (\scrT , \gamma \ast 

n) \rightarrow J\beta (\scrT , \gamma \ast ),
even when \BbbX and \BbbU are compact and c(x, u) is continuous and bounded in \BbbX \times \BbbU .

Proof. We prove the result with a counterexample. Define

Ln,k =

\biggl[ 
2k  - 2

2n
,
2k  - 1

2n

\biggr) 
, Rn,k =

\biggl[ 
2k  - 1

2n
,
k

n

\biggr) 
.

Let L = \{ y \in \cup n
k=1Ln,k\} and R = \{ y \in \cup n

k=1Rn,k\} . Next, define the square-wave
function by

hn(t) = 1\{ t\in L\}  - 1\{ t\in R\} .

Define two sequences of probability density functions as

fn(t) = (1 + hn(t))1\{ t\in [0,1]\} , gn(t) = (1 - hn(t))1\{ t\in [0,1]\} .
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Consider the kernels given in the following form for n \geq 1:

\scrT n(\cdot | x, u) \sim 1\{ x\in L,u=1\} fn(\cdot ) + 1\{ x\in L,u=0\} gn(\cdot )
+ 1\{ x\in R,u=0\} fn(\cdot ) + 1\{ x\in R,u=1\} gn(\cdot )

\scrT (\cdot | x, u) \sim U([0, 1]).

By the proof of the Riemann--Lebesgue lemma [54, Theorem 12.21]

lim
n\rightarrow \infty 

\int 1

0

hn(t)g(t)dt = 0 \forall g \in L1 ([0, 1],\BbbR ) ,

and therefore

lim
n\rightarrow \infty 

\int 1

0

fn(t)g(t)dt =

\int 1

0

g(t) \forall g \in L1 ([0, 1],\BbbR ) .

As a result, \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) setwise for every x \in \BbbX and u \in \BbbU .
The cost function is given by

c(x, u) =

\Biggl\{ 
2 if u = 0,

x if u = 1.

Notice that if the system starts anywhere on L, it does not matter how we define \gamma \ast 
n

for x \in R as the state always stays at L. Thus, with this setup, it can be seen that
an optimal policy for \scrT n is given by

\gamma \ast 
n(x) =

\Biggl\{ 
1 if x \in L,

0 if x \in R

when the initial state is x = 0, which belongs to L for any n \geq 1. The optimal policy
for \scrT is given by \gamma \ast (x) = 1. The discounted cost values can be calculated as follows:

J\beta (\scrT , \gamma \ast ) =

\infty \sum 
t=0

\beta tE\scrT [c(X, 1)] =

\infty \sum 
t=0

\beta t

\int 1

0

xdx =
1

2(1 - \beta )
.

Building on the calculations in [32], the cost under the policy \gamma \ast 
n is calculated as

J\beta (\scrT , \gamma \ast 
n) =

\infty \sum 
t=0

\beta tE\scrT [c(X, \gamma \ast 
n(X))] =

1

1 - \beta 

\biggl( \int 
L

c(x, 1)dx+

\int 
R

c(x, 0)dx

\biggr) 
=

1

1 - \beta 

\biggl( \int 
L

xdx+

\int 
R

2dx

\biggr) 
=

1

1 - \beta 

\biggl( 
1

4
 - 1

8n
+ 1

\biggr) 
\rightarrow 5

4(1 - \beta )
,

which completes the proof.

4.4. A sufficient condition for robustness under setwise convergence.
We now present a similar result to Theorem 4.4, that is, we show that under the
conditions of Theorem 4.6, if further for every n, \gamma \ast 

n is optimal for every x0 \in \BbbX 
(under the model \scrT n), then robustness holds under setwise convergence.

Theorem 4.8. Supposing Assumption 1.3 holds, if further we have that for every
n, \gamma \ast 

n is optimal for every x0 \in \BbbX (under the model \scrT n), then J\beta (\scrT , \gamma \ast 
n) \rightarrow J\beta (\scrT , \gamma \ast ).
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Proof. We use the same proof technique as we used for Theorem 4.4. Define the
following operator for \gamma \ast 

n, an optimal policy for \scrT n as in the proof of Theorem 4.4,

(Tn(v))(x0) = c(x0, \gamma 
\ast 
n(x0)) + \beta 

\int 
v(x1)\scrT (dx1| x0, \gamma 

\ast 
n(x0)),

which is a contraction from Cb(\BbbX ) to itself under the supremum norm with modulus \beta 
and has a unique fixed point which is J\beta (\scrT , \gamma \ast 

n). Hence, T k
n (J

\ast 
\beta (\scrT ))(x) \rightarrow J\beta (\scrT , \gamma \ast 

n, x)

as k \rightarrow \infty uniformly over n, where T k
n is the operator Tn applied k consecutive times.

Using the properties of setwise convergence we show in section A.6 that

lim
n\rightarrow \infty 

T k
n (J

\ast 
\beta (\scrT ))(x) = J\ast 

\beta (\scrT , x) \forall k < \infty .(4.7)

Then, we write

J\beta (\scrT , \gamma \ast 
n) - J\ast 

\beta (\scrT ) \leq | J\beta (\scrT , \gamma \ast 
n) - T k

n (J
\ast 
\beta (\scrT ))| + | T k

n (J
\ast 
\beta (\scrT )) - J\ast 

\beta (\scrT )| \rightarrow 0.

We can make the second term arbitrarily small by choosing k large enough uniformly
over all n since T k

n (J
\ast 
\beta (\scrT ))(x) \rightarrow J\beta (\scrT , \gamma \ast 

n, x) as k \rightarrow \infty uniformly over n. For the
fixed k, the first term can be made arbitrarily small by choosing n large enough using
(4.7).

4.5. Total variation. The continuity result in Theorem 2.5 and the robustness
result in Theorem 3.1 apply to this case since the fully observed model may be viewed
as a partially observed model with the measurement channel Q given in (4.1).

Remark 4.4. We note that if the action and state spaces are finite, then total
variation convergence and weak convergence coincide and thus Theorems 2.5, 2.6, and
3.1 from the partially observed case directly apply to this case considering the channel
as a perfect channel. Thus, the only assumptions needed to establish continuity and
robustness are

\bullet \scrT n(\cdot | x, un) \rightarrow \scrT (\cdot | x, u) in total variation for all x \in \BbbX ,
\bullet \scrT (\cdot | x, u) is continuous in total variation in u for every given x \in \BbbX ,
\bullet \BbbU is compact.

Since the spaces are finite, this set of assumptions reduces to
\bullet \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) in total variation for all x \in \BbbX and u \in \BbbU .

Remark 4.5. We note that all of the results we present in this paper also apply
to finite horizon problems. If we define a finite horizon problem by

J(P, \scrT , \gamma ) =

T\sum 
t=0

E\scrT 
P,Q[c(Xt, Ut)],

the continuity and robustness properties hold under the same conditions we have
presented for the infinite horizon discounted problem.

5. Implications for data-driven learning methods in stochastic control.
In practice, one might try to learn the kernel of a controlled Markov chain from
empirical data; see, e.g., [6, 55, 24] for some related literature in the control-free and
controlled contexts.

Let us briefly discuss the case where a random variable is repeatedly observed,
but its probability measure is not known a priori. Let \{ (Xi), i \in \BbbN \} be an \BbbX -valued
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i.i.d. random variable sequence generated according to some distribution \mu . Defining
for every (fixed) Borel B \subset \BbbX , and n \in \BbbN , the empirical occupation measures

\mu n(B) =
1

n

n\sum 
i=1

1\{ Xi\in B\} ,

and one has \mu n(B) \rightarrow \mu (B) almost surely by the strong law of large numbers. Also,
\mu n \rightarrow \mu weakly with probability one ([14, Theorem 11.4.1]). However, \mu n cannot
converge to \mu in total variation or setwise, in general. On the other hand, if we know
that \mu admits a density, we can find estimators to estimate \mu under total variation [13,
Chapter 3]. For a more detailed discussion on convergence of empirical occupation
measures see [32, pp. 1950--1951]. In the previous sections, we established robustness
results under the convergence of transition kernels in the topology of weak convergence
and total variation. We build on these observations next.

5.1. Application of robustness results to data-driven learning.

Corollary 5.1 (to Theorems 2.6 and 3.1). Suppose we are given the following
dynamics for finite state space, \BbbX , and finite action space, \BbbU ,

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where \{ wt\} and \{ vt\} are i.i.d. noise processes and the noise models are unknown.
Suppose that there is an initial training period so that under some policy, every x, u
pair is visited infinitely often if training were to continue indefinitely, but that the
training ends at some finite time. Let us assume that, through this training, we
empirically learn the transition dynamics such that for every (fixed) Borel B \subset \BbbX , for
every x \in \BbbX , u \in \BbbU , and n \in \BbbN , the empirical occupation measures are

\scrT n(B| x0 = x, u0 = u) =

\sum n
i=1 1\{ Xi\in B,Xi - 1=x,Ui - 1=u\} \sum n

i=1 1\{ Xi - 1=x,Ui - 1=u\} 
.

Then we have that J\ast 
\beta (\scrT n) \rightarrow J\ast 

\beta (\scrT ) and J\beta (\scrT , \gamma \ast 
n) \rightarrow J\ast 

\beta (\scrT ), where \gamma \ast 
n is the optimal

policy designed for \scrT n. Since the channel model g has no restrictions, this result also
applies to the fully observed model setup by taking g(xt, vt) = xt.

Proof. We have that \scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) weakly for every x \in \BbbX , u \in \BbbU al-
most surely by the law of large numbers. Since the spaces are finite, we also have
\scrT n(\cdot | x, u) \rightarrow \scrT (\cdot | x, u) under total variation. By Theorems 2.6 and 3.1, the results
follow.

The following holds for more general spaces.

Corollary 5.2 (to Theorems 3.3, 2.3, 4.2, and 4.4). Suppose we are given the
following dynamics with state space \BbbX and action space \BbbU ,

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where \{ wt\} and \{ vt\} are i.i.d. noise processes and the noise models are unknown.
Suppose that f(x, u, \cdot ) : \BbbW \rightarrow \BbbX is invertible for all fixed (x, u) and f(x, u, w) is
continuous and bounded on \BbbX \times \BbbU \times \BbbW . We construct the empirical measures for the
noise process wt such that for every (fixed) Borel B \subset \BbbW , and for every n \in \BbbN , the
empirical occupation measures are

\mu n(B) =
1

n

n\sum 
i=1

1\{ f - 1
xi - 1,ui - 1

(xi)\in B\} ,(5.1)
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where f - 1
xi - 1,ui - 1

(xi) denotes the inverse of f(xi - 1, ui - 1, w) : \BbbW \rightarrow \BbbX for given
(xi - 1, ui - 1). Using the noise measurements, we construct the empirical transition
kernel estimates for any (x0, u0) and Borel B as

\scrT n(B| x0, u0) = \mu n(f
 - 1
x0,u0

(B)).

(i) If the measurement channel (represented by the function g) is continuous in
total variation, then J\ast 

\beta (\scrT n) \rightarrow J\ast 
\beta (\scrT ) and J\beta (\scrT , \gamma \ast 

n) \rightarrow J\ast 
\beta (\scrT ), where \gamma \ast 

n is
the optimal policy designed for \scrT n for all initial points.

(ii) If the measurement channel is in the form g(xt, vt) = xt (i.e., fully observed),
then J\ast 

\beta (\scrT n) \rightarrow J\ast 
\beta (\scrT ), and if further for every n, \gamma \ast 

n is optimal for every
x0 \in \BbbX (under the model \scrT n), then J\beta (\scrT , \gamma \ast 

n) \rightarrow J\ast 
\beta (\scrT ).

Proof. We have \mu n \rightarrow \mu weakly with probability one where \mu is the model. We
claim that the transition kernels are such that \scrT n(\cdot | xn, un) \rightarrow \scrT (\cdot | x, u) weakly for any
(xn, un) \rightarrow (x, u). To see that observe the following for h \in Cb(\BbbX ):\int 

h(x1)\scrT n(dx1| xn, un) - 
\int 

h(x1)\scrT (dx1| x, u)

=

\int 
h(f(xn, un, w))\mu n(dw) - 

\int 
h(f(x, u, w))\mu (dw) \rightarrow 0,

where \mu n is the empirical measure for wt and \mu is the true measure again. For the
last step, we used that \mu n \rightarrow \mu weakly and h(f(xn, un, w)) continuously converge to
h(f(x, u, w)), i.e., h(f(xn, un, wn)) \rightarrow h(f(x, u, w) for some wn \rightarrow w since f and g
are continuous functions. Similarly, it can be also shown that \scrT n(\cdot | x, u) and \scrT (\cdot | x, u)
are weakly continuous on (x, u). Thus, for the case where the channel is continuous
in total variation by Theorems 3.3 and 2.3 if c(x, u) is bounded and \BbbU is compact, the
result follows.

For the fully observed case, J\ast 
\beta (\scrT n) \rightarrow J\ast 

\beta (\scrT ) by Theorem 4.2 and J\beta (\scrT , \gamma \ast 
n) \rightarrow 

J\ast 
\beta (\scrT ) by Theorem 4.4.

Remark 5.1. We note here that the moment estimation method can also lead to
consistency. Suppose that the distribution of W is determined by its moments, such
that estimate models Wn have moments of all orders and limn = E[W r

n ] = E[W r]
for all r \in \BbbZ +. Then, we have that [8, Theorem 30.2] Wn \rightarrow W weakly and thus
\scrT n(\cdot | xn, un) \rightarrow \scrT (\cdot | x, u) weakly for any (xn, un) \rightarrow (x, u) under the assumptions of
above corollary. Hence, we reach continuity and robustness using the same arguments
as in the previous result (Corollary 5.2).

Now, we give a similar result with the assumption that the noise process of the
dynamics admits a continuous probability density function.

Corollary 5.3 (to Theorems 2.6 and 3.1). Suppose we are given the following
dynamics for real vector state space \BbbX and action space \BbbU :

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where \{ wt\} and \{ vt\} are i.i.d. noise processes and the noise models are unknown,
but it is known that the noise wt admits a continuous probability density function.
Suppose that f(x, u, \cdot ) : \BbbW \rightarrow \BbbX is invertible for all (x, u). We collect i.i.d. samples
of \{ wt\} as in (5.1) and use them to construct an estimator, \~\mu n , as described in [13],
which consistently estimates \mu in total variation. Using these empirical estimates, we
construct the empirical transition kernel estimates for any (x0, u0) and Borel B as

\scrT n(B| x0, u0) = \~\mu n(f
 - 1
x0,u0

(B)).
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ROBUSTNESS TO INCORRECT STOCHASTIC MODELS 1169

Then independent of the channel, J\ast 
\beta (\scrT n) \rightarrow J\ast 

\beta (\scrT ) and J\beta (\scrT , \gamma \ast 
n) \rightarrow J\ast 

\beta (\scrT ), where \gamma \ast 
n

is the optimal policy designed for \scrT n. Since the channel model g has no restrictions,
this result also applies to the fully observed model setup by taking g(xt, vt) = xt.

Proof. By [13] we can estimate \mu in total variation so that almost surely
limn\rightarrow \infty \| \~\mu n  - \mu \| TV = 0. We claim that the convergence of \~\mu n to \mu under the
total variation metric implies the convergence of \scrT n to \scrT in total variation uniformly
over all x \in \BbbX and u \in \BbbU , i.e., limn\rightarrow \infty supx,u \| \scrT n(\cdot | x, u) - \scrT (\cdot | x, u)\| TV = 0. Observe
the following:

sup
x,u

\| \scrT n(\cdot | x, u) - \scrT (\cdot | x, u)\| TV

= sup
x,u

sup
| | h| | \infty \leq 1

\bigm| \bigm| \int h(x1)\scrT n(dx1| x, u) - 
\int 

h(x1)\scrT (dx1| x, u)
\bigm| \bigm| 

= sup
x,u

sup
| | h| | \infty \leq 1

\bigm| \bigm| \int h(f(x, u, w))\~\mu n(dw) - 
\int 

h(f(x, u, w))\mu (dw)
\bigm| \bigm| \leq \| \~\mu n  - \mu \| TV \rightarrow 0.

Thus, by Theorems 2.6 and 3.1, the result follows.

The following example presents some system and channel models which satisfy
the requirements of the above corollaries.

Example 5.1. Let \BbbX ,\BbbY , \BbbU be real vector spaces with

xt+1 = f(xt, ut) + wt, yt = h(xt, vt)

for unknown i.i.d. noise processes \{ wt\} and \{ vt\} .
(i) Suppose the channel is in the following form: yt = h(xt, vt) = xt + vt, where

vt admits a density (e.g., Gaussian density). It can be shown by an appli-
cation of Scheff\'e's theorem that the channels in this form are continuous in
total variation. If further f(xt, ut) is continuous and bounded, then the re-
quirements of Corollary 5.2 hold for partially observed models.

(ii) If the channel is in the form xt = h(xt, vt), then the system is fully observed.
If further f(xt, ut) is continuous and bounded, then the requirements of Corol-
lary 5.2 hold for fully observed models.

(iii) Supposing the function f(xt, ut) is known, if the noise process wt admits a
continuous density, then one can estimate the noise model in total variation
in a consistent way (see [13]). Hence, the conditions of Corollary 5.3 hold
independent of the channel model.

6. Conclusion. We studied regularity properties of optimal stochastic control
on the space of transition kernels and applications to robustness of optimal control
policies designed for an incorrect model applied to an actual system.

Appendix A. Technical results.

A.1. Proof of (2.2) in Theorem 2.2. Before the proof we give a key lemma.
The lemma we present generalizes the following result from [35, Theorem 3.5] and
[49, Theorem 3.5].

Lemma A.1. Suppose \{ \mu n\} n \subset \scrP (\BbbX ), where \BbbX is metric space, converges weakly
to some \mu \in \scrP (\BbbX ). For a bounded real valued sequence of functions \{ fn\} n such that
\| fn\| \infty < C for all n > 0 with C < \infty , if limn\rightarrow \infty fn(xn) = f(x) for all xn \rightarrow x, i.e.,
fn continuously converges to f , then limn\rightarrow \infty 

\int 
\BbbX fn(x)\mu n(dx) =

\int 
\BbbX f(x)\mu (dx).
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1170 ALI D. KARA AND SERDAR Y\"UKSEL

Lemma A.2. Suppose we have a uniformly bounded family of functions \{ f\gamma 
n : \BbbX \rightarrow 

\BbbR , \gamma \in \Gamma , n > 0\} such that \| f\gamma 
n\| \infty < C for all \gamma \in \Gamma and for all n > 0 for some C < \infty .

Further suppose we have another uniformly bounded family of functions \{ f\gamma :
\BbbX \rightarrow \BbbR , \gamma \in \Gamma \} such that \| f\gamma \| \infty < C for all \gamma \in \Gamma for some C < \infty under the
following assumptions:

(i) For any xn \rightarrow x

sup
\gamma \in \Gamma 

\bigm| \bigm| f\gamma 
n (xn) - f\gamma (x)

\bigm| \bigm| \rightarrow 0,(A.1)

sup
\gamma \in \Gamma 

\bigm| \bigm| f\gamma (xn) - f\gamma (x)
\bigm| \bigm| \rightarrow 0.(A.2)

(ii) \scrT n(\cdot | xn, un) converges weakly to \scrT (\cdot | x, u) for any (xn, un) \rightarrow (x, u).
(iii) \scrT (\cdot | x, u) is weakly continuous in (x, u).
(iv) \BbbU is compact.
Then for fixed observation realizations, y[0,t] := \{ y0, . . . , yt\} and for some xn

t \rightarrow xt

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

\gamma 
n (xt+1) - 

\int 
\scrT (dxt+1| xt, \gamma (y[0,t]))f

\gamma (xt+1)

\bigm| \bigm| \bigm| \bigm| \rightarrow 0.

(A.3)

Proof. Using (A.2), we see that \{ f\gamma \} is a equicontinuous family of functions.
Thus, by the Arzela--Ascoli theorem, for any given compact set K \subset \BbbX and \epsilon > 0
there is a finite set of continuous functions \BbbF := \{ f1, . . . , fN\} so that for any \gamma there
is f i \in \BbbF with

sup
x\in K

| f\gamma (x) - f i(x)| \leq \epsilon .

Now, we claim that for the same \epsilon > 0, the same f i \in \BbbF , and the chosen compact set
K, we can make supx\in K | f\gamma 

n (x) - f i(x)| \leq 3\epsilon /2 for large enough n and for any \gamma \in \Gamma .
To see this, observe the following:

sup
x\in K

| f\gamma 
n (x) - f i(x)| \leq sup

x\in K
| f\gamma 

n (x) - f\gamma (x)| + sup
x\in K

| f\gamma (x) - f i(x)| ;

the second term is less than \epsilon with the argument we made in the first paragraph of
the proof. The first term can also be made arbitrarily small since f\gamma 

n \rightarrow f\gamma uniformly
on compact sets by (A.1). Now we wish to show that we can find a compact subset
of \BbbX such that all probability measures (kernels) in the term (A.3) put their measure
mainly on this compact set. Consider the set of measures S := \cup \gamma \in \Gamma S\gamma , where

S\gamma = \{ \scrT n(\cdot | xn
t , \gamma (y[0,t])) : \scrT n(\cdot | xn

t , \gamma (y[0,t])) \rightarrow \scrT (\cdot | xt, \gamma (y[0,k]))\} .

Here, notice that the set S depends on the sequence \{ xn
t \} and the observation real-

izations y[0,t]. To cover all the kernels in (A.3) we take \{ xn
t \} and y[0,t] as they are

given in the statement of the lemma.
For a sequence from the set S, say, \scrT nm

(\cdot | xnm
t , \gamma m(y[0,t])), since \BbbU is a compact set

and the observations are fixed, there exists a subsequence in which \gamma mr (y[0,t]) \rightarrow u\ast 

for some u\ast \in \BbbU . Now we focus on this subsequence \scrT nmr
(\cdot | xnmr

t , \gamma mr
(y[0,t])). By

the assumption (ii) in the lemma statement \{ \scrT n\} n also satisfies the following: for any
(xn, un) \rightarrow (x, u), \scrT n(\cdot | xn, un) \rightarrow \scrT (\cdot | x, u). Thus,

\scrT nmr
(\cdot | xnmr

t , \gamma mr (y[0,t])) \rightarrow \scrT (\cdot | xt, u
\ast ).

Hence any sequence in the set S has a convergent subsequence, and thus S is a
precompact family. Therefore, it is a tight family of functions by the Prokhorov
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theorem [7, Theorem 5.2] (see also [14, Theorem 11.5.3]). Hence, for any \epsilon > 0, there
exists a compact set K\epsilon such that for all n and uniformly for all \gamma \in \Gamma ,\int 

K\epsilon 

\scrT n(dx1| xn
t , \gamma (y[0,t])) \geq 1 - \epsilon .

Now, we fix an \epsilon > 0 and choose a compact set K\epsilon according to the above
discussion such that all \scrT n put almost all their measure (more than 1 - \epsilon ) on K\epsilon . We
also fix a finite family of continuous functions \BbbF := \{ f1, . . . , fN\} such that for any
\gamma , we can find an f i \in \BbbF with supxt\in K\epsilon 

| f\gamma (xt) - f i(xt)| \leq \epsilon . Moreover, we choose a
large N such that supx\in K\epsilon 

| f\gamma 
n (x) - f i(x)| \leq 3\epsilon /2 for all n \geq N .

With this setup, we go back to the main statement:

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

\gamma 
n (xt+1) - 

\int 
\scrT (dxt+1| xt, \gamma (y[0,t]))f

\gamma (xt+1)

\bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma 

\bigm| \bigm| \int 
\BbbX \setminus K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

\gamma 
n (xt+1) - 

\int 
\BbbX \setminus K\epsilon 

\scrT (dxt+1| xt, \gamma (y[0,t]))f
\gamma (xt+1)

\bigm| \bigm| 
+ sup

\gamma \in \Gamma 

\bigm| \bigm| \int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

\gamma 
n (xt+1)

 - 
\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (y[0,t]))f
\gamma (xt+1)

\bigm| \bigm| 
\leq 2\epsilon C + sup

\gamma \in \Gamma 

\bigm| \bigm| \int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (y[0,t]))

\bigl( 
f\gamma 
n (xt+1) - f i(xt+1)

\bigr) 
+

\int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

i(xt+1)

 - 
\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (y[0,t]))f
i(xt+1)

+

\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (y[0,t]))
\bigl( 
f i(xt+1) - f\gamma (xt+1)

\bigr) \bigm| \bigm| 
\leq 2\epsilon C + sup

\gamma \in \Gamma 

\bigm| \bigm| \int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

i(xt+1)

 - 
\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (y[0,t]))f
i(xt+1)

\bigm| \bigm| + 5\epsilon /2 \leq 4\epsilon C + 7\epsilon /2,

where C is the uniform bound of f\gamma 
n and f i(xt+1) is chosen according to the discussion

above such that f i is \epsilon close to f\gamma (xt+1) and the same f i is 3\epsilon /2 close to f\gamma 
n (xt+1).

At the last step, we used the fact that \scrT n(dxt+1| xn
t , \gamma (y[0,t])) converges weakly to

\scrT (dxt+1| xt, \gamma (y[0,t])) uniformly on \BbbU . Thus,

sup
\gamma \in \Gamma 

\bigm| \bigm| \int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

i(xt+1) - 
\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (y[0,t]))f
i(xt+1)

\bigm| \bigm| 
\leq sup

\gamma \in \Gamma 

\bigm| \bigm| \int 
\BbbX  - K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (y[0,t]))f

i(xt+1) - 
\int 
\BbbX  - K\epsilon 

\scrT (dxt+1| xt, \gamma (y[0,t]))f
i(xt+1)

\bigm| \bigm| 
+ sup

\gamma \in \Gamma 

\bigm| \bigm| \int 
\BbbX 
\scrT n(dxt+1| xn

t , \gamma (y[0,t]))f
i(xt+1)

 - 
\int 
\BbbX 
\scrT (dxt+1| xt, \gamma (y[0,t]))f

i(xt+1)
\bigm| \bigm| \leq 2\epsilon C + \epsilon 

for large enough n. As \epsilon is arbitrary, the result follows.
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1172 ALI D. KARA AND SERDAR Y\"UKSEL

With this lemma, we go back to (2.2). For easiness of notation we will first study
the case where t = 3.

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| E\scrT 
P

\biggl[ 
c
\bigl( 
X3, \gamma (Y[0,3])

\bigr) \biggr] 
 - E\scrT n

P

\biggl[ 
c
\bigl( 
X3, \gamma (Y[0,3])

\bigr) \biggr] \bigm| \bigm| \bigm| 
= sup

\gamma \in \Gamma 

\bigm| \bigm| \int P (dx0)Q(dy0| x0)\scrT (dx1| x0, \gamma (y0))Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))

\times Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

P (dx0)Q(dy0| x0)\scrT n(dx1| x0, \gamma (y0))Q(dy1| x1)\scrT n(dx2| x1, \gamma (y[0,1]))

\times Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))
\bigm| \bigm| .

Using the dominated convergence theorem, it suffices to show that

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dx1| x0, \gamma (y0))Q(dy1| x1)\scrT n(dx2| x1, \gamma (y[0,1]))

\times Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

\scrT (dx1| x0, \gamma (y0))Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))

\times Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| \rightarrow 0.

Then, using Lemma A.2, it suffices to show that for any xn
1 \rightarrow x1

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy1| xn
1 )\scrT n(dx2| xn

1 , \gamma (y[0,1]))Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| \rightarrow 0(A.4)

and

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy1| xn
1 )\scrT (dx2| xn

1 , \gamma (y[0,1]))Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| \rightarrow 0.(A.5)

We only focus on the term (A.4); the analysis for the term (A.5) follows from identical
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steps. For (A.4), we write the following:

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy1| xn
1 )\scrT n(dx2| xn

1 , \gamma (y[0,1]))Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy1| xn
1 )\scrT n(dx2| xn

1 , \gamma (y[0,1]))Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

Q(dy1| x1)\scrT n(dx2| xn
1 , \gamma (y[0,1]))Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| 
+sup

\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy1| x1)\scrT n(dx2| xn
1 , \gamma (y[0,1]))Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))

\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| .(A.6)

The first term goes to 0 since the channel is continuous in total variation. For the
second term, using Lemma A.2 and the total variation continuity of Q successively,
it reduces to show that

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy3| xn
3 )c(x

n
3 , \gamma (y[0,3]) - 

\int 
Q(dy3| x3)c(x3, \gamma (y[0,3])

\bigm| \bigm| \bigm| \bigm| \rightarrow 0.

To show this, we write the following:

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy3| xn
3 )c(x

n
3 , \gamma (y[0,3]) - 

\int 
Q(dy3| x3)c(x3, \gamma (y[0,3])

\bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int Q(dy3| xn
3 )c(x

n
3 , \gamma (y[0,3]) - 

\int 
Q(dy3| x3)c(x

n
3 , \gamma (y[0,3])

\bigm| \bigm| \bigm| \bigm| 
+ sup

\gamma \in \Gamma 

\int 
Q(dy3| x3)

\bigm| \bigm| c(xn
3 , \gamma (y[0,3]) - c(x3, \gamma (y[0,3])

\bigm| \bigm| .
The first term goes to 0 since Q is continuous in total variation and the second term
goes to 0 since c is continuous in x uniformly over \BbbU . Thus, (A.4) holds true. (A.5) also
holds true with identical arguments; we use the convergence of \scrT (\cdot | xn, u) to \scrT (\cdot | x, u)
uniformly over u \in \BbbU whereas for (A.4), we use the convergence of \scrT n(\cdot | xn, u) to
\scrT (\cdot | x, u) uniformly over u \in \BbbU at (A.6) with Lemma A.2. Therefore, (2.2) goes to 0
for the time step t = 3. For a general finite time stage t, we can again use the iterative
approach we used when t = 3. Thus, we can generalize that for any 0 < t < \infty 

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| E\scrT 
P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
Xt, \gamma (Y[0,t])

\bigr) \Bigr] \bigm| \bigm| \bigm| \bigm| \rightarrow 0.
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A.2. Proof of (2.4) in Theorem 2.5. Before the proof we give a key lemma.

Lemma A.3. For a uniformly bounded family of functions \{ f\gamma 
n : \BbbX \rightarrow \BbbR , n >

0, \gamma \in \Gamma \} and \{ f\gamma : \BbbX \rightarrow \BbbR , \gamma \in \Gamma \} if we have sup\gamma \in \Gamma 

\bigm| \bigm| f\gamma 
n (x) - f\gamma (x)

\bigm| \bigm| \rightarrow 0, then

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dxt+1| xt, \gamma (y[0,t]))f
\gamma 
n (xt+1) - 

\int 
\scrT (dxt+1| xt, \gamma (y[0,t]))f

\gamma (xt+1)

\bigm| \bigm| \bigm| \bigm| \rightarrow 0

for a fixed observation realizations y[0,t] := \{ y0, . . . , yt\} and a fixed state xt, under the
following assumptions:

(i) \scrT n is such that for any sequence \{ un\} \subset \BbbU converging to some u \in \BbbU ,
\scrT n(\cdot | x, un) \rightarrow \scrT (\cdot | x, u) in total variation for all x \in \BbbX ,

(ii) \scrT (\cdot | x, u) is continuous in total variation in u for every given x \in \BbbX .
Proof.

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dxt+1| xt, \gamma (y[0,t]))f
\gamma 
n (xt+1) - 

\int 
\scrT (dxt+1| xt, \gamma (y[0,t]))f

\gamma (xt+1)

\bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dxt+1| xt, \gamma (y[0,t]))f
\gamma 
n (xt+1) - 

\int 
\scrT (dxt+1| xt, \gamma (y[0,t]))f

\gamma 
n (xt+1)

\bigm| \bigm| \bigm| \bigm| 
+ sup

\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT (dxt+1| xt, \gamma (y[0,t]))
\bigl( 
f\gamma 
n (xt+1) - f\gamma (xt+1)

\bigr) \bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma 
\| \scrT n(dxt+1| xt, \gamma (y[0,t])) - \scrT (dxt+1| xt, \gamma (y[0,t]))\| TV

+ sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT (dxt+1| xt, \gamma (y[0,t]))
\bigl( 
f\gamma 
n (xt+1) - f\gamma (xt+1)

\bigr) \bigm| \bigm| \bigm| \bigm| .
Above, the first term goes to 0 as \scrT n(\cdot | x, un) \rightarrow \scrT (\cdot | x, u) in total variation and \BbbU is
compact.

For the second term, first we use the assumption that \scrT (\cdot | x, u) is continuous in
u. For any \epsilon > 0, there exists a \delta > 0 such that | u\prime  - u| < \delta implies \| \scrT (\cdot | x, u)  - 
\scrT (\cdot | x, u\prime )\| TV < \epsilon . Furthermore, by this assumption \BbbU is compact. Therefore, for the
given \delta , there exists a finite set \{ u1, . . . , uN\} such that for any \gamma \in \Gamma , we can find a
ui with | ui  - \gamma (y[0,t])| < \delta .

Combining what we have; for any \epsilon > 0 and for any \gamma \in \Gamma , we can find a ui such
that \| \scrT (\cdot | x, \gamma (y[0,t])) - \scrT (\cdot | x, ui)\| TV < \epsilon . Now we focus on the second term again:

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT (dxt+1| xt, \gamma (y[0,t]))
\bigl( 
f\gamma 
n (xt+1) - f\gamma (xt+1)

\bigr) \bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT (dxt+1| xt, \gamma (y[0,t]))
\bigl( 
f\gamma 
n (xt+1) - f\gamma (xt+1)

\bigr) 
 - 
\int 

\scrT (dxt+1| xt, ui)
\bigl( 
f\gamma 
n (xt+1) - f\gamma (xt+1)

\bigr) \bigm| \bigm| \bigm| \bigm| 
+ sup

\gamma \in \Gamma 

\int 
\scrT (dxt+1| xt, ui)

\bigm| \bigm| f\gamma 
n (xt+1) - f\gamma (xt+1)

\bigm| \bigm| 
\leq \| c\| \infty sup

\gamma \in \Gamma 
\| \scrT (\cdot | x, \gamma (y[0,t])) - \scrT (\cdot | x, ui)\| TV

+ sup
\gamma \in \Gamma 

\int 
\scrT (dxt+1| xt, ui)

\bigm| \bigm| f\gamma 
n (xt+1) - f\gamma (xt+1)

\bigm| \bigm| ,
where \| c\| \infty is a uniform bound of fn and ui is chosen according to the above dis-
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cussion. Thus, the first term is less than \| c\| \infty \epsilon and the second term can be made
arbitrarily small for large enough n since sup\gamma \in \Gamma 

\bigm| \bigm| f\gamma 
n (x) - f\gamma (x)

\bigm| \bigm| \rightarrow 0 by assumption.
The result follows.

Now we go back to (2.4). We will first study the case where t = 3.

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| E\scrT 
P

\Bigl[ 
c
\bigl( 
X3, \gamma (Y[0,3])

\bigr) \Bigr] 
 - E\scrT n

P

\Bigl[ 
c
\bigl( 
X3, \gamma (Y[0,3])

\bigr) \Bigr] \bigm| \bigm| \bigm| \bigm| 
= sup

\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int P (dx0)Q(dy0| x0)\scrT (dx1| x0, \gamma (y0))Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))

\times Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

P (dx0)Q(dy0| x0)\scrT n(dx1| x0, \gamma (y0))Q(dy1| x1)\scrT n(dx2| x1, \gamma (y[0,1]))

\times Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| .
Using Lemma A.3 it suffices to show that

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \biggl( 
Q(dy1| x1)\scrT n(dx2| x1, \gamma (y[0,1]))Q(dy2| x2)\scrT n(dx3| x2, \gamma (y[0,2]))

 - Q(dy1| x1)\scrT (dx2| x1, \gamma (y[0,1]))Q(dy2| x2)\scrT (dx3| x2, \gamma (y[0,2]))

\biggr) 
\times Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| \rightarrow 0.

Following the same procedure and using Lemma A.3 successively, it reduces to show
that

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))

 - 
\int 

\scrT (dx3| x2, \gamma (y[0,2]))Q(dy3| x3)c(x3, \gamma (y[0,3]))

\bigm| \bigm| \bigm| \bigm| 
\leq \| c\| \infty sup

\gamma \in \Gamma 
\| \scrT n(dx3| x2, \gamma (y[0,2])) - \scrT (dx3| x2, \gamma (y[0,2]))\| TV \rightarrow 0,

which holds true by the assumptions, i.e., since the action space \BbbU is compact and
\scrT n is such that for any sequence \{ un\} \subset \BbbU converging to some u \in \BbbU , \scrT n(\cdot | x, un) \rightarrow 
\scrT (\cdot | x, u) in total variation for all x \in \BbbX . This argument can be applied to any time
step t < \infty .

A.3. Proof of (2.6) in Theorem 2.6. First, we provide the analysis for k = 2.

\| P \gamma 
\scrT n
(d(x, y, u)[0,2]) - P \gamma 

\scrT (d(x, y, u)[0,2])\| TV

= sup
| | f | | \infty \leq 1

\bigm| \bigm| \bigm| \bigm| \int P (dx0)Q(dy0| x0)1\{ \gamma (y0)\in du0\} \scrT n(dx1| x0, u0)Q(dy1| x1)1\{ \gamma (y0,y1)\in du1\} 

\times \scrT n(dx2| x1, u1)Q(dy2| x2)1\{ \gamma (y0,y1,y2)\in du2\} f(x, y, u)[0,2]

 - 
\int 

P (dx0)Q(dy0| x0)1\{ \gamma (y0)\in du0\} \scrT (dx1| x0, u0)Q(dy1| x1)1\{ \gamma (y0,y1)\in du1\} 

\times \scrT (dx2| x1, u1)Q(dy2| x2)1\{ \gamma (y0,y1,y2)\in du2\} f(x, y, u)[0,2]

\bigm| \bigm| \bigm| \bigm| 
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\leq sup
| | f | | \infty \leq 1

\int 
P \gamma 
\scrT n
(d(x[0,1], y[0,1], u[0,1]))

\times 
\bigm| \bigm| \bigm| \bigm| \int \scrT n(dx2| x1, u1)Q(dy2| x2)1\{ \gamma (y[0,2])\in du2\} f(x, y, u)[0,2]

 - 
\int 

\scrT (dx2| x1, u1)Q(dy2| x2)1\{ \gamma (y[0,2])\in du2\} f(x, y, u)[0,2]

\bigm| \bigm| \bigm| \bigm| 
+ sup

| | f | | \infty \leq 1

\int 
P \gamma 
\scrT (d(x0, y0, u0))

\times 
\bigm| \bigm| \bigm| \bigm| \int \scrT n(dx1| x0, u0)Q(dy1| x1)1\{ \gamma (y0,y1)\in du1\} P

\gamma 
\scrT (d(x2, y2, u2))f(x, y, u)[0,2]

 - 
\int 

\scrT (dx1| x0, u0)Q(dy1| x1)1\{ \gamma (y0,y1)\in du1\} P
\gamma 
\scrT (d(x2, y2, u2))f(x, y, u)[0,2]

\bigm| \bigm| \bigm| \bigm| 
\leq 2 sup

x\in \BbbX ,u\in \BbbU 
\| \scrT n(.| x, u) - \scrT (.| x, u)\| TV .

Now, we do the same analysis for a general time step k:

\| P \gamma 
\scrT n
(d(x, y, u)[0,k]) - P \gamma 

\scrT (d(x, y, u)[0,k])\| TV

= sup
| | f | | \infty \leq 1

\bigm| \bigm| \bigm| \bigm| \int f(x, y, u)[0,k]P
\gamma 
\scrT n
(d(x, y, u)[0,k]) - 

\int 
f(x, y, u)[0,k]P

\gamma 
\scrT (d(x, y, u)[0,k])

\bigm| \bigm| \bigm| \bigm| 
\leq sup

| | f | | \infty \leq 1

\bigm| \bigm| \bigm| \bigm| \int P \gamma 
\scrT ,\scrT n

(dx0, dy0, du0)

\times 
\biggl[ \int 

\scrT (dx1| x0, u0)

\int 
f(x, y, u)[0,k]P

\gamma 
\scrT ,\scrT n

(dx[2,k], dy[1,k], du[1,k])

 - 
\int 

\scrT n(dx1| x0, u0)

\int 
f(x, y, u)[0,k]P

\gamma 
\scrT ,\scrT n

(dx[2,k], dy[1,k], du[1,k])

\biggr] \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int P \gamma 
\scrT ,\scrT n

(dx[0,1], dy[0,1], du[0,1])

\times 
\biggl[ \int 

\scrT (dx2| x1, u1)

\int 
f(x, y, u)[0,k]P

\gamma 
\scrT ,\scrT n

(dx[3,k], dy[2,k], du[3,k])

 - 
\int 

\scrT n(dx2| x1, u1)

\int 
f(x, y, u)[0,k]P

\gamma 
\scrT ,\scrT n

(dx[3,k], dy[2,k], du[2,k])

\biggr] \bigm| \bigm| \bigm| \bigm| 
\cdot \cdot \cdot +

\bigm| \bigm| \bigm| \bigm| \int P \gamma 
\scrT ,\scrT n

(dx[0,k - 1], dy[0,k - 1], du[0,k - 1])

\biggl[ \int 
\scrT (dxk| xk - 1, uk - 1)f(x, y, u)[0,k]

 - 
\int 

\scrT n(dxk| xk - 1, uk - 1)f(x, y, u)[0,k]

\biggr] \bigm| \bigm| \bigm| \bigm| 
\leq 

\int 
P \gamma 
\scrT ,\scrT n

(dx0, dy0, du0)\| \scrT (\cdot | x0, u0) - \scrT n(\cdot | x0, u0)\| TV

+

\int 
P \gamma 
\scrT ,\scrT n

(dx[0,1], dy[0,1], du[0,1])\| \scrT (\cdot | x1, u1) - \scrT n(\cdot | x1, u1)\| TV

\cdot \cdot \cdot +
\int 

P \gamma 
\scrT ,\scrT n

(dx[0,k - 1], dy[0,k - 1], du[0,k - 1]))\| \scrT (\cdot | xk - 1, uk - 1) - \scrT n(\cdot | xk - 1, uk - 1)\| TV

\leq k sup
x\in \BbbX ,u\in \BbbU 

\| \scrT (.| x, u) - \scrT n(.| x, u)\| TV .
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In the argument above P \gamma 
\scrT ,\scrT n

denotes a strategic measure that uses \scrT or \scrT n at various
steps. The terms are arranged so that at every term the applied strategic measures
coincide.

A.4. Proof for Remark 4.3. We note that if the family where we search for
policies is restricted to an equicontinuous family of functions, robustness can also be
achieved. Let \Gamma eq be the family of equicontinuous policies so that for any given x0 \in \BbbX 
and \epsilon > 0, there exists a \delta > 0 such that | \gamma (x)  - \gamma (x0)| \leq \epsilon for all \gamma \in \Gamma eq and for
every x such that | x - x0| \leq \delta .

We show that for all t < \infty 

sup
\gamma \in \Gamma eq

\bigm| \bigm| \bigm| \bigm| E\scrT 
\Bigl[ 
c
\bigl( 
Xt, \gamma (Xt)

\bigr) \Bigr] 
 - E\scrT n

\Bigl[ 
c
\bigl( 
Xt, \gamma (Xt)

\bigr) \Bigr] \bigm| \bigm| \bigm| \bigm| \rightarrow 0.

For ease of notation we will first study the case where t = 2.

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| E\scrT 
\biggl[ 
c
\bigl( 
X2, \gamma (X2)

\bigr) \biggr] 
 - E\scrT n

\biggl[ 
c
\bigl( 
X2, \gamma (X2)

\bigr) \biggr] \bigm| \bigm| \bigm| 
= sup

\gamma \in \Gamma 

\bigm| \bigm| \int \scrT (dx1| x0, \gamma (x0))\scrT (dx2| x1, \gamma (x1))c(x,\gamma (x2))

 - 
\int 

\scrT n(dx1| x0, \gamma (x0))\scrT n(dx2| x1, \gamma (x1))c(x2, \gamma (x2))
\bigm| \bigm| .

To show that the above term goes to 0, we use a lemma parallel to Lemma A.2 in the
paper.

Lemma A.4. Suppose we have a uniformly bounded family of functions \{ f\gamma 
n : \BbbX \rightarrow 

\BbbR , \gamma \in \Gamma eq, n > 0\} such that \| f\gamma 
n\| \infty < C for all \gamma \in \Gamma eq and for all n > 0 for some

C < \infty .
Further suppose we have another uniformly bounded family of functions \{ f\gamma :

\BbbX \rightarrow \BbbR , \gamma \in \Gamma eq\} such that \| f\gamma \| \infty < C for all \gamma \in \Gamma eq for some C < \infty under the
following assumptions:

(i) For any xn \rightarrow x

sup
\gamma \in \Gamma eq

\bigm| \bigm| f\gamma 
n (xn) - f\gamma (x)

\bigm| \bigm| \rightarrow 0,(A.7)

sup
\gamma \in \Gamma eq

\bigm| \bigm| f\gamma (xn) - f\gamma (x)
\bigm| \bigm| \rightarrow 0.(A.8)

(ii) \scrT n(\cdot | xn, un) converges weakly to \scrT (\cdot | x, u) for any (xn, un) \rightarrow (x, u).
(iii) \scrT (\cdot | x, u) is weakly continuous in (x, u).
(iv) \BbbU is compact.
Then for some xn

t \rightarrow xt

sup
\gamma \in \Gamma eq

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dxt+1| xn
t , \gamma (x

n
t ))f

\gamma 
n (xt+1) - 

\int 
\scrT (dxt+1| xt, \gamma (xt))f

\gamma (xt+1)

\bigm| \bigm| \bigm| \bigm| \rightarrow 0.(A.9)

Proof. Using the same steps as in Lemma A.2 we can show that for any given
compact set K \subset \BbbX , and \epsilon > 0 there is a finite set of continuous functions \BbbF :=
\{ f1, . . . , fN\} so that for any \gamma , there is f i \in \BbbF with

sup
x\in K

| f\gamma (x) - f i(x)| \leq \epsilon .
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1178 ALI D. KARA AND SERDAR Y\"UKSEL

For the same \epsilon > 0, the same f i \in \BbbF , and the chosen compact set K, we can also
make supx\in K | f\gamma 

n (x) - f i(x)| \leq 3\epsilon /2 for large enough n and for any \gamma \in \Gamma eq.
We also have that the set of measures S := \cup \gamma \in \Gamma eq

S\gamma is weakly compact where

S\gamma = \{ \scrT n(\cdot | xn
t , \gamma (x

n
t )) : \scrT n(\cdot | xn

t , \gamma (x
n
t )) \rightarrow \scrT (\cdot | xt, \gamma (xt))\} .

Hence, for any \epsilon > 0, there exists a compact set K\epsilon such that for all n and
uniformly for all \gamma \in \Gamma , \int 

K\epsilon 

\scrT n(dx1| xn
t , \gamma (x

n
t )) \geq 1 - \epsilon .

Using these, we again follow the same steps as in the proof of Lemma A.2:

sup
\gamma \in \Gamma eq

\bigm| \bigm| \bigm| \bigm| \int \scrT n(dxt+1| xn
t , \gamma (x

n
t ))f

\gamma 
n (xt+1) - 

\int 
\scrT (dxt+1| xt, \gamma (xt))f

\gamma (xt+1)

\bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma eq

\bigm| \bigm| \int 
\BbbX \setminus K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (x

n
t ))f

\gamma 
n (xt+1) - 

\int 
\BbbX \setminus K\epsilon 

\scrT (dxt+1| xt, \gamma (xt))f
\gamma (xt+1)

\bigm| \bigm| 
+ sup

\gamma \in \Gamma eq

\bigm| \bigm| \int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (x

n
t ))f

\gamma 
n (xt+1) - 

\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (xt))f
\gamma (xt+1)

\bigm| \bigm| 
\leq 2\epsilon C + sup

\gamma \in \Gamma eq

\bigm| \bigm| \int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (x

n
t ))

\bigl( 
f\gamma 
n (xt+1) - f i(xt+1)

\bigr) 
+

\int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (x

n
t ))f

i(xt+1) - 
\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (xt))f
i(xt+1)

+

\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (xt))
\bigl( 
f i(xt+1) - f\gamma (xt+1)

\bigr) \bigm| \bigm| 
\leq 2\epsilon C + sup

\gamma \in \Gamma eq

\bigm| \bigm| \int 
K\epsilon 

\scrT n(dxt+1| xn
t , \gamma (x

n
t ))f

i(xt+1)

 - 
\int 
K\epsilon 

\scrT (dxt+1| xt, \gamma (xt))f
i(xt+1)

\bigm| \bigm| + 5\epsilon /2 \leq 4\epsilon C + 7\epsilon /2,

where C is the uniform bound of f\gamma 
n and f i(xt+1) is chosen according to the discussion

above such that f i is \epsilon close to f\gamma (xt+1) and the same f i is 3\epsilon /2 close to f\gamma 
n (xt+1).

At the last step, we used the fact that \scrT n(dxt+1| xn
t , \gamma (x

n
t )) converges weakly to

\scrT (dxt+1| xt, \gamma (xt)) uniformly over \Gamma eq as \Gamma eq is equicontinuous. As \epsilon is arbitrary, the
result follows.

Now we go back to

sup
\gamma \in \Gamma 

\bigm| \bigm| \bigm| E\scrT 
\biggl[ 
c
\bigl( 
X2, \gamma (X2)

\bigr) \biggr] 
 - E\scrT n

\biggl[ 
c
\bigl( 
X2, \gamma (X2)

\bigr) \biggr] \bigm| \bigm| \bigm| 
= sup

\gamma \in \Gamma 

\bigm| \bigm| \int \scrT (dx1| x0, \gamma (x0))\scrT (dx2| x1, \gamma (x1))c(x2, \gamma (x2))

 - 
\int 

\scrT n(dx1| x0, \gamma (x0))\scrT n(dx2| x1, \gamma (x1))c(x2, \gamma (x2))
\bigm| \bigm| .

The previous lemma can be used to show that this term converges to 0.
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A.5. Proof for (4.5). We focus on the discounted optimality equation for \scrT n
for some initial point xn

0 , where xn
0 \rightarrow x0:

J\ast 
\beta (\scrT n, xn

0 ) = c(xn
0 , \gamma 

\ast 
n(x

n
0 )) + \beta 

\int 
J\ast 
\beta (\scrT n, x1)\scrT n(dx1| xn

0 , \gamma 
\ast 
n(x

n
0 )).(A.10)

Since the action space \BbbU is compact, we can find a subsequence nk such that \gamma \ast 
nk
(xnk

0 ) \rightarrow 
u\ast for some u\ast \in \BbbU . Taking the limit k \rightarrow \infty in (A.10) and using Theorem 4.2 (con-
tinuity) we get

J\ast 
\beta (\scrT , x0) = c(x0, u

\ast ) + \beta 

\int 
J\ast 
\beta (\scrT , x1)\scrT (dx1| x0, u

\ast ).(A.11)

Hence u\ast satisfies DCOE for \scrT and is an optimal action for x0. In particular,
any convergent subsequence of \gamma \ast 

n(x
n
0 ) converges to an optimal action for x0. With

this observation, we claim that T k
n (J

\ast 
\beta (\scrT ))(xn) \rightarrow J\ast 

\beta (\scrT , x)) for any fixed k < \infty 
as n \rightarrow \infty for some xn \rightarrow x, where T k

n denotes that the operator Tn is applied k
consecutive times. To show this, we follow an inductive approach. For k = 1, we
write

Tn(J
\ast 
\beta (\scrT ))(xn) = c(xn, \gamma 

\ast 
n(xn)) + \beta 

\int 
J\ast 
\beta (\scrT , x1)\scrT (dx1| xn, \gamma 

\ast 
n(xn)).

Suppose limTn(J
\ast 
\beta (\scrT ))(xn) \not = J\ast 

\beta (\scrT , x) so that there exists a subsequence nm and an
\epsilon > 0 for which | Tnm

(J\ast 
\beta (\scrT ))(xnm

)  - J\ast 
\beta (\scrT , x)| > \epsilon for all m. Since \BbbU is compact,

there exists a further subsequence nm\prime such that \gamma \ast 
nm\prime (xnm\prime ) \rightarrow u for some u \in \BbbU and

as we observed before u is an optimal action for x under the kernel \scrT . Hence

lim
m\prime \rightarrow \infty 

Tnm\prime (J
\ast 
\beta (\scrT ))(xnm\prime )

= lim
m\prime \rightarrow \infty 

c(xnm\prime , \gamma 
\ast 
nm\prime (xnm\prime )) + \beta 

\int 
J\ast 
\beta (\scrT , x1)\scrT (dx1| xnm\prime , \gamma 

\ast 
nm\prime (xnm\prime )

= c(x, u) + \beta 

\int 
J\ast 
\beta (\scrT , x1)\scrT (dx1| x, u) = J\ast 

\beta (\scrT , x),

where the last step follows from the observation that u is optimal for x under \scrT .
Thus, we reach a contradiction and can conclude that Tn(J

\ast 
\beta (\scrT ))(xn) \rightarrow J\ast 

\beta (\scrT , x).

Now assume that it also holds for k  - 1 so that T k - 1
n (J\ast 

\beta (\scrT ))(xn) \rightarrow J\ast 
\beta (\scrT , x). We

write

T k
n (J

\ast 
\beta (\scrT ))(xn) = c(xn, \gamma 

\ast 
n(xn)) + \beta 

\int 
T k - 1
n (J\ast 

\beta (\scrT ))(x1)\scrT (dx1| xn, \gamma 
\ast 
n(xn)).

Following a similar contradiction argument with the fact that T k - 1
n (J\ast 

\beta (\scrT ))(xn) \rightarrow 
J\ast 
\beta (\scrT , x) and using [35, Theorem 3.5] or [49, Theorem 3.5] (weak convergence with

varying functions), we can conclude that

lim
n\rightarrow \infty 

T k
n (J

\ast 
\beta (\scrT ))(xn) = J\ast 

\beta (\scrT , x) \forall k < \infty .(A.12)

A.6. Proof for (4.7). We give a proof sketch building on section A.5. Define
the discounted optimality equation for \scrT n for some initial point x0.

J\ast 
\beta (\scrT n, x0) = c(x0, \gamma 

\ast 
n(x0)) + \beta 

\int 
J\ast 
\beta (\scrT n, x1)\scrT n(dx1| x0, \gamma 

\ast 
n(x0)).(A.13)
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Since the action space \BbbU is compact, we can find a subsequence nk such that \gamma \ast 
nk
(x0) \rightarrow 

u\ast for some u\ast \in \BbbU . Taking the limit k \rightarrow \infty in (A.13) and using Theorem 4.6
(continuity) we get

J\ast 
\beta (\scrT , x0) = c(x0, u

\ast ) + \beta 

\int 
J\ast 
\beta (\scrT , x1)\scrT (dx1| x0, u

\ast ).(A.14)

Hence u\ast satisfies DCOE for \scrT and is an optimal action for x0. In particular, any
convergent subsequence of \gamma \ast 

n(x0) converges to an optimal action for x0. With this
observation, we claim that T k

n (J
\ast 
\beta (\scrT ))(x) \rightarrow J\ast 

\beta (\scrT , x)) for any fixed k < \infty as n \rightarrow \infty 
for any x, where T k

n denotes the operator Tn applied k consecutive times. This can be
shown by the same technique we use in section A.5 using [42, Theorem 20] (setwise
convergence with varying functions).
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