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11.2.2 The Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
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Introduction

In a differential equations or a signals and systems course, one learns about the behaviour of a system described by
differential or difference equations. For such systems, under mild regularity conditions, a given initial condition (in the
absence of disturbances) leads to a unique solution/output. In many engineering or applied mathematics areas, one has
the liberty to affect the flow of the system through adding a control term. Control theory is concerned with shaping the
input-output behaviour of a system by possibly utilizing feedback from system outputs under various design criteria and
constraints. The way control actions or variables are generated based on the information available at the controller is called
the control policy or control law.

In deterministic control theory, under mild conditions, a given initial state and a given control policy uniquely specifies
the realized path. Despite this (deterministic) idealization, the deterministic theory has had tremendous impact and success
in many applications with commonly considered criteria being system stability (e.g. convergence to a point or a set with
respect to initial state conditions, or boundedness of the output corresponding to any bounded input), reference tracking,
robustness to incorrect models and disturbances (which may appear in the system itself or in measurements available at the
controller), and optimal control.

However, in many setups and applications, the deterministic theory is not directly applicable. In such systems, disturbances
may appear in the dynamics of a system or in the information available to the controller. On the latter setup, approaching
such informational aspects of control is perhaps what particularly distinguishes the stochastic theory from its deterministic
counterpart in both the analysis and the versatility in applications (also including those in decentralized setups where mul-
tiple decision makers are present either in a cooperative or in an adversarial context, as in game theory). Furthermore, the
concepts on stability require a different approach since stabilization to a point or often to a compact set/formation/manifold
is often too much to ask in a stochastic system. The solution concepts for stochastic systems in continuous-time or discrete-
time can be significantly different from those in a deterministic setup.

Some application areas include: optimal regulation and tracking; optimal filtering of noisy measurements with respect to a
hidden dynamical system and control of such systems; operations research; mathematical finance and investment; stochastic
and data-driven learning methods for optimization (including reinforcement and stochastic learning theoretic problems and
applications); stability and optimization of communication networks (e.g. in optimal routing and scheduling); information
theory (in particular for setups involving causality and feedback); robust design of control systems under approximation
errors, incorrect models and priors; stability analysis and stabilization of stochastic dynamical systems; decentralized
stochastic control of large systems; stochastic control in the presence of adverse decision makers (as in stochastic game
theory); and stochastic networked control (control under information constraints between various components of a control
system).

We will see that many concepts and principles from deterministic control theory carry over to the stochastic setup. For a
stochastic system, we will see that even though a control policy and an initial condition does not uniquely determine the
path that a controlled process may take, the probability measure on the future paths is uniquely specified given a policy.
Likewise, the concepts of stability, optimality and observability will all find corresponding interpretations (though with
significant generalizations, refinements, but also limitations). Results from geometric control theory and robust control
theory will lead to remarkable insights. However, these connections require a strong foundation on probability (and often
other areas of applied and pure mathematics, and engineering): before we proceed with the technical study of the subject,
which will also touch on the aforementioned application areas, in the first chapter a concise but sufficiently detailed review
of probability theory will be presented.

In the lecture notes, following a review chapter on probability, we will first proceed with stochastic stability, optimization
under various criteria, the problems with partial information, and stochastic learning theory. A basic course in stochastic
control could cover the topics mentioned so far. If further time is available, the additional material presented on decentral-
ized stochastic control, stochastic control in continuous-time, and robustness to incorrect models, can be covered.
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Review of Probability

1.1 Introduction

Before discussing controlled Markov chains, we first discuss some preliminaries about probability theory.

Many events in the physical world are uncertain; that is, with a given prior knowledge (such as an initial condition)
regarding a process, the future values of the process are not exactly predictable. Probability theory attempts to develop an
understanding for such uncertainty in a consistent way given a number of properties to be satisfied.

Examples of stochastic processes include: a) The temperature in a city at noon throughout some October: This process
takes values in R31, b) The sequence of outputs of a communication channel modeled by an additive scalar Gaussian noise
when the input sequence is given by x = {x1, . . . , xn} ∈ Rn (the output process lives in Rn), c) Infinite copies of a
discrete-time coin flip process (living in {H,T}Z+ , where H denotes the head and T denotes the tail outcome), d) The
trajectory of a plane flying from point A to point B (taking values in C([t0,∞);R3), the space of all continuous paths in
R3 with xt0 = A, xtf = B for some t0 < tf ∈ R), e) The exchange rate between the Canadian dollar and the American
dollar on a given time index T .

Some of these processes take values in countable spaces, some do not. If the state space X in which a random variable
takes values is finite or countably infinite, it suffices to associate with each point x ∈ X a number which determines the
likelihood of the event that x is the value of the process. However, when X is uncountable, further technical intricacies
arise; here the notion of an event needs to be carefully defined. First, if some event A takes place, it must be that the
complement of A (that is, this event not happening) must also be defined. Furthermore, if A and B are two events, then
the intersection must also be an event. This line of thought will motivate us for a more formal analysis below. In particular,
one needs to construct probability values by first defining values for certain events and extending such probabilities to a
larger class of events in a consistent fashion (in particular, one does not first associate probability values to single points as
we do in countable state spaces). These issues are best addressed with a precise characterization of probability and random
variables.

Probability theory can be used to model uncertainty in the real world in a consistent way according some properties that we
expect such an approach should admit. In the following, we will develop a rigorous definition for probability. For a more
complete exposition the reader could consult with the standard texts on probability theory, such as [41, 55, 105, 124, 302]
and texts on stochastic processes, such as [142, 148, 318].

1.2 Measures and Integration

Let X be a collection of points. Let F be a collection of subsets of X with the following properties such that F is a σ-field
(also called a σ-algebra), that is:

• X ∈ F
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• If A ∈ F , then X \A ∈ F

• If Ak ∈ F , k = 1, 2, 3, . . . , then
⋃∞
k=1Ak ∈ F (that is, the collection is closed under countably many unions).

By De Morgan’s laws, and set properties, it can be shown that the collection has to be closed under countable intersections
as well.

For example, the full power-set of any set is a σ-field.

If the third item above holds for only finitely many unions or intersections, then, the collection of subsets is said to be a
field or algebra over X.

With the above, (X,F) is termed a measurable space (that is we can associate a measure to this space; which we will
discuss shortly).

Remark 1.1. Subsets in σ-fields can be interpreted to represent information that a controller has with regard to an underlying
process. We will discuss this interpretation further and this will be a recurring theme in our discussions in the context of
stochastic control.

A σ−field J is generated by a collection of sets A, if J is the smallest σ−field containing the sets in A, and in this case,
we write J = σ(A).

Exercise 1.2.1 Let X = {a, b, c}. (i) Find σ({a}). (ii) Find σ({a}, {b}, {c}).

We consider an important special case in the following.

1.2.1 Borel σ−field

An important class of σ-fields is the Borel σ−field on a metric (or more generally, topological) space. Such a σ−field is
the one which is generated by open sets. The term open naturally depends on the space being considered. For this course,
we will mainly consider spaces which are complete, separable and metric spaces (such as the space of real numbers R, or
countable sets) see Appendix A). Recall that in a metric space with metric d, a set U is open if for every x ∈ U , there exists
some ϵ > 0 such that {y : d(x, y) < ϵ} ⊂ U . We note also that the empty set is a special open set.

The Borel σ−field on R is then the one generated by sets of the form (a, b) ⊂ R, that is, open intervals (it is important to
note here that every open set in R can be expressed a union of countably many open intervals). It is also important to note
that not all subsets of R are Borel sets, that is, elements of the Borel σ−field; see e.g. Exercise 1.6.7.

We will denote the Borel σ−field on a space X as B(X).

Exercise 1.2.2 Show that for every a ∈ R, {a} ∈ B(R), by writing a = ∩n∈N(a− 1
n , a+

1
n ).

We can also define a Borel σ−field on a product space. Let X be a complete, separable, metric space (with metric d). Let
XZ+ denote the infinite product of X so that x = (x0, x1, x2, · · · ) ∈ XZ+ , where xk ∈ X for k ∈ Z+. If this space is
endowed with the product metric (such a metric is defined as: ρ(x, y) =

∑∞
i=0 2

−i d(xi,yi)
1+d(xi,yi)

, x, y ∈ XZ+ ), sets of the
form

∏
i∈Z+

Ai, where only finitely many of these sets are not equal to X and these sets are open; and unions of such sets
form open sets. We define cylinder sets in this product space as:

B[Am,m∈I] = {x ∈ XZ+ , xm ∈ Am,m ∈ I},

with Am ∈ B(X) and where I ⊂ Z with |I| < ∞, that is, the set I has finitely many elements. Thus, in the above,
if x ∈ B[Am,m∈I], then, xm ∈ Am for m ∈ I and the remaining terms (that is, the xm values for m /∈ I) can be taken
arbitrarily from X. We can thus view a cylinder set as a pre-image of the projection operation onto finitely many coordinates.
The σ−field generated by such open cylinder sets is the Borel σ−field on the product space. Such a construction is
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important for stochastic processes (and is the reason why while studying certain properties of stochastic processes one
often only considers finite dimensional distributions).

Remark 1.2. A space which admits a metric under which it is complete and separable is called a Polish space; while the
metric is often not apriori specified for such a space, we will often assume that a metric is given and define a Polish metric
space to be a complete separable and metric space. A Borel subset of a Polish space is called a standard Borel space [279].
A very important fact is that any Polish space is related to either a finite set, or a countably infinite set, or R, through a
bijection (that is, via a measurable function -to be defined shortly- with a measurable inverse).

1.2.2 Measurable Function

If (X,F) and (Y,G) are measurable spaces; we say a mapping from h : (X,F) → (Y,G) is a measurable function if

h−1(B) := {x : h(x) ∈ B} ∈ F ∀B ∈ G

In the particular case involving Borel σ-fields, if (X,B(X)) and (Y,B(Y)) are measurable spaces; we say a mapping from
h : X → Y is (Borel) measurable if

h−1(B) = {x : h(x) ∈ B} ∈ B(X), ∀B ∈ B(Y)

Theorem 1.2.1 To show that a function is measurable, it is sufficient to check the measurability of the inverses of sets that
generate the σ-algebra on the image space.

See Section 1.5.1 for a proof. Therefore, for Borel measurability, it suffices to check the measurability of the inverse images
of open sets. Furthermore, for real valued functions, to check the measurability of the inverse images of open sets, it suffices
to check the measurability of the inverse images sets of the form {(−∞, a], a ∈ R}, {(−∞, a), a ∈ R}, {(a,∞), a ∈ R}
or {[a,∞), a ∈ R}, since each of these generate the Borel σ-field on R. In fact, here we can restrict a to be Q-valued,
where Q is the set of rational numbers (since {x : x < r} = ∪q∈Q,q<r{x : x < q}; often this reasoning is why we call
such sigma-fields countably generated).

It is instructive to view measurability in terms of informativeness of a σ-field. Let X = {a, b, c} and let F1 be as in
Exercise 1.2.1(i) and F2 be as in Exercise 1.2.1(ii). Let Y = {0, 1} and G = σ({0}, {1}). Now, let F : X → Y be a
map so that F−1(0) = {a, b} and F−1(1) = {c}. Then, we can conclude that this map defines a measurable function
from (X,F2) → (Y,G) but it is not a measurable function from (X,F1) → (Y,G): the reason is that the information on
whether F (x) = 1 (that is x = c) is not an element of F1 (and thus, this information that x = c or not, is not available as
information under F1).

1.2.3 Measure

Let (X,F) be a measurable space. A positive measure µ on (X,F) is a map from F to [0,∞] which is countably additive
such that for Ak ∈ F and Ak ∩Aj = ∅:

µ

(
∪∞
k=1 Ak

)
=

∞∑
k=1

µ(Ak).

Definition 1.2.1 µ is a probability measure if it is positive and µ(X) = 1.

Definition 1.2.2 A measure µ is finite if µ(X) < ∞, and σ−finite if there exist a collection of subsets Ak ∈ F such that
X = ∪∞

k=1Ak with µ(Ak) <∞ for all k.
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On the real line R, the Lebesgue measure λ is defined on the Borel σ−field (in fact on a somewhat larger field obtained
through adding all subsets of Borel sets of measure zero: this is known as completion of a σ-field) such that for A = (a, b),
λ(A) = b−a. Borel σ-field of subsets is a strict subset of Lebesgue measurable sets, that is there exist Lebesgue measurable
sets which are not Borel sets. For a definition and the construction of Lebesgue measurable sets, see [41]. Countable
subsets of R all have zero Lebesgue measure but there also exist Lebesgue measurable sets of measure zero which contain
uncountably many elements, for a well-studied example see the Cantor set [105]. Not all subsets of R are Lebesgue
measurable (and thus, not Borel either), see e.g. Exercise 1.6.7.

1.2.4 The Extension Theorem (Optional)

Theorem 1.2.2 [The Extension Theorem (Carathéodory)] Let M be an algebra over X, and suppose that there exists a
map (called a pre-measure) P : M → R+ so that for any (possibly countably infinitely many) pairwise disjoint sets
An ∈ M, if the countable union ∪nAn ∈ M, then P (∪nAn) =

∑
n P (An). Suppose also that there exists a countable

collection of sets Bn with X = ∪nBn, each with P (Bn) < ∞ (that is P is σ-finite). Then, there exists a unique measure
P ′ on the σ−field generated by M, σ(M), which is consistent with P on M.

The above is useful since, when one states that two measures are equal it suffices to check whether they are equal on the
algebra of sets which generate the σ−field, and not necessarily on the entire σ−field. More importantly, a refinement of
the above can be used to define or construct a measure on a σ-field, such as the Lebesgue measure on B(R).

The following is a refinement useful for stochastic processes. It, in particular, does not require a pre-measure defined apriori
before an extension [2]:

Theorem 1.2.3 [Kolmogorov’s Extension Theorem] Let X be a complete and separable metric space, and for all n ∈ N
let µn be a sequence of probability measures on Xn, the n product of X, such that

µn(A1 ×A2 × · · · ×An) = µn+1(A1 ×A2 × · · · ×An × X),

every sequence of Borel setsAk ⊂ X. Then, there exists a unique probability measure µ on (XN,B(XN)) which is consistent
with each of the µn’s.

A further related result, which often in stochastic control is cited in the context of extensions, is the Ionescu-Tulcea Ex-
tension Theorem [155, Appendix C]; where conditional probability measures (stochastic kernels) are defined (instead of
probability measures on finite dimensional product spaces) as a starting assumption, before an extension to the infinite
product space is established.

Thus, if the σ−field on a product space is generated by the collection of finite dimensional cylinder sets, one can define a
measure in the product space which is consistent with the finite dimensional distributions.

Likewise, we can construct the Lebesgue measure on B(R) by defining it on finitely many unions and intersections of
intervals of the form (a, b), [a, b), (a, b] and [a, b], and the empty set, thus forming an algebra (or a field), and extending
this to the Borel σ−field. Thus, the relation µ(a, b) = b− a for b > a is sufficient to define the Lebesgue measure.

Remark 1.3. A related general result is as follows: Let S be a σ-field. A class of subsets A ⊂ S is called a separating class
if two probability measures that agree on A agree on the entire S. A class of subsets is a π-system if it is closed under finite
intersections. The class A is a separating class if it is both a π-system and it generates the σ-field S; see [40] or [41].

1.2.5 Integration

Let h be a non-negative measurable function from (X,B(X)) to (R,B(R)). The Lebesgue integral of h with respect to a
measure µ can be defined in three steps:
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First, for A ∈ B(X), define 1{x∈A} (or 1(x∈A), or 1A(x)) as an indicator function for event x ∈ A, that is the value that
the function takes is 1 if x ∈ A, and 0 otherwise. In this case, define∫

X
1{x∈A}µ(dx) := µ(A).

Now, let us define simple functions h such that, there exist A1, A2, . . . , An all in B(X) and positive numbers b1, b2, . . . , bn
such that hn(x) =

∑n
k=1 bk1{x∈Ak}. For such functions, define∫

X
hn(x)µ(dx) :=

n∑
k=1

bkµ(Ak).

Now, for any given measurable h, there exists a sequence of simple functions hn such that hn(x) ↑ h(x) monotonically,
that is hn+1(x) ≥ hn(x) (for a construction, if h only takes non-negative values, consider partitioning the positive real line
to two intervals [0, n) and [n,∞), and partition [0, n) to n2n uniform intervals, define hn(x) to be the lower floor of the
interval that contains h(x): thus

hn(x) = k2−n, if k2−n ≤ h(x) < (k + 1)2−n, k = 0, 1, · · · , n2n − 1,

and hn(x) = n for h(x) ≥ n. By definition, and since h−1([k2−n, (k + 1)2−n)) is Borel, hn is a simple function. If
the function takes also negative values, write h(x) = h+(x) − h−(x), where h+ is the non-negative part and −h− is the
negative part, and construct the same for h−(x). We define the limit (which exists as a real valued monotonically increasing
sequence) as the Lebesgue integral:

lim
n→∞

∫
hn(x)µ(dx) =:

∫
h(x)µ(dx)

We note that the notation
∫
hdµ or

∫
h(x)dµ(x) can also be used in place of

∫
h(x)µ(dx).

1.2.6 Fatou’s Lemma, the Monotone Convergence Theorem and the Dominated Convergence Theorem

Theorem 1.2.4 (Monotone Convergence Theorem) If µ is a σ−finite positive measure on (X,B(X)) and {fn, n ∈ Z+}
is a sequence of measurable functions from X to R which pointwise, monotonically, converges to f so that 0 ≤ fn(x) ≤
fn+1(x) for all n, and

lim
n→∞

fn(x) = f(x),

for µ−almost every x, then ∫
X
f(x)µ(dx) = lim

n→∞

∫
X
fn(x)µ(dx)

The following is a consequence of the monotone convergence theorem, but is a critical result which will be utilized later in
the upcoming chapters.

Theorem 1.2.5 (Fatou’s Lemma) If µ is a σ−finite positive measure on (X,B(X)) and {fn, n ∈ Z+} is a sequence of
measurable functions, bounded from below, from X to R, then∫

X
lim inf
n→∞

fn(x)µ(dx) ≤ lim inf
n→∞

∫
X
fn(x)µ(dx)

Theorem 1.2.6 (Dominated Convergence Theorem) If (i) µ is a σ−finite positive measure on (X,B(X)), (ii) g is a Borel
measurable function with ∫

X
g(x)µ(dx) <∞,
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and (iii) {fn, n ∈ Z+} is a sequence of measurable functions from X to R which satisfy |fn(x)| ≤ g(x) for µ−almost
every x, and limn→∞ fn(x) = f(x), then:∫

X
f(x)µ(dx) = lim

n→∞

∫
X
fn(x)µ(dx)

Note that for the monotone convergence theorem, there is no restriction on boundedness; whereas for the dominated
convergence theorem, there is a boundedness condition. On the other hand, for the dominated convergence theorem, the
pointwise convergence does not have to be monotone.

There also exist generalized versions of these theorems, where the measures themselves are time-varying, but converge to a
limit measure in some appropriate sense; see in particular Theorem D.3.1 (building on [199,273]). These will be discussed
later in further detail (and will be seen to be particularly important for stochastic control applications, and in particular on
robust stochastic control and learning theory).

1.3 Probability Space and Random Variables

Let (Ω,F) be a measurable space. If P is a probability measure, then the triple (Ω,F , P ) is called a probability space.
Here Ω is a set called the sample space. F is called the event space, and this is a σ−field of subsets of Ω.

Let (E, E) be another measurable space and X : (Ω,F , P ) → (E, E) be a measurable map. We call X an E−valued
random variable. The image under X defines a probability measure on (E, E), called the law of X .

The σ-field generated by the events {{w : X(w) ∈ A}, A ∈ E}, that is {X−1(A), A ∈ E}, is called the σ−field generated
by X and is denoted by σ(X).

Consider a coin flip process, with possible outcomes {H,T}, heads or tails. We have a good intuitive understanding on
the environment when someone tells us that a coin flip leads to the value H with probability 1

2 . Based on the definition of
a random variable, we view then a coin flip outcome as a deterministic function from some space (Ω,F , P ) to the binary
output space consisting of a head and a tail event. Here, P denotes the uncertainty measure (you may think of the initial
condition of the coin when it is being flipped, the flow dynamics in the air, the conditions on the surface where the coin
touches etc.; we encode all these aspects and all the uncertainty in the universe with the abstract space (Ω,F , P )). You can
view then the σ-field generated by such a coin flip as a partition of Ω: if certain things take place the outcome is a H and
otherwise it is a T and the outcomes give us information on (the state of) the universe.

A useful fact about measurable functions (and thus random variables) is the following result.

Theorem 1.3.1 Let fn be a sequence of measurable functions from (Ω,F) to a complete separable metric space (X,B(X).
Then, lim supn→∞ fn(x), lim infn→∞ fn(x) are measurable. In particular, if f(x) = limn→∞ fn(x) exists, then f is
measurable.

Similar to Theorem 1.2.1, this theorem implies that to verify whether a real valued mapping f is a Borel measurable
function, it suffices to check if f−1(a, b) ∈ B(R) for a < b since one can construct a sequence of simple functions which
will converge to any measurable f , as discussed earlier. It suffices then to check if f−1(−∞, a) ∈ B(R) for a ∈ R.

1.3.1 More on Random Variables and Probability Density Functions

Consider a probability space (X,B(X), P ) and consider an R-valued random variable U measurable with respect to
(X,B(X)).

This random variable induces a probability measure µ on B(R) such that for some (a, b] ∈ B(R):

µ((a, b]) = P (U ∈ (a, b]) = P

(
{x : U(x) ∈ (a, b]}

)
= P (U−1((a, b])
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When U is R−valued, the expectation of U is given with

E[U ] =

∫
R
µ(dx)x,

whenever this is defined (i.e., E[|U |] <∞, in which case we say that U is integrable). We define F (x) = µ(−∞, x] as the
cumulative distribution function of U . If F (x) =

∫ x
−∞ p(s)λ(ds) for some p, p is called the probability density function

(with respect to the Lebesgue measure) of µ. If such a density function exists, we can then write

E[U ] =

∫
R
p(x)xdx

If a probability density function p exists, the measure µ is said to be absolutely continuous with respect to the Lebesgue
measure. In particular, the density function p is the Radon-Nikodym derivative of µ with respect to the Lebesgue measure λ
in the sense that for all Borel A:

∫
A
p(x)λ(dx) = µ(A). A probability density function does not always exist. In particular,

whenever there is a probability mass on a given point, then a probability density function does not exist; hence in R, if for
some x, µ({x}) > 0, then we say there is a probability mass at x, and a density function does not exist.

However, one can also consider density functions with respect to more general positive measures (that is, different from
the Lebesgue measure), we will consider such conditions later in the notes. If X is countable, we can write P ({x = m}) =
p(m), where p is called the probability mass function; this can be viewed as a density with respect to the (discrete) counting
measure.

Some examples of commonly encountered random variables, with their probability density or mass functions, are as fol-
lows:

• Gaussian (with mean µ and variance σ2: N (µ, σ2)):

p(x) =
1√
2πσ

e
−(x−µ)2

2σ2 x ∈ R

• Exponential (with parameter λ):

F (x) = 1− e−λx, p(x) = λe−λx x ∈ R+

• Uniform on [a, b] (U([a, b])):

F (x) =
x− a

b− a
, p(x) =

1

b− a
x ∈ [a, b]

• Poisson with rate λ > 0 on Z+

p(m) =
λme−λ

m!
, m ∈ Z+

• Binomial (B(n, p)):

p(k) =

(
n

k

)
pk(1− p)n−k k ∈ {0, 1, · · · , n}

If n = 1, we also call a binomial variable a Bernoulli variable.

1.3.2 Independence and Conditional Probability

Consider A,B ∈ B(X) such that P (B) > 0. The quantity
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P (A|B) =
P (A ∩B)

P (B)

is called the conditional probability of event A given B. The measure P (·|B) defined on B(X) is itself a probability
measure. If

P (A|B) = P (A),

A and B are said to be independent events. A countable collection of events {An} is independent if for any finitely many
sub-collections Ai1 , Ai2 , . . . , Aim , we have that

P (Ai1 , Ai2 , . . . , Aim) = P (Ai1)P (Ai2) . . . P (Aim).

Here, we use the notation P (A,B) = P (A ∩ B). A sequence of events is said to be pairwise independent if for any two
pairs (Am, An): P (Am, An) = P (Am)P (An). Pairwise independence is a weaker concept than independence, that is
there exist examples where a collection of random variables is pairwise independent but not independent.

Conditional probability and expectation will be discussed in more detail later in Chapter 4.

1.4 Stochastic Processes and Markov Chains

One can define a sequence of random variables as a single random variable living in a product space; that is, we can
consider {x1, x2, · · · , xN , · · · } as an individual random variable X which is an XZ+ -valued random variable, where now
the events are to be defined on the product space.

Let X be a complete, separable, metric space and let T = Z or T = Z+. Let B(X) denote the Borel sigma-field over X. Let
Σ = XT denote the sequence space of all one-sided (with T = Z+) or two-sided (with T = Z) infinitely many random
variables drawn from X. Thus, if T = Z, x ∈ Σ then x = {. . . , x−1, x0, x1, . . . } with xi ∈ X, i ∈ T . Let Xn : Σ → X
denote the coordinate function such that Xn(x) = xn. Let B(Σ) denote the smallest sigma-field containing all cylinder
sets of the form {x : Xi(x) = xi ∈ Bi,m ≤ i ≤ n} where Bi ∈ B(X), for all integers m,n. We can define a probability
measure by a characterization on these finite dimensional cylinder sets, by (the extension) Theorem 1.2.3.

A similar characterization also applies for continuous-time stochastic processes, where T is uncountable. The extension
requires more delicate arguments, since finite-dimensional characterizations are too weak to uniquely define a sigma-field
on a space of continuous-time paths which is consistent with such distributions. Such technicalities arise in the discussion
for continuous-time Markov chains and controlled processes, typically requiring a construction where realizations take
values from a separable product space (such as the space of continuous sample paths; in this case, the sample path values
on a countably dense subset uniquely determine the entire sample path and hence the discrete-time theory, essentially, is
applicable).

In much of these notes, our focus will primarily be on discrete-time processes; however, we will note later that the analysis
for continuous-time processes essentially follows from similar constructions with further structures that one needs to im-
pose on continuous-time processes (such as some continuity properties of the sample paths). Some detailed discussion on
this is presented in Chapter 11.

1.4.1 Markov Chains

If the probability measure on an XZ+ -valued sequence is such that for every k ∈ N, for every Borel Ak+1 and (P -almost
surely) all realizations x[0,k],

P (xk+1 ∈ Ak+1|xk, xk−1, . . . , x0) = Pk(xk+1 ∈ Ak+1|xk),

for some conditional probability measure Pk, then {xk} is said to be a Markov chain. If Pk is a constant and does not
depend on k, the chain is said to be a time-homogeneous chain, otherwise it is time-inhomogeneous. Thus, for a Markov
chain, the immediate state is sufficient to predict the future (and past variables are not needed).
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One way to construct a Markov chain is via the following: Let {xt, t ≥ 0} be a random sequence with state space
(X,B(X)), and defined on a probability space (Ω,F ,P), where B(X) denotes the Borel σ−field on X, Ω is the sam-
ple space, F a sigma field of subsets of Ω, and P a probability measure. For x ∈ X and D ∈ B(X), we let
P (x,D) := P(xt+1 ∈ D|xt = x) denote the transition probability from x to D, that is the probability of the event
{xt+1 ∈ D} given that xt = x. Thus, the Markov chain is completely determined by the transition probability and the
probability of the initial state, P (x0 ∈ ·). The probability of the event {xt+1 ∈ D} for any t can be computed recursively
by starting at t = 0, with P(x1 ∈ D) =

∫
P (x1 ∈ D|x0 = x)P(x0 ∈ dx), and iterating with a similar formula for

t = 1, 2, . . . (building on the Ionescu-Tulcea Extension Theorem [155, Appendix C], which was discussed earlier).

Hence, if the probability of the same event given some history of the past and the present does not depend on the past, and
hence is given by the same quantity regardless of the past realizations as long as the present realization is fixed (almost
surely), the chain is a Markov chain. As an example, consider the following linear system:

xt+1 = axt + wt,

where {wt} is an independent sequence of random variables for some a ∈ R. The process {xt} is Markov. We also
note that every time-homogeneous Markov chain admits a stochastic, functional and sample-path, realization of the form
xk+1 = f(xk, wk) where f is measurable and wk is an i.i.d. [0, 1]-valued process (see [137, Lemma 1.2], [54, Lemma
3.1], or [19, Lemma F]). This realization result will be useful later on.

We will continue our discussion on Markov chains after discussing controlled Markov chains in the following chapter.

1.5 Appendix

1.5.1 Proof of Theorem 1.2.1

Observe that set operations satisfy that for any B ∈ B(Y): h−1(Y \B) = X \ h−1(B) and

h−1(∪∞
i=1Bi) = ∪∞

i=1h
−1(Bi), h−1(∩∞

i=1Bi) = ∩∞
i=1h

−1(Bi).

Define the set of all subsets of Y whose inverses are Borel

M := {B ⊂ Y : h−1(B) ∈ B(X)}.

Note that Y ⊂ M and by the discussion above, this set is closed under countably many unions. Thus, this M is a σ-algebra
over Y. Note also that this set contains open sets in Y, by the fact that h is measurable, and since this set contains open sets
(and that B(Y) is the smallest σ-algebra containing open sets), it must be that B(Y) ⊂ M. ⋄

1.6 Exercises

Exercise 1.6.1 a) Let H be some set and for all β ∈ H , Fβ be a σ−field of subsets over some set X. Let

F =
⋂
β∈H

Fβ

Show that F is also a σ−field on X.

For a space X, on which a metric is defined, the Borel σ−field is generated by the collection of open sets. This means that,
the Borel σ−field is the smallest σ−field containing open sets, and as such it is the intersection of all σ-fields containing
open sets.

b) Show that any open set in R under the usual distance d(x, y) = |x−y|, can be written as a countable union of intervals.
A consequence of this result is that, on R, the Borel σ−field is the smallest σ−field containing open intervals.
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c) Is the set of rational numbers an element of the Borel σ-field on R? Is the set of irrational numbers an element?

d) Let X be a countable set. On this set, let us define a metric as follows:

d(x, y) =

{
0, if x = y

1, if x ̸= y

Show that, the Borel σ−field on X is generated by the collection of singletons {{x}, x ∈ X}; this is the power set, that is,
the set of all subsets of X.

e) Let X = R and consider the distance function d defined as above in part d). Is the σ−field generated by open sets
according to this metric the same as the Borel σ−field on R (under the usual distance metric on R)?

Exercise 1.6.2 A Borel subset of a complete, separable and metric (i.e., a Polish) space is called a standard Borel space.
If (X,B(X)) and (Y,B(Y)) are standard Borel spaces; we say a mapping from h : X → Y is (Borel) measurable if

h−1(B) = {x : h(x) ∈ B} ∈ B(X), ∀B ∈ B(Y)

Prove the following statement: To show that a function h is Borel measurable, it is sufficient to check the measurability of
the inverses (under h) of open sets in Y.

Exercise 1.6.3 Investigate the following limits in view of the convergence theorems.

a) Check if limn→∞
∫ 1

0
xndx =

∫ 1

0
limn→∞ xndx.

b) Check if limn→∞
∫ 1

0
nxndx =

∫ 1

0
limn→∞ nxndx.

c) Define fn(x) = n1{0≤x≤ 1
n}. Find limn→∞

∫
fn(x)dx and

∫
limn→∞ fn(x)dx. Are these equal?

Exercise 1.6.4 a) Let X and Y be real-valued random variables defined on a given probability space. Show that X2 and
X + Y are also random variables.

b) Let F be a σ−field of subsets over a set X and let A ∈ F . Prove that {A ∩ B,B ∈ F} is a σ−field over A (that is a
σ−field of subsets of A).

Hint for part a: The following equivalence holds: {X + Y < x} ≡ ∪r∈Q{X < r, Y < x − r}. To check if X + Y is a
random variable, it suffices to check if the event {X + Y < x} = {ω : X(ω) + Y (ω) < x} is an element of F for every
x ∈ R.

Exercise 1.6.5 Let fn be a sequence of measurable functions from (Ω,F) to (R,B(R)). Show f(ω) = lim supn→∞ fn(ω)
and g(ω) = lim infn→∞ fn(ω) define measurable functions.

Exercise 1.6.6 Let X and Y be real-valued random variables defined on a given probability space (Ω,F , P ). Suppose
that X is measurable on σ(Y ). Show that there exists a function f such that X = f(Y ).

This result also holds if X and Y are standard Borel valued random variables.

Exercise 1.6.7 Consider the interval [0, 1]. We have seen that the Lebesgue measure λ satisfies λ([a, b)) = U([a, b]) =
b − a for 0 ≤ a ≤ b ≤ 1. Consider now the following question: does every subset S ⊂ [0, 1] admit a Lebesgue measure?
In the following we will provide a counterexample, known as the Vitali set.

Let us define an equivalence class among points in [0, 1] such that x ∼ y if x−y ∈ Q. This equivalence definition partitions
[0, 1] into disjoint sets. Note that there are countably many points in each equivalent class.

Let A be a subset which picks exactly one element from each equivalent class (here, we adopt what is known as the Axiom
of Choice [41]). Since A contains an element from each equivalence class, each point of [0, 1] is contained in the union
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∪q∈Q(A + q). Furthermore, since A contains only one point from each equivalence class, the sets A + q, for different q,
are disjoint, for otherwise there would be two sets which could include a common point: A+ q and A+ q′ would include a
common point, leading to the result that the difference x− q = z and x− q′ = z are both in A, a contradiction, since there
should be at most one point which is in the same equivalence class as x− q = z. The Lebesgue measure is shift-invariant,
therefore λ(A) = λ(A + q). Observe that [0, 1] ⊂ ∪q∈Q∪[−1,1]{A + q} ⊂ [−1, 2]. Since a countable sum of identical
non-negative elements can either become ∞ or 0, the contradiction follows: We can’t associate a number to this set and
as a result, this set is not a Lebesgue measurable set (and also not a Borel set).





2

Controlled Markov Chains

In the following, we discuss controlled Markov models under a variety of informational and dynamical setups.

2.1 Controlled Markov Models

Consider the following model.

xt+1 = f(xt, ut, wt), (2.1)

where xt is an X-valued state variable, ut a U-valued control action variable, wt a W-valued an i.i.d noise process, and f
a measurable function. We assume that X,U,W are Borel subsets of complete, separable, metric spaces (such complete,
separable and metric spaces are called Polish metric spaces); such subsets of these spaces are also called standard Borel.
We assume that all random variables live in some probability space (Ω,F , P ).

Using stochastic realization results (see [137, Lemma 1.2], [54, Lemma 3.1], or [19, Lemma F]), it follows that the model
above in (2.1) contains the class of all (X × U)Z+ -valued stochastic processes which satisfy the following probabilistic
characterization: for all Borel sets B ∈ B(X), t ≥ 0, and P -almost all realizations x[0,t], u[0,t]:

P (xt+1 ∈ B|x[0,t] = a[0,t], u[0,t] = b[0,t]) = P (xt+1 ∈ B|xt = at, ut = bt) =: T (B|at, bt) (2.2)

where T (·|x, u) is a stochastic kernel from X× U to X (so that for every B, T (B|·, ·) is a measurable function on X× U,
and for every fixed (a, b) ∈ X × U, T (·|a, b) is a probability measure on (X,B(X)). That is, all stochastic processes that
satisfy (2.2) admit a realization in the form (2.1), almost surely. Since a system of the form (2.1) satisfies (2.2), it follows
that the representations in these equations are equivalent.

A stochastic process which satisfies (2.2) is called a controlled Markov chain.

For the process {xt, ut} to define a stochastic process, in addition to a transition kernel and an initial measure on x0,
we need to specify the dependence of ut on the history of the process. Once this is established, through the extension
theorems discussed earlier (and in particular the Ionescu-Tulcea Extension Theorem), one can construct a stochastic process
{xt, ut, t ≥ 0}. This dependence is defined by a control policy.

Wer start with Fully Observed Controlled Markov Models, otherwise known as Markov Decision Processes (or MDPs).

2.2 Fully Observed Markov Control Problem Model (MDP Models)

A Fully Observed Markov Control Problem, otherwise known as a Markov Decision Process (or MDP), is a five tuple

(X,U, {U(x), x ∈ X}, T , c),
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where

• X is the state space, assumed a standard Borel space.

• U is the action space, assumed a standard Borel space.

• K = {(x, u) : u ∈ U(x) ∈ B(U), x ∈ X} is the set of state, control pairs that are feasible. There might be different
states where different control actions are possible/feasible. We will assume that K is standard Borel.

• T is a state transition kernel, that is T (A|x, u) = P (xt+1 ∈ A|xt = x, ut = u), as defined above.

• c : K → R+ is a cost function.

2.2.1 Classes of Control Policies

Admissible Control Policies ΓA

Let H0 := X, Ht = Ht−1 × K for t = 1, 2, . . .. We let ht denote an element of Ht, where ht = {x[0,t], u[0,t−1]}. A
deterministic admissible control policy γ is a sequence of functions {γt, t ∈ Z+} such that γ : Ht → U with ut = γt(ht).

We can also state this as follows: Let us write Ut to emphasize that ut is a realization of the action random variable Ut
under an admissible policy, and likewise let us emphasize that Ht is a random variable with realization ht (In the notes, we
will follow this approach of using capital letters when the distinction of whether we are discussing a random variable or its
realization needs to be particularly emphasized explicitly). We say that γt is a function measurable on σ(Ht) in the sense
that for every Borel B ⊂ U, we have that

{ω : Ut(ω) ∈ B} = U−1
t (B) ⊂ σ(Ht).

A randomized admissible control policy is a sequence γ = {γt, t ≥ 0} such that γ : Ht → P(U), with P(U) being the
set of probability measures on U, so that for every realization ht, γt(ht) is a probability measure on U. Once again, by
stochastic realization arguments, this is equivalent to writing ut = γt(ht, rt) for some [0, 1]-valued i.i.d. random variable
rt.

Markov Control Policies ΓM

A deterministic Markov control policy γ is a sequence of functions {γt, t ∈ Z+} with γt : X× Z+ → U such that

ut = γt(xt),

for each t ∈ Z+. Hence, the control action only depends on the state and the time, and not the past history. A policy is
randomized Markov if the induced strategic measure satisfies

P γ(ut ∈ C|ht) = γt(ut ∈ C|xt), C ∈ B(U),

for all t and P γ-almost all xt. Alternatively, we can write ut = γt(xt, rt) for some [0, 1]-valued i.i.d. random variable rt
and measurable function γt for all t ∈ Z+.

Stationary Control Policies ΓS

A deterministic stationary control policy γ is a sequence of identical functions {γt, t ∈ Z+} where for each t ∈ Z+, γt = f
such that

ut = f(xt),
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for some f : X → U. A policy is randomized stationary if

P γ(ut ∈ C|ht) = f(ut ∈ C|xt), C ∈ B(U),

for some stochastic kernel γ. Alternatively, we can write ut = f(xt, rt) for some [0, 1]-valued i.i.d. random variable rt
and measurable function f for all t ∈ Z+. Hence, the control selection is independent of the past history or time, given the
current state xt.

As reviewed above and in Chapter 1, according to the Ionescu-Tulcea theorem [155] (or Kolmogorov’s extension theorem),
an initial probability measure µ on X, a transition kernel T , and a control policy γ define a unique probability measure
P γµ on (X × U)Z+ , which is called a strategic measure [269]. If the initial measure µ is known, sometimes we omit this
subscript while discussing the strategic measure.

Consider for now that the objective to be minimized is given by: JN (ν0, γ) := Eγν0 [(
∑T−1
t=0 c(xt, ut)) + cN (xN )], where

ν0 is the initial probability measure, that is x0 ∼ ν0. The goal is to find a policy γ∗ so that

JN (ν0, γ
∗) ≤ JN (ν0, γ) ∀γ ∈ ΓA.

Such a γ∗ is called an optimal policy. Here γ can also be called a strategy, or a law.

2.3 Performance Criteria: Optimality and Stability

2.3.1 Several Optimality Criteria and Performance of Policy Classes

Consider a Markov control problem with an objective given as the minimization of

JN (ν0, γ) = Eγν0

[(N−1∑
t=0

c(xt, ut)

)
+ cN (xN )

]
where ν0 denotes the distribution on x0 and cN is a terminal state cost function. For the case with x0 = x, so that ν0 = δx,
we often simply write

JN (δx, γ) =: JN (x, γ) = Eγδx [

N−1∑
t=0

c(xt, ut) + cN (xN )] = Eγ [

N−1∑
t=0

c(xt, ut) + cN (xN )|x0 = x]

Such a cost problem is known as an expected finite horizon cost criterion.

We will also consider costs of the following form:

Jβ(ν0, γ) = Eγν0 [

∞∑
t=0

βtc(xt, ut)],

for some β ∈ (0, 1). This is called an expected discounted infinite horizon cost criterion.

Finally, we will study costs of the following form:

J∞(ν0, γ) = lim sup
N→∞

1

N
Eγν0 [

N−1∑
t=0

c(xt, ut)]

Such a problem is known as an infinite horizon average cost criterion.

As before, let ΓA denote the class of admissible policies, ΓM denote the class of Markov policies, ΓS denote the class of
Stationary policies. These policies can be both randomized or deterministic. We may also denote the randomized policies
with ΓRA, ΓRM and ΓRS if randomization needs to be made explicit.
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For each of the criteria above, in these notes, we will investigate existence, structural and approximation results and also
computational and numerical as well as simulation based solution methods.

In a general setting, we note the following relation

inf
γ∈ΓA

JN (ν0, γ) ≤ inf
γ∈ΓM

JN (ν0, γ) ≤ inf
γ∈ΓS

JN (ν0, γ),

since the sets of policies are progressively shrinking

ΓS ⊂ ΓM ⊂ ΓA.

We will show, however, that for the optimal control of a Markov chain, under mild conditions, Markov policies are always
optimal (that is there is no loss in optimality in restricting the policies to be Markov); that is, it is sufficient to consider only
Markov policies. That is,

inf
γ∈ΓA

JN (ν0, γ) = inf
γ∈ΓM

JN (ν0, γ)

We will also show that, under somewhat more restrictive conditions, stationary policies are optimal (that is, there is no loss
in optimality in restricting the policies to be stationary). This will typically exclude finite horizon problems and under mild
conditions we will have that

inf
γ∈ΓA

Jβ(ν0, γ) = inf
γ∈ΓS

Jβ(ν0, γ), and inf
γ∈ΓA

J∞(ν0, γ) = inf
γ∈ΓRS

J∞(ν0, γ),

where we will also see that the infimum on the right hand side can be taken among those stationary policies which are
deterministic under further conditions. Furthermore, we will show that, under some stronger conditions, infγ∈ΓS

J∞(ν0, γ)
is independent of the initial probability measure ν0 (or the initial condition) on x0.

For further relations between such policies, see Chapter 5 and Chapter 7.

The last two results are computationally very important, as there are powerful computational algorithms that allow one to
find such stationary policies. We will be discussing these later in the notes.

We will also show that for almost all the criteria above, though under some conditions for the average cost setup, optimal
policies can be assumed to be deterministic.

In the rest of the book, we will first consider further properties of Markov chains, since under a Markov control policy, the
controlled state becomes a Markov chain by Theorem 2.3.1 below. We will then get back to controlled Markov chains and
the development of optimal control policies in Chapters 5 and 7.

Further optimality criteria include sample path optimality, risk-sensitive optimality and control up to a stopping time. We
will obtain structural results for optimal policies under these criteria as well, together with analytical results.

2.3.2 Stability as a Performance Criterion

In addition to, or instead of (depending on applications), optimality, one would like to achieve stability in a stochastic sense.
Such stochastic stability may be in a variety of senses, and these will be discussed in detail in the upcoming chapters.

2.3.3 Markov Chain Induced by a Markov Policy

Theorem 2.3.1 Let the control policy be randomized Markov. Then, the controlled Markov chain induces an X-valued
Markov chain, that is, the state process itself becomes a Markov chain:

P γx0
(xt+1 ∈ B|xt = bt, xt−1 = bt−1, . . . , x0 = b0) = Qγt (xt+1 ∈ B|xt = bt), B ∈ B(X), t ≥ 1,
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for P almost every realization of the past variables bt, · · · , b0, where Qγt is a possibly time-dependent stochastic ker-
nel defining a Markov chain. If the control policy is a stationary policy, then the induced Markov chain {xt} is time-
homogenous; that is, the transition kernel Qγt for the induced Markov chain does not depend on time.

Proof. Let us consider the case where U is countable, the uncountable case follows similarly. Let B ∈ B(X). It follows
that,

P γx0
(xt+1 ∈ B|xt = bt, xt−1 = bt−1, . . . , x0 = b0)

P γx0
(xt+1 ∈ B, ut ∈ U|xt = bt, xt−1 = bt−1, . . . , x0 = b0)

P γx0
(∪u∈U{xt+1 ∈ B, ut = u}|xt = bt, xt−1 = bt−1, . . . , x0 = b0)

=
∑
u∈U

P γx0
(xt+1 ∈ B, ut = u|xt = bt, xt−1 = bt−1, . . . , x0 = b0)

=
∑
u∈U

P γx0
(xt+1 ∈ B|ut = u, xt = bt, xt−1 = bt−1, . . . , x0 = b0)P

γ
x0
(ut = u|xt = bt, xt−1 = bt−1, . . . , x0 = b0)

=
∑
u∈U

T (xt+1 ∈ B|ut = u, xt = bt)γt(ut = u|xt = bt)

=
∑
u∈U

Qγt (xt+1 ∈ B, ut = u|xt = bt)

= Qγt (xt+1 ∈ B|xt = bt) (2.3)

Here, Qγt is a conditional probability measure defined with Qγt (xt+1 ∈ B, ut = u|xt = bt) := T (xt+1 ∈ B|ut = u, xt =
bt)γt(ut = u|xt = bt). The essential issue here is that the control only depends on xt, and since xt+1 depends stochastically
only on xt and ut (being a controlled Markov chain), the desired result follows. If γt(ut|xt = bt) = γ(ut|xt = bt), that is,
γt = γ for all t values so that the policy is stationary, the resulting chain satisfies

P γx0
(xt+1 ∈ B|xt, xt−1, . . . , x0) = Qγ(xt+1 ∈ B|xt),

for some Qγ . Thus, the transition kernel does not depend on time and the chain is time-homogenous. ⋄

2.4 Partially Observed Models and Reduction to a Fully Observed Model

Consider a partially observable stochastic control problem with the following dynamics.

xt+1 = f(xt, ut, wt), yt = g(xt, vt).

Here, xt is the X-valued state, ut is the U-valued the control, yt is the Y-valued observation (measurement) process.
Furthermore, (wt, vt) are i.i.d noise processes and {wt} is independent of {vt}. The controller only has causal access to
{yt}.

As noted, yt denotes an observation variable taking values in Y, a subset of Rn in the context of this review. The controller
only has causal access to the second component {yt} of the process: A deterministic admissible control policy γ is a
sequence of functions {γt} so that ut = γt(y[0,t];u[0,t−1]).

We will see that one could transform a partially observable Markov Decision Problem to a Fully Observed Markov Decision
Problem via an enlargement of the state space. In particular, we obtain via the properties of total probability the following
dynamical recursion (here, we assume that the state space is countable; the extension to more general spaces will be
considered in Chapter 6):

πt(A) : = P (xt ∈ A|y[0,t], u[0,t−1])

=

∑
X πt−1(xt−1)P (ut−1|y[0,t−1], u[0,t−2])P (yt|xt)P (xt|xt−1, ut−1)∑

X
∑

X πt−1(xt−1)P (yt|xt)P (ut−1|y[0,t−1], u[0,t−2])P (dxt|xt−1, ut−1)
,
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=

∑
X πt−1(xt−1)P (yt|xt)P (xt|xt−1, ut−1)∑

X
∑

X πt−1(xt−1)P (yt|xt)P (dxt|xt−1, ut−1)
,

=: F (πt−1, ut−1, yt)(A), (2.4)

for some F . It follows that F : P(X)×U×Y → P(X) is a Borel measurable function, as we will discuss in further detail
in Chapter 6. Thus, the conditional measure process becomes a controlled Markov chain in P(X) (where P(X) denotes the
set of probability measures on X, we will endow this set with the metric giving rise to the weak convergence topology, to
be discussed later):

Theorem 2.4.1 The process {πt, ut} is a controlled Markov chain. That is, under any admissible control policy, given the
action at time t ≥ 0 and πt, πt+1 is conditionally independent from {πs, us, s ≤ t− 1}.

Proof. This follows from the observation that for any B ∈ B(P(X)), by (2.4)

P (πt+1 ∈ B|πs, us, s ≤ t)

=
∑

yt+1=y

1{F (πt,ut,y)∈B}P (yt+1 = y|πs, us, s ≤ t)

=
∑

yt+1=y

1{F (πt,ut,y)∈B}
∑
x

P (yt+1|xt+1 = x)P (xt+1 = x|πs, us, s ≤ t)

=
∑

yt+1=y

1{F (πt,ut,y)∈B}
∑
x

P (yt+1|xt+1 = x)
∑
x′

P (xt+1 = x|xt = x′, ut)πt(x
′)

= P (πt+1 ∈ B|πt, ut) (2.5)

⋄

Let the cost function to be minimized be

Eγx0
[

T−1∑
t=0

c(xt, ut)],

where Eγx0
[· · · ] denotes the expectation over all sample paths with initial state given by x0 under policy γ.

Now, using a property known as iterated expectations that we will be discussing in detail in Chapter 4, we can write:

Eγx0
[

T−1∑
t=0

c(xt, ut)] = Eγx0
[

T−1∑
t=0

E[c(xt, ut)|yt, ys, us, s ≤ t− 1] = Eγx0
[

T−1∑
t=0

c̃(πt, ut)],

where
c̃(π, u) =

∑
X
c(x, u)π(x), π ∈ P(X).

We can thus transform the system into a fully observed Markov model as follows. The stochastic transition kernel η is
given by:

η(B|π, u) =
∑
Y

1{P (.|π,u,y)∈B}P (y|x)π(x), ∀B ∈ B(P(X)),

with 1{.} denoting the indicator function.

It follows that (P(X),U, η, c̃) defines a completely observable controlled Markov process.

Thus, the fully observed Markov Decision Model we will consider is sufficiently rich to be applicable to a large class of
controlled stochastic systems. Partially Observable Markov Decision Problems, also known as POMDPs, will be studied
in detail in Chapter 6.
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2.5 Decentralized Stochastic Control

We will consider situations in which there are multiple decision makers. These will be studied extensively in Chapter 10.

2.6 Controlled Continuous-Time Stochastic Systems

We will also study setups where the time index is a continuum. We will cover this material in Chapter 11.

2.7 Numerical Methods, Reinforcement Learning, and Robustness to Incorrect Models

While we will extensively study analytical methods to arrive at solutions, for many problems it is more convenient to
consider numerical methods or stochastic learning methods. For some applications, this may be the only option, e.g. when
a model is not known apriori. These will be studied in detail in Chapters 8 and 9.

A good control design must be robust to perturbations in the model. This brings the question of continuity and robustness
of optimal costs and optimal controls to perturbations in a model, where topological questions on model regularity are to
be studied in detail. These also, as a special case, cover finite model approximations of systems with uncountable state and
action spaces. These are studied in Chapter 12.

2.8 Bibliographic Notes

We are thankful to Prof. Eugene Feinberg on some historical remarks regarding stochastic realization and pointing out to
Aumann’s lemma: [19, Lemma F], and that this result may have also been due to Girsanov.

2.9 Exercises

Exercise 2.9.1 a) Let f be an arbitrary measurable function from R × R × R → R. Show that a controlled stochastic
process defined with

xt+1 = f(xt, ut, wt),

with {wt} an independent and identically distributed noise sequence is a controlled Markov chain.

b) Study Lemma 3.1 and Corollary 3.1 of [54].

Exercise 2.9.2 A common example in mathematical finance applications is the portfolio selection problem where a con-
troller (investor) would like to optimally allocate his wealth between a stochastic stock market and a market with a guar-
anteed income : Consider a stock with an i.i.d. random return σt and a bank account with fixed interest rate r > 0. These
are modeled by:

Xt+1 = Xtut(1 + σt) +Xt(1− ut)(1 + r), X0 = 1

and
Xt+1 = Xt(1 + r + ut(σt − r))

Here, ut ∈ [0, 1] denotes the proportion of the money that the investor invests in the stock market. Suppose that the goal is
to maximize E[log(XT )]. Then, we can write:



22 2 Controlled Markov Chains

log(XT ) = log(

T−1∏
k=0

Xk+1

Xk
) =

T−1∑
k=0

log((1 + r + ut(σt − r))) (2.6)

Formulate the problem as an optimal stochastic control problem by clearly identifying the state and the control action
spaces, the information available at the controller, the transition kernel, and a cost functional mapping the actions and
states to R.

Exercise 2.9.3 Consider an inventory-production system given by

xt+1 = xt + ut − wt,

where xt is R-valued, with the one-stage cost

c(xt, ut, wt) = but + hmax(0, xt + ut − wt) + pmax(0, wt − xt − ut)

Here, b is the unit production cost, h is the unit holding (storage) cost and p is the unit shortage cost; here we take p > b.
At any given time, the decision maker can take ut ∈ R+. The demand variable wt ∼ µ is a R+-valued i.i.d. process,
independent of x0, with a finite mean where µ is assumed to admit a probability density function. The goal is to minimize

J(x, γ) = Eγx [

T−1∑
t=0

c(xt, ut, wt)]

The controller at time t has access to It = {xs, us, s ≤ t− 1} ∪ {xt}.

Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control action spaces,
the information available at the controller, the transition kernel and a cost functional mapping the actions and states to R.

Exercise 2.9.4 A fishery manager annually has xt units of fish and sells utxt of these where ut ∈ [0, 1]. With the remaining
ones, the next year’s production is given by the following model

xt+1 = wtxt(1− ut) + wt,

with x0 is given and wt is an independent, identically distributed sequence of random variables and wt ≥ 0 for all t and
therefore E[wt] = w̃ ≥ 0.

The goal is to maximize the profit over the time horizon 0 ≤ t ≤ T − 1. At time T , he sells all of the fish.

Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control actions, the
information available at the controller, the transition kernel and a cost functional mapping the actions and states to R.

Exercise 2.9.5 An investor’s wealth dynamics is given by the following:

xt+1 = utwt,

where {wt} is an i.i.d. R+-valued stochastic process with E[wt] = 1. The investor has access to the past and current
wealth information and his previous actions. The goal is to maximize:

J(x0, γ) = Eγx0
[

T−1∑
t=0

√
xt − ut].

The investor’s action set for any given x is: U(x) = [0, x].

Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control action spaces,
the information available at the controller, the transition kernel and a cost functional mapping the actions and states to R.
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Exercise 2.9.6 Consider an unemployed person who will have to work for years t = 1, 2, ..., 10 if she takes a job at any
given t.

Suppose that each year in which she remains unemployed; she may be offered a good job that pays 10 dollars per year
(with probability 1/4); she may be offered a bad job that pays 4 dollars per year (with probability 1/4); or she may not be
offered a job (with probability 1/2). These events of job offers are independent from year to year (that is the job market is
represented by an independent sequence of random variables for every year).

Once she accepts a job, she will remain in that job for the rest of the ten years. That is, for example, she cannot switch from
the bad job to the good job.

Suppose the goal is maximize the expected total earnings in ten years, starting from year 1 up to year 10 (including year
10).

State the problem as a Markov Decision Problem, identify the state space, the action space and the transition kernel.

Exercise 2.9.7 (Zero-Delay Source Coding) Let {xt}t≥0 be an X-valued discrete-time Markov process where X can be a
finite set or Rn. Let there be an encoder which encodes (quantizes) the source samples and transmits the encoded versions
to a receiver over a discrete noiseless channel with input and output alphabet M := {1, 2, . . . ,M}, where M is a positive
integer.

The encoder policy η is a sequence of functions {ηt}t≥0 with

ηt : Mt × (X)t+1 ∋ (q[0,t−1], x[0,t]) 7→ qt ∈ M.

A zero-delay receiver policy is a sequence of functions γ = {γt}t≥0 of type

γt : Mt+1 ∋ q[0,t] 7→ ut ∈ U.

For the finite horizon setting the goal is to minimize the average cumulative cost (distortion)

JT (π0, η, γ) := Eη,γπ0

[
1

T

T−1∑
t=0

c0(xt, ut)

]
, (2.7)

for some T ≥ 1, where c0 : X × U → R is a nonnegative cost (distortion) function, and Eη,γπ0
denotes expectation with

initial distribution π0 for x0 and under the quantization policy η and receiver policy γ.

Express this problem as a controlled Markov chain problem. Later on, we will provide further refinements. There is a rich
history behind this problem, see e.g., [316], [307], [291] and [321, 329].

Exercise 2.9.8 Suppose that there are two decision makers DM1 and DM2. Suppose that the information available to to
DM1 is a random variable Y 1 and the information available to DM2 is Y 2, where these random variables are defined on
a probability space (Ω,F , P ). Suppose that for i = 1, 2, Y i is Yi-valued and these are standard Borel spaces.

Suppose that the sigma-field generated by Y 1 is a subset of the sigma-field generated by Y 2, that is σ(Y 1) ⊂ σ(Y 2). That
is, the information contained in Y 1 is a subset of the information contained in Y 2 (Recall here that the σ-field generated
by a random variable Y is the smallest σ-field over Ω on which Y is measurable).

Further, suppose that the decision makers wish to minimize the following cost function:

E[c(ω, u)],

where c : Ω × U → R+ is a measurable cost function (on F × B(U)), where B(U) is a σ-field over U. Here, for i = 1, 2,
ui = γi(Y i) is generated by a measurable function γi on the sigma-field generated by the random variable Y i. Let Γ i

denote the space of all such policies.

Prove that
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inf
γ1∈Γ 1

E[c(ω, u1)] ≥ inf
γ2∈Γ 2

E[c(ω, u2)].

Hint: Make the argument that every policy u1 = γ1(Y 1) can be expressed as u2 = γ2(Y 2) for some γ2 ∈ Γ 2; see Exercise
1.6.6.
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Classification of Markov Chains

3.1 Countable State Space Markov Chains

In this chapter, we first review Markov chains where the state takes values in a finite or a countably infinite set X. In the
following, we will consider (Ω,F ,P) to be the probability space on which all of the random variables are defined (later
on, when a particular notational distinction is not needed, we will replace the notation P with P as the probability measure
on the events to be considered).

We assume that ν0 is an initial distribution for the Markov chain, so that P(x0 ∈ ·) = ν0(·) (also denoted with x0 ∼
ν0). The process Φ = {x0, x1, . . . , xn, . . . } is a (time-homogeneous) Markov chain with the probability measure on the
sequence space satisfying, for n ∈ Z+:

Pν0(x0 = a0, x1 = a1, x2 = a2, . . . , xn = an)

:= ν0(x0 = a0)P(x1 = a1|x0 = a0)P(x2 = a2|x1 = a1) . . .P(xn = an|xn−1 = an−1) (3.1)

If the initial condition is known to be a fixed state a0 ∈ X, we use Pa0(· · · ) in place of Pδa0
(· · · ). We could represent the

probabilistic evolution in terms of a matrix:

P (i, j) := P(xt+1 = j|xt = i) ≥ 0, i, j ∈ X.

Here P (·, ·) is a probability transition kernel, that is for every i ∈ X, P (i, .) is a probability measure on X, in particular
with

∑
j P (i, j) = 1 for every i. Let P be an |X| × |X| matrix with entries given with P (i, j) ≥ 0. Such a matrix P is

called a stochastic matrix.

The initial condition probability and the transition kernel uniquely identify the probability measure on the product space
XN, by the extension theorems presented in Chapter 1.

Let πk(i) = P(xk = i) for k ∈ Z+ and i ∈ X. Let πk = [πk(i), i ∈ X]. It follows that

π1(j) = P(x1 = j) =
∑
i

P(x1 = j, x0 = i) =
∑
i

P(x1 = j|x0 = i)P(x0 = i) =
∑
i

π0(i)P (i, j)

and with P denoting the transition matrix given with P (i, j) as defined above,

πk+1 = πkP, k ∈ Z+ (3.2)

Note here that we represent πk as a row vector. By induction, we could verify that for k ∈ N:

P k(i, j) := P (xt+k = j|xt = i) =
∑
m∈X

P (i,m)P k−1(m, j)
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We will see that whether the sequence {πk} admits a limit and the dependence properties of this limit on π0 (or ν0) have
significant implications on the characterization of Markov chains, and later, in stabilization and optimization of controlled
Markov chains.

In the following, we characterize Markov Chains based on transience, recurrence and communication. We then consider the
issue of the existence of an invariant probability measure. Later, we will extend the analysis to uncountable space Markov
chains.

Communication

If there exists an integer k ∈ Z+ such that P(xt+k = j|xt = i) = P k(i, j) > 0, and another integer l ∈ Z+ such that
P (xt+l = i|xt = j) = P l(j, i) > 0 then state i communicates with state j.

A set C ⊂ X is said to be communicating if every two elements (states) of C communicate with each other.

If every member of the set can communicate to every other member, such a chain is said to be irreducible.

The period of a state i ∈ X is defined to be the greatest common divisor of {k > 0 : P k(i, i) > 0}.

A Markov chain is called aperiodic if the period of all states is 1.

Absorbing Set

A set C is called absorbing if P (i, C) = 1 for all i ∈ C. That is, if the state is in C, then the state cannot get out of the set
C.

The Markov chain is irreducible if the smallest absorbing set is the entire X itself.

The Markov chain is indecomposable if X does not contain two disjoint absorbing sets.

Occupation, Hitting and Stopping Times

For any set A ⊂ X, the occupation time ηA is the number of visits of {xt} to set A:

ηA =

∞∑
t=0

1{xt∈A},

where 1E denotes the indicator function for an event E, that is, it takes the value 1 when E takes place, and is otherwise 0.

Remark 3.1. Another common notation for the indicator function is the following: Let A be an event (a subset of some
σ-field). Then 1A(x) = 1 if x ∈ A and 0 otherwise.

Let A ⊂ X. Define
τA := min{k > 0 : xk ∈ A},

to be the first time that the state visits A; we call this the return time to set A. We also define a very similar notion, called a
hitting time:

σA = min{k ≥ 0 : xk ∈ A}.

The variable τA defined above is an example for stopping times:

Definition 3.1.1 A Z+ ∪ {∞}-valued random variable τ is a stopping time (with respect to the σ-field generated by the
process {x0, x1, · · · }), if for all n ∈ Z+, the event {τ = n} ∈ σ(x0, x1, x2, . . . , xn), that is the event is in the sigma-field
generated by the random variables up to time n.
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Any realistic decision takes place at a time which is a stopping time. Consider an optimal investment problem: if an investor
claims to stop investing (e.g., purchasing houses) when the investment (value of the housing market) is at its local peak, the
decision instant could not be a stopping-time in general: this peak-time is not a stopping time because to find out whether
the investment value is at its peak, the next realization should be known, and this information is not available up to any
given time in a causal fashion for a non-trivial (i.e., non-deterministic) stochastic process.

One important property of Markov chains is the strong Markov property. This says the following: If we sample a Markov
chain according to a stopping time rule, the sampled Markov chain starts from the sampled instant as a Markov chain with
the same transition probabilities as if the sampling instant is time 0:

Proposition 3.1.1 For a (time-homogenous) Markov chain with a countable state space X, the strong Markov property
holds: that is, if τ is a stopping time with P (τ <∞) = 1, then almost surely for any m ∈ N:

P (xτ+m = a|xτ = b0, xτ−1 = b1, . . . ) = P (xτ+m = a|xτ = b0) = Pm(b0, a).

Proof. We consider m = 1; for larger m, the result follows from identical steps. For an event with {xτ = b0, xτ−1 =
b1, . . . } with P (xτ = b0, xτ−1 = b1, . . . ) > 0, we have that

P (xτ+1 = a|xτ = b0, xτ−1 = b1, . . . )

=
P (xτ+1 = a, xτ = b0, xτ−1 = b1, . . . )

P (xτ = b0, xτ−1 = b1, . . . )

=

∑∞
k=0 P (τ = k, xτ+1 = a, xτ = b0, xτ−1 = b1, . . . )

P (xτ = b0, xτ−1 = b1, . . . )
(3.3)

=

∑∞
k=0 P (xk+1 = a|τ = k, xk = b0, xk−1 = b1, . . . )P (τ = k, xk = b0, xk−1 = b1, . . . )

P (xτ = b0, xτ−1 = b1, . . . )

=

∑∞
k=0 P (xk+1 = a|xk = b0, xk−1 = b1, . . . )P (τ = k, xk = b0, xk−1 = b1, . . . )

P (xτ = b0, xτ−1 = b1, . . . )
(3.4)

=

∑∞
k=0 P (xk+1 = a|xk = b0)P (τ = k, xk = b0, xk−1 = b1, . . . )

P (xτ = b0, xτ−1 = b1, . . . )

= P (b0, a)

∑∞
k=0 P (τ = k, xτ = b0, xτ−1 = b1, . . . )

P (xτ = b0, xτ−1 = b1, . . . )

= P (b0, a)
P (xτ = b0, xτ−1 = b1, . . . )

P (xτ = b0, xτ−1 = b1, . . . )

= P (b0, a) (3.5)

Note that the assumption P (τ <∞) = 1 is critically used in the proof in (3.3). In (3.4), we use the fact that τ is a stopping
time. ⋄

3.1.1 Recurrence and transience

Let us define

U(x,A) := E[

∞∑
t=1

1(xt∈A)|xo = x] =

∞∑
t=1

P t(x,A) =: Ex[

∞∑
t=1

1(xt∈A)

and define
L(x,A) := P (τA <∞|x0 = x) =: Px(τA <∞),

which is the probability of the chain visiting set A, once the process starts at state x.

Definition 3.1.2 (i) A setA ⊂ X is recurrent if the Markov chain visitsA infinitely often in expectation, when the process
starts in A:
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Ex[ηA] = ∞, ∀x ∈ A (3.6)

(ii) A state α ∈ X is transient if

U(α, α) = Eα[ηα] <∞. (3.7)

(iii)A set A ⊂ X is positive recurrent if

Ex[τA] <∞, ∀x ∈ A.

In particular, if a state α ∈ X is not recurrent, it is transient.

Equation (3.7) can also be written as
∑∞
i=1 P

i(α, α) <∞, which in turn is implied by

Pi(τi <∞) < 1,

as we will show further below. The reader should connect the above with the strong Markov property: once the process hits
a state, it starts from the state as if it is time 0 (regardless of the the past); the process recurs itself.

There is another important notion of recurrence, called Harris recurrence:

Definition 3.1.3 (i) A set A is Harris recurrent if Px(ηA = ∞) = 1 for all x ∈ A.

(ii) An irreducible Markov chain is Harris recurrent if

Px(ηA = ∞) = 1, ∀x ∈ X, A ⊂ X.

Let τi(1) := τi and for i ≥ 1,
τi(k + 1) = min{n > τi(k) : xn = i}

We have the following result whose proof, which builds on continuity of probability (Theorem B.1.2), is presented later in
the chapter; see Theorem 3.2.1.

Theorem 3.1.1 If Pi(τi <∞) = 1, then Pi(ηi = ∞) = 1.

One can verify that (3.7) is equivalent to L(i, i) < 1.

Theorem 3.1.2 If Pi(τi <∞) < 1, then Ei[ηi] <∞ and thus the state i ∈ X is transient.

To show this, it suffices to first verify the relation

Pi(τi(k) <∞) = Pi(τi(k − 1) <∞)Pi(τi(1) <∞),

and then use the equality E[η] =
∑∞
k=1 P (η ≥ k).

We will investigate the Harris recurrence property further while studying uncountable state space Markov chains, however
one needs to note that even for countable state space chains Harris recurrence is stronger than recurrence as we make
explicit next.

Remark 3.2. Harris recurrence is stronger than recurrence. In one, an expectation is considered; in the other, a probability
is considered. Consider the following example: Let X = N, P (1, 1) = 1 and for x > 1: P (x, x + 1) = 1 − 1/x2 and
P (x, 1) = 1/x2. Then, for x ≥ 2 (see Exercise 3.5.7):

Px(τ1 = ∞) =
∏

t≥x,t∈N
(1− 1/t2) > 0.
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Thus, the set {1, 2} is not Harris recurrent, but it is recurrent.

3.1.2 Stability and invariant measures

Stability is an important concept, but it has different meanings in different contexts. This notion will be made more precise
in the following chapter. Nonetheless, perhaps the weakest form of stochastic stability in the context of these notes is the
existence of an invariant probability measure.

Recall from (3.2) that the occupation probabilities satisfy the recursions:

π1 = π0P

And for t > 1:
πt+1 = πtP = π0P

t+1

One important property of Markov chains is whether the above iteration leads to a fixed point. Such a fixed point π is called
an invariant probability measure. Thus, a probability measure in a countable state Markov chain is invariant if

π = πP

This is equivalent to
π(j) =

∑
i∈X

π(i)P (i, j), ∀j ∈ X

We note that, if such a π exists, it must be written in terms of π = π0 limt→∞ P t, for some π0. Clearly, π0 can be π itself,
but often π0 can be any initial probability measure under irreducibility/aperiodicity conditions (where aperiodicity can be
relaxed if convergence of the averages limt→∞

1
T

∑T−1
t=0 π0P

t is considered) which will be discussed further. Invariant
probability measures are especially important in stochastic control, due to ergodicity theorems (which show that temporal
averages converge to statistical averages with probability 1), as we will discuss later in the chapter. Finally, how fast
1
T

∑T−1
t=0 π0P

t converges to invariance is another very important question to be studied.

3.1.3 Invariant measures via an occupational characterization

The following is one of the most consequential results in this chapter.

Theorem 3.1.3 For a Markov chain, if there exists an element i such that Ei[τi] < ∞; the following is an invariant
probability measure:

µ(j) = E

[∑τi−1
k=0 1{xk=j}

Ei[τi]

∣∣∣∣x0 = i

]
, j ∈ X

Proof. We will show for every j ∈ X that

E

[∑τi−1
k=0 1{xk=j}

E[τi]

∣∣∣∣x0 = i

]
=
∑
s∈X

P (s, j)E

[∑τi−1
k=0 1{xk=s}

E[τi]

∣∣∣∣x0 = i

]
,

which establishes the desired result1. Note that E[1{Xt+1=j}] = P (Xt+1 = j) and P (s, j) = E[1{Xk+1=j}|Xk = s] =
E[1{Xk+1=j}|Xk](ω) with Xk(ω) = s. Hence,

∑
s

P (s, j)E

[∑τi−1
k=0 1{Xk=s}

Ei[τi]

∣∣∣∣X0 = i

]
= E

[∑τi−1
k=0

∑
s P (s, j)1{Xk=s}

Ei[τi]

∣∣∣∣X0 = i

]
1In the following, to make the random nature of xk terms explicit, we will use capital letters Xk to emphasize randomness. In the

notes, we will occasionally follow this route, since for conditional expectations, often it is very crucial to distinguish between random
variables and their realizations.
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=

E

[∑τi−1
k=0

∑
s

(
1{Xk=s}E[1{Xk+1=j}|Xk]

)∣∣∣∣x0 = i

]
Ei[τi]

(3.8)

=

E

[∑τi−1
k=0

∑
s 1{Xk=s}E[1{xk+1=j}|Xk, Xk−1, Xk−2, · · · , X0 = i]

∣∣∣∣X0 = i

]
Ei[τi]

(3.9)

=

E

[∑τi−1
k=0

∑
sE[1{Xk=s}1{Xk+1=j}|Xk, Xk−1, Xk−2, · · · , X0 = i]

∣∣∣∣X0 = i

]
Ei[τi]

(3.10)

=

E

[∑∞
k=0

∑
s 1{k<τi}E[1{Xk=s}1{Xk+1=j}|Xk, Xk−1, Xk−2, · · · , X0 = i]

∣∣∣∣X0 = i

]
Ei[τi]

=

∑∞
k=0

∑
sE

[
E[1{k<τi}1{Xk=s}1{Xk+1=j}|Xk, Xk−1, Xk−2, · · · , X0 = i]

∣∣∣∣X0 = i

]
Ei[τi]

(3.11)

=

∑∞
k=0E

[
1{k<τi}

∑
s 1{Xk=s}1{Xk+1=j}

∣∣∣∣X0 = i

]
Ei[τi]

(3.12)

=

E

[∑∞
k=0 1{k<τi}1{Xk+1=j}|X0 = i

]
Ei[τi]

=

E

[∑τi−1
k=0 1{Xk+1=j}|X0 = i

]
Ei[τi]

= Ei

[∑τi−1
k=0 1{Xk+1=j}

Ei[τi]

]
= Ei

[∑τi
k=1 1{Xk=j}

Ei[τi]

]
= Ei

[∑τi−1
k=0 1{Xk=j}

Ei[τi]

]
= µ(j),

where we use the fact that the number of visits to a given set does not change whether we include either t = 0 or τi, since
X0 = Xτi = i. Here, (3.8) follows from the fact that Xk = s is specified, (3.9) follows from the fact that the process is
a Markov chain, (3.10) and (3.11) follow from the properties of conditional expectation and that τi is a stopping time (we
will discuss such properties in Chapter 4), and (3.12) follows from the law of the iterated expectations, see Theorem 4.1.3.
In the above (3.8) follows from the fact that 1{Xk=s}E[1{Xk+1=j}|Xk] = E[1{Xk=s}1{Xk+1=j}|Xk].

Finally, observe that if Ei[τi] <∞, then the above measure indeed is a probability measure, as it follows that

∑
µ(j) =

∑
j

E

[∑τi−1
k=0 1{Xk=j}

E[τi]

∣∣∣∣X0 = i

]
= 1.

This concludes the proof. ⋄

Theorem 3.1.4 Every finite state space Markov chain admits an invariant probability measure.

A common proof technique on the existence of invariant probability measures for finite state Markov chains builds on an
important result called the Perron-Frobenius Theorem. However, we will present a more general result in the context of
general space Markov chains later in Theorem 3.3.1.

Theorem 3.1.5 For an irreducible Markov chain with countable X, there can be at most one invariant probability measure.

Proof. Let π(i) and π′(i) be two different invariant probability measures. Define D := {i : π(i) > π′(i)}. Then,
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π(D) =
∑
i∈D

π(i)P (i,D) +
∑
i/∈D

π(i)P (i,D)

π′(D) =
∑
i∈D

π′(i)P (i,D) +
∑
i/∈D

π′(i)P (i,D)

implies that
π(D)− π′(D) =

∑
i∈D

(π(i)− π′(i))P (i,D) +
∑
i/∈D

(π(i)− π′(i))P (i,D)

and thus ∑
i∈D

(π(i)− π′(i))(1− P (i,D)) =
∑
i/∈D

(π(i)− π′(i))P (i,D)

The first term is strictly positive (since P (i,D) = 1 cannot hold for all i ∈ D due to irreducibility, for otherwise D would
be absorbing). The second term is not positive, hence a contradiction. ⋄

Remark 3.3. One can see that for any a ∈ X with π(a) > 0, it must be that Ea[τa] < ∞. The reason will be evident once
we study Theorem 3.2.7 and consider the relation:

1 = π(X) = π(a)Ea[

τa−1∑
k=0

1{xk∈X}] = π(a)Ea[τa]

An implication of the above is the following very important result, known as Kac’s lemma:

Theorem 3.1.6 (Kac’s Lemma) Let {xt} be irreducible and π be its invariant probability measure. Then,

π(i) =
1

Ei[τi]
, i ∈ X.

Remark 3.4. Consider the random walk on Z given with the transition kernel P (x, x + 1) = P (x, x − 1) = 1
2 for z ∈ Z.

In this case, we have that for every i ∈ Z, Ei[τi] = ∞, and hence there does not exist an invariant probability measure.
But, it has an invariant measure defined with: µ({i}) = K, i ∈ Z, for an arbitrary (fixed) K ∈ R. That Ei[τi] = ∞ can
be established through the following reasoning: if there were an invariant probability measure, then for every state i, the
measure 1

Ei[τi]
would take the same value. But the sum of these (countably infinitely many) identical values would need to

be 1, leading to a contradiction. Then, Ei[τi] cannot be finite for any i.

3.1.4 Rates of convergence to invariant measures and Dobrushin’s ergodic coefficient

Consider the iteration πt+1 = πtP , with a given π0. We would like to know when this iteration converges to a limit and
how fast this convergence is. Here, the reader is referred to Appendix A for a review of vector and function spaces.

A map T from one complete normed linear (that is, a Banach) space X to itself is called a contraction if for some 0 ≤ ρ < 1

∥T (x)− T (y)∥ ≤ ρ∥x− y∥, ∀x, y ∈ X.

Theorem 3.1.7 A contraction map T in a Banach space has a unique fixed point x∗ with x∗ = T (x∗). Furthermore, the
iterates xn+1 = T (xn), for any given x0, converge to x∗ geometrically fast in the sense that ∥xn−x∗∥ ≤ Lx0ρ

n for some
Lx0

<∞.

Proof. {Tn(x)} forms a Cauchy sequence: First note that, ∥T k(x) − T k−1(x)∥ ≤ ∥T (T k−1(x)) − T (T k−2(x))∥ ≤
ρ∥T k(x)− T k−1(x)∥ ≤ · · · ≤ ρk−1∥T (x)− x)∥. Then,
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∥Tn(x)− x∥ ≤
n∑
k=1

∥T k(x)− T k−1(x)∥ ≤
n∑
k=1

ρk−1∥T (x)− x)∥ ≤ ∥T (x)− x)∥ 1

1− ρ

implying that

∥Tn(x)∥ ≤ ∥x∥+ ∥Tn(x)− x∥ ≤ ∥x∥+ ∥T (x)− x)∥ 1

1− ρ
=:M(x)

uniformly over all n. Now, for every n,m ≥ N , we have that ∥Tn(x) − Tm(x)∥ ≤ ρN∥Tn−N (x) − Tm−N (x)∥ ≤
2M(x)ρN . This implies that the sequence is Cauchy. By completeness, the Cauchy sequence has a limit, x∗. For unique-
ness, suppose that there are two (different) fixed points with u = T (u) and v = T (v). Then ∥u− v∥ = ∥T (u)− T (v)∥ ≤
ρ∥u− v∥, a contradiction. Thus, u = v. The rate of convergence follows by writing ∥xn − x∗∥ = ∥Tn(x0)− Tn(x∗)∥ ≤
ρn∥x0 − x∗∥. ⋄

Contraction Mapping via Dobrushin’s Ergodic Coefficient Consider a countable state Markov Chain with one-step
transition kernel P . Define the Dobrushin coefficient as

δ(P ) = min
i,k

(∑
j∈X

min(P (i, j), P (k, j))

)
(3.13)

Observe that for two scalars a, b
|a− b| = a+ b− 2min(a, b).

Let us define for a vector v the l1 norm:
||v||1 =

∑
i∈X

|vi|.

The set of all countable index real-valued vectors (that is functions which map Z → R) with a finite l1 norm

{v : ||v||1 <∞}

is a complete normed linear space, and as such, is a Banach space. With these observations, we state the following:

Theorem 3.1.8 [Dobrushin] [101] For any two probability measures π, π′, it follows that

||πP − π′P ||1 ≤ (1− δ(P ))||π − π′||1.

Accordingly, the sequence of iterates πn+1 = T (πn) := πnP , for any given π0, converges to invariance geometrically
fast.

Proof. Let ψ(i) = π(i)−min(π(i), π′(i)) for all i ∈ X. Further, let ψ′(i) = π′(i)−min(π(i), π′(i)). Since

0 =
∑
i

π(i)− π′(i) =
∑

i:π(i)>π′(i)

π(i)− π′(i) +
∑

i:π′(i)>π(i)

π(i)− π′(i)

we have that ||ψ||1 = ||ψ′||1, and since∑
i

|π(i)− π′(i)| =
∑

i:π(i)>π′(i)

ψ(i) +
∑

i:π(i)>π′(i)

ψ′(i)

we have that ∑
i

|π(i)− π′(i)| = ||ψ||1 + ||ψ′||1

and thus
||π − π′||1 = ||ψ − ψ′||1 = 2||ψ||1 = 2||ψ′||1

Now,

||πP − π′P ||1 = ||ψP − ψ′P ||1
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=
∑
j

|
∑
i

ψ(i)P (i, j)−
∑
k

ψ′(k)P (k, j)|

=
1

||ψ′||1

∑
j

|
∑
k

∑
i

ψ(i)ψ′(k)P (i, j)− ψ(i)ψ′(k)P (k, j)| (3.14)

≤ 1

||ψ′||1

∑
j

∑
k

∑
i

ψ(i)ψ′(k)|P (i, j)− P (k, j)| (3.15)

=
1

||ψ′||1

∑
k

∑
i

ψ(i)ψ′(k)
∑
j

|P (i, j)− P (k, j)|

=
1

||ψ′||1

∑
k

∑
i

|ψ(i)||ψ′(k)|
{∑

j

P (i, j) + P (k, j)− 2min(P (i, j), P (k, j))

}
(3.16)

≤ 1

||ψ′||1

∑
k

∑
i

|ψ(i)||ψ′(k)|(2− 2δ(P )) (3.17)

= ||ψ′||1(2− 2δ(P )) (3.18)
= ||π − π′||1(1− δ(P ))

In the above, (3.14) follows from adding terms in the summation, (3.15) from taking the norm inside, (3.16) follows from
the relation ||a− b|| = a+ b− 2min(a, b), (3.17) from the definition of δ(P ) and finally (3.18) follows from the l1 norms
of ψ,ψ′.

Thus, the map πP : π ∈ P(X) 7→ πP ∈ P(X), where P(X) is the set of probability measures on X viewed as a subset of
l1(X;R), is a contraction mapping if δ(P ) > 0. As a result, the sequence {π0Pn, n ∈ Z+} is Cauchy by Theorem 3.1.7,
and as every Cauchy sequence in a Banach space has a limit, so does this process. We emphasize that the set of probability
measures is not a linear space, but viewed as a closed subset of l1(X;R), the sequence will have a limit. Since πP is also a
probability measure for every π ∈ P(X), the limit must also be a probability measure. The limit is the invariant probability
measure. ⋄

It should be emphasized that Dobrushin’s theorem tells us how fast the sequence of probability measures {π0Pn} converges
to the invariant probability measure π for an arbitrary π0: since πPn = π, we have that

∥π0Pn − π∥1 = ∥π0Pn − πPn∥1 ≤ (1− δ(P ))n∥π0 − π∥1 ≤ 2(1− δ(P ))n, n ∈ Z+

3.1.5 Ergodic theorem for countable state space chains

In Exercise 4.5.11, we will prove the ergodic theorem: let {xt} be a Harris recurrent Markov chain with an invariant
probability measure µ (such a process is called positive Harris recurrent, as we will define in the next section). We then
have that for every fixed initial state, almost surely

lim
T→∞

1

T

T∑
t=1

f(xt) =
∑
i

f(i)µ(i)

for bounded f (if f is not bounded, we require that
∑
i |f(i)|µ(i) <∞). This is a very important theorem, as this property

is what establishes an important connection with average cost stochastic control. Under a stationary control policy leading
to a unique invariant probability measure µ on the state and control process (which is a Markov chain), with a bounded
function c it follows that almost surely,

lim
T→∞

1

T

T∑
t=1

c(xt, ut) =
∑
x,u

c(x, u)µ(x, u).
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3.2 Uncountable Standard Borel State Spaces

We now extend the discussion above to the uncountable state space setting. We will consider state spaces that are standard
Borel; as noted earlier, these are Borel subsets of complete, separable and metric spaces. We note again that the spaces that
are complete, separable and metric are also called Polish metric spaces.

Let {xt, t ∈ Z+} be a Markov chain with a Polish state space X, and defined on a probability space (Ω,F ,P), where Ω
is the sample space, F a sigma field of subsets of Ω, and P a probability measure. Let P (x,D) := P(xt+1 ∈ D|xt = x)
denote the transition probability from x to D, that is the probability of the event {xt+1 ∈ D} given that xt = x.

We could compute P (xt+k ∈ D|xt = x) inductively as follows:

P(xt+k ∈ D|xt = x) =

∫
· · ·
∫ ∫

P (xt, dxt+1) . . . P (xt+k−2, dxt+k−1)P (xt+k−1, D)

As such, we have for all n ≥ 1, states x and Borel sets A, Pn(x,A) := P(xt+n ∈ A|xt = x) =
∫
X
Pn−1(x, dy)P (y,A),

with P 1(·, ·) := P (·, ·).

Definition 3.2.1 A Markov chain is µ-irreducible, if for any set B ∈ B(X) such that µ(B) > 0, and any x ∈ X, there
exists some integer n > 0 (possibly depending on B and x), such that Pn(x,B) > 0, where Pn(x,B) is the transition
probability in n stages, that is, P (xt+n ∈ B|xt = x).

A maximal irreducibility measure ψ is an irreducibility measure such that for all other irreducibility measures ϕ, we have
ψ(B) = 0 ⇒ ϕ(B) = 0 for anyB ∈ B(X ) (that is, all other irreducibility measures are absolutely continuous with respect
to ψ). In the text, whenever a chain is said to be irreducible, irreducibility with respect to a maximal irreducibility measure
is implied. We also define B+(X ) = {A ∈ B(X ) : ψ(A) > 0} where ψ is a maximal irreducibility measure. A maximal
irreducibility measure ψ exists for a µ-irreducible Markov chain, for example ψ(B) =

∑
n∈Z+

2−nPn(x,B)µ(dx) (see
[220, Propostion 4.2.2]).

As an example, consider the following linear system:

xt+1 = axt + wt,

This chain is Lebesgue irreducible if wt is a Gaussian variable. The definitions for recurrence and transience follow those
in the countable state space setting:

Definition 3.2.2 A set A ∈ B(X) is called recurrent if

Ex[

∞∑
t=1

1xt∈A] =

∞∑
t=1

P t(x,A) = ∞, ∀x ∈ A.

A ψ−irreducible Markov chain is called recurrent if, for A with ψ(A) > 0,

Ex[

∞∑
t=1

1xt∈A] =

∞∑
t=1

P t(x,A) = ∞, ∀x ∈ X.

Definition 3.2.3 A set A ∈ B(X) is Harris recurrent if

Px(ηA = ∞) = 1, ∀x ∈ A. (3.19)

A ψ-irreducible Markov chain is Harris recurrent if

Px(ηA = ∞) = 1, A ∈ B(X), ψ(A) > 0, ∀x ∈ X.

Theorem 3.2.1 Harris recurrence of a set A is equivalent to
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Px(τA <∞) = 1, ∀x ∈ A.

Proof. Let τA(1) be the first time the state hits A. By the Strong Markov Property, the Markov chain sampled at successive
intervals τA(1), τA(2) and so on is also a Markov chain. Let Q be the transition kernel for this sampled Markov Chain.
Now, the probability of τA(2) <∞ can be computed recursively as

Px(τA(2) <∞) = Px(τA(2) <∞, τA(1) <∞) =

∫
A

Q(xτA(1), dy)Px(τA(1) <∞)

=

(∫
A

Q(xτA(1), dy)

)
Px(τA(1) <∞) = 1 (3.20)

By induction, for every n ∈ N

Px(τA(n+ 1) <∞) =

∫
A

Q(xτA(n), dy)Px(τA(n) <∞) = 1 (3.21)

Now,
Px(ηA ≥ k) = Px(τA(k − 1) <∞),

since k times visiting a set requires k times returning to a set, when the initial state x is in the set. As such,

Px(ηA ≥ k) = 1,∀k ∈ Z+

is identically equal to 1. Define Bk = {ω ∈ Ω : η(ω) ≥ k}, and it follows that Bk+1 ⊂ Bk for all k ∈ N. By the
continuity of probability (see Theorem B.1.2), P (

⋂∞
k=1Bk) = limk→∞ P (Bk), it follows that Px(ηA = ∞) = 1. The

other direction for equivalence follows from the definitions of occupation time ηA and return time τA. ⋄

Definition 3.2.4 If a Harris recurrent Markov chain chain admits an invariant probability measure, then the chain is called
positive Harris recurrent.

We will discuss the ergodic theorem for such chains further, but it may be useful to state the following:

Lemma 3.5 (Ergodic Theorem for Positive Harris Recurrent Markov Chains,

MeynBook] For a Markov chain {Xn}n∈N which admits at least one invariant probability measure, the following state-
ments are equivalent:

(a)

The chain is positive Harris recurrent.

(b)

There exists an invariant probability measure π of such that for all f ∈ L1(π) and every initial distribution µ,

P

(
lim
n→∞

1

n+ 1

n∑
i=0

f(Xi) =

∫
B(X)

f(x)π(dx)

)
= 1,

where {Xi, i ∈ Z+} is Markov with X0 ∼ µ.

3.2.1 Invariant probability measures

Definition 3.2.5 For a Markov chain with transition probability P , a probability measure π is invariant if
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π(D) =

∫
X
P (x,D)π(dx), D ∈ B(X).

Uncountable chains act like countable ones when there is a single atom α ⊂ X which satisfies a finite mean return property
to be discussed below.

Definition 3.2.6 A set α is called an atom if there exists a probability measure ν such that

P (x,A) = ν(A), ∀x ∈ α,∀A ∈ B(X).

If the chain is ψ-irreducible and ψ(α) > 0, then α is called an accessible atom.

In case there is an accessible atom α, we have the following result the proof of which follows the same steps of those of
Theorem 3.1.3 and 3.1.5.

Theorem 3.2.2 For a ψ-irreducible Markov chain for which Eα[τα] < ∞, the following is the invariant probability
measure:

π(A) = Eα

[∑τα−1
k=0 1{xk∈A}

E[τα]
|x0 = α

]
, A ∈ B(X)

Small Sets and Nummelin and Athreya-Ney’s Splitting Technique

In case an atom is not present, we may be able to construct an artificial atom:

Definition 3.2.7 A set A ∈ B(X) is (n-µ)-small on (X,B(X)) if for some positive (non-trivial; i.e., not all-zero) measure
µ and n ∈ N

Pn(x,B) ≥ µ(B), ∀x ∈ A, andB ∈ B(X)

Often, we simply say that a set is small without specifying the smallness measure µ or time index n.

The results on recurrence apply to uncountable chains with no atom provided there is a small set or a petite set (to be
discussed further below). In the following, we construct an artificial atom through what is commonly known as the splitting
technique, see [233] [234] (see also [18]).

Suppose a set A is 1-small. Define a process zt = (xt, at), zt ∈ X × {0, 1}. That is we enlarge the state space. Suppose
that when xt /∈ A, {at}, {xt} evolve independently from each other. However, when xt ∈ A, we pick a Bernoulli random
variable, and with probability δ the state visits A × {1} and with probability 1 − δ visits A × {0}. From A × {1}, the
transition for the next time stage is given by ν(dxt)

δ and from A× {0}, it visits the future time stage with probability

P (dxt+1|xt)− ν(dxt+1)

1− δ
,

where δ = ν(X). In this case, A × {1} is an accessible atom, and one can verify that the marginal distribution of the
original Markov process {xt} has not been altered.

The following can be established using the construction above.

Proposition 3.2.1 If
sup
x∈A

E[min(t > 0 : xt ∈ A)|x0 = x] <∞

then,
sup

z∈(A×{1})
E[min(t > 0 : zt ∈ (A× {1}))|z0 = z] <∞.
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Now suppose that a set A is m-small. Then, we can construct a split chain for the sampled process xmn, n ∈ N. Note that
this sampled chain has a transition kernel as Pm. We replace the discussion for the 1-small case with the sampled chain
(also known as the m-skeleton of the original chain). If one can show that the sampled chain has an invariant measure πm,
then (see [220, Theorem 10.4.5]):

π(B) :=
1

m

m−1∑
k=0

∫
πm(dx)P k(x,B) (3.22)

is invariant for P . Furthermore, π is also invariant for the sampled chain with kernel Pm. Hence if Pm leads to a unique
invariant probability measure, π = πm.

From small to petite sets

Definition 3.2.8 [220] A set A ∈ B(X) is νT -petite on (X,B(X)) if for some distribution T on N, and some positive
(non-trivial) measure νT ,

∞∑
n=0

Pn(x,B)T (n) ≥ νT (B), ∀x ∈ A, andB ∈ B(X).

By [220, Proposition 5.5.6], if a Markov chain is ψ-irreducible and if a set C is ν-petite, then T can be taken to be a
geometric distribution aϵ(i) = (1− ϵ)ϵi, i ∈ Z+ (with the randomly sampled chain also known as the resolvent kernel).

Another useful result to be utilized later is as follows.

Theorem 3.2.3 [220] Let {xt} be µ-irreducible and let A be ν-petite. Then, there exists a sampling distribution such that
A is ψ-petite where ψ is a maximal irreducibility measure. Furthermore, A is ψ-petite for a sampling distribution with
finite mean.

Definition 3.2.9 A ψ-irreducible Markov chain is periodic with period d if there exists a partition of X = ∪di=1Xi ∪D so
that P (x,Xi+1) = 1 for all x ∈ Xi and P (x,X1) = 1 for all x ∈ Xd, with ψ(D) = 0. If no such d > 1 exists, the chain is
aperiodic.

Another useful result is the following.

Theorem 3.2.4 [220, Theorem 5.5.3] For an aperiodic and irreducible Markov chain {xt} every petite set is ν-small for
some appropriate ν (but now ν may not be a maximal irreducibility mesure; compare with Theorem 3.2.3).

Thus, the main benefit of using petite sets, over small sets, is that these sets allow for periodicity in the study for invariance
properties of Markov chains.

The discussion up to (3.22) and the split chain argument applies also for an arbitrary sampling distribution K on N. Suppose
that we have ∫

πK(dx)

(∑
n

K(n)Pn(x,B)

)
= πK(B), B ∈ B(X) (3.23)

Then,

π(B) :=

∫ ∑
m

K(m)

m−1∑
k=0

πK(dx)P
k(x,B) (3.24)

is an invariant measure for the original chain so that π = πP . By normalizing this measure, we obtain an invariant
probability measure for the original chain, provided that

∑
n nK(n) <∞ (see Theorem 3.2.3).

Exercise 3.2.1 Show that (3.24) is an invariant probability measure given that (3.23) holds.
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3.2.2 Existence of an invariant probability measure

We state the following very consequential results on the existence of invariant probability measures for Markov chains.

Theorem 3.2.5 Consider an aperiodic and irreducible Markov chain {xt}. If there exists a setA which is also anm-small
set for some m ∈ Z+, and if the set satisfies

sup
x∈A

E[min(t > 0 : xt ∈ A)|x0 = x] <∞,

then the Markov chain admits an invariant probability measure.

Note that for m = 1, we don’t need irreducibility or aperiodicity, by directly following the splitting construction presented.
In the following, we relax aperiodicity, in any case.

Theorem 3.2.6 (Meyn-Tweedie) Consider a Harris recurrent Markov chain {xt}. If there exists a µ-petite set A for some
positive measure µ, and if the set satisfies

sup
x∈A

E[min(t > 0 : xt ∈ A)|x0 = x] <∞,

then the Markov chain is positive Harris recurrent (and admits a unique invariant probability measure).

Remark 3.6. For the m-small case with m > 1, in view of the splitting construction, one question is whether

sup
x∈A

E[min(mt > 0 : xmt ∈ A)|x0 = x] <∞,

or in the petite case with a sampled chain with geometrically sampled times τk, whether

sup
x∈A

E[min(τk > 0 : xτk ∈ A)|x0 = x] <∞,

is implied by
sup
x∈A

E[min(t > 0 : xt ∈ A)|x0 = x] <∞.

For the small set case, under irreducibility and aperiodicity, the above holds. See Remark 4.4 on the positive Harris re-
currence discussion for an m-skeleton and split chains: When a Markov chain has an invariant probability measure, the
sampled chain (m-skeleton) also satisfies a drift condition, which then leads to the result that an atom constructed through
an m-skeleton has a finite return property, which can be used to establish the existence of an invariant probability measure.

However, the discussion for the petite set case is more direct and can be arrived at via the properties of a geometrically
sampled chain (following along the arguments in Exercise 3.5.4) The utilization of petite sets, via a sampled chain, thus,
allows for relaxing the aperiodicity requirement with a more direct argument.

In this case, the invariant measure satisfies the following, which is a generalization of Kac’s Lemma [110]:

Theorem 3.2.7 For a µ-irreducible Markov chain with invariant probability measure π, the following holds:

π(A) =

∫
C

π(dx)Ex[

τC−1∑
k=0

1{xk∈A}], ∀A ∈ B(X), µ(A) > 0, π(C) > 0

The above can also be extended to compute the expected values of a function of the Markov states. The above can be
verified along the same lines used for the countable state space case (see Theorem 3.1.3).
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3.2.3 On small and petite sets: sufficient conditions (Optional)

Establishing the smallness or petiteness of a set may be difficult to directly verify. In the following, we present a few
conditions that may be used to establish petiteness properties.

T-chains. By [220, p. 131], for a Markov chain with transition kernel P and K a probability measure on natural numbers,
if there exists for every E ∈ B(X), a lower semi-continuous function N (·, E) such that

∑∞
n=0 P

n(x,E)K(n) ≥ N (x,E)
for a sub-stochastic kernel N (·, ·) with N (x,X) > 0 for all x ∈ X, the chain is called a T−chain.

Theorem 3.2.8 [220, Theorem 6.2.5] For a T−chain which is irreducible, every compact set S is petite.

Proof Sketch. We will prove the result with the stronger assumption P (x,A) is continuous in x for every Borel A (that is,
P is strong Feller). Note that this implies that

∑∞
n=0 P

n(x,B)K(n) is continuous for every sampling distribution K, by
the dominated convergence theorem. Due to irreducibility, by Theorem 3.2.9, a petite set B exists so that with a positive ν
measure, for every Borel C, we have

∞∑
n=0

Pn(x,C)T (n) ≥ ν(C), ∀x ∈ B.

Now there exists K such that
∑∞
n=0 P

n(x,B)K(n) puts a positive measure on B for every x ∈ X, due to irreducibility
and that B has positive measure under the irreducibility measure. Since

∞∑
n=0

Pn(x,B)K(n)

is continuous, there exists x∗ ∈ S such that the minimum
∑∞
n=0 P

n(x,B)K(n) over x ∈ S is attained. The desired
petiteness result then comes from bounding, for any Borel C, for an appropriate probability measure η:∑

r

η(r)P r(x,C) ≥
∑

K(n)

(∫
B

Pn(x∗, dy)
∑
m

T (m)Pm(y, C)

)
for every x ∈ S. ⋄

A reflection on the proof of the result above, via Lusin’s theorem (see Theorem D.5.1), leads to the following: Small or
petite sets exist for irreducible Markov chains.

Theorem 3.2.9 [220, Thm 5.2.2] Let {xt} be µ-irreducible. Then, for every Borel B with µ(B) > 0, there exists m ≥ 1
and a νm-small set C ⊂ B with µ(C) > 0 and νm(C) > 0.

For a countable state space, under irreducibility, every finite set S is petite.

Tweedie’s uniform countable additivity condition. Tweedie [296] considers the following. If S is such that the following
uniform countable additivity condition

lim
n→∞

sup
x∈S

P (x,Bn) = 0, (3.25)

is satisfied forBn ↓ ∅, then S is petite (and for example, (4.9) to be studied in Chapter 4 implies the existence of an invariant
probability measure). In this case, there exists at most finitely many invariant probability measures. By [220, Proposition
5.5.5 (iii)], under irreducibility, the Harris recurrent component of the space can be expressed as a countable union of petite
sets Cn with ∪∞

n=1Cn, with ∪∞
mCm → ∅ as m→ ∞. By Lemma 4 of Tweedie (2001), under uniform countable additivity,

any set ∪Mi=1Ci is uniformly accessible from S. Therefore, if the Markov chain is irreducible, the condition (3.25) implies
that the set S is petite. This may be easier to verify for a large class of applications. Under further conditions (such as if S is
compact and V used in a drift criterion (4.9) has compact level sets), then the analysis will lead sufficient conditions leading
to (3.25). In particular, [296, Lemma 1] notes that if S is bounded and V is continuous (and thus uniformly bounded on S),
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it suffices to test (3.25) only forBn sets inside sets on which V is bounded (that is withB1 such that supx∈B1
V (x) <∞.).

In applications, this is often much easier to apply, see e.g. [336].

A further condition. We have the following complementary condition, where irreducibility can be relaxed, but the strong
Feller property is imposed.

Proposition 3.7. [14] Assume that

(i) The transition kernel T is bounded from below by a conditional probability measure that admits a density with respect
to some positive measure ϕ. In other words there exist a measurable f : X× U× X → R+, such that

P (x,D) ≥
∫
D

f(x, y)ϕ(dy)

for every D ∈ B(X).

(ii) The function f(x, y) is continuous in x for every fixed y.

(iii)It holds that ∫
X
( inf
x∈A

f(x, y))ϕ(dy) > 0

for every nonempty compact set A ⊂ X.

Then, every compact set is 1-small.

Proof. The measurable selection results in Appendix C (see [189, 269] and [159, Theorem 2]) show that, for any compact
A ⊂ X, there exist measurable functions g and F such that

inf
x∈A

f(x, y) = min
x∈A

f(x, y) =: F
(
g(y), y

)
(3.26)

Thus, we have for all x ∈ A

P (x,D) ≥
∫
D

inf
x∈A

f(x, y)ϕ(dy)

=

∫
D

F (g(y), y)ϕ(dy) =: ν(D)

(3.27)

for some finite (sub-probability) measure ν. Thus, every compact set is 1-small. ⋄

3.2.4 Rates of convergence to equilibrium

We can extend Dobrushin’s contraction result for the uncountable state space case. In this general setup, we define the
Dobruhsin coefficient for a Markov chain with transition kernel P as

δ(P ) = inf
(x,y);An

n∑
i=1

min{P (x,Ai), P (y,Ai)} (3.28)

where the infimum is over all x, y ∈ X and all finite partitions An := {Ani , i = 1, · · · , n} consisting of disjoint sets whose
union is X. Note that this definition holds for both continuous or countable X. We then have for two probability measures
π, π′ (see Appendix D for a review on probability measures) [101]

∥πP − π′P∥TV ≤ (1− δ(P ))∥π − π′∥TV .

As such, if δ(P ) > 0, the iterations πt = πt−1P converge to a unique fixed point geometrically fast. To better appreciate
this coefficient, first note that by the property that |a− b| = a+ b− 2min(a, b), the Dobrushin’s coefficient in (3.13) can
be written as (for the countable state space case):
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δ(P ) = 1− 1

2
max
i,k

∑
j

|(P (i, j)− P (k, j)|

For the continuous setup, in case P (x, dy) is the transition kernel admitting a density for each x (that is P (x,A) =∫
A
p(x, y)dy with probability density function p(x, ·)), the expression

δ(P ) = 1− 1

2
sup
x,z

∫
R
|p(x, y)− p(z, y)|dy,

is the Dobrushin’s ergodic coefficient for R−valued Markov processes.

The versatility of using Dobrushin’s coefficient for establishing rates of convergence manifests itself in the following
conditions (noted from [153, Theorem 3.2]).

Theorem 3.2.10 Consider the following conditions.

(i) There exists a state x∗ ∈ X and a number β > 0 such that P ({x∗}|x) ≥ β for all x ∈ X.

(ii) There exist n ∈ N and a non-trivial (positive )measure µ such that Pn(·|x) ≥ µ(·) for all x ∈ X.

(iii)There exist n ∈ N and a positive number β < 1 so that for all x, x′ ∈ X

∥Pn(·|x)− Pn(·|x′)∥TV ≤ 2β.

(iv)There exist c > 0, β ∈ (0, 1) such that there is a probability measure π with

∥π0Pn − π∥ ≤ cβn, π0 ∈ P(X), n ∈ N

We have that
(i) ⇒ (ii) ⇔ (iii) ⇒ (iv)

Note that condition (ii) amounts to the entire state space being n-small. The results above can be established through an
analysis based on Dobrushin’s ergodic coefficient. In the next chapter, we will provide more relaxed conditions leading to
rates of convergence, even though those conditions will not lead to a uniform (over x ∈ X) rate of convergence.

3.3 Further Conditions on the Existence and Uniqueness of Invariant Probability Measures

3.3.1 Further conditions on existence of invariant probability measures

Markov chains with the Feller property

This section uses certain properties of spaces of probability measures, reviewed in Section D.

Definition 3.3.1 (i) A Markov chain is weak Feller if
∫
X P (x, dz)v(z) is continuous in x for every continuous and bounded

v on X.

(ii) If the above holds (i.e.,
∫
X P (x, dz)v(z) is continuous in x) for every bounded measurable v, the Markov chain is called

strong Feller.

Example 3.8. (i) Let xt+1 = f(xt) +wt, where f : R → R is continuous and {wt} is an i.i.d. real valued noise sequence.
In this case {xt} is weak-Feller, regardless of the random variable wt.
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(ii) The chain {xt} is strong-Feller if wt is an i.i.d. random sequence where wt admits a continuous probability density
function.

Theorem 3.3.1 Let {xt} be a weak Feller Markov process living in a compact subset of a complete, separable metric
space. Then {xt} admits an invariant probability measure.

Proof. Proof follows the observation that the space of probability measures on a compact set is tight (that is, it is weakly
sequentially pre-compact), see Appendix D for a discussion on weak convergence. Consider a sequence

µT =
1

T

T−1∑
t=0

µ0P
t, T ≥ 1,

There exists a subsequence µTk
which converges weakly to some µ∗. It follows that for every continuous and bounded

function f

⟨µTk
, f⟩ :=

∫
µTk

(dx)f(x) → ⟨µ∗, f⟩

Likewise, since Pf(x) =
∫
f(x1)P (dx1|x0 = x) is continuous in x (by the weak Feller condition), it follows that

⟨µTk
, Pf⟩ :=

∫
µTk

(dx)

(∫
P (x, dy)f(y)

)
→ ⟨µ∗, Pf⟩.

Now,

(µTk
− µTk

P )(f) =
1

Tk
Eµ0

[ Tk−1∑
k=0

P kx f −
Tk−1∑
k=0

P k+1
x f

]
=

1

Tk
Eµ0

[
f(x0)− f(xTk

)

]
→ 0. (3.29)

Thus,
(µTk

− µTk
P )(f) = ⟨µTk

, f⟩ − ⟨µTk
P, f⟩ = ⟨µTk

, f⟩ − ⟨µTk
, Pf⟩ → ⟨µ∗ − µ∗P, f⟩ = 0.

Now, if the relation ⟨µ∗ − µ∗P, f⟩ = 0 holds for every continuous and bounded function, it also holds for any measurable
function f : This is because continuous functions are dense in measurable functions under the supremum norm (in other
words, continuous and bounded functions form a separating class for the space of probability measures, see e.g. p. 13
in [40] or Theorem 3.4.5 in [114])). Thus, µ∗ is an invariant probability measure. ⋄

Remark 3.9. The theorem applies identically if instead of a compact set assumption, one assumes that the sequence µk takes
values in a weakly compact set (e.g. via Prohorov’s theorem [105]); that is, if the sequence admits a weakly converging
subsequence.

Remark 3.10. Reference [200] gives the following example to emphasize the importance of the Feller property: Consider
a Markov chain evolving in [0, 1] given by: P (x, x/2) = 1 for all x ̸= 0 and P (0, 1) = 1. This chain does not admit an
invariant measure. This can be established by a continuity of probability argument for any invariant probability measure (if
one existed) on the absorbing sets (0, δ) for any δ > 0.

In the following, we generalize the above result to a case where the state space X is not compact, but is locally compact.

Theorem 3.3.2 Let {xt} be a weak Feller Markov process taking values from a locally compact X. Suppose further for
some initial probability measure µ0, with

µT =
1

T

T−1∑
t=0

µ0P
t, T ≥ 1,
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we have that for some compact B
lim inf
T→∞

µT (B) > 0.

Then, {xt} admits an invariant probability measure.

Proof. The proof builds on an application of the Banach-Alaoglu theorem; the space of signed measures under the total
variation norm with finite total variation is the topological dual of the space of continuous functions which vanish at infinity,
and the unit ball in this space is weak∗-compact by the Banach-Alaoglu theorem. By an argument similar to the proof of
Theorem 3.3.1, then there exists a subsequence µTk

which converges in the weak∗ sense to a limit µ∗. Since µ∗ cannot
be the trivial (all-zero) measure, µ∗ must be invariant and positive. Normalizing this measure implies that there exists an
invariant probability measure. ⋄

Quasi-Feller chains

Often, one does not have the Feller property, but the set of discontinuity is appropriately negligibe.

Assumption 3.3.1 For fbounded and continuous, Pf(x) := E[f(Xt+1)|Xt = x]) is continuous on X \D where D is a
closed set with P (Xt+1 ∈ D|x) = 0 for all x. Furthermore, with Dϵ = {z : d(z,D) < ϵ} for ϵ > 0 and d the metric on
X, for some K <∞, we have that for all x and ϵ > 0

P

(
Xt+1 ∈ Dϵ|xt = x

)
≤ Kϵ.

Theorem 3.3.3 Suppose that Assumption 3.3.1 holds. If the state space is compact, there exists an invariant probability
measure for the Markov chain.

Proof. The sequence of expected empirical probability measures

vn(A) = Ex[
1

n

n−1∑
k=0

1{Xk∈A}]

is tight, and thus there exists a weakly converging subsequence. Assumption 3.3.1 implies that every converging subse-
quence vnk

of is such that for all ϵ > 0
lim sup
nk→∞

vnk
(Dϵ) ≤ Kϵ.

Note that with v = limnk→∞ vnk
, it follows from the Portmanteau theorem (see e.g. [105, Thm.11.1.1]) that

v(Dϵ) ≤ Kϵ.

Now, consider a weakly converging empirical occupation sequence vtk and let this sequence have an accumulation point
v∗. We will show that v∗ is invariant.

Observe that the transitioned probability measure vtkP satisfies the following for every continuous and bounded f : Con-
sider ⟨vtk , Pf⟩ = ⟨vtk , gf ⟩ + ⟨vtk , Pf − gf ⟩, where gf is a continuous function which is equal to Pf outside an open
neighborhood of D and is continuous with ∥gf∥∞ = ∥Pf∥∞ ≤ ∥f∥∞. The existence of such a function follows from the
Tietze-Urysohn extension theorem [105], where the closed set is given by X \Dϵ. It then follows from Assumption 3.3.1
that, for every ϵ > 0 a corresponding gf can be found so that ⟨vtk , Pf − gf ⟩ ≤ K∥f∥∞ϵ, and since ⟨vtk , gf ⟩ → ⟨v∗, gf ⟩,
it follows that

lim sup
tk→∞

|⟨vtk , Pf⟩ − ⟨v∗, Pf⟩|

= lim sup
tk→∞

|⟨vtk , Pf − gf ⟩ − ⟨v∗, Pf − gf ⟩|

≤ lim sup
tk→∞

|⟨vtk , Pf − gf ⟩|+ |⟨v∗, Pf − gf ⟩|
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≤ 2K ′ϵ (3.30)

Here, K ′ = 2K∥f∥∞ is fixed and ϵ may be made arbitrarily small. We conclude that v∗ is invariant. ⋄

Remark 3.11. In his definition for quasi-Feller chains, Lasserre assumes the state space to be locally compact. In the proof
above [330] tightness is invoked directly with no use of convergence properties of the set of functions which decay to zero
as is done in [157]; for a related result see Gersho [135].

Cases without the Feller condition

One can relax the weak Feller condition and instead consider spaces of probability measures which are setwise sequentially
pre-compact. The proof of this result follows from a similar observation as (3.29) but with weak convergence replaced by
setwise convergence (see Appendix D). Note that in this case, if µTk

→ µ∗ setwise, it follows that µTk
P (f) → µ∗P (f)

and thus µ∗ is invariant. It can be shown (as in the proof of Theorem 3.3.1) that a (sub)sequence of occupation measures
which converges setwise, converges to an invariant probability measure. A sufficient condition for a sequence of probability
measures to be setwise sequentially compact is that there exists a finite measure π such that vk ≤ π for all k ∈ N [158].

As an example, consider a system of the form:

xt+1 = f(xt) + wt (3.31)

where wt admits a distribution with a bounded density function, which is positive everywhere and f is bounded. This
system admits an invariant probability measure which is unique.

3.3.2 Uniqueness of an invariant probability measure

Unique ergodicity properties

For a Markov chain, the uniqueness of an invariant probability measure implies the ergodicity of the measure; such a
Markov chain is often referred to as uniquely ergodic.

The following definition will be useful.

Definition 3.12. Let π be a probability measure on X with metric d. The topological support of π is defined with

suppπ := {x : π(Br(x)) > 0}, ∀r > 0,

where Br(x) = {y ∈ X : d(x, y) < r}.

Theorem 3.3.4 Let {xt} be a ψ-irreducible Markov chain which admits an invariant probability measure. The invariant
measure is unique.

Proof. Let there be two invariant probability measures µ1 and µ2. Then, there exists two mutually singular invariant
probability measures ν1 and ν2, that is ν1(B1) = 1 and ν2(B2) = 1, B1 ∩B2 = ∅ and that Pn(x,BC1 ) = 0 for all x ∈ B1

and n ∈ Z+ and likewise Pn(z,BC1 ) = 0 for all z ∈ B1 and n ∈ Z+. This then implies that the irreducibility measure has
zero support on BC1 and zero support on BC2 and thus on X, leading to a contradiction. ⋄

A further result on uniqueness is given next.

Definition 3.13. For a Markov chain with transition kernel P , a point x is accessible (or reachable) if for every y and
every open neighborhood O of x, there exists k > 0 such that P k(y,O) > 0.
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One can show that if a point is accessible, it belongs to the (topological) support of every invariant measure (see, e.g.,
Lemma 2.2 in [145]). The support (or spectrum) of a probability measure is defined to be the set of all points x for which
every open neighbourhood of x has positive measure. A Markov chain Vt is said to have the strong Feller property at x if
E[f(Xt+1)|Xt = x) is continuous at x for every measurable and bounded f .

Theorem 3.3.5 [145] [245] If a Markov chain has the strong Feller property at an accessible point, then the chain can
have at most one invariant probability measure.

Proof. Let there be two invariant probability measures µ1 and µ2. Then, as earlier, there exists two mutually singular
invariant probability measures ν1 and ν2, that is ν1(B1) = 1 and ν2(B2) = 1, B1 ∩ B2 = ∅ and that Pn(x,BC1 ) = 0 for
all x ∈ B1 and n ∈ Z+ and likewise Pn(z,BC1 ) = 1 for all z ∈ B2 and n ∈ Z+. Now, every point x in S is so that one
can approach x through two sequences yn, zn, one in B1 and one in B2 whose evaluations of Pn(·, BC1 ) are 1 apart from
each other as yn, zn converge to one another (through x). This violates strong continuity. ⋄

Another useful result is the following. Let us first recall the following: A family of functions F mapping a metric space S
to R is said to be equi-continuous at a point x0 ∈ S if, for every ϵ > 0, there exists a δ > 0 such that d(x, x0) ≤ δ =⇒
|f(x)− f(x0)| ≤ ϵ for all f ∈ F . The family F is said to be equicontinuous if it is equicontinuous at each x ∈ S.

Definition 3.14. [220, Chapter 6] A Markov chain with transition kernel P is called an e-chain if for each continuous
function f with compact support, the sequence of functions {

∫
Pn(x, dy)f(y), n ∈ Z+} is equi-continuous on compact

sets.

Theorem 3.3.6 [220, Prop. 18.4.2] If a Markov chain is an e-chain, X is compact, and a reachable state x∗ exists, then
there exists a unique invariant probability measure.

In the following, we present a more concise argument compared with [220, Prop. 18.4.2].

Proof. By compactness, by Theorem 3.3.1 we know that there exists at least one invariant probability measure. Let there
be two different probability measures ν1, ν2. We may assume ν1 and ν2 to be ergodic2, via an ergodic decomposition
argument of invariant measures on compact subsets [295, Theorem 6.1]. Now, similar to the proof of Theorem 3.3.5, since
x∗ must belong to the support of any two distinct probability measures (recall that Br(x∗) is visited under either of the
probability measures in finite time for any given r > 0) we have that there exists two sequences yn, zn which converge to
one another (through x∗) where yn, zn belong to the support sets of these two distinct probability measures ν1, ν2.

Now, by equi-continuity and the Arzela-Ascoli theorem [105], we have that

P (N)(f)(x) :=
1

N

N−1∑
k=0

∫
Pn(x, dy)f(y) (3.32)

has a subsequence which converges (in the sup norm) to a limit F ∗
f : X → R, where is F ∗

f continuous.

The above imply that, for every continuous and bounded f , the term

lim
n→∞

| lim
N→∞

P (N)(f)(yn)− P (N)(f)(zn)| = 0.

Suppose not; there would be an ϵ > 0 and a subsequence nk for which the difference

| lim
N→∞

P (N)(f)(ynk
)− P (N)(f)(znk

)| > ϵ.

However, for each fixed nk, we have that
lim
N→∞

P (N)(f)(ynk
)

2we say that an invariant measure µ measure is ergodic if for every absorbing set S, µ(S) ∈ {0, 1} [158, Definition 2.4.1]
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converges by the ergodicity of ν1 to ⟨ν1, f⟩ and the limit, by the Arzela-Ascoli theorem, will be equal to F ∗
f (ynk

) (as
every converging subsequence would have to converge to the limit; which also implies that the subsequential convergence
in (3.32) is in fact a sequential convergence). The same argument applies for P (N)(f)(znk

) → ⟨ν2, f⟩ = F ∗
f (znk

).

The above would then imply that |F ∗
f (ynk

)− F ∗
f (znk

)| ≥ ϵ for every (ynk
, znk

). This would be a contradiction due to the
continuity of F ∗

f .

Therefore, the time averages of f under ν1 and ν2 will be arbitrarily close to each other. However, since continuous
functions separate probability measures (e.g. via the metric given in (D.3), see also [114, Theorem 3.4.5]), this implies that
the probability measures ν1 and ν2 must be equal. ⋄

3.4 Ergodic Theorems for Markov Chains

3.4.1 Ergodic theorems for positive Harris recurrent chains

Let c ∈ L1(µ) := {f :
∫
|f(x)|µ(dx) < ∞}. Suppose that µ is an invariant ergodic probability measure for a Markov

chain (a sufficient condition being that µ is the unique invariant probability measure [158, Prop. 2.4.3]). Then (see e.g. [158,
Chapter 2]) it follows that for µ almost everywhere x ∈ X:

lim
T→∞

1

T

T∑
t=1

c(xt) =

∫
c(x)µ(dx),

Px almost surely (that is conditioned on x0 = x, with probability one, the above holds); see also Theorem 3.4.2. Further-
more, again with c ∈ L1(µ), for µ almost everywhere x ∈ X

lim
T→∞

1

T
Ex

[ T∑
t=1

c(xt)

]
=

∫
c(x)µ(dx),

On the other hand, the positive Harris recurrence property allows the almost sure convergence to take place for every
initial condition: If µ is the invariant probability measure for a positive Harris recurrent Markov chain, it follows that for
all x ∈ X and for every c ∈ L1(µ) [220, Theorem 17.1.7] or [158, Theorem 4.2.13]

lim
T→∞

1

T

T∑
t=1

c(xt) =

∫
c(x)µ(dx), (3.33)

almost surely. However, for every c ∈ L1(µ), while (7.46) holds for all x ∈ X, it is not generally true that

lim
T→∞

1

T
Ex[

T∑
t=1

c(xt)] =

∫
c(x)µ(dx).

Thus, we can not in general relax the boundedness condition for the convergence of the expected costs. However, with c
bounded, forall x ∈ X

lim
T→∞

1

T
Ex

[ T∑
t=1

c(xt)

]
=

∫
c(x)µ(dx) (3.34)

This follows as a consequence of Fatou’s lemma and (7.46). Further refinements are possible via return properties to small
sets and f -regularity of cost functions [11, 220]; e.g., this convergence holds if Theorem 4.2.4 holds for the given f and
for some Lyapunov function V with X0 = x ∈ {z : V (z) < ∞}; see the proof of Theorem 4.2.4 and [220, Theorem
14.0.1] for further related results. We refer the reader to [220, Chapters 14 and 17] or [158, Chapters 2 and 4] for additional
discussions. See Exercise 3.5.8.
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3.4.2 Further ergodic theorems for Markov chains

Although beyond the scope of this course, for completeness, we state the following. When an invariant probability measure
is known to exist for a Markov chain, we state the following ergodicity results.

Theorem 3.4.1 [157, Theorems 2.3.4-2.3.5] Let P̄ be an invariant probability measure for a Markov process.

(i) [Individual ergodic theorem] Let X0 = x. For every f ∈ L1(P̄ )

1

N
Ex[

N−1∑
n=0

f(Xn)] → f∗(x),

for all x ∈ Bf where P̄ (Bf ) = 1 (where Bf denotes that the set of convergence may depend on f ) for some f∗.

(ii) [Mean ergodic theorem] Furthermore, the convergence 1
NEx[

∑N−1
n=0 f(Xn)] → f∗(x) is in L1(P̄ ).

Theorem 3.4.2 [157, Theorem 2.5.1] Let P̄ be an invariant probability measure for a Markov process. With X0 = x, for
every f ∈ L1(P̄ )

1

N

N−1∑
n=0

f(Xn) → f∗(x),

for all x ∈ Bf where P̄ (Bf ) = 1 for some f∗(x) with∫
P̄ (dx)f∗(x) =

∫
P̄ (dx)f(x)

One may state further refinements; see [157] for the locally compact case and [322] for the Polish state space case.

Theorem 3.4.3 [322, Prop. 5.4] or [158, Theorem 3.1(g)] Let P̄ be an invariant probability measure for a Markov
process.

(i) [Ergodic decomposition and weak convergence] For x, P̄ a.s., 1
NEx[

∑N−1
t=0 1{xn∈·}] → Px(·) weakly and P̄ is invari-

ant for Px(·) in the sense that

P̄ (B) =

∫
Px(B)P̄ (dx)

(ii) [Convergence in total variation] For all µ ∈ P(X) which satisfies that µ≪ P̄ (that is, µ is absolutely continuous with
respect to P̄ ), there exists an invariant v∗ such that

∥Eµ[
1

N

N−1∑
t=0

1{TnX∈·}]− v∗(·)∥TV → 0.

3.5 Exercises

Exercise 3.5.1 For a countable state space Markov chain, prove that if {xt} is irreducible, then all states have the same
period.

Exercise 3.5.2 Prove that
Px(τA = 1) = P (x,A),

and for n ≥ 1,
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Px(τA = n) =
∑
i/∈A

P (x, i)Pi(τA = n− 1)

Exercise 3.5.3 Let {xt} be a Markov chain defined on state space {0, 1, 2}. Let the one-stage probability transition matrix
be given by:

P =

 0 1 0
1/2 0 1/2
0 2/3 1/3


Compute E[min(t ≥ 0 : xt = 2)|x0 = 0], that is the expected minimum number of stages for the state to move from 0 to 2.

Hint: Building on the previous exercise, one way to solve this problem is as follows: Note that if the expected minimum
time to go to state 2 is from state 1 is t1 and the expected minimum time to go to state 2, from state 0 is t0, then the expected
minimum time to go to state 2 from state 0 will be t0 = 1 + P (0, 2)t2 + P (0, 1)t1 + P (0, 0)t0, where t2 = 0. You can
follow this line of reasoning to obtain the result.

Exercise 3.5.4 Let (Ω,F , P ) be a probability space on which a Markov chain is defined: Let X be a finite set and Xn be
the X-valued Markov chain. Let α ∈ X with Eα[τα] = 5, where

τα := min{k > 0 : xk = α}

As we know from our class, this Markov chain admits an invariant probability measure, call it π. Suppose that Xn is
irreducible so that the invariant probability measure is unique.

Now, let Yn be an i.i.d. {0, 1}-valued Bernoulli process (defined on the same probability space) with

P (Yn = 1) = η ∈ (0, 1).

Let
τ(α,1) := min{k > 0 : (Xk, Yk) = (α, 1)}.

a) Is Zk := (Xk, Yk) a Markov chain? Prove your answer.
b) Find E[τ(α,1)|(X0, Y0) = (α, 1)].

Exercise 3.5.5 Show that irreducibility of a Markov chain in a finite state space implies that every set A and every x
satisfies U(x,A) = ∞.

Exercise 3.5.6 Show that for an irreducible Markov chain, either the entire chain is transient, or recurrent.

Exercise 3.5.7 Show that for αt ∈ (0, 1),
∞∏
t=0

(1− αt) > 0

if and only if
∑
t αt <∞.

Hint. For one direction, use log(1− x) < −x for small x ∈ (0, 1). For the other direction, use limx→0
log(1−x)

x = −1 and
that as a result for small enough x > 0 : log(1− x) > −2x and that

∑
t αt <∞ implies that αt → 0.

Exercise 3.5.8 In view of Exercise 3.5.7, let us revise the example given in Remark 3.2: Let X = N, P (1, 1) = 1 and for
x > 1: P (x, x+1) = 1− 1/x and P (x, 1) = 1/x. This chain is then Positive Harris Recurrent with invariant measure δ1
and irreducibility measure also δ1. Show that with f(x) = x− 1:

lim
N→∞

Ex[

N−1∑
k=0

f(xk)] ̸= Eδ1 [f(X)] = 0, x ̸= 1
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Thus, expected empirical summations do not necessarily converge to the summation under the invariant measure when
the function is not bounded. Note that this would be the case if the functions are bounded. Observe also that sample path
convergence here does not imply the convergence of expected averages.

Exercise 3.5.9 For a Markov chain with a countable space X, and a ∈ X, show that if Pa(τa < ∞) < 1 then
Ea[
∑∞
k=1 1{xk=a}] <∞.

Exercise 3.5.10 For a Markov chain with a countable space X, and a ∈ X, show that if Pa(τa < ∞) = 1 then
Pa(
∑∞
k=1 1{xk=a} = ∞) = 1.

Exercise 3.5.11 Consider a Markov chain with state space [0, 1] and transition kernel given as follows:

P (X1 =
x

4
|X0 = x) = 1, x ∈ [0, 1].

Does there exist an invariant probability measure π for this Markov chain? If so, what is one such measure? Is this a unique
invariant probability measure? If there is no invariant probability measure, precisely explain why this is the case.

Exercise 3.5.12 (Gambler’s Ruin) Consider an asymmetric random walk defined as follows: P (xt+1 = x+1|xt = x) =
p and P (xt+1 = x − 1|xt = x) = 1 − p for any integer x. Suppose that x0 = x is an integer between 0 and N . Let
τ = min(k > 0 : xk /∈ [1, N − 1]). Compute Px(xτ = N) (you may use Matlab for your solution).

Hint: Observe that one can obtain a recursion as Px(xτ = N) = pPx+1(xτ = N) + (1 − p)Px−1(xτ = N) for
1 ≤ x ≤ N − 1 with boundary value conditions PN (xτ = N) = 1 and P0(xτ = N) = 0. One observes that

Px+1(xτ = N)− Px(xτ = N) =
1− p

p

(
Px(xτ = N)− Px−1(xτ = N)

)
and in particular

PN (xτ = N)− PN−1(xτ = N) = (
1− p

p
)N−1

(
P1(xτ = N)− P0(xτ = N)

)

Exercise 3.5.13 Let xt+1 = f(xt) +wt, where f : R → R is continuous and {wt} is an i.i.d. real valued noise sequence.

a) Show that {xt} is weak-Feller, regardless of the random variable wt.

b) Show that {xt} is strong-Feller, if wt is a Gaussian random variable with a positive variance.

Exercise 3.5.14 a) Consider a Markov chain defined on Z+ with the transition kernel

P (x1 = x+ 1|x0 = x) = 1− 1

x+ 1
, x ̸= 0, x ∈ Z+,

P (x1 = 0|x0 = x) =
1

x+ 1
, x ̸= 0, x ∈ Z+,

with
P (x1 = 1|x0 = 0) = 1.

Does there exist an invariant probability measure π for this Markov chain? If so, what is one such measure?

b) Consider a Markov chain defined on Z+ with the transition kernel

P (x1 = x+ 1|x0 = x) =
1

x+ 1
, x ̸= 0, x ∈ Z+,
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P (x1 = 0|x0 = x) = 1− 1

x+ 1
, x ̸= 0, x ∈ Z+,

with
P (x1 = 1|x0 = 0) = 1.

Does there exist an invariant probability measure π for this Markov chain? If so, what is one such measure?

b) Consider a Markov chain defined on [0, 1] with the transition kernel:

P (x1 =
x

2
|x0 = x) = 1, x ̸= 0, x ∈ [0, 1],

P (x1 = 1|x0 = 0) = 1.

Does there exist an invariant probability measure π for this Markov chain? If so, what is one such measure?

Exercise 3.5.15 Consider a square and join opposite corners of this square by straight lines meeting at the point C.
Consider the symmetric random walk performed by a particle on these 5 vertices, starting at some vertex A. Find

(a) the expected time to return to A,

(b) the expected number of visits to C before returning to A,

(c) the expected time to return to A given that there is no prior visit to C.
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Martingale Methods: Foster-Lyapunov Criteria for Stability of Markov Chains
and Stochastic Iterative Dynamics

In this chapter, we will study martingales, which constitute a critical class of stochastic processes for our understanding
of stochastic dynamics. We will arrive at stochastic stability of Markov chains through martingale methods and Foster-
Lyapunov type stability criteria; this will be followed by an analysis on stochastic iterative dynamics.

4.1 Martingales

In this section, we introduce martingales and discuss a number of important martingale theorems. Only a few of these will
be critical within the scope of our coverage, some others are presented for completeness.

These are very important for us to understand stabilization of controlled stochastic systems. These also will pave the way
to optimization of dynamical systems as well as the supporting theory for stochastic learning, reinforcement learning, and
approximation algorithms to be studied later. The second half of this chapter is on the stability of Markov chains or the
stabilization of controlled Markov Chains via martingale and Lyapunov methods.

4.1.1 More on expectations and conditional probability

Let (Ω,F , P ) be a probability space and let G be a subset of F which is itself a σ-field (such a collection is said to be
a sub-σ-field of F). Let X be an R−valued random variable measurable with respect to (Ω,F) with a finite absolute
expectation that is

E[|X|] =
∫
Ω

|X(ω)|P (dω) <∞,

where ω ∈ Ω. We call such random variables integrable.

We say that Ξ is the conditional expectation random variable (and is also called a version of the conditional expectation)
of X given G, denoted with,

E[X|G],

if

1. Ξ is G-measurable.

2. For every A ∈ G,
E[1AΞ] = E[1AX],

where we have
E[1AΞ] =

∫
Ω

Ξ(ω)1{ω∈A}P (dω) =

∫
A

Ξ(ω)P (dω)
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For example, if the information that we know about a process is whether an event A ∈ F happened or not -that is, the
sub-σ-field is σ({A}) = {∅, Ω,A,Ω \A}-, then, given that A has taken place:

XA := E[X|A] = 1

P (A)

∫
A

P (dω)X(ω).

This follows from the fact that
∫
A
E[X|A](ω)P (dω) = E[X|A]

∫
A
P (dω) since E[X|A](ω) cannot distinguish between

any ω ∈ A: this is a consequence of the fact that the conditional expectation is σ({A})-measurable. Thus, we can simply
write E[X|A] for the conditional expectation rather that E[X|A](ω). If the information we have is that A did not take
place:

XAC := E[X|AC ] = 1

P (Ω \A)

∫
Ω\A

P (dω)X(ω).

Thus, the conditional expectation given by the sigma-field generated by A is given by:

E[X|σ({A})](ω) = XA1{ω∈A} +XAC1{ω/∈A}.

Note that conditional probability can be expressed as

P (X ∈ B|G) = E[1{X∈B}|G],

hence, conditional probability is a special case of conditional expectation.

It is a useful exercise to consider the σ-field generated by an observation variable, and what a conditional expectation
means in this case.

Theorem 4.1.1 Let X be an X valued random variable, where X is a complete, separable, metric space and Y be another
Y−valued random variable, Then, X is FY or σ(Y ) (the σ−field generated by Y ) measurable if and only if there exists a
measurable function f : Y → X such that X = f(Y (ω)).

With the above, the expectation E[X|σ(Y )](ω : Y (ω) = y0) = E[X|Y = y0] can be defined as a measurable function on
σ(Y ), and this expectation can be expressed as a measurable function of Y .

The notion of conditional expectation is key for the development of stochastic processes which evolve according to a
transition kernel. This is useful for optimal decision making when a partial information is available with regard to a random
variable.

The following discussion is optional until the next subsection.

Existence of Conditional Expectation.

Theorem 4.1.2 (Radon-Nikodym) Let µ and ν be two σ-finite positive measures on (Ω,F) such that ν(A) = 0 implies
that µ(A) = 0 (that is µ is absolutely continuous with respect to ν). Then, there exists a measurable function f : Ω → R+,
(integrable under ν if µ is a finite measure), such that for every A:

µ(A) =

∫
A

f(ω)ν(dω)

The representation above is unique, up to sets of measure zero. With the above discussion, the conditional expectation
X = E[X|F ′] exists for any sub-σ-field F ′ ⊂ F , as the following discussion shows. Let X be an integrable non-negative
random variable and observe that for any Borel A ∈ F ′∫

A

(
E[X|F ′](ω)

)
P (dω) =

∫
A

X(ω)P (dω).



4.1 Martingales 53

We may view ζ(A) :=
∫
A
X(ω)P (dω) as a measure (defined on the measurable space (Ω,F ′)) which is absolutely

continuous with respect to P , and thus,
(
E[X|F ′](ω)

)
, is the Radon-Nikodym derivative of this measure with respect

to P (This discussion extends to arbitrary integrable variables by considering the negative valued portion of the variable
separately).

In case X is a real random variable which is of second-order (i.e., with finite second moment), another way to establish
existence is through a Hilbert theoretic approach, by viewing the conditional expectation as the projection of X onto a
subspace consisting of the set of all functions measurable on F ′. We will revisit this later in the notes while deriving
the Kalman Filter in Chapter 6. However, for this we would require X to be square-integrable (i.e., with a finite second
moment).

4.1.2 Some properties of conditional expectation:

One very important property is given by the following.

Iterated expectations:

Theorem 4.1.3 For three σ-fields over a given set, if H ⊂ G ⊂ F , and X is F−measurable and integrable, it follows
that:

E[E[X|G]|H] = E[X|H]

Proof. Proof follows by taking a set A ∈ H, which is also in G and F . Let η be the conditional expectation variable with
respect to H. Then it follows that

E[1Aη] = E[1AX]

Now let E[X|G] be η′. Then, it must be that E[1Aη
′] = E[1AX] for all A ∈ G and hence for all A ∈ H. Thus, we have

that for all A ∈ H
E[1Aη

′] = E[1Aη],

and as η is H-measurable, E[η′|H] = η. ⋄

Theorem 4.1.4 Let G ⊂ F , and Y be G−measurable. Let X be F−measurable and XY be integrable. Then, P almost
surely

E[XY |G] = Y E[X|G]

Proof. First assume that Y = Yn is a simple function (a simple random variable of the form: Yn(ω) =
∑n
i=1 ai1{ω∈Ai}

with Ai ∈ G). Let us call E[X|G] = η and call E[XY |G] = ζ.

Then, for all A ∈ G ∫
A

Ynη(ω)P (dω) =

∫
A

n∑
i=1

ai1{ω∈Ai}η(ω)P (dω)

=

n∑
i=1

ai

∫
A∩Ai

η(ω)P (dω) =

n∑
i=1

ai

∫
A∩Ai

X(ω)P (dω) (4.1)

=

∫
A

n∑
i=1

ai1{ω∈Ai}X(ω)P (dω) =

∫
A

YnXP (dω)

Here, (4.1) holds since A ∩Ai ∈ G and E[X|G] = η. On the other hand,∫
A

ζ(ω)P (dω) =

∫
A

X(ω)Yn(ω)P (dω)
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=

∫
A

n∑
i=1

ai1{ω∈Ai}X(ω)P (dω) =

n∑
i=1

ai

∫
A∩Ai

X(ω)P (dω) =

∫
A

YnXP (dω)

Thus, for all A ∈ G ∫
A

YnXP (dω) =

∫
A

E[XYn|G](ω)P (dω) =
∫
A

YnE[X|G](ω)P (dω), (4.2)

and the two conditional expectations E[XYn|G] and YnE[X|G] are equal. Now, the proof is complete by noting that
any integrable Y can be approached from below monotonically by a sequence of simple functions measurable on G. The
monotone convergence theorem leads to the desired result. ⋄

4.1.3 Discrete-time martingales

Let (Ω,F , P ) be a probability space. An increasing family {Fn} of sub-σ−fields of F is called a filtration.

A sequence of random variables defined on (Ω,F , P ) is said to be adapted to Fn if Xn is Fn-measurable, that is
X−1
n (D) = {w ∈ Ω : Xn(w) ∈ D} ∈ Fn for all Borel D. This holds for example if Fn = σ(Xm,m ≤ n), n ≥ 0; in this

case we call the filtration, the natural filtration.

Given a filtration Fn and a sequence of real random variables adapted to it, (Xn,Fn) is said to be a martingale if

E[|Xn|] <∞

and
E[Xn+1|Fn] = Xn.

We will often take the sigma-fields to be the natural filtration Fn = σ(X1, X2, . . . , Xn).

Let n > m ∈ Z+. Since Fm ⊂ Fn, it must be that A ∈ Fm should also be in Fn. Thus, if Xn is a martingale sequence,
we have

E[1AXn] = E[1AXn−1] = · · · = E[1AXm],

and thus E[Xn|Fm] = Xm.

If we have that
E[Xn|Fm] ≥ Xm

then {Xn} is called a submartingale.

And, if
E[Xn|Fm] ≤ Xm

then {Xn} is called a supermartingale.

A useful concept related to filtrations is that of a stopping time, which we discussed while studying Markov chains. A
stopping time is a random time, whose occurrence at any given time is causally measurable with respect to the filtration in
the sense that for each n ∈ N, {T ≤ n} ∈ Fn.

Definition 4.1.1 (Filtration up to a stopping time) Let Ft denote a filtration and τ be a stopping time with respect to this
filtration so that for every k, {τ ≤ k} ∈ Fk. Then, the σ-field of events up to τ , Fτ , is the collection of all events A ∈ F
that satisfies:

A ∩ {τ ≤ t} ∈ Ft, ∀t ∈ Z+.

Intuitively, then, the natural filtration up to a stopping time is all the information generated by a stochastic process up to
the stopping time.
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4.1.4 Doob’s optional sampling theorem

Theorem 4.1.5 Suppose (Xn,Fn) is a martingale sequence, and ρ, τ < n (for some fixed n ∈ N) are (uniformly) bounded
stopping times with ρ ≤ τ . Then,

E[Xτ |Fρ] = Xρ

Proof. We observe that

E[Xτ −Xρ|Fρ] = E[

τ−1∑
k=ρ

Xk+1 −Xk|Fρ]

= E[

∞∑
k=ρ

1{τ>k}(Xk+1 −Xk)|Fρ]

= E[
n∑
k=ρ

1{τ>k}(Xk+1 −Xk)|Fρ]

=

n∑
k=ρ

E[1{τ>k}(Xk+1 −Xk)|Fρ] (4.3)

=

n∑
k=ρ

E[E[1{τ>k}(Xk+1 −Xk)|Fk]|Fρ]

= E[

n∑
k=ρ

1{τ>k}E[(Xk+1 −Xk)|Fk]|Fρ]

= E[

τ−1∑
k=ρ

0|Fρ] = 0 (4.4)

Here, we invoke Theorem 4.1.3 and Theorem 4.1.4, since 1{τ>k} is Fk-measurable. ⋄

The statement of the theorem leads to inequalities for supermartingales or submartingales with the appropriate inequality
signs.

In the above, the main properties we used were (i) the fact that the sub-fields are nested, (ii) n is bounded so that the
expectation of the sum can be written as the sum of expectations in (4.3).

Let us try to see why boundedness of the stopping times is important: Consider the following game. Suppose that one
draws a fair coin; with equal probabilities of heads and tails. If we have a tail, we win a dollar, and a head will cause
us to lose a dollar. Suppose we have 0 dollars at time 0 and we decide to stop when we have 5 dollars, that is at time
τ = min(n > 0 : Xn = 5). In this case, clearly E[Xτ ] = 5, as we will stop when we have 5 dollars. But E[Xτ ] ̸= X0!

Remark 4.1. For this example, Xn = Xn−1 +Wn, where Wn is either −1 or 1 with equal probabilities and Xn is the
amount of money we have. Clearly Xn is a martingale sequence. The problem is that one might have to wait for an
arbitrarily long period of amount of time to be able to have the 5 dollars, the sequence E[|Xn|] is not uniformly bounded,
and

∑n
k=ρ 1{τ>k}(Xk+1−Xk) = Xmin(τ,n)−Xρ is not a (uniformly) integrable sequence, and the proof method adopted

in Theorem 4.1.5 will not be applicable. Note that if we were able to claim that

E[Xτ −Xρ|Fρ] = E[ lim
n→∞

Xmin(τ,n) −Xρ|Fρ]

= E

[
lim
n→∞

( n∑
k=ρ

1{τ>k}(Xk+1 −Xk)

)∣∣∣∣Fρ] = lim
n→∞

E[

n∑
k=ρ

1{τ>k}(Xk+1 −Xk)|Fρ], (4.5)

then the result would have been applicable even if we didn’t have a finite upper bound on the stopping times. This requires
in particular:
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(i) the almost sure finiteness of τ so that limn→∞Xmin(τ,n) = Xτ , and

(ii) a dominated convergence result for the sequence Xmin(τ,n) −Xρ =
∑n
k=ρ 1{τ>k}(Xk+1 −Xk) (e.g., the presence of

an integrable random variable G(ω) with Xmin(τ,n)(ω) ≤ G(ω)).

If these hold, then we can indeed apply the argument above when the stopping times are not bounded. More on this will be
discussed below in Theorem 4.1.13, in the context of uniform integrability.

4.1.5 Doob’s maximal inequality (optional)

Theorem 4.1.6 For a non-negative supermartingale Mn, for all λ > 0,

P ( sup
0≤n<∞

Mn ≥ λ) ≤ M0

λ

Proof. Let τN = min

{
min{n ≥ 0 :Mn ≥ λ}, N

}
for some N ∈ N. Then,

P ( max
0≤n<N

Mn ≥ λ) = P (MτN ≥ λ) ≤ E[MτN ]

λ
≤ M0

λ
,

where the first inequality follows from Markov’s inequality and the last from Doob’s optional sampling theorem. The
relation above applies for all N ∈ N, and since the left hand side is non-decreasing in N , the limit of it as N → ∞
is well-defined. Furthermore, by an application of continuity in probability limN→∞ P (max0≤n<N Mn ≥ λ) =
P (sup0≤n<∞Mn ≥ λ), and the result follows. ⋄

4.1.6 An important martingale convergence theorem

We first discuss Doob’s upcrossing lemma. Let (a, b) be a non-empty interval. Let X0 ∈ (a, b). Define a sequence of
stopping times

T1 = min{N ; min(0 ≤ n ≤ N,Xn ≤ a)} T2 = min{N ; min(T1 ≤ n ≤ N,Xn ≥ b)}

T3 = min{N ; min(T2 ≤ n ≤ N,Xn ≤ a)} T4 = min{N ; min(T3 ≤ n ≤ N,Xn ≥ b)}

and for m ≥ 1:

T2m−1 = min{N ; min(T2m−2 ≤ n ≤ N,Xn ≤ a)} T2m = min{N ; min(T2m−1 ≤ n ≤ N,Xn ≥ b)}

The number of upcrossings of (a, b) up to time N is the random variable ζN (a, b) = the number of times between 0 and
N , {Xn} crosses the strip (a, b) from below a to above b.

Note that XT2
−XT1

has the expectation zero, if the sequence is a martingale.

Theorem 4.1.7 Let XT be a supermartingale sequence. Then,

E[ζN (a, b)] ≤ E[max(0, a−XN )]

b− a
≤ E[|XN |] + |a|

b− a
.

Proof.
There are three possibilities that might take place: The process can end, at time N while the process is below a, between a
and b, or above b. If it crosses above b, then we have completed an upcrossing. In view of this, we may proceed as follows:
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Let βN := min(m : T2m = N or T2m−1 = N) (note that if T2m−1 = N , T2m = N as well). By the supermartingale
property

0 ≥ E[

βN∑
i=1

XT2i
−XT2i−1

]

= E[

( βN∑
i=1

XT2i −XT2i−1

)
1{T2βN−1 ̸=N}1{T2βN

=N}]

+E[

( βN∑
i=1

XT2i −XT2i−1

)
1{T2βN−1=N}1{T2βN

=N}]

= E[(

βN−1∑
i=1

(XT2i −XT2i−1) +XN −XT2βN−1
)1{T2βN−1 ̸=N}1{T2βN

=N}]

+E[

( βN−1∑
i=1

(XT2i −XT2i−1)

)
1{T2βN−1=N}]

= E

( βN−1∑
i=1

XT2i −XT2i−1

)
+ E[(XN −XT2βN−1

)1{T2βN−1 ̸=N}1{T2βN
=N}] (4.6)

Thus,

E

( βN−1∑
i=1

XT2i
−XT2i−1

)
≤ −E[(XN −XT2βN−1

)1{T2βN−1 ̸=N}1{T2βN
=N}]

≤ E[max(0, a−XN )1{T2βN
=N}] ≤ E[max(0, a−XN )] (4.7)

Since, E
(∑βN−1

i=1 XT2i
−XT2i−1

)
≥ E[βN − 1](b− a), it follows that ζN (a, b) = (βN − 1) satisfies:

E[ζN (a, b)](b− a) ≤ E[max(0, a−XN )] ≤ |a|+ E[|XN |],

and the result follows. ⋄

Recall that a sequence of random variables Xn defined on a probability space (Ω,F , P ) converges to X almost surely (a.
s.) if

P

(
w : lim

n→∞
Xn(w) = X(w)

)
= 1.

Theorem 4.1.8 Suppose Xn is a supermartingale and supn≥0E[max(0,−Xn)] < ∞. Then limn→∞Xn = X exists
(almost surely). The same result applies for submartingales, by regarding −Xn as a supermartingale and the condition
supn≥0E[max(0, Xn)] <∞. A sufficient condition for both cases is that

sup
n≥0

E[|Xn|] <∞.

Proof. The proof follows from Doob’s upcrossing lemma. Now, for any fixed a, b (independent of ω) with a < b, by the
upcrossing lemma we have that

E[ζN (a, b)] ≤ E[max(0, a−XN )] ≤ E[|XN |] + |a|
(b− a)

,

which is uniformly bounded. The above holds for every N . Since ζN (a, b) is a monotonically increasing sequence in N ,
by the monotone convergence theorem it follows that
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lim
N→∞

E[ζN (a, b)] = E[ lim
N→∞

ζN (a, b)] ≤ sup
N

E[|XN |] + |a|
(b− a)

<∞.

Thus, for every fixed a < b, the number of up-crossings has to be finite almost surely. Hence, the limsup cannot be above
b and the liminf cannot be below a, for otherwise the number of up-crossings would be infinite. It then follows that

P (ω : | lim supXn(ω)− lim infXn(ω)| > (b− a)) = 0,

since this probability can be expressed also as

P

(
∪r∈Q

{
ω : lim supXn(ω) > (b− a+ r), lim infXn(ω)| < r

})
,

and by a union bound argument, the probability is upper bounded by the probability of a countable union of zero probability
events which is zero. Finally, a continuity of probability argument (for taking b− a→ 0) then leads to

P

(
ω : | lim supXn(ω)− lim infXn(ω)| > 0

)
= 0.

⋄

We can also show that the limit variable has finite absolute expectation.

Theorem 4.1.9 (Submartingale Convergence Theorem) Suppose Xn is a submartingale and supn≥0E[|Xn|] < ∞.
Then X := limn→∞Xn exists (almost surely) and E[|X|] <∞.

Proof. Note that, supn≥0E[|Xn|] < ∞, is a sufficient condition both for a submartingale and a supermartingale in Theo-
rem 4.1.8. Hence Xn → X almost surely. For finiteness, suppose E[|X|] = ∞. By Fatou’s lemma,

lim sup
n→∞

E[|Xn|] ≥ lim inf
n→∞

E[|Xn|] ≥ E[lim inf
n→∞

|Xn|] = E[ lim
n→∞

|Xn|] = ∞.

But this is a contradiction as we had assumed that supnE[|Xn|] <∞. ⋄

4.1.7 The ergodic theorem

[Optional]

Please see Exercise 4.5.11.

4.1.8 Further martingale theorems [Optional]

This section is optional. If you wish not to study it, please proceed to the discussion on stabilization of Markov Chains.

Theorem 4.1.10 Let Xn be a martingale such that Xn converges to some integrable X in L1 that is E[|Xn −X|] → 0.
Then,

Xn = E[X|Fn], n ∈ N

We will use the following while studying the convex analytic method, as well as on the stabilization of Markov chains while
extending the optional sampling theorem to situations where the sampling (stopping) time is not bounded from above by a
finite number. Let us define uniform integrability:

Definition 4.1.2 : A sequence of random variables {Xn} is uniformly integrable if
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lim
K→∞

sup
n

∫
|Xn|≥K

|Xn|P (dXn) = 0

This implies that
sup
n
E[|Xn|] <∞

Let for some ϵ > 0,
sup
n
E[|Xn|1+ϵ] <∞.

This implies that the sequence is uniformly integrable as

sup
n

∫
|Xn|≥K

|Xn|P (dXn) ≤ sup
n

∫
|Xn|≥K

(
|Xn|
K

)ϵ|Xn|P (dXn) ≤ sup
n

1

Kϵ
E[|Xn|1+ϵ] → 0,

as K → ∞. The following result is important in many applications:

Theorem 4.1.11 IfXn is a uniformly integrable martingale, thenX = limn→∞Xn exists almost surely (for all sequences
with probability 1) and in L1 (i.e. E[|X −Xn|] → 0), and Xn = E[X|Fn].

Theorem 4.1.12 Let X be integrable and Fn be a filtration (not necessarily the natural filtration). Then, Mn = E[X|Fn]
is uniformly integrable.

Proof. First note that by Jensen’s inequality |E[X|Fn]| ≤ E[|X||Fn] (since | · | is a convex function). Therefore, by
Markov’s inequality, for any K ∈ R+:

P (|E[X|Fn]| > K] ≤ E[|E[X|Fn]|]/K ≤ E[E[|X||Fn]]/K =
E[|X|]
K

,

which decays to zero as K → ∞. Now, consider the measure defined with |X(ω)|dP (ω): For any set sequence Am with
P (Am) → 0, we have that

lim
m→∞

E[1Am
|X|] = 0 (4.8)

This follows from a contradiction argument: suppose this is not true, then there exists a subsequenceAmk
withE[1Amk

|X|] ≥
ϵ some fixed ϵ > 0 and a further subsequence Am′

k
with a finite

∑
m′

k
P (Am′

k
). Then a monotone convergence theorem

violation can be established so that withBn = ∪m′
k
≥nAm′

k
,E[1Bn

|X|] ̸→ 0 whereBn is a monotone decreasing sequence
whose measure vanishes. Therefore

E

[
|E[X|Fn]|1{|E[X|Fn]|>K}

]
≤ E

[
E[|X||Fn]1{|E[X|Fn]|>K}

]

= E

[
E[|X|1{|E[X|Fn]|>K}|Fn]

]
= E[|X|1{|E[X|Fn]|>K}]

where we use Theorem 4.1.3 (iterated expectations) and thus combining the above

lim
K→∞

sup
n
E

[
|E[X|Fn]|1|E[X|Fn]|>K

]
≤ lim
K→∞

sup
n
E

[
|X|1|E[X|Fn]|>K

]
= 0,

where the last step follows from (4.8). ⋄

Optional Sampling Theorem For Uniformly Integrable Martingales

The following builds on Remark 4.1.
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Theorem 4.1.13 Let (Xn,Fn) be a uniformly integrable martingale sequence, and ρ, τ are finite stopping times with
ρ ≤ τ . Then,

E[Xτ |Fρ] = Xρ

Proof. See the discussion following (4.5) for an explicit analysis and derivation. As an alternative argument, consider the
following: by uniform integrability, it follows that {Xt} has a limit. Let this limit be X∞, which is integrable by Theorem
4.1.9. It follows that E[X∞|Fτ ] = limn→∞E[Xn|Fτ ] = limn→∞Xmin(n,τ) = Xτ and by iterated expectations

E[E[X∞|Fτ ]|Fρ] = Xρ

which is also equal to E[Xτ |Fρ] = Xρ. ⋄

Azuma-Hoeffding inequality for martingales with bounded increments

The following is an important concentration result:

Theorem 4.1.14 Let Xt be a martingale sequence such that |Xt − Xt−1| ≤ c for every t, almost surely. Then for any
x > 0,

P (
Xt −X0

t
≥ x) ≤ 2e−

tx2

2c

As a result, Xt

t → 0 almost surely.

Backwards (reverse) martingales and decreasing information

An important class of martingales is known as backward martingales. A sequence of increasing σ-fields with a negative
time index,

· · · ⊂ F−n ⊂ F−n+1 ⊂ · · · ⊂ F−2 ⊂ F−1 ⊂ F0,

is called a reverse filtration. Note that here information is decreasing as n → −∞. Mn is called a backwards martingale
with respect to the reverse filtration if (i) E[|M−n|] <∞, (ii) E[M−n+1|F−n] =M−n for all n ∈ Z.

Using similar arguments as those in the proof of the martingale convergence theorem studied earlier, we can arrive at the
following:

Theorem 4.1.15 Let (M−n,F−n) be a backwards martingale sequence. Then, limn→−∞Mn =: M−∞ = E[M0| ∩∞
n=0

F−n] almost surely and also in L1.

4.2 Stability of Markov Chains: Foster-Lyapunov Techniques

A Markov chain’s stability can be characterized by drift conditions, as we discuss below in detail.

4.2.1 Criterion for invariance (existence of invariant probability measures) and positive Harris recurrence

Theorem 4.2.1 [Foster-Lyapunov for Positive Harris Recurrence] [220] Let S be a petite set, b ∈ R, ϵ > 0, and V : X →
R+. If the following is satisfied for all x ∈ X:

E[V (xt+1)|xt = x] =

∫
X
P (x, dy)V (y) ≤ V (x)− ϵ+ b1{x∈S}, (4.9)

then the chain is positive Harris recurrent (and thus a unique invariant probability measure π exists).
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Proof. We will first assume that S is such that supx∈S V (x) <∞. Define M̄0 := V (x0), and for t ≥ 1

M̄t := V (xt)−
t−1∑
i=0

(−ϵ+ b1{xi∈S})

We have that
E[M̄(t+1)|xs, s ≤ t] ≤ M̄t, ∀t ≥ 0.

It follows from (4.9) that Ex[|M̄t|] ≤ ∞ for all t (by an application of the monotone convergence theorem applied
inductively: suppose that E[V (xt)] <∞; then first show that E[E[min(N1, V (xt+1))|xt]] ≤ E[V (xt)] + b, then the take
the limit as N1 → ∞ to conclude that E[V (xt+1)] < ∞ as well) and thus, {M̄t} is a supermartingale sequence with
respect to the natural filtration Ft = σ(x0, · · · , xt). Now, define a stopping time: τN := min(τ,N), where τ = min{i >
0 : xi ∈ S}. Note that the stopping time τN is bounded. Hence, we have, by the martingale optional sampling theorem

E[M̄τN |x0] ≤M0.

Thus, we obtain

ϵEx0
[

τN−1∑
i=0

1] ≤ V (x0) + bEx0
[

τN−1∑
i=0

1{xi∈S}]

Thus,
ϵEx0

[τN − 1 + 1] ≤ V (x0) + b,

and by the monotone convergence theorem,

lim
N→∞

Ex0 [τ
N ] = Ex0 [τ ] ≤

V (x0) + b

ϵ
.

(Note that, the first equality above is a consequence of the drift criterion:

V (x0) + b

ϵ
≥ lim
N→∞

Ex0 [τ
N ] ≥ lim sup

N→∞
(NPx0(τ ≥ N) + Ex0 [τ1{N>τ}]) ≥ lim sup

N→∞
NPx0(τ ≥ N),

implying that Px0
(τ ≥ N) → 0 as N → ∞ and that Px0

(τS <∞) = 1.) Now, if we had that

sup
x∈S

V (x) <∞, (4.10)

the proof would essentially be complete in view of Theorem 3.2.6. The fact that Ex[τ ] ≤ V (x)+b
ϵ < ∞ for any x ∈ X

leads to the Harris recurrence of the chain since this implies that Px(τ < ∞) = 1 for every x and petiteness implies that
the chain would be positive Harris recurrent [220, Proposition 9.1.7] (see also [86, Theorem 3.1]).

Typically, condition (4.10) is satisfied. However, the theorem statement does not impose this condition. Then, we proceed
with constructing another petite set on which (4.10) holds. Following [220, Chapter 11], define for some l ∈ Z+

VS(l) = {x ∈ S : V (x) ≤ l}

We will show that B := VS(l) is itself a petite set which is recurrent and satisfies the uniform finite-mean-return property.
S is petite for some measure ν and we have ν(S) > 0 and thus by a continuity of probability argument, for sufficiently
large l, we also have that ν(B) > 0. Again, since S is petite for measure ν, we have that

Ka(x,B) ≥ 1{x∈S}ν(B), x ∈ X,

where Ka(x,B) =
∑
i∈N a(i)P

i(x,B), and hence

1{x∈S} ≤ 1

ν(B)
Ka(x,B)
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Now, for x ∈ B,

Ex[τB ] ≤ V (x) + bEx[

τB−1∑
k=0

1{xk∈S}] ≤ V (x) + bEx[

τB−1∑
k=0

1

ν(B)
Ka(xk, B)] (4.11)

= V (x) + b
1

ν(B)
Ex[

τB−1∑
k=0

Ka(xk, B)] = V (x) + b
1

ν(B)
Ex[

τB−1∑
k=0

∑
i

a(i)P i(xk, B)] (4.12)

= V (x) + b
1

ν(B)

∑
i

a(i)Ex[

τB−1∑
k=0

1{xk+i∈B}]

≤ V (x) + b
1

ν(B)

∑
i

a(i)(1 + i), (4.13)

where (4.13) follows since at most once the process can hit B between 0 and τB − 1. Now, the petiteness measure can be
adjusted such that

∑
i aii <∞ (by Theorem 3.2.3 or [220, Proposition 5.5.6]), leading to the result that

sup
x∈B

Ex[τB ] ≤ sup
x∈B

V (x) + b
1

ν(B)

∑
i

a(i)(1 + i) <∞.

Finally, since S is petite, so is B and it can be shown that Px(τB <∞) = 1 for all x ∈ X. This concludes the proof. ⋄

Remark 4.2. Note that irreducibility of the Markov chain is not imposed a priori, as discussed in Remark ?? building
on [220, Proposition 9.1.7] or [86, Theorem 3.1], the drift criterion and the small/petite nature of the set leads to an
irreducible Markov chain taking values in a proper subset of X.

Remark 4.3. Meyn and Tweedie [220, Theorem 13.0.1] show that under the hypotheses of Theorem 4.2.1, together with
aperiodicity, it also follows that for any initial state x ∈ X,

lim
n→∞

sup
B∈B(X)

|Pn(x,B)− π(B)| = 0,

that is Pn(x, · · · ) converges to π in total variation, for every x ∈ X. This follows from a coupling argument, to be discussed
further in the chapter.

Exercise 4.2.1 Consider a queuing system with

Qt+1 = max(Qt +At −N1Qt≥N , 0)

where At is an i.i.d. Poisson arrival process with rate λ so that

P (At = m) = e−λ
λm

m!
, m ∈ Z+

Suppose that N > λ. Show that Qt is positive Harris recurrent.

Remark 4.4. We note that if xt is aperiodic and irreducible and such that for some small set A we have supx∈AE[min(t >
0 : xt ∈ A)|x0 = x] <∞, then the sampled chain {xkm} is such that supx∈AE[min(km > 0 : xkm ∈ A)|x0 = x] <∞,
and the split chain discussion in Section 3.2.1 applies (See [220, Theorem 11.3.14]). The argument for this builds on the
fact that, with σC = min(k ≥ 0 : xk ∈ C), V (x) := 1+Ex[σC ], it follows thatE[V (xt+1)|xt = x] ≤ V (x)−1+b1{x∈C}
and iterating the expectation m times we obtain that

E[V (xt+m)|xt = x] ≤ V (x)−m+ bEx[

m−1∑
k=0

1{xk∈C}].
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By [220], it follows that Ex[
∑m−1
k=0 1{xk∈C}] ≤ m1{x∈Cϵ} +mϵ for some petite set Cϵ and ϵ > 0 (this follows from the

observation that {x : P k(x,C) ≥ ϵ} will be included in the petite set for at least one k with 1 ≤ k ≤ m − 1 and the
complement of these sets {x : P k(x,C) < ϵ} will contribute to an upper bound of mϵ). This set is petite also for the
sampled chain (see Lemma 4.2.1). As a result, we have a drift condition for the m-skeleton, the return time for an artificial
atom constructed through the split chain is finite and hence an invariant probability measure for the m-skeleton, and thus
by (3.22), an invariant probability measure for the original chain exists. ⋄

In the following, we relax the existence of a petite set or irreducibility, but impose that the space is locally compact (and
not just Polish or standard Borel). This builds on [220, Theorem 12.3.4] or [158, Theorem 7.2.4].

Theorem 4.2.2 If the Markov chain is weak Feller, the space is locally compact, and S is compact; under (4.9), there exists
an invariant probability measure.

Proof. Iterating (4.9) we obtain that, with

P (n)(x, S) :=
1

n
Ex[

n−1∑
k=0

1{xk∈S}],

we arrive at
lim inf
n→∞

P (n)(x, S) ≥ ϵ

b
.

The result then follows from Theorem 3.3.2. ⋄

There are other versions of Foster-Lyapunov criteria, as we discuss in the following.

4.2.2 Criterion for finite expectations

Theorem 4.2.3 [Comparison Theorem] [220, Theorem 14.2.2] Let V : X → R+, f, g : X → R+. Let {xn} be a Markov
chain on X. If the following is satisfied:∫

X
P (x, dy)V (y) ≤ V (x)− f(x) + g(x), x ∈ X ,

then, for any stopping time τ with P (τ <∞) = 1, it follows that

E[

τ−1∑
t=0

f(xt)] ≤ V (x0) + E[

τ−1∑
t=0

g(xt)]

Proof. As in Theorem 4.2.1, define M̄0 := V (x0), and for t ≥ 1

M̄t := V (xt) +

t−1∑
i=0

(f(xi)− g(xi)).

It follows that
E[M̄(t+1)|xs, s ≤ t] ≤ M̄t, ∀t ≥ 0.

Now, define a stopping time: τN = min(τ,min(k > 0 : k+V (xk)+
∑k−1
i=0 f(xk)+ g(xk) ≥ N)). Note that the stopping

time τN is bounded. It then follows that (through defining a supermartingale: Mt := M̄min(t,τN )), and by the martingale
optional sampling theorem:

E[MτN |x0] ≤M0 = V (x0).

Hence, we obtain

E

[
V (xτN ) +

τN−1∑
i=0

(f(xi)− g(xi))

∣∣∣∣x0] ≤ M̄0 = V (x0),
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and thus by the fact that the terms inside the expectations are separately integrable, we have that

E[

τN−1∑
i=0

f(xi)|x0] ≤ M̄0 = V (x0) + E[

τN−1∑
i=0

g(xi)|x0]− E[V (xτN )|x0].

Now, since each of the terms in the expectations is positive, and that E[V (xτN )|x0] ≥ 0, the monotone convergence
theorem implies the desired result. ⋄

Theorem 4.2.3 above also allows for the computation of useful bounds. For example if g(x) = b1{x∈A}, then one obtains
that E[

∑τ−1
t=0 f(xt)] ≤ V (x0) + b. In view of the invariant measure properties, if f(x) ≥ 1, this provides a bound on∫

π(dx)f(x), as we note next.

Theorem 4.2.4 [Criterion for finite expectations] [220] Let S be a petite set, b ∈ R+ and V : X → R+, f : X → [ϵ,∞)
for some ϵ > 0. Let {xn} be a Markov chain on X.

(i) If the following is satisfied: ∫
X
P (x, dy)V (y) ≤ V (x)− f(x) + b1{x∈S}, x ∈ X , (4.14)

then for every x0 = z ∈ X,

lim
T→∞

1

T

T−1∑
t=0

f(xt) =

∫
µ(dx)f(x) ≤ b, (4.15)

almost surely, where µ is the invariant probability measure on X.

(ii) If {xt} is positive Harris recurrent, even if f : X → R+ (and not necessarily f : X → [ϵ,∞) for some ϵ > 0) and
S = X itself (that is, with no indicator function), (4.14) implies (4.15).

That under Theorem 4.2.4, the process is a positive Harris recurrent Markov chain is a consequence of Theorem 4.2.1. The
proof of Theorem 4.2.4 will then build on the following result and the ergodicity of a positive Harris recurrent Markov
chain.

Theorem 4.2.5 Let (4.14) hold (but with not necessarily an irreducibility assumption), or the following more relaxed form
hold: ∫

X
P (x, dy)V (y) ≤ V (x)− f(x) + b, x ∈ X (4.16)

Under every invariant probability measure π,
∫
π(dx)f(x) ≤ b.

Proof. By Theorem 4.2.3, with taking T to be a deterministic stopping time, for any initial condition x0 = z

lim sup
T→∞

1

T
Ez[

T−1∑
k=0

f(xk)] ≤ lim sup
T→∞

1

T

(
V (z) + bT

)
= b. (4.17)

Now, suppose that π is any invariant probability measure. Fix N <∞, let fN = min(N, f), and apply Fatou’s Lemma as
follows, where we use the notation π(f) =

∫
π(dx)f(x),

π(fN ) = lim sup
n→∞

π
( 1
n

n−1∑
t=0

P tfN

)
≤ π

(
lim sup
n→∞

1

n

n−1∑
t=0

P tfN

)
≤ b .
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Fatou’s Lemma is justified to obtain the first inequality, because fN is bounded. The monotone convergence theorem, with
taking N → ∞, then gives π(f) ≤ b. ⋄

Remark 4.5. We note that where the system starts from, or what the initial distribution is on x0 is, affects the convergence
properties of

1

T
E[

T−1∑
k=0

f(xk)].

See Section 3.4.1 for a detailed discussion. In particular, it is not necessarily the case that for every initial measure con-
vergence of expected normalized values to

∫
π(dx)f(x) holds. Furthermore, sample paths and expectations have slightly

different convergence characteristics for unbounded f .

4.2.3 Criterion for recurrence

Theorem 4.2.6 (Foster-Lyapunov for Recurrence) Let S be a compact set, b < ∞, and V be an inf-compact functional
from X → R+ such that for all α ∈ R+ {x : V (x) ≤ α} is compact (note: this implies that lim||x||→∞ V (x) = ∞ if
X = Rd for some d ∈ N). Let the following be satisfied for the Markov chain {xk}:∫

X
P (x, dy)V (y) ≤ V (x) + b1{x∈S}, ∀x ∈ X , (4.18)

Furthermore, with τS = min(t > 0 : xt ∈ S), and τBN
= min(t > 0 : xt ∈ BN ) where BN = {z : V (z) ≥ N}, if we

have that Px(min(τS , τBN
) = ∞) = 0 for every x ∈ X and N ∈ N, it must be that

Px(τS <∞) = 1

for all x ∈ X

Proof. Define two stopping times: Let τS = min(t > 0 : xt ∈ S) and τBN
= min(t > 0 : xt ∈ BN ) where BN =

{z : V (z) ≥ N} with N ≥ V (x) where x0 = x. Note that V (xt) is bounded until τN := min(τS , τBN
) and until this

time E[V (xt+1)|Ft] ≤ V (xt). By assumption τN = min(τS , τBN
) <∞ with probability 1. Define Mt = V (xmin(t,τN )),

which is a supermartingale sequence uniformly bounded (see Exercise 4.5.3). It follows then that a variation of the optional
sampling theorem (see Theorem 4.1.13) applies so that

Ex[MτN ] = Ex[V (xmin(τS ,τBN
))] ≤ V (x)

Without any loss take x /∈ S (for otherwise, in the next time stage x1 we can make the argument replacing x0 with x1) and
there exists N large enough so that x /∈ (S ∪ BN ). Now, for x /∈ (S ∪ BN ), since when exiting into BN the minimum
value of the Lyapunov function is N :

V (x) ≥ Ex[V (xmin(τS ,τBN
))] ≥ Px(τBN

< τS)N + Px(τBN
≥ τS)M,

for some finite non-negative M := infx∈S V (x).

Hence,

Px(τBN
< τS) ≤

V (x)

N
.

We also have that P (min(τS , τBN
) = ∞) = 0. As a consequence, we have that

Px(τS = ∞) ≤ P (τBN
< τS) ≤ V (x)/N

and taking the limit as N → ∞, Px(τS = ∞) = 0. ⋄
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Remark 4.6. If S is further petite, then once the petite set is visited, any other set with a positive measure (under an
irreducibility measure, since the petiteness measure can be used to construct an irreducibility measure) is visited with
probability 1 infinitely often and hence the chain is Harris recurrent. ⋄

Exercise 4.2.2 Show that the random walk on Z is Harris recurrent.

4.2.4 Criterion for transience

Criteria for transience is somewhat more difficult to establish. One convenient way is to construct a stopping time sequence
and show that the state does not come back to some set infinitely often. We state the following.

Theorem 4.2.7 (Criterion for Transience) [220], [145] Let V : X → R+. If there exists a setA such thatE[V (xt+1)|xt =
x] ≤ V (x) for all x /∈ A and ∃x̄ /∈ A such that V (x̄) < infz∈A V (z), then {xt} is not recurrent, in the sense that
Px̄(τA <∞) < 1.

Proof. Let x = x̄. Proof follows from observing that

V (x) ≥
∫
y

V (y)P (x, dy) ≥ ( inf
z∈A

V (z))P (x,A) +

∫
y/∈A

V (y)P (x, dy) ≥ ( inf
z∈A

V (z))P (x,A)

It thus follows that

P (τA < 2) = P (x,A) ≤ V (x)

(infz∈A V (z))

Likewise,

V (x̄) ≥
∫
X
V (y)P (x̄, dy)

≥ ( inf
z∈A

V (z))P (x̄, A) +

∫
y/∈A

(

∫
X
V (s)P (y, ds))P (x̄, dy)

≥ ( inf
z∈A

V (z))P (x̄, A) +

∫
y/∈A

P (x̄, dy)

(
( inf
s∈A

V (s))P (y,A) +

∫
s/∈A

V (s)P (y, ds)

)
≥ ( inf

z∈A
V (z))P (x̄, A) +

∫
y/∈A

P (x̄, dy)(( inf
s∈A

V (s))P (y,A))

= ( inf
z∈A

V (z))

(
P (x̄, A) +

∫
y/∈A

P (x̄, dy)P (y,A)

)
. (4.19)

Thus, noting that P ({ω : τA(ω) < 3}) =
∫
A
P (x̄, dy) +

∫
y/∈A P (x̄, dy)P (y,A), we observe:

Px̄(τA < 3) ≤ V (x̄)

(infz∈A V (z))
.

Thus, this follows for any n: Px̄(τA < n) ≤ V (x̄)
(infz∈A V (z)) < 1. Continuity of probability measures (by defining: Bn =

{ω : τA < n} and observing Bn ⊂ Bn+1 and that limn P (τA < n) = P (∪nBn) = P (τA < ∞) < 1) now leads to
Px̄(τA <∞) < 1. ⋄

Observe the striking difference with the inf-compactness condition leading to recurrence and the condition above, leading
to non-recurrence.

4.2.5 Criterion for almost sure convergence to equilibrium

The following build on stochastic stability theorems due to Khasminskii [182] and Kushner [191].
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Theorem 4.2.8 (i) Let xn be Markov so that for some V : X → R+ and k : X → R+, we have that

E[V (xn+1)|xn = x] ≤ V (x)− k(x), x ∈ X.

Then, k(xn) → 0 with probability 1.

(ii) Let Sλ := {x : V (x) ≤ λ}, and suppose that

E[V (xn+1)|xn = x] ≤ V (x)− k(x), x ∈ Sλ.

If x0 ∈ Sλ, then,

Px0

(
sup

0≤n<∞
V (xn) ≥ λ

)
≤ V (x0)/λ. (4.20)

Hence, the paths remain inQλ with probability at least 1− V (x0)
λ . Furthermore, for paths that remain inQλ, k(xn) → 0

with probability 1.

(iii)Suppose that for each γ > 0, there exists δ > 0 so that k(x) ≥ δ for |x| ≥ γ and that k(0) = 0. Then, the origin is
globally asymptotically stable with probability 1, that is, limn→∞ xn = 0 almost surely.

(iv)Suppose that for some increasing function c : X → R+ with c(0) = 0 and c(x) > 0 for all x ̸= 0, we have that
c(|x|) ≤ V (x) and for some α > 0

E[V (xn+1)|xn = x] ≤ V (x)− αV (x), x ∈ X.

Then, the system is exponentially asymptotically stable in the sense that:

Px0{ sup
N≤n<∞

V (xn) ≥ λ} ≤ V (x0)(1− α)N

λ
.

Proof.

(i) By arguments presented earlier, it follows that 0 ≤ Ex0
[V (xn)] ≤ V (x0)−Ex0

[
∑n−1
m=0 k(xm)]. Thus,Ex0

[
∑∞
m=0 k(xm)] <

∞. But then,
∑∞
m=0 k(xm) <∞ almost surely and thus k(xm) → 0 almost surely.

(ii) Define M0 = V (x0) and for n > 0 : Mn = V (xn) −
∑n−1
m=0 k(xm), which is a supermartingale sequence with

respect to the natural filtration. Let us stop the process xn on first leaving Sλ where Scλ = X \ Sλ. Then, the stopped
process Mmin(t,τSc

λ
) is also a supermartingale process, where the drift equation holds with k(x) = 0 for x /∈ Sλ and if

τSc
λ
= ∞, we have that k(xm) → 0.

On the other hand, the bound in (4.20) builds essentially on the proof of Doob’s maximal inequality Theorem 4.1.6,
which notes that for a non-negative supermartingale Rn, for all λ > 0,

P ( max
0≤n<∞

Rn ≥ λ) ≤ R0

λ

With Mn the super-martingale sequence defined as before, we have that

Px0(V (xτSc
λ

) ≥ λ) ≤ Px0

(
V (xτSc

λ

)−
τSc

λ
−1∑

m=0

k(xm) ≥ λ

)
≤ M0

λ

(iii)By (i), we have that k(xn) → 0; the hypothesis then implies that xn → 0.

(iv)Observe first that Mn := V (xn)
(1−α)n is also a supermartingale. Apply Doob’s maximal inequality (Theorem 4.1.6) as

follows:
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P ( sup
N≤n<∞

V (xn)(1− α)n

(1− α)n
≥ λ) ≤ P ( sup

N≤n<∞

V (xn)

(1− α)n
≥ λ

(1− α)N
) ≤ E[MN ](1− α)N

λ
≤ M0(1− α)N

λ
.

⋄

4.2.6 State dependent drift criteria: Deterministic and random-time

In many applications, a drift term (e.g. by a controller) can be applied on a system only intermittently.

Theorem 4.2.9 [336] Suppose that {xt} is a φ-irreducible and aperiodic Markov chain. Suppose moreover that there are
functions V : X → (0,∞), δ : X → [1,∞), f : X → [1,∞), a small set C on which V is bounded, and a constant b ∈ R,
such that

E[V (xτi+1) | Fτi ] ≤ V (xτi)− δ(xτi) + b1C(xτi)

E

[ τi+1−1∑
k=τi

f(xk)
∣∣∣Fτi] ≤ δ(xτi) , i ≥ 0.

(4.21)

Then the following hold:

(i) {xt} is positive Harris recurrent, with unique invariant distribution π

(ii) π(f) :=
∫
f(x)π(dx) <∞.

(iii) For any function g that is bounded by f , in the sense that supx |g(x)|/f(x) < ∞, we have convergence of
moments in the mean, and the strong law of large numbers holds:

lim
t→∞

Ex[g(xt)] = π(g)

lim
N→∞

1

N

N−1∑
t=0

g(xt) = π(g) a.s. , x ∈ X

By taking f(x) = 1 for all x ∈ X, we obtain the following corollary to Theorem 4.2.9.

Corollary 4.2.1 [336] Suppose that X is a φ-irreducible Markov chain. Suppose moreover that there is a function V :
X → (0,∞), a petite set C on which V is bounded,, and a constant b ∈ R, such that the following hold:

E[V (xτz+1) | Fτz ] ≤ V (xτz )− 1 + b1{xτz∈C}

sup
z≥0

E[τz+1 − τz | Fτz ] <∞. (4.22)

Then X is positive Harris recurrent. ⋄

The above extend the deterministic state-dependent results presented in [220], [221]: Let τz, z ≥ 0 be a sequence of
stopping times, measurable on a filtration, possible generated by the state process.

Without the irreducibility condition, if the chain is weak Feller, if (4.9) holds with S compact, then there exists at least one
invariant probability measure as discussed in Section 3.3.1.

Theorem 4.2.10 [336] Suppose that X is a Feller Markov chain, not necessarily φ-irreducible. If (4.21) holds with C
compact then there exists at least one invariant probability measure. Moreover, there exists c < ∞ such that, under any
invariant probability measure π,

Eπ[f(x)] =

∫
X
π(dx)f(x) ≤ c. (4.23)
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Petite sets and sampling

Unfortunately the techniques we reviewed earlier that rely on petite sets become unavailable in the random time drift setting
considered in Section 4.2.6 as a petite set C for {xn} is not necessarily petite for {xτn}. Some of the discussion in this
section is due to Zurkowski et. al. [339]

Lemma 4.2.1 [339] Suppose {xt} is an aperiodic and irreducible Markov chain. If there exists sequence of stopping times
{τn} independent of {xt}, then any C that is small for {xt} is petite for {xτn}.

Proof. Since C is petite, it is small by Theorem 3.2.4 for some m. Let C be (m, δ, ν)-small for {xt}.

P τ1(x, · ) =
∞∑
k=1

P (τ1 = k)P k(x, · ) ≥
∞∑
k=m

P (τ1 = k)

∫
Pm(x, dy)P k−m(y, · )

≥
∞∑
k=m

P (τ1 = k)

∫
1C(x)δν(dy)P

k−m(y, · ) (4.24)

which is a well defined measure. Therefore defining κ( · ) =
∫
ν(dy)

∞∑
k=m

P (τ1 = k)P k−m(y, · ), we have that C is

(1, δ, κ)-small for {xτn}. ⋄

Thus, one can relax the condition that V is bounded onC in Theorem 4.2.9, if the sampling times are deterministic. Another
condition is when the sampling instances are hitting times to a set which contains C [339].

4.2.7 Convergence Rates to Equilibrium

In addition to obtaining bounds on the rate of convergence through Dobrushin’s coefficient studied earlier, a more relaxed
and often more general approach is via Foster-Lyapunov drift conditions and an associated coupling analysis.

Regularity and ergodicity are concepts closely related through the work of Meyn and Tweedie [220], [224] and Tuominen
and Tweedie [294].

Definition 4.2.1 A set A ∈ B(X ) is called (f, r)-regular if

sup
x∈A

Ex[

τB−1∑
k=0

r(k)f(xk)] <∞

for all B ∈ B+(X ). A finite measure ν on B(X ) is called (f, r)-regular if

Eν [

τB−1∑
k=0

r(k)f(xk)] <∞

for all B ∈ B+(X ), and a point x is called (f, r)-regular if the measure δx is (f, r)-regular.

This leads to a lemma relating regular distributions to regular atoms.

Lemma 4.2.2 If a Markov chain {xt} has an atom α ∈ B+(X ) and an (f, r)-regular distribution λ, then α is an (f, r)-
regular set.

Definition 4.2.2 (f -norm) For a function f : X → [1,∞) the f -norm of a measure µ defined on (X,B(X )) is given by

∥µ∥f = sup
g≤f

|
∫
µ(dx)g(x)|.
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The total variation norm is the f -norm when f = 1, denoted by ∥.∥TV .

Definition 4.2.3 A Markov chain {xt} with invariant distribution π is (f, r)-ergodic if

r(n)∥Pn(x, · )− π( · )∥f → 0 as n→ ∞ for all x ∈ X. (4.25)

If (4.25) is satisfied for a geometric r (so that r(n) = Mζn for some ζ > 1, M < ∞) and f = 1 then the Markov chain
{xt} is called geometrically ergodic.

Coupling inequality and moments of return times to a small set The main idea behind the coupling inequality is to
bound the total variation distance between the distributions of two random variables by the probability they are different
Let X and Y be two jointly distributed random variables on a space X with distributions µx, µy respectively. Then we can
bound the total variation between the distributions by the probability the two variables are not equal.

∥µx − µy∥TV =sup
A

|µx(A)− µy(A)|

=sup
A

|P (X ∈ A,X = Y ) + P (X ∈ A,X ̸= Y )

− P (Y ∈ A,X = Y )− P (Y ∈ A,X ̸= Y )|
≤ sup

A
|P (X ∈ A,X ̸= Y )− P (Y ∈ A,X ̸= Y )|

≤P (X ̸= Y )

The coupling inequality is useful in discussions of ergodicity when used in conjunction with parallel Markov chains.
Later, we will see that the coupling inequality is also useful to establish the existence of optimal solutions to average cost
optimization problems.

One creates two Markov chains having the same one-step transition probabilities. Let {xn} and {x′n} be two Markov
chains that have probability transition kernel P (x, ·), and let C be an (m, δ, ν)-small set. We use the coupling construction
provided by Roberts and Rosenthal [250], building on the splitting technique presented in Section 3.2.1.

Let x0 = x and x′0 ∼ π where π is the invariant probability measure for both Markov chains.

(1) If xn = x′n then xn+1 = x′n+1 ∼ P (xn, ·)

(2) Else, if (xn, x′n) ∈ C × C then with probability δ, xn+m = x′n+m ∼ ν(·) with probability 1 − δ then

independently

xn+m ∼ 1
1−δ (P

m(xn, ·)− δν(·))

x′n+m ∼ 1
1−δ (P

m(x′n, ·)− δν(·))

(3) Else, independently xn+m ∼ Pm(xn, ·) and x′n+m ∼ Pm(x′n, ·).

The in-between states xn+1, ...xn+m−1, x
′
n+1, ...x

′
n+m−1 are distributed conditionally given xn, xn+m,x′n, x

′
n+m.

By the Coupling Inequality and the previous discussion with Nummelin’s Splitting technique in Section 3.2.1 we have
∥Pn(x, ·)− π(·)∥TV ≤ P (xn ̸= x′n).

Remark 4.7. Through the coupling inequality one can show that π0Pn → π in total variation. Furthermore, if The-
orem 4.2.4 holds, one can also show that with some further analysis if the initial condition is a fixed determinis-

tic state
∫ (

Pn(x, dz) − π(dz)

)
f(z) → 0, where f is not necessarily bounded. This does not imply, however,
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(π0P

n)(dz) − π(dz)

)
f(z) → 0 for a random initial condition. A sufficient condition for the latter to occur is that∫

π0(dz)V (z) <∞ provided that Theorem 4.2.4 holds (see Theorem 14.3.5 in [220]).

Rates of convergence: Geometric ergodicity

In this section, following [220] and [250], we review results stating that a strong type of ergodicity, geometric ergodicity,
follows from a simple drift condition. An irreducible Markov chain is said to satisfy the univariate drift condition if there
are constants λ ∈ (0, 1) and b <∞, along with a function V : X → [1,∞), and a small set C such that

PV ≤ λV + b1C . (4.26)

Theorem 4.2.11 [250, Theorem 9] Suppose {xt} is an aperiodic, irreducible Markov chain with invariant distribution π.
Suppose C is a (1, ϵ, ν)-small set and V : X → [1,∞) satisfies the univariate drift condition with constants λ ∈ (0, 1) and
b <∞. Then {xt} is geometrically ergodic.

That geometric ergodicity follows from the univariate drift condition with a small set C is proven by Roberts and Rosenthal
by using the coupling inequality to bound the TV -norm, but an alternate proof is given by Meyn and Tweedie [220]
resulting in the following theorem.

Theorem 4.2.12 [220, Theorem 15.0.1] Suppose {xt} is an aperiodic and irreducible Markov chain. Then the following
are equivalent:

(i) Ex[τB ] < ∞ for all x ∈ X, B ∈ B+(X), the invariant distribution π of {xt} exists and there exists a petite set C,
constants γ < 1, M > 0 such that for all x ∈ C

|Pn(x,C)− π(C)| < Mγn.

(ii) For a petite set C and for some κ > 1
sup
x∈C

Ex[κ
τC ] <∞.

(iii) For a petite set C, constants b > 0 λ ∈ (0, 1), and a function V : X → [1,∞] (finite for some x) such that

PV ≤ λV + b1C .

Any of the conditions imply that there exists r > 1, R <∞ such that for any x

∞∑
n=0

rn∥Pn(x, · )− π( · )∥V ≤ RV (x).

We note that if (iii) above holds, (ii) holds for for all κ ∈ (1, λ−1).

We now show that under (4.26), Theorem 4.2.12 (ii) holds. If (4.26) holds, the sequence {Mn} is supermartingale (with
respect to the natural filtration), where

Mn = λ−nV (xn)−
n−1∑
k=0

b1C(xk)λ
−(k+1),

with M0 = V (x0). Then, with (4.26), defining τNB = min{N, τB} for B ∈ B+(X) gives, by Doob’s optional sampling
theorem,

Ex

[
λ−τ

N
B V (xτN

B
)

]
≤ V (x) + Ex

[ τN
B −1∑
n=0

b1C(xn)λ
−(n+1)

]
(4.27)
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for any B ∈ B+(X), and N ∈ Z+.

Since V is bounded above on C, we have that C ⊂ {V ≤ L1} for some L1 and thus,

sup
x∈C

Ex

[
λ−τ

N
C V (xτN

C
)

]
≤ L1 + λ−1b.

and by the monotone convergence theorem, and the fact that V is bounded from below by 1 everywhere and bounded from
above on C,

sup
x∈C

Ex

[
λ−τC

]
≤ L1(L1 + λ−1b).

Using the coupling inequality, Roberts and Rosenthal [250] prove that geometric ergodicity follows from the univariate drift
condition. They show that under mild conditions [250, Prop. 11], the univariate drift condition implies a drift condition for
the pair of Markov chains who will be coupled in the small set C × C:

Proposition 4.2.1 [250, Proposition 11] Suppose the univariate drift condition (4.26) is satisfied for V : X → [1,∞) and
constants λ ∈ (0, 1) b <∞ and small set C. Letting d = infx∈CC V (x), if d > b

1−λ − 1, then the bivariate drift condition
is satisfied for h(x, y) = 1

2 (V (x) + V (y)) and α−1 = λ+ b/(d+ 1) < 1; that is, we have the following condition.

P̄ h(x, y) ≤h(x, y)
α

(x, y) /∈ C × C

P̄h(x, y) <∞ (x, y) ∈ C × C

where

P̄ h(x, y) =

∫
X

∫
X
h(z, w)P (x, dz)P (y, dw)

But now if one applies Theorem 4.2.12 (ii), the desired coupling condition and hence the convergence rate result will
follow.

We also note that the univariate drift condition allows us to assume that V is bounded on C without any loss (see Lemma
14 of [250]).

Subgeometric ergodicity

Here, we review the class of subgeometric rate functions (see [145, Sec. 4], [85, Sec. 5], [220], [103], [294]).

Let Λ0 be the family of functions r : N → R>0 such that

r is non-decreasing, r(1) ≥ 2

and
log r(n)

n
↓ 0 as n→ ∞

The second condition implies that for all r ∈ Λ0 if n > m > 0 then

n log r(n+m) ≤ n log r(n) +m log r(n) ≤ n log r(n) + n log r(m)

so that
r(m+ n) ≤ r(m)r(n) for all m,n ∈ N. (4.28)

The class of subgeometric rate functions Λ defined in [294] is the class of sequences r for which there exists a sequence
r0 ∈ Λ0 such that
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0 < lim inf
n→∞

r(n)

r0(n)
≤ lim sup

n→∞

r(n)

r0(n)
<∞.

The main theorem we cite on subgeometric rates of convergence is due to Tuominen and Tweedie [294].

Theorem 4.2.13 [294, Theorem 2.1] Suppose that {xt}t∈N is an irreducible and aperiodic Markov chain on state space X
with stationary transition probabilities given by P . Let f : X → [1,∞) and r ∈ Λ be given. The following are equivalent:

(i) there exists a petite set C ∈ B(X) such that

sup
x∈C

Ex[

τC−1∑
k=0

r(k)f(xk)] <∞

(ii) there exists a sequence (Vn) of functions Vn : X → [0,∞], a petite set C ∈ B(X) and b ∈ R+ such that V0 is bounded
on C,

V0(x) = ∞ ⇒ V1(x) = ∞,

and
PVn+1 ≤ Vn − r(n)f + br(n)1C , n ∈ N

(iii) there exists an (f, r)-regular set A ∈ B+(X).

(iv) there exists a full absorbing set S which can be covered by a countable number of (f, r)-regular sets.

Theorem 4.2.14 [294] If a Markov chain {xt} satisfies Theorem 4.2.13 for (f, r) then r(n)∥Pn(x0, ·) − π(·)∥f → 0 as
n increases

The conditions of Theorem 4.2.13 may be hard to check, especially (ii), comparing a sequence of Lyapunov functions {Vk}
at each time step. We briefly discuss the methods of Douc et al. [103] (see also Hairer [145]) that extend the subgeometric
ergodicity results and show how to construct subgeometric rates of ergodicity from a simpler drift condition. [103] assumes
that there exists a function V : X → [1,∞], a concave monotone nondecreasing differentiable function ϕ : [1,∞] →
(0,∞], a set C ∈ B(X) and a constant b ∈ R such that

PV + ϕ◦V ≤ V + b1C . (4.29)

If an aperiodic and irreducible Markov chain {xt} satisfies the above with a petite set C, and if V (x0) < ∞, then it can
be shown that {xt} satisfies Theorem 4.2.13(ii). Therefore {xt} has invariant distribution π and is (ϕ◦V, 1)-ergodic so that
lim
n→∞

∥Pn(x, · )−π( · )∥ϕ◦V = 0 for all x in the set {x : V (x) <∞} of π-measure 1. The results by Douc et al. build then

on trading off (ϕ ◦ V, 1) ergodicity for (1, rϕ)-ergodicity for some rate function rϕ, by carefully constructing the function
utilizing concavity; see Propositions 2.1 and 2.5 of [103] and Theorem 4.1(3) of [145].

To achieve ergodicity with a nontrivial rate and norm one can invoke a result involving the class of pairs of ultimately
non decreasing functions, defined in [103]. The class Y of pairs of ultimately non decreasing functions consists of pairs
Ψ1, Ψ2 : X → [1,∞) such that Ψ1(x)Ψ2(y) ≤ x+ y and Ψi(x) → ∞ for one of i = 1, 2.

Proposition 4.2.2 Suppose {xt} is an aperiodic and irreducible Markov chain that is both (1, r)-ergodic and (f, 1)-ergodic
for some r ∈ Λ and f : X → [1,∞). Suppose Ψ1, Ψ2 : X → [1,∞) are a pair of ultimately non decreasing functions. Then
{xt} is (Ψ1 ◦ f, Ψ2 ◦ r)-ergodic.

Therefore we can show that if (Ψ1, Ψ2) ∈ Y and a Markov chain satisfies the condition (4.29), then it is (Ψ1◦ϕ◦V, Ψ2◦rϕ)-
ergodic.

Thus, we observe that the hitting times to a small set is an important random variable in characterizing not only the existence
of an invariant probability measure, but also how fast a Markov chain converges to equilibrium. Further results exist in the
literature to obtain more computable criteria for subgeometric rates of convergence, see e.g. [103].
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Rates of convergence under random-time state-dependent drift criteria

The following result builds on and generalizes Theorem 2.1 in [336].

Theorem 4.2.15 [339] Let {xt} be an aperiodic and irreducible Markov chain with a small set C. Suppose there are
functions V : X → (0,∞) with V bounded on C, f : X → [1,∞), δ : X → [1,∞), a constant b ∈ R, and r ∈ Λ such that
for a sequence of stopping times {τn}

E[V (xτn+1) | xτn ] ≤ V (xτn)− δ(xτn) + b1C(xτn)

E

[ τn+1−1∑
k=τn

f(xk)r(k)
∣∣∣Fτn] ≤ δ(xτn). (4.30)

Then {xt} satisfies Theorem 4.2.13 and is (f, r)-ergodic.

Further conditions and examples are available in [339].

4.3 Applications to Stochastic Learning Algorithms and Iterative Dynamics

In this section, we present a number of applications of martingale theory to the analysis of stochastic dynamics, which will
have applications to stochastic learning and reinforcement learning results to be studied later in the book.

We start with a convergence theorem useful in stochastic approximation]

Theorem 4.3.1 [230, p. 33, Exercise II-4] Let Xk, βk, Yk be three sequences of non-negative random variables defined on
a common probability space and Fk be a filtration so that all three random sequences are adapted to it. Suppose that

E[Xk+1|Fk] ≤ (1 + βk)Xk + Yk, k ∈ N.

Then, limit limn→∞Xn exists and is finite with probability one conditioned on the event that
∑
k∈N βn < ∞ and∑

k∈N Yn <∞.

Proof sketch. (i) Define

Mn = X ′
n −

n−1∑
m=1

Y ′
m,

where X ′
n = Xn∏n−1

s=1
(1+βs)

and Y ′
n = Yn∏n

s=1
(1+βs)

. Define the stopping time:

τa = min(n :

n−1∑
m=1

Y ′
m > a).

(ii) Show first that a + Mmin(τa,n),n∈N is a positive supermartingale with respect to the natural filtration generated by
{Xk, Yk}. (iii) Thus, for any fixed a, a +Mmin(τa,n),n∈N converges to a limit. For a given sample path (almost surely),
taking a sufficiently large a, by the boundedness of

∑
k∈N Yn show that τa = ∞ for sufficiently large a for ths given

sample path. (iv) Then invoke the supermartingale convergence theorem 4.1.8. Finally, using the fact that
∑
k∈N Yk < ∞

and that
∏
n(1 + βn) <∞ under the stated conditions, complete the proof. ⋄

This theorem is important for a large class of optimization problems (such as the convergence of stochastic gradient descent
algorithms) as well as stochastic approximation algorithms. For further reading on stochastic approximation methods,
see [196] and [32] and for a recent review [305]. We will use this result to establish the convergence of the celebrated
Q-learning algorithm in Theorem 9.1.1. A slight generalization of this result appears in [249].
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Theorem 4.3.2 [Another convergence theorem useful in stochastic approximation and Q-Learning convergence analysis]
Let Xk, Yk, Zk be three sequences of non-negative random variables defined on a common probability space and Fk be a
filtration so that all three random sequences are adapted to it. Suppose that

E[Yk+1|Fk] ≤ Yk −Xk + Zk (4.31)

and
∑
k Zk <∞. Then,

∑
kXk <∞ and Yk converges to some random variable Y almost surely.

Proof sketch [327].: Apply Theorem 4.3.1 by noting first that E[Yk+1|Fk] ≤ Yk + Zk with βk = 0. This implies that
Yk converges. Now write Mt = Yt +

∑t−1
m=1Xm leading to E[Mt+1|Ft] ≤ Mt + Zt. Applying Theorem 4.3.1 again, it

follows that Mt converges and since Yt converges, so does
∑
tXt. ⋄

We now apply the above to an explicit iterative stochastic dynamics:

Theorem 4.3.3 [36, Corollary 4.1] Consider the following: Let rt be a scalar and

rt+1 = (1− αt)rt + αtwt,

where
∑
t αt = ∞,

∑
t α

2
t <∞, and the noise wt is so that E[wt|Ft−1] = 0 with

E[w2
t |Ft] ≤ At,

where At is possibly a random variable (thus, sample path dependent). If At is bounded with probability 1 (that is,
supt∈Z+

|At(ω)| <∞ almost surely), then rt → 0 almost surely.

We remark that if the bounded random variable sequence At above was instead a fixed number, the proof would have been
slightly more direct.

For the proof, take Yt = r2t and apply Theorem 4.3.2.

We end the section, with a final application1:

Theorem 4.3.4 [Application in stochastic optimization: Stochastic gradient descent] Consider a convex function f : Rn →
R and denote the set of minima of f by X∗. We know from convex analysis that X∗ contains, if non-empty, either a single
point, or is a convex set. Denote the subdifferential [67] of f at x, that is the set of subgradients of f at x, by ∂f(x) and let
dt be a random variable which is a noisy version of a sub gradient of f at xt at time t. A stochastic subgradient algorithm
is one with the form:

xk+1 = xk − γkdk+1, x0 ∈ Rn, (4.32)

where γk is a sequence of non-negative step sizes. We have the following theorem:

Suppose that the set of minima X∗ is non-empty and that the stochastic subgradients satisfy that

sup
k
E[||dk+1||2|Fk] < K <∞.

where Fk = σ(x0, ds, s ≤ k) with the condition that

gk+1 = E[dk+1|Fk] ∈ ∂f(x).

Moreover,
∑
k γk = ∞ and

∑
k γ

2
k < ∞. Then the sequence of iterates (4.32) converges almost surely to some element

x∗ ∈ X∗.

Proof. y ∈ Rn, we have that due to the definition of a subgradient,

1Thanks to Prof. Jerome Le Ny (of Polytechnique Montreal).
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f(y) ≥ f(x) + gTk+1(y − xk).(4.33)

Thus,

E[||xk+1 − y||2|Fk] = E[||xk − γkdk+1 − y||2|Fk]
= E[||xk − y||2 − 2γk(xk − y)T dk+1 + γ2k||dk+1||2|Fk]
= E[||xk − y||2|Fk]− 2γk(xk − y)TE[dk+1|Fk] + Eγ2k||dk+1||2|Fk]
≤ E[||xk − y||2|Fk]− 2γk(f(xk)− f(y)) + γ2kK

where in the inequality we use (4.32). Now, let in the above y = x̄∗ ∈ X∗ for some element in X∗. Then one obtains
through the comparison theorem (Theorem 4.2.3) that

E[
∑
k

γk(f(xk)− f(y))] ≤ ||x0 − y||2 +
∑
k

γ2kK.

In particular, since f(xk)− f(y) ≥ 0, through the convergence theorem from the preceding exercises we have that almost
surely ∑

k

γk(f(xk)− f(y)) <∞.

Thus, f(xk) → f(y). We now show that indeed xk → some particular element in X∗ (and does not wander in the set). By
the convergence result in (4.31) we know that for any x∗ ∈ X∗, ||xk − x∗|| converges almost surely. This implies that xk
is bounded almost surely. Now, consider a countable dense subset {x1,∗, · · · , xn,∗, · · · } of X∗. It must be that ||xk−xi,∗||
converges for all i through the convergence theorem. On the other hand, since ||xk|| is bounded, there exists a converging
subsequence for xkn . But the limit of each such subsequence must be identical for otherwise ||xkn − xi,∗|| would have
different limits. Thus, xkn must converge to one element in X∗. ⋄

4.4 Conclusion

This concludes our discussion on martingales, their applications to controlled Markov chains, ergodic theorems, as well
as stochastic iterative dynamics. We will revisit one more application of martingales while discussing the convex analytic
approach to controlled Markov problems. Notably, we have observed that drift criteria are very powerful tools to establish
various forms of stochastic stability and instability.

4.5 Exercises

Exercise 4.5.1 LetX be an integrable random variable defined on (Ω,F , P ). Let G = {Ω, ∅}. Show thatE[X|G] = E[X],
and if G = σ(X) then E[X|G] = X .

Exercise 4.5.2 Consider (4.5) and through this relation establish a sufficient condition on the martingale sequence Xn so
that the optimal sampling theorem would be applicable even if the stopping times in Theorem 4.1.5 would not necessarily
be bounded from above by a deterministic constant.

Exercise 4.5.3 A useful property of martingales is that a stopped martingale is a martingale. This is very useful for proving
stability results when one lives in a bounded set since the stopped martingale sequence will typically be uniformly bounded
(and hence the optional sampling theorem will be applicable without requiring a stopping time to be uniformly bounded).
Let τ be a stopping time that is finite almost surely. Let Xt,Ft be a martingale sequence. Define Mt = Xmin(t,τ). Show
that (Mt,Ft) is a martingale sequence:

E[Mn+1|Fn] =Mn
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Hint: Write Mn+1 = Mn + 1{τ>n}(Mn+1 −Mn). Then, show that E[1{τ>n}(Mn+1 −Mn)|Fn] = 1{τ>n}E[Mn+1 −
Mn|Fn] = 0.

Exercise 4.5.4 a) Consider a Controlled Markov Chain with the following dynamics:

xt+1 = axt + but + wt,

where wt is a zero-mean Gaussian noise with a finite variance, a, b ∈ R, b ̸= 0, are the system dynamics coefficients. One
controller policy which is admissible (that is, the policy at time t is measurable with respect to σ(x0, x1, . . . , xt) and is a
mapping to R) is the following:

ut = −a+ 0.5

b
xt.

Show that {xt}, under this policy, has a unique invariant probability measure.

b) Consider a similar setup to the one earlier, with b = 1:

xt+1 = axt + ut + wt,

where wt is a zero-mean Gaussian noise with a finite variance, and a ∈ R is a known number.

This time, suppose, we would like to find a control policy such that there exists an invariant probability measure π for {xt}
and under this invariant probability measure

Eπ[x
2] <∞

Further, suppose we restrict the set of control policies to be linear, time-invariant; that is of the form u(xt) = kxt for some
k ∈ R.

Find the set of all k values for which there exists an invariant probability measure that has a finite second moment.

Hint: Use Foster-Lyapunov criteria.

Exercise 4.5.5 Suppose that some price process {xt, t ∈ Z+} is given by the following dynamics:

xt+1 = max(xt + wt, 0), t ∈ Z+,

where {wt} is a sequence of independent and identically distributed {−1, 1}-valued random variables with mean w̄ > 0.
Furthermore, x0 ∈ Z+, x0 > 0 is a given initial condition for the process.

Is the price process recurrent in the sense that, Px0
(τ0 <∞) = 1, where τ0 = min(l > 0 : xl = 0)?

Exercise 4.5.6 Consider a queuing process, with i.i.d. Poisson arrivals and departures, with arrival mean µ and service
mean λ and suppose the process is such that when a customer leaves the queue, with probability p (independent of time) it
comes back to the queue. That is, the dynamics of the system satisfies:

Lt+1 = max(Lt +At −Nt + ptNt, 0), t ∈ N.

where E[At] = λ,E[Nt] = µ and E[pt] = p.

For what values of µ, λ is such a system stochastically stable? Prove your statement.

Exercise 4.5.7 Consider a two server-station network; where a router routes the incoming traffic, as is depicted in Figure
5.1.

Let L1
t , L

2
t denote the number of customers in stations 1 and 2 at time t. Let the dynamics be given by the following:

L1
t+1 = max(L1

t + utAt −N1
t , 0), t ∈ N.
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Station 1

Station 2

u

Fig. 4.1

L2
t+1 = max(L2

t + (1− ut)At −N2
t , 0), t ∈ N.

Customers arrive according to an independent Bernoulli process, At, with mean λ. That is, P (At = 1) = λ and P (At =
0) = 1− λ. Here ut ∈ [0, 1] is the router action.

Station 1 has a Bernoulli service process N1
t with mean n1, and Station 2 with n2.

Suppose that a router decides to follow the following algorithm to decide on ut: If a customer arrives, the router simply
sends the incoming customer to the shortest queue.

Find sufficient conditions (on λ, n1, n2) for this algorithm to lead to a stochastically stable system with invariant measure
π which satisfies Eπ[L1 + L2] <∞.

Note: For this problem, we acknowledge the lecture notes of Prof. Bruce Hajek: ECE567 Communication Network Analysis,
University of Illinois at Urbana-Champaign [147].

Exercise 4.5.8 Consider the following two-server system:

x1t+1 = max(x1t +A1
t − u1t , 0)

x2t+1 = max(x2t +A2
t + u1t1(u1

t≤x1
t+A

1
t )
− u2t , 0), (4.34)

where 1(.) denotes the indicator function and A1
t , A

2
t are independent and identically distributed (i.i.d.) random variables

with geometric distributions, that is, for i = 1, 2,

P (Ait = k) = pi(1− pi)
k k ∈ {0, 1, 2, . . . , },

for some scalars p1, p2 such that E[A1
t ] = 1.5 and E[A2

t ] = 1.

Suppose the control actions u1t , u2t are such that u1t + u2t ≤ 5 for all t ∈ Z+ and u1t , u
2
t ∈ Z+. At any given time t, the

controller has to decide on u1t and u2t with knowing {x1s, x2s, s ≤ t} but not knowing A1
t , A

2
t .

Is this server system stochastically stabilizable by some policy, that is, does there exist an invariant probability measure
under some control policy?

If your answer is positive, provide a control policy and show that there exists a unique invariant distribution.

Exercise 4.5.9 Let there be a single server, serving two queues; where the server serves the two queues adaptively in the
following sense. The dynamics of the two queues is expressed as follows:

Lit+1 = max(Lit +Ait −N i
t , 0), i = 1, 2; t ∈ Z+

where Lit is the total number of arrivals which are still in the queue at time t and Ait is the number of customers that have
just arrived at time t.

We assume, for i = 1, 2, {Ait} has an independent and identical distribution (i.i.d.) which is Bernoulli so that P (Ait =
1) = λi = 1− P (Ait = 0).

Suppose that the service process is given by:
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N1
t = 1{L1

t≥L2
t} N2

t = 1{L2
t>L

1
t}

For what values of λ1, λ2 is the system stochastically stable, in the sense of the existence of an invariant probability
measure.

Exercise 4.5.10 LetX be a real random variable withE[|X|] <∞. Let Y0, Y1, Y2, · · · be a sequence of random variables.
Let Fn be the σ-field generated by Y0, Y1, . . . , Yn. a) Is it the case that

lim
n→∞

E[X|Fn]

exists? b) Is it the case that
lim
n→∞

E[X|Fn] = E[X|F∞],

where F∞ := σ(Y1, Y2, · · · )

Exercise 4.5.11 Prove the Ergodic Theorem for a finite state space; that is the result that for an irreducible Markov chain
{xt} living in a finite space X, which has a unique invariant probability measure µ, the following applies almost surely:

lim
T→∞

1

T

T∑
t=1

f(xt) =
∑
i

f(i)µ(i),

for every f : X → R.

Hint: You may proceed as follows. Define a sequence of empirical occupation measures for T ∈ N, A ∈ B(X):

vT (A) =
1

T

T−1∑
t=0

1{xt∈A}, ∀A ∈ B(X).

Now, define:

Ft(A) =

( t∑
s=1

1{xs∈A} − t
∑
X
P (A|x)vt(x)

)

=

( t∑
s=1

1{xs∈A} −
t−1∑
s=0

∑
X
P (A|x)1{xs=x}

)
(4.35)

Let Ft = σ(x0, · · · , xt). Verify that, for t ≥ 2,

E[Ft(A)|Ft−1]

= E

[( t∑
s=1

1{xs∈A} −
t−1∑
s=0

∑
X
P (A|x)1{xs=x}

)∣∣∣∣Ft−1

]
= E

[(
1{xt∈A} −

∑
X
P (A|x)1{xt−1=x}

)∣∣∣∣Ft−1

]

+

( t−1∑
s=1

1{xs∈A} −
t−2∑
s=0

∑
X
P (A|x)1{xs=x}

)

= 0 +

( t−1∑
s=1

1{xs∈A} −
t−2∑
s=0

∑
X
P (A|x)1{xs=x}

)∣∣∣∣Ft−1

]
(4.36)

= Ft−1(A), (4.37)

where the last equality follows from the fact that E[1xt∈A|Ft−1] = P (xt ∈ A|Ft−1). Furthermore,
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|Ft(A)− Ft−1(A)| ≤ 1.

Now, we have a sequence which is a martingale sequence. We will invoke a martingale convergence theorem; which is
applicable for martingales with bounded increments. By a version of the martingale stability theorem, it follows that

lim
t→∞

1

t
Ft(A) = 0

You need to now complete the remaining steps.

Hint: You can use the Azuma-Hoeffding inequality (Theorem 4.1.14) [94] and the Borel-Cantelli Lemma to complete the
steps.

We note that a similar argument could also be made for countably infinite X or uncountable X under additional conditions.

Exercise 4.5.12 Let τ be a stopping time with respect to the filtration Ft. Let Xn be a (discrete-time) sequence of random
variables so that each Xn is Fn-measurable. Show that Xτ is Fτ -measurable.
Hint: We need to show that for every real a: {Xτ ≤ a} ∩ {τ ≤ k} ∈ Fk. Observe that {Xτ ≤ a} ∩ {τ ≤ k} =
∪km=0{Xτ ≤ a} ∩ {τ = m} and that for each m, {Xτ ≤ a} ∩ {τ = m} ∈ Fm ⊂ Fk.

Exercise 4.5.13 To appreciate that the condition of measurability on control or estimation policies is not a superfluous
one, read the paper [310]: G. L. Wise. A note on a common misconception in estimation. Systems & Control letters, 1985:
355-356.
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Optimal Stochastic Control with Finite and Discounted Infinite Horizons and
Dynamic Programming

In this chapter, we introduce the method of dynamic programming for controlled stochastic systems, and consider optimal
stochastic control problems under finite horizon and discounted infinite horizon expected cost criteria.

Recall that a fully observed Markov control model is a five-tuple

(X,U, {U(x), x ∈ X}, T , c)

such that X is the (standard Borel) state space, U is the action space, U(x) ⊂ U is the control action set when the state is
x, so that

K = {(x, u) : x ∈ X, u ∈ U(x)} ⊂ X× U,

is the set of feasible state-action pairs. T is a stochastic kernel on X given K. Finally c : K → R is the cost function.

Sometimes, one also can have a dependence of the cost function on the time variable so that ct can be the cost at time t or
the action set U(x) can also depend on time. In this case one can add the time variable t, as a further component, to the
state variable x, with a deterministic evolution for the time variable. Conceptually, such a generalization does not introduce
any further obstacle for finite horizon problems. Often, ct ≡ c, that is c does not depend on time (however, there may be a
terminal cost different from c, to be considered).

Let, as in Chapter 2, ΓA denote the set of all admissible policies. Let γ = {γt, 0 ≤ t ≤ N − 1} ∈ ΓA be a policy. Consider
the following expected cost:

JN (x, γ) := Eγx [

N−1∑
t=0

c(xt, ut) + cN (xN )], (5.1)

where cN (.) is the terminal cost function. Define

J∗(x) := inf
γ∈ΓA

J(x, γ)

As earlier, let ht = {x[0,t], u[0,t−1]} denote the history or the information process.

The goal is to find, if there exists one, an admissible policy such that J∗(x) is attained; this will be an optimal policy. We
note that the infimum value may not be attained by some policy. In the following, we will also present conditions which
will ensure the existence of optimal policies.

Before we proceed further, by Theorem 4.1.3, provided that the cost is integrable under the induced probability measure
given a policy, we note that we could express the cost as:

JN (x, γ) = Eγx

[
c(x0, u0)
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+Eγ
[
c(x1, u1)

+Eγ
[
c(x2, u2)

+ . . .

+Eγ [c(xN−1, uN−1) + cN (xN )|hN−1]

∣∣∣∣hN−2

]
. . .

∣∣∣∣h1]∣∣∣∣h0],
= Eγ0,··· ,γN−1

x

[
c(x0, u0)

+Eγ1,··· ,γN−1

[
c(x1, u1)

+Eγ2,··· ,γN−1

[
c(x2, u2)

+ . . .

+EγN−1 [c(xN−1, uN−1) + cN (xN )|hN−1]

∣∣∣∣hN−2

]
. . .

∣∣∣∣h1]∣∣∣∣h0],
= Eγ0x

[
c(x0, u0)

+Eγ1
[
c(x1, u1)

+Eγ2
[
c(x2, u2)

+ . . .

+EγN−1 [c(xN−1, uN−1) + cN (xN )|hN−1]

∣∣∣∣hN−2

]
. . .

∣∣∣∣h1]∣∣∣∣h0],
Thus, by the equalities above, we obtain:

inf
γ∈ΓA

J(x, γ) = inf
γ0
Eγ0x

[
c(x0, u0)

+ inf
γ1
Eγ1

[
c(x1, u1)

+ inf
γ2
Eγ2

[
c(x2, u2)

+ . . .

+ inf
γN−1

EγN−1 [c(xN−1, uN−1) + cN (xN )|hN−1]

∣∣∣∣hN−2

]
. . .

∣∣∣∣h1]∣∣∣∣h0], (5.2)

The discussion above reveals that we can start with the final time stage, obtain a solution for γN−1 and move backwards
for t ≤ N − 2. By a theorem below (Theorem 5.1.1) which will allow us to search for γN−1 over Markov policies, and
together with the fact that for all t and measurable functions gt

E[gt(xt+1)|ht, ut] = E[gt(xt+1)|xt, ut],

(this follows from the controlled Markov property), we will see that one can restrict the search for optimal control policies
to be among those that are Markov. This last step is crucial in identifying a dependence only on the most recent state for
an optimal control policy, as we see in the next section. This will allow us to show that, through an inductive argument,
policies can be restricted to be Markov without any loss.
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5.1 Dynamic Programming, Optimality of Markov Policies and Bellman’s Principle of
Optimality

5.1.1 Optimality of Deterministic Markov Policies

We will observe that when there is an optimal solution, the optimal solution can be taken to be Markov. Even when an
optimal policy may not exist, any measurable policy can be replaced with one which is Markov, under fairly general
conditions, as we discuss below. In the following, first, we will follow David Blackwell’s [46] and Hans Witsenhausen’s
[316] ideas to obtain a very interesting result.

Theorem 5.1.1 (Blackwell’s (Irrelevant Information) Theorem) Let X,Y,U be complete, separable, metric spaces, and
let P be a probability measure on B(X × Y), and let c : X × U → R be a Borel measurable and bounded cost function.
Then, for any Borel measurable function γ : X×Y → U, there exists another Borel measurable function γ∗ : X → U such
that ∫

X
c(x, γ∗(x))PX(dx) ≤

∫
X×Y

c(x, γ(x, y))P (dx, dy)

where PX is the marginal of P on X. Thus, policies based only on x almost surely, are optimal.

Proof. We will construct a γ∗ given γ. Let u = γ(x, y). To emphasize the random nature of the variables considered, let
us again denote with capital letters X,Y, U the random variables whose realizations are x, y and u, respectively. Given γ,
we write for any Borel D ⊂ U and x ∈ X,

P γ(U ∈ D|x) = P (γ(X,Y ) ∈ D|X = x) =

∫
Y
1{γ(x,y)∈D}P (Y ∈ dy|X = x).

We then have ∫
X×Y

c(x, γ(x, y))P (dx, dy) =

∫
X

(∫
U
c(x, u)P γ(du|x)

)
P (dx),

Consider

hγ(x) :=

∫
U
c(x, u)P γ(du|x) (5.3)

• Suppose the space U is countable. In this case, let us enumerate the elements in U as {ui, i = 1, 2, . . . }. Then, we
could define:

Di = {x ∈ X : c(x, ui) ≤ hγ(x)}, i = 1, 2, . . . .

We note that X =
⋃
iDi: Suppose not, then ∃x ∈ X with c(x, ui) > hγ(x) for all i ∈ N, and thus for this x:

hγ(x) =

(∑
U
c(x, u)P γ(du|x)

)
> hγ(x), (5.4)

leading to a contradiction. Now define,

γ∗(x) = uk if x ∈ Dk \ (∪k−1
i=1Di), k = 1, 2, . . . ,

Such a function is measurable, by construction and performs at least as good as γ.

• We now provide a proof for the actual statement. Let D = {(x, u) ∈ X × U : c(x, u) ≤ hγ(x)}. D is a Borel set
since c(x, u) − hγ(x) is Borel. Define Dx = {u ∈ U : (x, u) ∈ D} for all x ∈ X. Now, for every element x we can
pick a member u which is in D; this defines a map from X to U. The question now is whether the constructed map is
Borel measurable. Now, for every x,

∫
1{γ(x,y)∈D}P (dy|x) > 0 by the relation (5.3), since otherwise we would arrive

at a contradiction via (5.4). Then, by a measurable selection theorem of Blackwell and Ryll-Nardzewski [49] (see also
p. 255 of [111]), there exists a Borel-measurable function γ∗ : X → U such that its graph is contained in D, that is,
{(x, γ∗(x)) ∈ D}.
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⋄

Theorem 5.1.2 Let {(xt, ut)} be a controlled Markov chain. Consider (5.1), that is, the minimization ofEγ [
∑N−1
t=0 c(xt, ut)+

cN (xN )], over all admissible control policies. Any such policy can be replaced with one which is (deterministic) Markov
and which is at least as good as the original policy. In particular, if an optimal control policy exists, there is no loss in
restricting policies to be Markov (that is, a policy which only uses the current state xt and the time information t).

Proof. In view of (5.2), the proof follows from a sequential application of Theorem 5.1.1, starting with the final time stage.
For any admissible policy, the cost

E[c(xN−1, γN−1(hN−1)) +

∫
X
cN (z)T (dz|xN−1, γN−1(hN−1))],

can be replaced with a measurable policy γ∗N−1

E[c(xN−1, γ
∗
N−1(xN−1)) +

∫
X
cN (z)T (dz|xN−1, γ

∗
N−1(xN−1))],

which leads to a cost that is at least as good as one obtained with γN−1. Define

JN−1(xN−1) := E

[
c(xN−1, γ

∗
N−1(xN−1)) +

∫
X
cN (z)T (dz|xN−1, γ

∗
N−1(xN−1))

]
,

and consider then

E

[
c(xN−2, γN−2(hN−2)) +

∫
X
JN−1(z)T (dz|xN−2, γN−2(hN−2))

]
.

This expression can also be lower bounded by a measurable Markov policy γ∗N−2 so that the expected cost

JN−2(xN−2) := E

[
c(xN−2, γ

∗
N−2(xN−2)) +

∫
X
JN−1(z)T (dz|xN−2, γ

∗
N−2(xN−2))

]
.

is lower than that achieved by the admissible policy. By induction, for all time stages, one can replace the policies with
a deterministic Markov policy which leads to a cost which is at least as desirable as the cost achieved by the admissible
policy. ⋄

Given this result, we have the following important optimality principle.

5.1.2 Bellman’s principle of optimality and Dynamic Programming

Consider 5.1. Let {Jt(xt)} be a sequence of functions on X defined by

JN (x) = cN (x)

and for 0 ≤ t ≤ N − 1

Jt(x) = min
u∈Ut(x)

{c(x, u) +
∫
X
Jt+1(z)T (dz|x, u)}.

Let there be minimizing measurable functions which are deterministic, denoted by {ft(x)}, so that

Jt(x) = c(x, ft(xt)) +

∫
X
Jt+1(z)T (dz|x, ft(x))}

Then we have the following:

Theorem 5.1.3 The policy γ∗ = {f0, f1, . . . , fN−1} is optimal and the optimal expected cost function (also called the
value function) is equal to
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J∗
N (x) = J0(x)

Proof. We compare the expected cost generated by the above policy, with respect to the cost obtained by any other policy,
which can be taken to be deterministic Markov in view of Theorem 5.1.2.

We provide the proof by a backwards induction method in view of (5.2). Consider the time stage t = N − 1. For this stage,
the optimal cost (or, value) is equal to

JN−1(x) = min
u

{c(x, u) +
∫
X
cN (z)T (dz|xN−1 = x, uN−1 = u)}

Suppose there is a cost C∗
N−1(x), achieved by some policy η = {ηk, k ∈ {0, 1, · · · , N − 1}}, which we take to be

deterministic Markov (without loss). Since,

C∗
N−1(x)

= c(x, ηN−1(x)) +

∫
X
cN (z)T (dz|xN−1 = x, uN−1 = ηN−1(xN−1))

≥ JN−1(x)

= min
u

{c(x, u) +
∫
X
cN (z)T (dz|xN−1 = x, uN−1 = u)}, (5.5)

it must be that C∗
N−1(x) ≥ JN−1(x). Now, we move to time stage N − 2. In this case, the cost is given by

C∗
N−2(x) = c(x, η(xN−2)) +

∫
X
C∗
N−1(z)T (dz|xN−2 = x, uN−2 = η(xN−2))

≥ min
u

{c(x, u) +
∫
X
JN−1(z)T (dz|xN−2 = x, uN−2 = u)}

=: JN−2(x)

where the inequality is due to the fact that C∗
N−1(x) ≥ JN−1(x) and the minimization. We can, by induction, show that

the recursion holds for all 0 ≤ t ≤ N − 2.

⋄

5.1.3 Examples

Example 5.1 (Dynamic Programming and Investment). [155, Section 3.6] A investor’s wealth dynamics is given by the
following:

xt+1 = utwt,

where {wt} is an i.i.d. R+-valued stochastic process with E[wt] = w̄. The investor has access to the past and current
wealth information and his actions. The goal is to maximize, for some b > 0,

J(x0, γ) = Eγx0
[

T−1∑
t=0

b(xt − ut)].

The investor’s action set for any given x is: U(x) = [0, x]. We will find an optimal admissible policy.

For this problem, the state space is R+, the control action space at state x is [0, x], the information at the controller is
It = {x[0,t], u[0,t−1]}. The kernel is described by the relation xt+1 = utwt. Using Dynamic Programming

JT−1(x) = max
u∈[0,xT−1]

E[b(xT−1 − uT−1)|xT−1 = x, uT−1 = u]

= max
u∈[0,x]

b(x− u) = b(x). (5.6)
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Since there is no more future, the investor needs to collect the wealth at time T − 1, that is uT−1 = 0. For t = T − 2

JT−2(x) = max
u∈[0,x]

E[b(x− u) + JT−1(xT−1)|xt−2 = x, uT−2 = u]

= max
u∈[0,x]

E[b(x− u) + bxT−1|xt−2 = x, uT−2 = u]

= max
u∈[0,x]

(
b(x− u) + bE[wT−2]u

)
= max
u∈[0,x]

(
bx+ b(w̄ − 1)u

)
It follows then that if w̄ > 1, uT−2 = xT−2 (that is, investment is favourable), otherwise uT−2 = 0. Recursively, one
concludes that if w̄ > 1, ut = xt is optimal until t = T − 1, at t = T − 1, uT−1 = 0, leading to J0(x0) = bw̄T−1x0.

If w̄ < 1, it is optimal to collect at time 0, that is u0 = 0, leading to J0(x0) = bx0. If w̄ = 1, both of these policies lead to
the same reward.

Example 5.2 (Linear Quadratic Systems). Consider the following Linear Quadratic (LQ) problem with q > 0, r > 0, pT >
0:

inf
γ
Eγx [

T−1∑
t=0

qx2t + r2t + pTx
2
T ]

for a linear system:
xt+1 = axt + ut + wt,

where wt is a zero-mean random variable with variance σ2
w <∞. We can show, by the method of completing the squares,

that:

Jt(xt) = Ptx
2
t +

T−1∑
k=t

Pt+1σ
2
w

where

Pt = q + Pt+1a
2 −

P 2
t+1a

2

Pt+1 + r

and the optimal control policy is

ut =
−Pt+1a

Pt+1 + r
xt.

Note that, the optimal control policy is Markov (as it uses only the current state). For a more general treatment for such LQ
problems, see Section 5.3. A typical setup is the case where wt is Gaussian; in this case the problem above is often referred
to as the Linear Quadratic Gaussian (LQG) optimal control problem.

5.2 Existence of Minimizing Selectors and Measurability

The above dynamic programming arguments hold when there exist minimizing control policies (selectors measurable with
respect to the Borel σ-field on X). The following results build on [159, Theorem 2], [269], [268] and [189] (see Appendix
C). We also refer the reader to [155] for a comprehensive analysis and detailed literature review and [120, Theorem 2.1].

Measurable Selection Hypothesis: Given a sequence of functions Jt : X → R, there exists

Jt(x) = min
ut∈Ut(x)

(c(xt, ut) +

∫
X
Jt+1(y)T (dy|x, u)),

for all x ∈ X, for t ∈ {0, 1, 2 . . . , N − 1} with

JN (xN ) = cN (xN ).
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Furthermore, there exist measurable functions ft such that

Jt(x) = c(xt, f(xt)) +

∫
X
Jt+1(y)T (dy|x, f(xt)),

⋄

Recall that a set in a normed linear space is (sequentially) compact if every sequence in the set has a converging subse-
quence.

Assumption 5.2.1 (Condition WF) (i) For every continuous and bounded v on X (that is, v ∈ Cb(X)),
∫
X T (dy|x, u)v(y)

is a continuous function on X× U (in this case, we call T a weakly continuous transition kernel).

(ii) The cost function to be minimized c(x, u) is bounded and continuous on both U and X.

(iii)If applicable, cN is continuous and bounded.

(iv)Ut(x) = U is compact.

Assumption 5.2.2 (Condition S) (i) For every measurable and bounded v on X (that is, v ∈ L∞(X;R)),
∫
X T (dy|x, u)v(y)

is a continuous function on U, for every fixed x (in this case, we call T a strongly continuous transition kernel in u for
every fixed x).

(ii) For every x ∈ X the bounded measurable cost function c(x, u) is continuous on U,

(iii)If applicable, cN is bounded measurable.

(iv)Ut(x) = U is compact.

Theorem 5.2.1 Under Assumption 5.2.1 or Assumption 5.2.2, there exists an optimal solution and the measurable selection
hypothesis applies, and there exists a minimizing control policy ft : X → U. Furthermore, under Assumption 5.2.1, Jt is
continuous for any t ≥ 0.

The result follows from the following three lemmas below:

Lemma 5.2.1 A continuous function f : X → R over a compact set A ⊂ X admits a minimum.

Proof. Let δ = infx∈A f(x). Let {xi} be a sequence such that f(xi) converges to δ. Since A is compact {xi} must have
a converging subsequence {xi(n)}. Let the limit of this subsequence be x̄. Then, it follows that, {xi(n)} → x̄ and thus, by
continuity {f(xi(n))} → f(x̄). As such f(x̄) = δ. ⋄

To see why compactness is important, consider infx∈A 1
x for A = [1, 2) or A = R. In both cases there does not exist an x

value in the specified set which attains the infimum.

Lemma 5.2.2 Let U be compact, and c(x, u) be continuous on X× U. Then, minu∈U c(x, u) is continuous on X.

Proof. Let xn → x, un optimal for xn and u optimal for x. Such optimal action values exist as a result of compactness of
U and continuity. Now,

|min
u
c(xn, u)−min

u
c(x, u)|

≤ max

(
c(xn, u)− c(x, u), c(x, un)− c(xn, un)

)
(5.7)

The first term above converges to zero since c is continuous in x, u. The second converges also. Suppose otherwise. Then,
for some ϵ > 0, there exists a subsequence such that
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|c(x, ukn)− c(xkn , ukn)| ≥ ϵ

Consider the sequence (xkn , ukn). There exists a further subsequence (in this sequence (xkn , ukn)) (xk′n , uk′n) which
converges to x, u′ for some u′ since U is compact. Hence, for this subsequence, we have convergence of c(xk′n , uk′n) as
well as c(x, uk′n) to the same term, leading to a contradiction. ⋄

Lemma 5.2.3 Let c(x, u) be a continuous function on U for every x, where U is a compact set. Then, there exists a Borel
measurable function f : X → U such that

c(x, f(x)) = min
u∈U

c(x, u)

Proof. A sketch is as follows: Let c̃(x) := minu∈U c(x, u). The function

c̃(x) := min
u∈U

c(x, u),

is Borel measurable. This follows from the observation that it is sufficient to prove that {x : c̃(x) > α} is Borel for every
α ∈ R. By continuity of c and compactness of U, with a successively refining quantization of the space of control actions U
(such a sequence of quantizers map U to a sequence of finite sets (expanding as n increases), so that limn→∞ supu |Qn(u)−
u| = 0 and the cardinality |Qn(U)| <∞ for every n)

{x : c̃(x) > α} =
⋂
n

⋂
Qn(u),u∈U

{x : c(x,Qn(u)) > α}

the result follows since each of {x : c(x,Qn(u)) > α} is Borel. Define F := {(x, u) : c(x, u) = c̃(x), x ∈ X.} This set
is a Borel set and for every x, {u : (x, u) ∈ F} is a closed set. The question is now whether one can construct a measurable
(selection) function γ in F so that {(x, γ(x)), x ∈ X} ⊂ F. One can construct a measurable function which lives in this
set, using the property that U is a separable metric space: This builds on measurable selection results, e.g. Schäl [269]
and [189]; see Theorem C.0.1 (building on [159, Theorem 2], [269], [268] and [189], among others; see Appendix C).

⋄

5.2.1 Some Relaxations on the Measurable Selection Conditions

We first note that one can replace the compactness condition with an inf-compactness condition, and modify Condition 1
in Assumption 5.2.1 as below:

Assumption 5.2.3 (Condition 3) For every x ∈ X the cost function to be minimized c(x, u) is continuous on X × U; is
non-negative; {u : c(x, u) ≤ α} is compact for all α > 0 and all x ∈ X;

∫
X T (dy|x, u)v(y) is a continuous function on

X× U for every continuous and bounded v.

Theorem 5.2.2 Under Assumption 5.2.3, the Measurable Selection Hypothesis applies.

The measurable selection results also hold when U(x) depends on x so that it is compact for each x and {(x, u) : u ∈
U(x), x ∈ X} is a Borel subset of X× U:

Lemma 5.2.4 [159, Theorem 2], [269] [189] Let X,U be standard Borel spaces and Υ = (x, ψ(x)) where ψ(x) ⊂ U be
such that, ψ(x) is compact for each x ∈ X and Υ is a Borel measurable set in X×U. Let c(x, u) be a continuous function
on ψ(x) for every x.

(i) Then, there exists a Borel measurable function f : X → U such that

c(x, f(x)) = min
u∈ψ(x)

c(x, u)
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(ii) If continuity is also to be attained for the value function c(x, f(x)) (a close look at the proof of Lemma 5.2.2 reveals
that) it suffices if U(x) is compact and U(x) is an upper semi-continuous set-valued function (the implication being
that: for any xn → x and u′n ∈ U(xn), there exists a subsequence u′nk which converges to some u′ with the property
that u′ ∈ U(x)) and c is continuous.

We could relax the continuity condition and change it with lower semi-continuity. A function is lower semi-continuous
at x0 if lim infx→x0 f(x) ≥ f(x0). We state the following, see also [155, Theorem 3.3.5] (we note there is a slight typo
in [155, Theorem 3.3.5]; in [155, Condition 3.3.2.(c2)] should be assumed and only [155, Condition 3.3.2(c1)] is not
sufficient for [155, Condition 3.3.2] to imply measurable selection).

Theorem 5.2.3 The following hold:

(a) Suppose that (i) U(x) is compact for every x and {(x, u) : u ∈ U(x)} is a Borel subset of X × U, (ii) c is lower
semi-continuous on U(x) for every x ∈ X, and (iii)

∫
v(xt+1)P (dxt+1|xt = x, ut = u) is lower semi-continuous on

U(x) for every x ∈ X and every measurable and bounded v on X. Then, the measurable selection hypothesis applies.

(b) If (i) c is lower semi-continuous on {(x, u) : u ∈ U(x), x ∈ X}, (ii) for every lower semi-continuous function v on
X,
∫
v(xt+1)P (dxt+1|xt = x, ut = u) is lower semi-continuous on {(x, u) : u ∈ U(x), x ∈ X}, and (iii) U(x) is

compact for every x ∈ X and U(x) is an upper semi-continuous set-valued function; then the value function v is lower
semi-continuous.

For further related relaxations, see Appendix C and [155, Appendix D].

Universally Measurable Policies. As we discuss in Appendix C, studying the class of universally measurable and semi-
analytic functions allows one to even further relax conditions required for carrying out dynamic programming recursions
(and integrations) with regard to their well-posedness properties and for arriving at ϵ-optimal policies via dynamic pro-
gramming.

For many problems, one can compute an optimal solution directly, without explicitly studying existence. The linear
quadratic setup is one such important case.

5.3 The Linear Quadratic Regulator (LQR) Problem

Consider the following linear system

xt+1 = Axt +But + wt, (5.8)

where x ∈ Rn, u ∈ Rm and w ∈ Rn. Suppose {wt} is i.i.d. zero-mean with a given covariance matrix E[wtw
T
t ] =W for

all t ≥ 0 (not necessarily Gaussian).

The goal is to obtain
inf
γ∈ΓA

J(x, γ),

where

J(x, γ) = Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut + xTNQNxN ], (5.9)

with R = RT > 0, Q = QT ≥ 0, QN = QTN ≥ 0 (where, for matrices, the notations > and ≥ denote the positive-definite
and positive semi-definite properties, respectively).

Theorem 5.3.1 Consider (5.9). The optimal control is linear and has the form:
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ut = −(BTPt+1B +R)−1BTPt+1Axt

where Pt solves the Discrete-Time Riccati Equation:

Pt = Q+ATPt+1A−ATPt+1B(BTPt+1B +R)−1BTPt+1A, (5.10)

with final condition PN = QN . The optimal cost is given by

J(x0) = xT0 P0x0 +

N−1∑
t=0

E[wTt Pt+1wt]

In the following, we study the Riccati equation (5.10). Consider the linear system

xt+1 = Axt +But, yt = Cxt (5.11)

Here, yt is a measurement variable and xt is an Rn-valued state variable. Such a system is said to be controllable [79],
if for any initial xi and a final xf , there exists T ∈ N and a sequence of control actions u0, u1, · · · , uT−1 such that with
x0 = xi, we have xT = xf . If xf is restricted to be 0 ∈ Rn, and the above holds (but possibly with T → ∞), the system
is said to be stabilizable. Thus, the only modes in a stabilizable system that are not controllable are the stable ones.

Now let B = 0 in (5.11). Such a system is said to be observable if by measuring y0, y1, · · · , yT , for some T ∈ N, x0 can
be uniquely recovered. Such a system is called detectable if all unstable modes of A are observable, in the sense that if
{yt} → 0, it must be that {xt} → 0.

There are well-known algebraic tests to verify controllability and observability. A very useful result building on the Cayley-
Hamilton theorem is that if a system cannot be moved from any initial state to any final state in n (that is, the dimension
of Rn) time stages, the system is not controllable; and if a system’s initial state cannot be recovered by having the n
measurements {y0, y1, · · · , yn−1}, the system is not observable. In particular, the linear system above with matrices (A,B)
is controllable if and only if [

B AB · · · An−1B
]

is full-rank. The pair (A,C) is observable if and only if (AT , CT ) is controllable.

For a review of linear systems theory, the reader is referred to, e.g. [79].

Theorem 5.3.2 (i) If (A,B) is controllable there exists a solution to the Riccati equation

P = Q+ATPA−ATPB(BTPB +R)−1BTPA.

(ii) if (A,B) is controllable and, with Q = CTC, (A,C) is observable; as t → −∞ (or as N → ∞ with QN = P̄ fixed
for an arbitrary positive semi-definite matrix P̄ ), the sequence of Riccati recursions,

Pt = Q+ATPt+1A−ATPt+1B(BTPt+1B +R)−1BTPt+1A,

converges to some limit P that satisfies

P = Q+ATPA−ATPB((BTPB +R))−1BTPA.

That is, convergence takes place for any initial condition P̄ . Furthermore, such a P is unique, and is positive definite.
Finally, under the optimal stationary control policy

ut = −(BTPB +R)−1BTPAxt,

the solution to xt+1 = Axt +But is stable; i.e., xt → 0.

(iii)Under the conditions of part (ii), the stationary policy above minimizes,
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lim sup
N→∞

1

N
Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut], (5.12)

for the system (5.8), for every x ∈ Rn. Furthermore, the optimal cost is E[wTPw] = Trace(PW ).

Remark 5.3. Part (i) can be relaxed to (A,B) being stabilizable; and part (ii) to (A,C) being detectable for the existence
of a unique P and a stable system under the optimal policy. In this case, however, P may only be positive semi-definite.

Proof.

(i) Assume that wt = 0 for all t; the noise does not affect the recursions in the Riccati equation. Now, since the system is
controllable there exists a control sequence such that xt = 0 for t ≥ n which also satisfies ut = 0 for t ≥ n. The cost∑∞
t=0 x

T
t Qxt + uTt Rut induced by this control sequence is finite (and thus bounded by some M(x0)). Now, define

P
(N)
0 through

xT0 P
(N)
0 x0 = inf

γ∈ΓA

Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut]

and observe that
xT0 P

(N)
0 x0 ≤ xT0 P

(N+1)
0 x0 ≤M(x0).

As a result, for a fixed x0, we can conclude that the sequence {xT0 P
(N)
0 x0, T ≥ 0} is monotone (non-decreasing) and

bounded from above. Thus, the sequence has a limit. By selecting different values of x0 (e.g., with x0 =
[
1 0 0 · · · 0

]T
,

x0 =
[
0 1 0 · · · 0

]T
, x0 =

[
1 1 0 · · · 0

]T
and so on), we conclude that there is a fixed point P such that xT0 P

(N)
0 x0 →

xT0 Px0 for any x0 ∈ Rn (i.e., P (N)
0 → P point-wise in the matrix entries).

(ii) As above, assume again that wt = 0 for all t ≥ 0. Let P be the fixed point in (i). We will show that this is the unique
fixed point.

We use the property that, through a change of limit supremum and infimum argument (as in Lemma 5.5.1 further
below),

∞ > M(x) ≥ inf
γ∈ΓA

lim sup
N→∞

Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut]

≥ lim sup
N→∞

inf
γ∈ΓA

Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut] = xTPx (5.13)

Now, we show that, the sequence of policies that are optimal for each N converge to the stationary policy by γ∗(xt) =
−(BTPB +R)−1BTPAxt and that this policy attains the cost xTPx: Note that, with x0 = x,

xTPx = Eγ
∗
[(

N−1∑
t=0

xTt Qxt + uTt Rut) + xTNPxN ] (5.14)

is finite and as a result, under this policy γ∗, we have that
∑∞
t=0 x

T
t Qxt + uTt Rut is finite.

However, since the induced cost is finite and R > 0, under this control policy, ut → 0. Therefore, the policy γ∗

ut = −(BTPB +R)−1BTPAxt = γ∗(xt),

is stabilizing: This follows because since xTQxt → 0 (and ut → 0), by observability of (C,A) it must be that xt → 0
as well (note that here one should also use that ut → 0). As a result, we conclude that, by taking N → ∞ in (5.14), γ∗

satisfies

xTPx = Eγ
∗
[

∞∑
t=0

xTt Qxt + uTt Rut],
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and is therefore optimal (by 5.13).

Given this optimality (which will be useful also for (iii) below), we now show uniqueness. Let

xT0 P
N,P̄
0 x0 := inf

γ∈ΓA

Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut + xTN P̄ xN ] (5.15)

be the solution of the optimization problem where PN = P̄ . We will show that PN,P̄0 → P regardless of the value of
the positive semi-definite matrix P̄ , leading to the uniqueness of the limit.

By writing Eγ
∗

x0
[xTN P̄ xN ] = Eγ

∗

x0
[xTNPxN ] + Eγ

∗

x0
[xTN (P̄ − P )xN ], noting that, as P is a solution to the Riccati

recursion,

Eγ
∗

x [

N−1∑
t=0

xTt Qxt + uTt Rut + xTNPxN ] = xT0 Px0,

we have that

xT0 P
(N)
0 x0 ≤ xT0 P

N,P̄
0 x0 ≤ Eγ

∗

x [

N−1∑
t=0

xTt Qxt + uTt Rut + xTNPxN ] + Eγ
∗

x0
[xTN (P̄ − P )xN ].

or
xT0 P

(N)
0 x0 ≤ xT0 P

N,P̄
0 x0 ≤ xT0 Px0 + Eγ

∗

x0
[xTN (P̄ − P )xN ].

The above holds as γ∗ is not necessarily optimal, and provides an upper bound, for (5.15). However, through the
property that xN → 0 as N → ∞ under ut = γ∗(xt), we conclude that PN,P̄0 → P and hence uniqueness follows.

(iii)As in (ii), we use the property that, through a change of limit supremum and infimum argument (as in Lemma 5.5.1
further below),

inf
γ∈ΓA

lim sup
N→∞

1

N
Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut]

≥ lim sup
N→∞

1

N
inf
γ∈ΓA

Eγx [

N−1∑
t=0

xTt Qxt + uTt Rut] (5.16)

Since, infγ∈ΓA
Eγx [

∑N−1
t=0 xTt Qxt + uTt Rut] is determined by P (N) that converges to P , leading to the optimality of

γ∗, and the policy ut = −(BPB+R)−1BTPAxt is stabilizing, this implies that the policy γ∗ is optimal for (5.12) as
well; see (5.13) and the following discussion. The optimal cost then is E[wTPw] = Trace(PW ), via observing that
P

(N)
t+1 → P for all t as N → ∞ and writing

lim
N→∞

1

N

(
xT0 P

(N)
0 x0 +

N−1∑
t=0

E[wTt P
(N)
t+1wt]

)
= E[wTPw].

⋄

We will discuss average cost optimization problems in further detail in Chapter 7.

5.4 Optional: A Strategic Measures Approach

For stochastic control problems, strategic measures are defined (see [269], [111] and [118]) as the set of probability
measures induced on the product spaces of the state and action pairs by measurable control policies: Given an initial
distribution on the state, and a policy, one can uniquely define a probability measure on the product space. Topological
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properties, such as measurability and compactness, of sets of strategic measures are studied in [269], [111], [118]
and [47].

We assume, as before, that the spaces considered are standard Borel. In the following, we consider a finite horizon
problem, with time horizon N − 1.

Theorem 5.4.1 Let LR(µ) be the set of strategic measures induced by (possibly randomized) ΓA with x0 ∼ µ. Then,
for any P ∈ LR(µ), there exists an augmented space Ω and a probability measure η such that

P (B) =

∫
Ω

η(dω)P γ(ω)µ (B), B ∈ B((X× U)N ),

where each γ(ω) ∈ ΓA is deterministic admissible.

Proof. Here, we build on Lemma 1.2 in Gikhman and Shorodhod [137] and Theorem 1 in [117]. Any stochastic
kernel P (dx|y) can be realized by some measurable function x = f(y, v) where v is a uniformly distributed random
variable on [0, 1] and f is measurable (see also [54] for a related argument). One can define a new random variable
(ω = (v0, v1, · · · , vT−1)). In particular, η can be taken to be the probability measure constructed on the product space
[0, 1]N by the independent variables vk, k ∈ {0, 1, · · · , N − 1}. ⋄

One implication of this theorem is that if one relaxes the measure η to be arbitrary, a convex representation would be
possible. That is, the set

P (B) =

∫
Ω

η(dω)P γ(ω)µ (B), B ∈ B((X× U)N ), η ∈ P(Ω)

is convex, when one does not restrict η to be a fixed measure. Furthermore, the extreme points of these convex sets
consist of policies which are deterministic. A further implication then is that, since the expected cost function is linear
in the strategic measures, one can without any loss consider the extreme points while searching for optimal policies. In
particular,

inf
γ∈ΓMR

J(x, γ) = inf
γ∈ΓM

J(x, γ)

and
inf

γ∈ΓAR

J(x, γ) = inf
γ∈ΓA

J(x, γ).

Thus, deterministic policies are as good as any other. This is certainly not surprising in view of Theorem 5.1.1.

We present the following characterization for strategic measures. Let for all n ∈ N, hn = {x0, u0, · · · , xn−1, un−1, xn, un},
and P (dxn|hn−1) = T (dxn|xn−1, un−1) be the transition kernel.

Let LA(µ) be the set of strategic measures induced by deterministic policies and let LR(µ) be the set of strategic
measures induced by independently provided randomized policies. Such an individual randomized policy can be rep-
resented in a functional form, as noted earlier: for any stochastic kernel Πk from Yk to Uk, there exists a measurable
function γk : [0, 1]× Yk → Uk such that

m{r : γk(r, yk) ∈ A} = γk(uk ∈ A|yk), (5.17)

and m is the uniform distribution (Lebesgue measure) on [0, 1].

Theorem 5.4.2 A probability measure P ∈ P
(∏N

k=1(X×U)
)

is a strategic measure induced by a randomized policy

(that is in LR(µ)) if and only if for every n ∈ N and for all continuous and bounded g:∫
P (dhn−1, dxn)g(hn−1, xn) =

∫
P (dhn−1)

(∫
X
g(hn−1, z)T (dz|hn−1)

)
,

(5.18)
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(where we recall that T (B|hn−1) =
∫
B
T (dxn|xn−1, un−1)), and∫

P (dhn)g(hn−1, xn, un) =

∫
P (dhn−1, dxn)

(∫
Un

g(hn−1, xn, a)γ
n(da|hn−1, xn)

)
,

(5.19)

for some stochastic kernel γn on Un given hn, xn, with P (dω0) = µ(dw0).

Proof. The proof follows from the fact that testing the equalities such as (5.18-5.19) on continuous and bounded
functions implies this property for any measurable and bounded function (that is, continuous and bounded functions
form a separating class, see e.g. [40, p. 13] or [114, Theorem 3.4.5]) ⋄

An implication is the following.

Theorem 5.4.3 [269] The set of strategic measures induced by admissible randomized policies is compact under the
weak convergence topology if T (dxt+1|xt = x, ut = u) is weakly continuous in x, u and X,U are compact.

An implication of this result is that optimal policies exist, and are deterministic when the cost function is continuous in
x, u.

We note also that Schäl [269] introduces a more general topology, w − s topology, which requires strong continuity in
control actions. In this case, one can generalize Theorem 5.4.3 to the setups where Condition 2 applies and existence
of optimal policies follows.

We refer the reader to the Appendix, Section D.4, for a definition of the w-s topology.

Theorem 5.4.4 [269] The set of strategic measures induced by admissible randomized policies is sequentially compact
under the w-s topology if T (dxt+1|xt = x, ut = u) is strongly continuous in u for every x and X,U are compact.

The proofs of Theorems 5.4.3 and 5.4.4 follow from the property that to check whether a conditional independence
property, as in (5.18-5.19)), holds testing these on continuous and bounded functions implies this property for any
measurable and bounded function. Note that (5.19) holds since there is no conditional independence property condition,
and the main issue is to establish that (5.18) holds for any converging sequence of strategic measures. Applying the
hypotheses for each of the theorems leads to the desired results.

An implication of Theorem 5.4.4 is that an optimal strategic measure exists under the conditions of the theorem,
provided that the R+-valued cost function c is lower semi-continuous in u for every x. In particular, for any w-s
converging sequence of strategic measures satisfying (5.18)-(5.19) so does the limit. By [269, Theorem 3.7], and the
generalization of Portmanteau theorem for the w-s topology, the lower semi-continuity of the integral cost over the set
of strategic measures leads to the existence of an optimal strategic measure.

Now, we know that an optimal policy will be deterministic as a consequence of Theorem 5.4.1. Thus, an optimal policy
(which is deterministic) exists.

5.5 Infinite Horizon Optimal Discounted Cost Control Problems

When the time horizon becomes unbounded, we cannot directly invoke dynamic programming in the form considered
earlier. Infinite horizon problems that we will consider will belong to two classes: Discounted cost and average cost
problems. In the following, we first discuss the discounted cost problem. The average cost problem is discussed in
Chapter 7.

Under the discounted cost criterion, future cost realizations are discounted: the future is perceived to be less important
than the current time with different justifications depending on the applications, e.g. due to the uncertainty in the
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future leading one become more cautious about optimizing for the distant time stages, or perhaps due to an economic
understanding that the current value of a good is more important than its value in the future.

For a given T ∈ Z+, the expected discounted cost criterion is given as:

JTβ (x0, γ) = Eγx0
[

T−1∑
t=0

βtc(xt, ut)], (5.20)

for some β ∈ (0, 1). If there exists a policy γ∗ which minimizes this cost, the policy is said to be optimal. We often
consider an infinite horizon problem by taking the limit (when c is non-negative)

Jβ(x0, γ) = lim
T→∞

Eγx0
[

T−1∑
t=0

βtc(xt, ut)],

and invoking the monotone convergence theorem:

Jβ(x0, γ) = Eγx0
[

∞∑
t=0

βtc(xt, ut)].

We seek to find
Jβ(x0) = inf

γ∈ΓA

Jβ(x0, γ).

Define
inf
γ∈ΓA

JTβ (x0, γ) = JTβ (x0)

Lemma 5.5.1 Let A be a set and {fn} be a sequence of maps from fn : A → R for all n ∈ N. Then,

lim sup
n→∞

inf
x∈A

fn(x) ≤ inf
x∈A

lim sup
n→∞

fn(x).

Proof. For any n ∈ N and y ∈ A we have
inf
x∈A

fn(x) ≤ fn(y).

This holds for all n we can take the limit superior of both sides, which yields

lim sup
n→∞

inf
x∈A

fn(x) ≤ lim sup
n→∞

fn(y).

This inequality holds for all y ∈ A and thus

lim sup
n→∞

inf
x∈A

fn(x) ≤ inf
x∈A

lim sup
n→∞

fn(x).

⋄

By Lemma 5.5.1, we change the order of limit and infimum so that

Jβ(x0) ≥ lim sup
T→∞

JTβ (x0) (5.21)

but since lim exists for the right-hand side as the expression is monotonically increasing the limit superior becomes an
actual limit and thus

Jβ(x0) ≥ lim
T→∞

JTβ (x0).

We will make use of this relation explicitly in Lemma 5.5.4 below. Now, observe that (from (5.20))
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JTβ (x0, γ) = Eγx0

[
c(x0, u0) + Eγ [

T−1∑
t=1

βtc(xt, ut)|x1, x0, u0]|x0, u0]
]
,

writes as

JTβ (x0, γ) = Eγx0

[
c(x0, u0) + βEγ [

T−1∑
t=1

βt−1c(xt, ut)|x1, x0, u0]|x0, u0
]
.

Through the controlled Markov property and the fact that without any loss Markov policies are as good as any other
for finite horizon problems, it follows that (if dynamic programming recursions are well-defined)

JTβ (x0) = inf
u0

Eγx0

[
c(x0, u0) + βEγ [JT−1

β (x1)|x0, u0]
]

(5.22)

We also saw in fact, under measurable selection conditions, via Bellman’s Theorem 5.1.3, the above is in fact an
equality. The goal is now to take T → ∞ and obtain desirable structural properties. The limit

lim
T→∞

JTβ (x0)

will be a lower bound to Jβ(x0) by (5.21). But the inequality will turn out to be an equality under mild conditions to
be studied in the following. The next result is on the exchange of the order of the minimum and limits.

Lemma 5.5.2 [155] Let Vn(x, u) ↑ V (x, u) pointwise. Suppose that Vn and V are continuous in u for every x, and
u ∈ U(x) = U is compact. Then,

lim
n→∞

min
u∈U(x)

Vn(x, u) = min
u∈U(x)

V (x, u)

Proof. The proof follows from essentially the same arguments as in the proof of Lemma 5.2.2. Let u∗n solve
minu∈U(x) Vn(x, u). Note that

| min
u∈U(x)

Vn(x, u)− min
u∈U(x)

V (x, u)| ≤ V (x, u∗n)− Vn(x, u
∗
n), (5.23)

since Vn(x, u) ↑ V (x, u). Now, suppose that for some ϵ > 0

V (x, u∗n)− Vn(x, u
∗
n) ≥ ϵ, (5.24)

along a subsequence nk. There exists a further subsequence n′k such that u∗n′
k
→ ū for some ū. By assumption, for this

x and ū, and every ϵ > 0, we can find a sufficiently large N such that V (x, ū)−VN (x, ū) ≤ ϵ/2. Fix such an N . Now,
for every n′k ≥ N , since Vn is monotonically increasing:

V (x, u∗n′
k
)− Vn′

k
(x, u∗n′

k
) ≤ V (x, u∗n′

k
)− VN (x, u∗n′

k
)

However, V (x, u∗n′
k
) and for the fixed N , VN (x, u∗n′

k
), are continuous hence these two terms converge to: V (x, ū) −

VN (x, ū). Hence (5.24) cannot hold. ⋄

Recall from dynamic programming equations that with

inf
γ∈ΓA

JTβ (x0, γ) = JTβ (x0),

we have (5.22):

JTβ (x0) = min
u0

(
c(x0, u0) + βEγ [JT−1

β (x1)|x0, u0]
)
.

It follows then that

J∞
β (x0) := lim

T→∞
JTβ (x0) = lim

T→∞
min
u0

(
c(x0, u0) + βE[JT−1

β (x1)|x0, u0]
)
,
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where the limit exists due to the monotone convergence theorem since the cost is increasing with T : JTβ (x1) ↑ J∞
β as

T → ∞. If Lemma 5.5.2 applies (i.e., the continuity condition in actions holds), we obtain that

J∞
β (x0) = min

u0

lim
T→∞

(
c(x0, u0) + βE[JTβ (x1)|x0, u0]

)
, (5.25)

and thus

J∞
β (x0) = min

u0

(
c(x0, u0) + βE[J∞

β (x1)|x0, u0]
)
. (5.26)

The following result shows that the fixed point equation (5.26) is closely related to optimality.

Define T as follows:

(T(v))(x) := min
u

(
c(x, u) + β

∫
X
v(y)T (dy|x, u)

)
.

and define the Discounted Cost Optimality Equation (DCOE) as follows

v(x) = (T(v))(x), x ∈ X (5.27)

Lemma 5.5.3 [Verification Theorem] [155]

(i) If v is a measurable R+-valued function under Assumption 5.2.2 (or continuous and bounded function under
Assumption 5.2.1) with v ≥ Tv, then v(x) ≥ Jβ(x).

(ii) If Tv ≥ v and

lim
n→∞

βnEγx [v(xn)] = 0, (5.28)

for every policy and initial condition, then v(x) ≤ Jβ(x). As a result, a fixed point to (5.26) leads to an optimal
policy under (5.28).

Proof.

(i) For some stationary policy f that achieves (whose existence is justified by the measurable selection conditions)

min(c(x, u) + βE[v(x1)|x0 = x, u0 = u]) = c(x, f(x)) + βE[v(x1)|x0 = x, u0 = f(x)],

apply repeatedly

v(x) ≥ c(x, f(x)) + β

∫
v(y)T (dy|x, f(x)) ≥ · · · ≥ Efx [

n−1∑
k=0

βtc(xk, f(xk))] + βnEfx [v(xn)]

Thus, taking the limit and given that v is non-negative valued,

v(x) ≥ lim sup
n→∞

Efx [

n−1∑
k=0

βtc(xk, f(xk))] + βnEfx [v(xn)] ≥ lim
n→∞

Efx [

n−1∑
k=0

βtc(xk, f(xk))] ≥ Jβ(x),

since {f, f, f, · · · , f, · · · } is a particular policy and Jβ(x) is the optimal expected cost among all admissible poli-
cies.

(ii) If Tv(x) ≥ v(x), then

Eγx [β
n+1v(xn+1)|hn] = Eγx [β

n+1v(xn+1)|xn, un]

= βn
(
c(xn, un) + β

∫
v(z)T (dz|xn, un)− c(xn, un)

)
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≥ βn(v(xn)− c(xn, un)) (5.29)

Thus, using the iterated expectations and arranging the terms

Eγx [

n−1∑
k=0

βnc(xn, un)] ≥ E[

n−1∑
k=0

E[βnv(xk)− βn+1v(xk+1)|hk]]

leading to

Eγx [

n−1∑
k=0

βnc(xn, un)] ≥ v(x)− βnEγx [v(xn)]

If the last term on the right hand size converges to zero, then the result is obtained so that for any fixed policy, v
provides a lower bound on the value function. Taking the infimum over all admissible policies, the desired result
v(x) ≤ Jβ(x) is obtained.

⋄

We have the following refinement, where we do not need to check (5.28) for every policy.

Lemma 5.5.4 If
v(x) = lim

T→∞
JTβ (x)

is so that v = T(v) where
T(v)(x) = c(x, f(x)) + βE[v(x1)|x0 = x, u0 = f(x)]

is such that with γ = {f, f, · · · } ∈ ΓS ,

lim
n→∞

βnEγx [v(xn)] = 0, (5.30)

then γ is optimal.

Proof. Equation (5.21) implies that Jβ(x) ≥ v(x) since v is the pointwise limit of the discounted cost functions. Now,
since the stationary policy f achieves

v(x) = min
u∈X

(
c(x, u) + βE[v(x1)|x0 = x, u0 = u]

)
= c(x, f(x)) + βE[v(x1)|x0 = x, u0 = f(x)],

applying this repeatedly to v(x0), v(x1) and then up to v(xn−1) leads to

v(x) = c(x, f(x)) + β

∫
v(x1)T (dx1|x, f(x)) = · · · = Eγx [

n−1∑
k=0

βkc(xk, f(xk))] + βnEγx [v(xn)].

Taking the limit, we have

v(x) = Eγx [

∞∑
k=0

βkc(xk, f(xk))]

implying that γ = {f, f, · · · } is optimal. ⋄

An implication of the proof of the result above is that for any stationary policy γ = {f, f, · · · , f, · · · }, we have the
following equation:

Jβ(x, γ) = c(x, f(x)) + βE[Jβ(x1, γ)|x0 = x, u0 = f(x)] (5.31)

provided that
lim
n→∞

βnEγ [Jβ(xn, γ)] = 0.

This will be useful later on when we study numerical methods.
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A sufficient condition for (5.30) is that the cost function c is bounded, though this is certainly not necessary.

5.5.1 Value Iteration Algorithm and Regularity of Value Functions

By dynamic programming, the Bellman optimality recursion for every finite horizon T ∈ N be written as

JTt (x) = T(JTt+1)(x) = min
u

(
c(x, u) + β

∫
X
JTt+1(y)T (dy|x, u)

)
, t = T − 1, T − 2, · · · , 0, (5.32)

with
JTT (x) = 0.

This sequence will lead to a solution for a T -stage discounted optimal cost problem. In particular, if we define v0 := JTT ,
and vt := JTT−t, we obtain the recursions

vn+1 = T(vn)(x),

which will form the basis of a very important algorithm, known as the value iteration algorithm, to be presented below.
The following then is a consequence of Lemma 5.5.4.

Theorem 5.5.1 [Value Iteration Algorithm: General Cost Setup] Suppose the cost function is non-negative. Consider
the successive iteration

vn(x) = min
u

{c(x, u) + β

∫
X
vn−1(y)T (dy|x, u)},∀x, n ≥ 1 (5.33)

with v0(x) = 0 for all x ∈ X. Then, vn is a monotonically non-decreasing sequence. If this sequence converges
pointwise to a function v where

v(x) = c(x, f(x)) + β

∫
v(y)T (dy|x, f(x))

is such that with γ = {f, f, · · · }, (5.30) holds, then γ is optimal and v is the value function.

A sufficient condition for the iterations in (5.32) to converge is the following. Suppose that measurable selection condi-
tions apply so that the iterations are well defined for every n ∈ Z+. Let there exist a policy which leads to a finite cost
for every initial state and that by dynamic programming the recursions for every T given in (5.32) hold. This sequence
will lead to a solution for a T -stage discounted cost problem. Since JTt (x) ≤ JT+1

t (x), if there exists some J∞
t such

that JTt (x) ↑ J∞
t (x), we could invoke Lemma 5.5.2 to argue that

J∞
t (x) = T(J∞

t+1)(x) = min
u

{c(x, u) + β

∫
X
J∞
t+1(y)T (dy|x, u)}.

Such a limit exists, by the monotone convergence theorem since J∞
t (x) <∞ due to the assumption that there exists a

policy leading to a finite cost for every initial state. Hence, a limit satisfying (5.27) indeed exists. If

{c(x, u) + β

∫
X
J∞
t+1(y)T (dy|x, u)}

and
{c(x, u) + β

∫
X
JTt+1(y)T (dy|x, u)}

are continuous in u for every x and every T and t, by (5.21), a lower bound to an optimal solution will have to satisfy
a fixed point equation (5.27). The result then would follow from Lemma 5.5.4.

In the bounded cost case, we can obtain a very strong result with a direct argument.



100 5 Optimal Stochastic Control with Finite and Discounted Infinite Horizons and Dynamic Programming

Lemma 5.5.5 (i) The space of measurable functions X → R endowed with the ||.||∞ norm (also called the supremum
norm) is a Banach space, that is

L∞(X;R) = {f : X → R : ||f ||∞ = sup
x

|f(x)| <∞}

is a Banach space.
(ii) The space of continuous and bounded functions from X → R, Cb(X), endowed with the ||.||∞ norm is a Banach
space.

Theorem 5.5.2 [Value Iteration Algorithm - Bounded Cost Setup] Suppose the cost function is bounded, non-negative,
and one of the measurable selection conditions (Condition WF in Assumption 5.2.1 or Condition S in Assumption 5.2.2)
applies. Then, there exists a unique solution to the discounted cost problem which solves the fixed point equation.

v(x) = min
u

{c(x, u) + β

∫
X
v(y)T (dy|x, u)}, x ∈ X

Furthermore, the optimal cost (value function) is obtained by a successive iteration (known as the Value Iteration
Algorithm):

vn(x) = min
u

{c(x, u) + β

∫
X
vn−1(y)T (dy|x, u)}, ∀x, n ∈ N (5.34)

For any v0 ∈ L∞(X;R), the sequence converges to a unique fixed point. If v0(x) = 0, x ∈ X, then vn(x) ↑ v(x) for
all x ∈ X (that is, vn monotonically converges to v). If Condition WF applies, then v is also continuous.

Proof of Theorem 5.5.2 Depending on the measurable selection conditions, we can take the value functions to be either
measurable and bounded, or continuous and bounded. (i) Suppose that we consider the measurable and bounded case
(Assumption 5.2.2). We observe that the vector J∞ lives in L∞(X;R) (since the cost is bounded, there is a uniform
bound for every x). We will show that the iteration given by

T(v)(x) = min
u

{c(x, u) + β

∫
X
v(y)T (dy|x, u)}

is a contraction in L∞(X;R). Let

||T(v)− T(v′)||∞ = sup
x∈X

|T(v)(x)− T(v′)(x)|

= sup
x∈X

∣∣∣∣min
u

{c(x, u) + β

∫
X
v(y)T (dy|x, u)} −min

u
{c(x, u) + β

∫
X
v′(y)T (dy|x, u)}

∣∣∣∣
≤ sup

x∈X

(
1{x∈A1}

{
c(x, u∗x) + β

∫
X
v(y)T (dy|x, u∗x)− c(x, u∗x)− β

∫
X
v′(y)T (dy|x, u∗x)

}
+1{x∈A2}

{
− c(x, u∗∗x )− β

∫
X
v(y)T (dy|x, u∗∗x ) + c(x, u∗∗x ) + β

∫
X
v′(y)T (dy|x, u∗∗x )

})
= sup

x∈X

(
1{x∈A1}{β

∫
X
(v(y)− v(y′))T (dy|x, u∗x)}

)
+ sup
x∈X

(
1{x∈A2}{β

∫
X
(v′(y)− v(y))T (dy|x, u∗∗x )}

)
≤ β||v − v′||∞{1{x∈A1}

∫
X
T (dy|x, u∗∗x ) + 1{x∈A2}

∫
X
T (dy|x, u∗x)}

= β||v − v′||∞ (5.35)

Here

A1 =

{
x : min

u
{c(x, u) + β

∫
X
v(y)T (dy|x, u)} ≥ min

u
{c(x, u) + β

∫
X
v′(y)T (dy|x, u)}

}
,

and A2 denotes the complementary event, u∗∗x is a minimizing control for {c(x, u) + β
∫
X v(y)T (dy|x, u)} and u∗x is

a minimizer for {c(x, u) + β
∫
X v

′(y)T (dy|x, u)}. As a result T defines a contraction on the Banach space L∞(X;R),
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and there exists a unique fixed point. Thus, the sequence of iterations in (5.32)

JTt (x) = T(JTt+1)(x) = {min
u

{c(x, u) + β

∫
X
JTt+1(y)T (dy|x, u)}},

converges to JT∞(x) = J∞
0 (x).

In particular, if one lets v0(x) = 0 for all x ∈ X, the iterations increase monotonically and converges to the value
function. If one is only interested in convergence (and not the monotone behaviour), any initial function v0 ∈ L∞(X;R)
is sufficient.

(ii) The above discussion also applies by considering a contraction on the space Cb(X), if Condition WF (Assumption
5.2.1) holds; in this case, the value function sequence vn is continuous for every n ∈ Z+, and by the completeness of
Cb(X) under the supremum norm, so is the limit. ⋄

5.5.2 Lipschitz Regularity of Value Functions and the Case with Unbounded Costs

Lipschitz regularity of value functions

A further regularity property is the following. In the following W1 is the Wasserstein metric on probability measures;
see Appendix D. The following property will be useful later, when we study approximation and learning theoretic
applications.

Assumption 5.5.1 Let d(·, ·) denote the metric on X. We assume that for some K1,K2:

(a) |c(x, u)− c(y, u)| ≤ K1d(x, y); that is, c(·, u) is K1-Lipschitz (denoted with the notation c(·, u) ∈ Lip(X,K1)).

(b) W1(T (dx1|x0 = x, u0 = u), T (dx1|x0 = y, u0 = u)) ≤ K2d(x, y).

Theorem 5.5.3 [160] [256, Theorem 4.37] Suppose that Assumptions 5.2.1 and 5.5.1 hold. Then, the solution to

v = T(v)

is Lipschitz with coefficient K = K1

1−βK2
.

Proof Let f ∈ Lip(X, k), that is f be k-Lipschitz for some k ∈ R. Then,

| Tf(z)− Tf(y) | ≤ max
u∈U

{
|c(z, u)− c(y, u)|

+ β

∣∣∣∣∫
X
f(x1)η(dx1|z, u)−

∫
X
f(x1)η(dx1|y, u)

∣∣∣∣ }
≤ K1d(z, y) + βkK2d(z, y) = (K1 + βkK2) d(z, y) =:M1d(z, y). (5.36)

By induction we have for all n ≥ 2
Tnf ∈ Lip (X,Mn) ,

where Mn = K1 +βK2Mn−1 and thus Mn = K1

∑n−1
i=0 (βK2)

i
+ k (βK2)

n. Taking k ≤ K1

1−βK2
, we certify that the

fixed point satisfies the desired Lipschitz continuity, as the sequence Mn monotonically converges to K1

1−βK2
. Hence,

Tnf ∈ Lip
(
X, K1

1−βK2

)
for all n, and therefore, the unique solution to the fixed point equation satisfies

v ∈ Lip

(
X,

K1

1− βK2

)
(5.37)

⋄
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When X is not compact, note that we may still need to verify (5.30) to claim optimality.

Remark 5.4. We finally note that similar contraction arguments can also be applied to functions that are not necessar-
ily continuous, but only lower semi-continuous bounded functions, which also constitute a Banach space under the
supremum norm.

A further contraction argument for unbounded costs

As discussed earlier, one could follow the iteration method for the unbounded case (as in the proof of Theorem 5.5.1),
whereas the contraction method in the proof of Theorem 5.5.2 holds for the bounded cost case. The contraction method
can also be adjusted for the unbounded case under further conditions: If the cost is not bounded, one can define a
weighted sup-norm (called an f -norm): ∥c∥f = supx |

c(x)
f(x) |, where f is a positive function uniformly bounded from

below by a positive number. The contraction discussion above will apply to this context with such a consideration,
provided that the value function v used in the contraction analysis can be shown to satisfy ∥v∥f < ∞. For a suitable
function w, let Bw(X) denote the Banach space of measurable functions with a bounded w-norm. We state the corre-
sponding results formally in the following. We state two sets of conditions, one corresponds an unbounded function
generalization of strong continuity and the other of weak continuity conditions.

Assumption 5.5.2 (i) The one stage cost function c(x, u) is nonnegative and continuous in u for every x.

(ii) The stochastic kernel T ( · |x, u) is strongly continuous in u for every x, i.e., if uk → u, then
∫
u(y)T (dy|x, uk) →∫

u(y)T (dy|x, u) for every measurable and bounded function u.

(iii)U is compact.

(iv)There exist nonnegative real numbers M and α ∈ [1, 1
β ), and a weight function w : X → [1,∞) such that for each

z ∈ X, we have

sup
u∈U

|c(x, u)| ≤Mw(x), (5.38)

sup
u∈U

∫
X
w(y)T (dy|x, u) ≤ αw(x), (5.39)

and
∫
X w(y)T (dy|x, u) is continuous in u for every x.

Assumption 5.5.3 (i) The one stage cost function c(x, u) is nonnegative and continuous in (x, u).

(ii) The stochastic kernel T ( · |x, u) is weakly continuous in (x, u) ∈ X × U, i.e., if (xk, uk) → (x, u), then
T ( · |xk, uk) → T ( · |x, u) weakly.

(iii)U is compact.

(iv)There exist nonnegative real numbers M and α ∈ [1, 1
β ), and a continuous weight function w : X → [1,∞) such

that for each z ∈ X, we have

sup
u∈U

|c(x, u)| ≤Mw(x), (5.40)

sup
u∈U

∫
X
w(y)T (dy|x, u) ≤ αw(x), (5.41)

and
∫
X w(y)T (dy|x, u) is continuous in (x, u).

Define the operator T on the set of real-valued measurable functions on X as

Tv(z) = min
a∈U

{
c(z, a) + β

∫
X
v(y)T (dy|z, a)

}
. (5.42)
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It can be proved that T is a contraction operator mapping Bw(X) into itself with modulus σ = βα (see [156, Lemma
8.5.5]); that is,

∥Tu− Tv∥w ≤ β∥u− v∥w for all u, v ∈ Bw(X).

Theorem 5.5.4 [156, Theorem 8.3.6] [156, Lemma 8.5.5] Suppose Assumption 5.5.2 (or 5.5.3) holds. Then, the value
function J∗ is the unique fixed point in Bw(X) (or Bw(X)∩C(X) under Assumption 5.5.3) of the contraction operator
T, i.e.,

J∗ = TJ∗. (5.43)

Furthermore, a deterministic stationary policy f∗ is optimal if and only if

J∗(z) = c(z, f∗(z)) + β

∫
X
J∗(y)T (dy|z, f∗(z)). (5.44)

Finally, there exists a deterministic stationary policy f∗ which is optimal (and thus satisfies (5.44)).

The proof follows from [156, Theorem 8.3.6]. See also [156, Lemma 8.5.5].

5.6 Regularity of Transition Kernels

We have seen in the chapter that continuity and regularity of transition kernels play a significant role for carrying out
optimality analysis. Later on we will see that these are also important for approximations, robustness, and learning
theoretic results and applications.

We review the following regularity properties for the transition kernels:

(i) T (·|x, u) is said to be weakly continuous (weak Feller) in (x, u), if T (·|xn, un) → T (·|x, u) weakly for any
(xn, un) → (x, u).

(ii) T (·|x, u) is said to be strongly continuous (strong Feller) in u for every x, if T (·|x, un) → T (·|x, u) setwise for
any un → u for every fixed x ∈ X.

(iii)T (·|x, u) is said to be continuous under total variation in (x, u), if ∥T (·|xn, un) − T (·|x, u)∥TV → 0 for any
(xn, un) → (x, u).

(iv)T (·|x, u) is said to be continuous under the first order Wasserstein distance in (x, u), if

W1(T (·|xn, un), T (·|x, u)) → 0

for any (xn, un) → (x, u). To ensure continuity of T with respect to the first order Wasserstein distance, in addition
to weak continuity, we may assume that there exists a function g : [0,∞) → [0,∞) such that as t→ ∞, g(t)t ↑ ∞,
and

sup
(x,u)∈K×U

∫
g(∥y∥) T (dy|x, u) <∞

for any compactK ⊂ X. Note that the latter condition implies uniform integrability of the collection of random vari-
ables with probability measures T (dx1|X0 = xn, U0 = un) as (xn, un) → (x, u), which coupled with weak con-
vergence can be shown to imply convergence under the Wasserstein distance. To see this, let (xn, un) → (x∞, u∞)
andXn random variables with law T (·|xn, un) satisfyingXn → X∞ a.s., which is possible by Skorohod’s theorem
(Theorem B.3.5). Then the above condition implies uniform integrability of {Xn}, and thus E[∥Xn −X∞∥] → 0.
Then W1(T (·|xn, un), T (·|x∞, u∞)) → 0.

Example 5.5. Some example models satisfying these regularity properties are as follows:
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(i) For a model with the dynamics xt+1 = f(xt, ut, wt), the induced transition kernel T (·|x, u) is weakly continuous
in (x, u) if f(x, u, w) is a continuous function of (x, u), since for any continuous and bounded function g∫

g(x1)T (dx1|xn, un) =
∫
g(f(xn, un, w))µ(dw)

→
∫
g(f(x, u, w))µ(dw) =

∫
g(x1)T (dx1|x, u)

where µ denotes the probability measure of the noise process. If we also have that X is compact, the transition
kernel T (·|x, u) is also continuous under the first order Wasserstein distance.

(ii) For a model with the dynamics xt+1 = f(xt, ut) +wt, the induced transition kernel T (·|x, u) is continuous under
total variation in (x, u) if f(x, u) is a continuous function of (x, u), and wt admits a continuous density function.

(iii)In general, if the transition kernel admits a continuous density function f so that T (dx1|x, u) = f(x1, x, u)dx1,
then T (dx1|x, u) is continuous in total variation. This follows from an application of Scheffé’s Lemma [42, Theo-
rem 16.12]. In particular, we can write that

∥T (·|xn, un)− T (·|x, u)∥TV =

∫
X
|f(x1, xn, un)− f(x1, x, u)|dx1 → 0.

(iv)For a model with the dynamics xt+1 = f(xt, ut, wt), if f is Lipschitz continuous in (x, u) pair such that, there
exists some α <∞ with

|f(xn, un, w)− f(x, u, w)| ≤ α (|xn − x|+ |un − u|) ,

we can then bound the first order Wasserstein distance between the corresponding kernels with α:

W1 (T (·|xn, un), T (·|x, u)) = sup
Lip(g)≤1

∣∣∣∣∫ g(x1)T (dx1|xn, un)−
∫
g(x1)T (dx1|x, u)

∣∣∣∣
= sup
Lip(g)≤1

∣∣∣∣∫ g(f(xn, un, w))µ(dw)−
∫
g(f(x, u, w))µ(dw)

∣∣∣∣
≤
∫

|f(xn, un, w)− f(x, u, w)|µ(dw) ≤ α (|xn − x|+ |un − u|) .

5.7 Exercises

Exercise 5.7.1 An investor’s wealth dynamics is given by the following:

xt+1 = utwt,

where {wt} is an i.i.d. R+-valued stochastic process with E[
√
wt] = 1 and ut is the investment of the investor at time

t. The investor has access to the past and current wealth information and his previous actions. The goal is to maximize:

J(x0, γ) = Eγx0
[

T−1∑
t=0

√
xt − ut].

The investor’s action set for any given x is: U(x) = [0, x]. His initial wealth is given by x0.

Formulate the problem as an optimal stochastic control problem by clearly identifying the state space, the control action
space, the information available at the controller at any time, the transition kernel and a cost functional mapping the
actions and states to R.
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Find an optimal policy.

Hint: For α ≥ 0,
√
x− u + α

√
u is a concave function of u for 0 ≤ u ≤ x and its maximum is computed when the

derivative of
√
x− u+ α

√
u is set to zero.

Exercise 5.7.2 Consider the following linear system:

xt+1 = Axt +But + wt,

where x ∈ Rn, u ∈ Rm and w ∈ Rn. Suppose {wt} is i.i.d. zero-mean Gaussian with a given covariance matrix
E[wtw

T
t ] =W for all t ≥ 0.

The goal is to obtain
inf
γ
J(x, γ),

where

J(x, γ) = Eγx [

T−1∑
t=0

xTt Qxt + uTt Rut + xTTQTxT ],

with R,Q,QT > 0 (that is, these matrices are positive definite).

a) Show that there exists an optimal policy.

b) Obtain the Dynamic Programming recursion for the optimal control problem. Is the optimal control policy Markov?
Is it stationary?

c) For T → ∞, if (A,B) is controllable and with Q = CTC and (A,C) is observable, prove that the optimal policy
is stationary.

Exercise 5.7.3 (Optimality of Threshold Policies) [ [34]] Consider an inventory-production system given by

xt+1 = xt + ut − wt,

where xt is R-valued, with the one-stage cost

c(xt, ut, wt) = but + hmax(0, xt + ut − wt) + pmax(0, wt − xt − ut)

Here, b is the unit production cost, h is the unit holding (storage) cost and p is the unit shortage cost; here we take
p > b. At any given time, the decision maker can take ut ∈ R+. The demand variable wt ∼ µ is a R+-valued i.i.d.
process, independent of x0, with a finite mean where µ is assumed to admit a probability density function. The goal is
to minimize

J(x, γ) = Eγx [

T−1∑
t=0

c(xt, ut, wt)]

The controller at time t has access to It = {xs, us, s ≤ t− 1} ∪ {xt}.

Obtain a recursive form for the optimal solution. In particular, show that the solution is of threshold type: There exists
a sequence of real-numbers st so that the optimal solution is of the form: ut = 0 × 1{xt≥st} + (st − xt) × 1{xt<st}.
See [33] for a detailed analysis of this problem.

We note that the above is a relatively simplified model (e.g., the inventory can be negative and the cost/reward function
is simple) and such inventory problems can be made more general. Nonetheless, the solution method, via a convex
value function analysis and associated optimality arguments leading to threshold optimality, applies nearly identically
to many problems in stochastic control.

Exercise 5.7.4 (Optimal Stopping) [34]
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Consider a burglar who is considering retirement. His goal is to maximize his earnings up to time T . At any time, he
can either continue his profession to steal an amount of wt which is an i.i.d. R+-valued random process (he adds this
amount to his wealth), or retire.

However, each time he attempts burglary, there is a chance that he gets caught and he loses all of his savings (and
cannot work any further); this happens according to an i.i.d. Bernoulli process so that he gets caught with probability
p at each time stage when he is attempting to steal.

Assume that his initial wealth is x0 = 0. His goal is to maximize E[xT ]. Find his optimal policy for 0 ≤ t ≤ T − 1.

Note: Such problems where a decision maker can quit or stop a process are known as optimal stopping problems.

Exercise 5.7.5 (The Secretary Problem) Consider a manager who interviews N candidates for a position. The man-
ager wishes to maximize the probability of finding the best candidate. The candidates are interviewed in succession
according to a random order (uniformly distributed given all possible permutations). If a candidate is rejected, that
candidate is no longer available and if a candidate is selected, the process is over. The decisions must be made causally
given the available information up to that time, that is if the order is X1, X2, · · · , Xt, the policy can only use the in-
formation generated by σ(X1, · · · , Xt). What is the optimal strategy?

Hint: Apply dynamic programming. At time N , JN = 1
N since at time N the past is given and the best one can

hope for is that the best candidate is the final one, which happens with probability 1
N . Now, consider m = N − 1:

JN−1 = 1
N−1 (max(N−1

N ), JN )+ N−2
N−1JN . Here, the first event is the probability that the N −1st candidate is the best

among the first N − 1 candidates, and in this case the manager needs to decide to stop or wait for the future (which
he does by comparing whether the best among the first N − 1 is the best among all, or whether he should skip and
move to the next time stage, N ). The second event is with probability N−2

N−1 in which case the best among the first N − 1
candidates is not the N − 1st one, in which case the manager has to wait. Continuing on with this logic:

Jm =
1

m
max(

m

N
,Jm+1) +

m− 1

m
Jm+1

where m
N is the probability that the best in the first m is the best among all. Now, computing explicitly, we obtain

JN = 1/N ; JN−1 =
N − 2

N
(

1

N − 2
+

1

N − 1
); · · · ..

and with Jm = m−1
N ( 1

m−1 + 1
m + · + 1

N−1 ), and we stop when m
N ≥ Jm+1 = m

N ( 1
m + 1

m+1 + · + 1
N−1 ). When

N is large enough, the above suggests that we stop as soon as the best candidate thus far has been spotted at time m
when 1 ≥ ( 1

m + 1
m+1 + · + 1

N−1 ) ≈ log(N/m) which means that an optimal policy is around when
∑N−1
m

1
k < 1.

Approximately, this means thatm∗ = N
e is a nearly optimal rule for largeN if them∗th candidate is the best candidate

seen until then.

Exercise 5.7.6 A fishery manager annually has xt units of fish and sells utxt of these where ut ∈ [0, 1]. With the
remaining ones, the next year’s production is given by the following model

xt+1 = wtxt(1− ut) + vt,

with x0 is given and {wt, vt} is a sequence of mutually independent, identically distributed sequence of random vari-
ables with wt ≥ 0, vt ≥ 0 for all t and therefore E[wt] = w̄ ≥ 0 and E[vt] = v̄ > 0.

At time T , he sells all of the fish. The goal is to maximize the profit over the time horizon 0 ≤ t ≤ T − 1.

a) Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control actions,
the information available at the controller, the transition kernel and a cost functional mapping the actions and states
to R.

b) Does there exist an optimal policy? If it does, compute the optimal control policy as a dynamic programming
recursion.
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Exercise 5.7.7 A common example in mathematical finance applications is the portfolio selection problem where a
controller (investor) would like to optimally allocate his wealth between a stochastic stock market and a market with a
guaranteed income : Consider a stock with an i.i.d. random return σt and a bank account with fixed interest rate r > 0.
These are modeled by:

Xt+1 = Xtut(1 + σt) +Xt(1− ut)(1 + r), X0 = 1

and
Xt+1 = Xt(1 + r + ut(σt − r))

Here, ut ∈ [0, 1] denotes the proportion of the money that the investor invests in the stock market. Suppose that the
goal is to maximize E[log(XT )]. Then, we can write:

log(XT ) = log(

T−1∏
k=0

Xk+1

Xk
) =

T−1∑
k=0

log((1 + r + ut(σt − r))) (5.45)

Formulate the problem as an optimal stochastic control problem by clearly identifying the state and the control action
spaces, the information available at the controller, the transition kernel, and a cost functional mapping the actions and
states to R. Find the optimal policy.

Exercise 5.7.8 We will illustrate dynamic programming by considering a simplified version of a paper by B. Hajek
(Optimal Control of Two interacting Service Stations; IEEE Trans. Automatic Control, vol. 29. June 1984).

Consider a two server-station network; where a router routes the incoming traffic, as is depicted in Figure 5.1.

Station 1

Station 2

u

Fig. 5.1

Customers arrive according to a (continuous-time) Poisson process of rate λ. The router routes to station 1 with
probability u and second station with probability 1 − u. The router has access to the number of customers at both of
the queues, while implementing her policy.

Station 1 has a service time distribution which is exponential with rate µ1, and Station 2 with µ2 = µ1, as well. After
some computation, we find out that the controlled transition kernel is given by the following:

P (q1t+1 = q1t + 1, q2t+1 = q2t |q1t , q2t ) = λ
u

λ+ 2µ1

P (q1t+1 = q1t , q
2
t+1 = q2t + 1|q1t , q2t ) = λ

(1− u)

λ+ 2µ1

P (q1t+1 = max(q1t − 1, 0), q2t+1 = q2t |q1t , q2t ) =
µ1

λ+ 2µ1

P (q1t+1 = q1t , q
2
t+1 = max(0, q2t − 1)|q1t , q2t ) =

µ1

λ+ 2µ1

There is also a holding cost per unit time. The holding cost at Station 1 is c1 > 0 and the cost at Station 2 is c2 > 0.
That is if there are q1t customers, the cost is c1q1t at station 1 at time t and likewise for Station 2.
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The goal of the router is to minimize the expected total holding cost from time 0 to some time T ∈ N, where the total
cost is

T∑
t=0

c1q
1
t + c2q

2
t .

a) Express the problem as a dynamic programming problem, up until time T . That is; where does the control action
live? What is the state space? What is the transition kernel for the controlled Markov Chain?

Write down the dynamic programming recursion, starting from time T and going backwards.

b) Suppose that c1 = c2. Let Jt(q1t , q
2
t ) be the value function at time t (that is the current cost and the cost to go).

Via dynamic programming, prove the following:

For a given t, if, whenever 0 ≤ q1t ≤ q2t we have that

Jt(q
1
t , q

2
t ) ≤ Jt(q

1
t − 1, q2t + 1),

then the same applies for Jt−1(., .), for t ≥ 1. With the above, prove that an optimal control policy is given by:

ut = 1{q1t≤q2t },

for all t values.

Exercise 5.7.9 Consider a scalar linear system with the following dynamics:

xt+1 = axt + but + wt,

where {wt} is i.i.d Gaussian with zero-mean and unit variance. Suppose that the controller has access to It =
{x[0,t], u[0,t−1]} at time t. Suppose that the initial state is x0 = x for some x ∈ R. We wish to find for some β ∈ (0, 1):

inf
γ
J(x0, γ) = Eγx [

∞∑
t=0

βt(qx2t + ru2t )],

for q ≥ 0 and r > 0.

Compute the optimal control policy and the optimal cost.

Hint: Use Lemma 5.5.3. Start with a finite horizon version, and apply dynamic programming, obtain the solution and
take the finite horizon to infinity. This is also equivalent to applying value iteration with v0(x) = 0 for all x ∈ R. You
will see that a recursion with vt(x) = Ctx

2 +Dt will be obtained and Ct and Dt will have limits as t → ∞, C and
D, respectively. The optimal control will be stationary and deterministic:

ut = γ(xt) = −(r + βCb2)−1βabCxt, t ≥ 0.

Thus, you need to find C and D.

Exercise 5.7.10 Consider a controlled Markov chain with state space X = {0, 1}, action space U = {0, 1}, and
transition kernel for t ∈ Z+:

P (xt+1 = 1|xt = 0, ut = 1) = P (xt+1 = 1|xt = 0, ut = 0) = α

where α ∈ (0, 1). Furthermore,

P (xt+1 = 1|xt = 1, ut = 0) = P (xt+1 = 1|xt = 1, ut = 1) =
1

2
.

Let a cost function c : X× U → R+ be given by
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c(0, 1) = κ ∈ R+, c(0, 0) = 1

c(1, 0) =
1

2
, c(1, 1) = 1.

Suppose that the goal is to minimize the quantity

EΠ0 [

∞∑
t=0

βtc(xt, ut)],

for a fixed β ∈ (0, 1), over all admissible policies Π ∈ ΠA.

Find an optimal policy and the optimal expected cost explicitly, as a function of α, β, κ (note that the initial condition
is x0 = 0).





6

Partially Observed Markov Decision Processes, Non-Linear Filtering, and
the Kalman Filter

As discussed earlier in Section 2.4, for a large class of problems the controller does not have access to the state process,
but may have access to some partial information obtained via noisy measurements. In particular, in this chapter, we
consider systems of the form:

xt+1 = f(xt, ut, wt), yt = g(xt, vt). (6.1)

Here, xt is the state (with x0 ∼ µ0), ut ∈ U is the control, (wt, vt) are (W×V)-valued i.i.d noise processes where wt
is independent of vt.

The controller only has causal access to the second component {yt} of the process, together with the past applied
control actions. An admissible policy γ = {γt, t ∈ Z+} is a collection of measurable functions so that γt is measurable
with respect to σ(It) with It = {y[0,t], u[0,t−1]} at time t. We emphasize the implicit assumption here that the control
policy can also (and typically does) depend on the prior probability measure µ0. We denote the observed history space
as: H0 := Y, Ht = Ht−1 × Y× U.

In the following P(X) denotes the space of probability measures on X, which we assume to be a Polish space. Under
the topology of weak convergence, P(X) is also a Polish space (see Appendix D).

6.1 Enlargement of the State-Space and the Construction of a Controlled Markov Chain

We will see in this section that one could always transform a Partially Observable Markov Decision Problem (POMDP)
to a Fully Observed Markov Decision Problem (called a belief-MDP) via an enlargement of the state space and a re-
formulation of the model. In particular, when X,Y,U are countable (the more general case will be studied later in the
chapter), we obtain via the properties of total probability the following recursion for conditional probability measures,
given an admissible policy,

πt(x) := P (xt = x|y[0,t], u[0,t−1]) =
P (xt = x, yt, ut−1|y[0,t−1], u[0,t−2])∑
x∈X P (xt = x, yt, ut−1|y[0,t−1], u[0,t−1])

=

∑
xt−1∈X P (yt|xt)P (xt|xt−1, ut−1)P

γ(ut−1|y[0,t−1], u[0,t−2])πt−1(xt−1)∑
xt−1∈X

∑
x∈X P (yt|xt = x)P (xt = x|xt−1, ut−1)P γ(ut−1|y[0,t−1], u[0,t−2])πt−1(xt−1)

.

=

∑
xt−1∈X P (yt|xt)P (xt|xt−1, ut−1)πt−1(xt−1)∑

xt−1∈X
∑
x∈X P (yt|xt = x)P (xt = x|xt−1, ut−1)πt−1(xt−1)

.

=: F (πt−1, yt, ut−1)(x) (6.2)

Notice that the right hand side does not depend on the policy γ, therefore the conditional expectation is policy-
independent. We will see shortly that the conditional measure process forms a controlled Markov chain in P(X).
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Note that in the above analysis P (ut−1|y[0,t−1], u[0,t−2]) is determined by the control policy, and P (xt|xt−1, ut−1) is
determined by the transition kernel T of the controlled Markov chain.

The result above leads to the following.

Theorem 6.1.1 The process {πt, ut} is a controlled Markov chain. That is, under any admissible control policy, given
the action at time t ≥ 0 and πt, πt+1 is conditionally independent from {πs, us, s ≤ t− 1}.

We will prove the result for the case where X is countable. For the more general case, see Section 6.3.

Proof. Let D ∈ B(P(X)). From (6.2), with Yy+1 denoted with the capital letter to emphasize its randomness, we have

P (πt+1 ∈ D|πs, us, s ≤ t) = P (F (πt, Yt+1, ut) ∈ D|πs, us, s ≤ t)

=
∑
y∈Y

P (F (πt, yt+1, ut) ∈ D, yt+1 = y|πs, us, s ≤ t)

=
∑
y∈Y

P (F (πt, yt+1, ut) ∈ D|yt+1 = y, πs, us, s ≤ t)P (yt+1 = y|πs, us, s ≤ t)

=
∑
y∈Y

1{
F (πt,y,ut)∈D

}P (yt+1 = y|πt, ut)

=
∑
y∈Y

1{
F (πt,y,ut)∈D

}( ∑
x′∈X

∑
x∈X

P (yt+1 = y|xt+1 = x′)P (xt+1 = x′|xt = x, ut)πt(x)

)
= P (πt+1 ∈ D|πt, ut) (6.3)

We still need to show that the expression P (πt+1 ∈ ·|πt, ut) : P(X) × U → P(P(X)) is a regular conditional
probability measure; that is, for every fixed D, P (πt+1 ∈ D|πt, ut) is a measurable function on P(X) × U and for
every πt, ut, the map is a probability measure on P(X). The rest of the proof follows in Section 6.3. ⋄

Let the cost function to be minimized be

Eγµ0
[

T−1∑
t=0

c(xt, ut)],

where Eγµ0
[·] denotes the expectation over all sample paths with initial state measure given by µ0 under policy γ =

{γ0, γ1, · · · }. We can transform the system into a fully observed Markov model as follows. Using the law of the iterated
expectations (Theorem 4.1.3), write the total cost as

Eγµ0
[

T−1∑
t=0

c(xt, ut)] = Eγµ0
[

T−1∑
t=0

Eγ [c(xt, ut)|It]].

Given a policy γ with ut = γt(It), we have that

Eγµ0
[

T−1∑
t=0

c(xt, ut)] = Eγµ0

[ T−1∑
t=0

Eγ
[
c(xt, γt(It))|It

]]

= Eγµ0

[ T−1∑
t=0

(∑
x∈X

∑
u∈U

P γ(xt = x|It, ut)P γ(ut = u|It)c(x, u)
)]

= Eγµ0

[ T−1∑
t=0

(∑
x∈X

P γ(xt = x|It)c(x, γt(It))
)]

= Eγµ0

[ T−1∑
t=0

(∑
x∈X

πt(x)c(x, γt(It))

)]
(6.4)
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Notice that P γ(xt = x|It, ut) = P γ(xt = x|It) = P (xt = x|It) is policy-independent as noted earlier. At this
point, we should pause and reflect on Theorem 6.1.1 and (Blackwell’s) Theorem 5.1.1, to conclude that without any
loss a policy, for finite horizons, could use πt and t, by the following reasoning: Define a stage-wise cost function
c̃ : P(X)× U → R+ as

c̃(π, u) =
∑
X
c(x, u)π(x), π ∈ P(X), (6.5)

Observe that an admissible control policy will select ut as a function of It. However, we know that for a finite horizon
problem, by Blackwell’s Theorem 5.1.1, any admissible policy can be replaced with one which only uses πt without
any loss (since πt, ut forms a controlled Markov chain), and therefore without any loss, we can restrict our search space
to policies which are Markov (that is which only use πt and t).

In view of the preceding discussion, it follows then that an optimal solution to the following minimization for the
problem

Eγµ0
[
T−1∑
t=0

c̃(πt, ut)],

for the controlled belief-MDP model with kernel η (6.3), is also optimal for the original problem (6.4), where the initial
state distribution µ0 for the belief-MDP is the probability measure on π0(·) = P (x0 ∈ ·|y0) induced by the initial
probability measure µ0 on x0 and the measurement variable y0.

Let η be the transition kernel defined with (6.3). It follows then that (P,U, η, c̃) defines a completely observable
controlled Markov process (also called a belief-MDP).

Thus, one can obtain the optimal solution by using the solution of the filtering equation (6.2) as a sufficient statistic,
as Markov policies (policies that use the Markov state as their sufficient statistics) are optimal for control of Markov
chains, under the previously studied measurable selection conditions (see Section 5.2) which require some regularity
conditions. We will discuss these later in the chapter.

We call the control policies which use π as their information to generate control as separated control policies; as one
first generates the belief πt via the filtering equation, and then generates the control via πt.

We note here that some of the first separation results for partially observed Markov Decision Processes were reported
in [338], [282], and [248], among others.

Separation will be particularly consequential in the context of linear Gaussian systems: A Gaussian probability measure
can be uniquely identified by knowing the mean and the covariance of the Gaussian random variable. This makes the
analysis for estimating a Gaussian random variable particularly simple to perform, since the conditional estimate of
a partially observed (through an additive Gaussian noise) Gaussian random variable is a linear/affine function of the
observed variable and the non-linear filtering equation (6.2) becomes significantly simpler. Recall that a Gaussian
measure with mean µ and covariance matrix KXX has the following density:

p(x) =
1

(2π)
n
2 |KXX |1/2

e−1/2((x−µ)TK−1
XX

(x−µ)),

and thus it suffices to compute the mean and the covariance matrix to define the Gaussian probability measure.

6.2 The Linear Quadratic Gaussian (LQG) Problem and Kalman Filtering

6.2.1 A supporting result on estimation

Lemma 6.2.1 Let X be a random variable (defined on a probability space (Ω,F , P )) with a finite second moment and
R > 0 (that is, a positive definite matrix). The following holds
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inf
g∈M(Y)

E[(X − g(Y ))TR(X − g(Y ))] = E[(X −G(Y ))TR(X −G(Y ))],

where M(Y) denotes the set of measurable functions from Y to R and where G(y) = E[X|Y = y] almost surely.

Before we state the proof, it is useful to emphasize that there are setups where the measurability assumption is not
superfluous. See Exercise 4.5.13.

Proof. Let G(y) = E[X|Y = y] + h(y), for some measurable h; we then have the following through the law of the
iterated expectations:

E[(X − E[X|Y ]− h(Y ))TR(X − E[X|Y ]− h(Y ))]

= E[(X − E[X|Y ])TR(X − E[X|Y ])] + 2E[(X − E[X|Y ])TRh(Y )] + E[hT (Y )Rh(Y )]

= E[(X − E[X|Y ])TR(X − E[X|Y ])] + 2E[E[(X − E[X|Y ])TRh(Y )|Y ]] + E[hT (Y )Rh(Y )] (6.6)

= E[(X − E[X|Y ])TR(X − E[X|Y ])] + E[hT (Y )Rh(Y )] + 2E

[
E[(X − E[X|Y ])T |Y ]Rh(Y )

]
(6.7)

= E[(X − E[X|Y ])TR(X − E[X|Y ])] + E[hT (Y )Rh(Y )]

≥ E[(X − E[X|Y ])TR(X − E[X|Y ])],

where in (6.6) we use Theorem 4.1.3 and in (6.7) we use Theorem 4.1.4. Note that without any loss we can assume that
E[hT (Y )h(Y )] <∞ (by the above analysis for otherwise the expectation above would be unbounded) and therefore

E[|(X − E[X|Y ])TRh(Y )|] ≤
(
E[(X − E[X|Y ])T (X − E[X|Y ])]E[hT (Y )h(Y )]

)1/2

by the Cauchy-Schwarz inequality, so that X − E[X|Y ])TRh(Y ) is integrable, validating the iterated expectations
theorem (Theorem 4.1.3). Thus, for an optimal policy, we must have that E[hT (Y )Rh(Y )] = 0. ⋄

Remark 6.1. We note that the above admits a Hilbert space interpretation or formulation: Let H denote the space
of random variables (defined on a probability space) on which the inner product ⟨X,Z⟩ := E[XTRZ] is defined;
this defines a Hilbert space. Let MH be a subspace of H, defined as the closed subspace of random variables that
are measurable on σ(Y ). Then, the projection theorem [207] leads to the observation that an optimal g(Y ) ∈ MH

minimizing ∥X − g(Y )∥22, denoted here by G(Y ), is one which satisfies:

⟨X −G(Y ), h(Y )⟩ = E[X −G(Y )TRh(Y )] = 0, ∀h ∈MH

The conditional expectation satisfies this condition as

E[(X − E[X|Y ])TRh(Y )] = E[E[(X − E[X|Y ])TRh(Y )|Y ]] = E[E[(X − E[X|Y ])T |Y ]Rh(Y )] = 0,

since P a.s., E[(X − E[X|Y ])T |Y ] = 0.

6.2.2 The Linear Quadratic Gaussian Problem

Consider the following linear system:

xt+1 = Axt +But + wt,

yt = Cxt + vt, (6.8)

where x ∈ Rn, u ∈ Rm and w ∈ Rn, y ∈ Rp, v ∈ Rp. Suppose {wt, vt} are zero-mean i.i.d. random Gaussian vectors
with given covariance matrices E[wtw

T
t ] =W and E[vtv

T
t ] = V for all t ≥ 0.

The goal is to obtain
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inf
γ
J(γ, µ0),

where

J(µ0, γ) = Eγµ0
[

N−1∑
t=0

xTt Qxt + uTt Rut + xTNQNxN ], (6.9)

with R > 0 and Q,QN ≥ 0 (that is, these matrices are positive definite and positive semi-definite) and µ0 is an initial
prior probability measure (on x0) assumed to be zero-mean Gaussian.

Building on Lemma 6.2.1, we will show in the following that the optimal control is linear in its expectation and has the
form

ut = −(BTKt+1B +R)−1BTKt+1AE[xt|It]

where Kt solves the Discrete-Time Riccati Equation:

Kt = Q+ATKt+1A−ATKt+1B(BTKt+1B +R)−1BTKt+1A,

with final condition KN = QN .

In the following, we start with the estimation problem.

6.2.3 Estimation and Kalman Filtering

In this section, we discuss the control-free setup and derive the celebrated Kalman Filter. In the following to make
certain computations more explicit and easier to follow, we will use capital letters to denote the random variables and
small letters for the realizations of these variables.

For a linear Gaussian system, the state process has a Gaussian probability measure. A Gaussian probability measure
can be uniquely identified by knowing the mean and the covariance of the Gaussian random variable. This makes the
analysis for estimating a Gaussian random variable particularly simple to perform, since the conditional estimate of
a partially observed (through an additive Gaussian noise) Gaussian random variable is a linear/affine function of the
observed variable.

Recall that a Gaussian measure with mean µ and covariance matrix ΣXX has the following density:

p(x) =
1

(2π)
n
2 |ΣXX |1/2

e−1/2((x−µ)TΣ−1
XX

(x−µ))

Lemma 6.2.2 Let X,Y be zero-mean Gaussian vectors. Then E[X|Y = y] is linear in y: With ΣXY = E[XY T ] and
ΣY Y = E[Y Y T ],

E[X|Y = y] = ΣXYΣ
−1
Y Y y,

and
E[(X − E[X|Y ])(X − E[X|Y ])T ] = ΣXX −ΣXYΣ

−1
Y YΣ

T
XY =: D.

In particular,
E[(X − E[X|Y ])(X − E[X|Y ])T |Y = y]

does not depend on the realization y of Y and is equal to D.

We note that if the random variables are not-zero mean, one needs to add a constant correction term making the estimate
an affine function (of the measurement).

Proof. By Bayes’ rule and the fact that the processes admit densities: p(x|y) = p(x,y)
p(y) .WithKXY := E

[ [
X
Y

]
[XTY T ]

]
,

we have that
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KXY =

[
ΣXX ΣXY
ΣY X ΣY Y

]
It follows that K−1

XY is also symmetric (since the eigenvectors are the same as those of KXY and the eigenvalues are
inverted) and given by:

K−1
XY =

[
ΨXX ΨXY
ΨY X ΨY Y

]
,

Thus, for some normalization constant C,

p(x, y)

p(y)
= C

e−1/2(xTΨXXx+2xTΨXY y+y
TΨY Y y)

e−1/2(yTK−1
Y Y

y)

By the completion of the squares method for the expression in the exponent, for some matrix D we obtain

(xTΨXXx+ 2xTΨXY y + yTΨY Y y − yTK−1
Y Y y) = (x−Hy)TD−1(x−Hy) +Q(y),

it follows that H = −Ψ−1
XXΨXY and D = Ψ−1

XX . Since K−1
XYKXY = I (and thus ΨXXΣXY + ΨXYΣY Y = 0), H is

also equal to ΣXYΣ−1
Y Y . Here Q(y) is a quadratic expression in y. As a result, one obtains

p(x|y) = Ce−
1
2Q(y)e−1/2(x−Hy)TD−1(x−Hy).

Since
∫
p(x|y)dx = 1 (as it is a conditional probability density function), it follows that Ce−

1
2Q(y) = 1

(2π)
n
2 |D|1/2

and

is in fact independent of y. Then, we finally have that D, which does not depend on y, equals (see Lemma 6.2.4 below)

E[(X − E[X|Y ])(X − E[X|Y ])T ] = E[XXT ]− E[(E[X|Y ])(E[X|Y ])T ] = ΣXX −ΣXYΣ
−1
Y YΣ

T
XY (6.10)

⋄

Remark 6.2. The fact that Q(y) above does not depend on y reveals an interesting result that the conditional covariance
of X − E[X|Y ] viewed as a Gaussian random variable is identical for all y values. This is a crucial fact that will be
utilized in the derivation of the Kalman Filter.

Remark 6.3. Even if the random variablesX,Y are not Gaussian (but zero-mean), through another Hilbert space formu-
lation and an application of the Projection Theorem (see Remark 6.1), it can be shown that the expression ΣXYΣ−1

Y Y y
is the best linear estimate, that is the solution to infK E[(X −KY )T (X −KY )]. One can naturally generalize this for
random variables with non-zero mean.

We will derive the Kalman filter in the following. The following two lemmas are instrumental.

Lemma 6.2.3 If E[X] = 0 and Z1, Z2 are orthogonal zero-mean Gaussian processes (with E[ZT1 Z2] = 0), then
E[X|Z1 = z1, Z2 = z2] = E[X|Z = z1] + E[X|Z2 = z2].

Proof. The proof follows by writing z = [z1, z2]
T , noting that ΣZZ is diagonal and E[X|z] = ΣXZΣ

−1
ZZz. ⋄

Lemma 6.2.4 E[(X − E[X|Y ])(X − E[X|Y ])T ] is given by D = ΣXX −ΣXYΣ
−1
Y YΣ

T
XY above.

Proof. Note that

E[X(E[X|Y ])T ] = E[(X − E[X|Y ] + E[X|Y ])(E[X|Y ])T ] = E[E[X|Y ](E[X|Y ])T ]

since X − E[X|Y ] is orthogonal to E[X|Y ]1. As a result,

1Note that by iterated expectations, we have E[(X−E[X|Y ])(E[X|Y ])T ] = E

[
E[(X−E[X|Y ])(E[X|Y ])T |Y ]

]
= E

[
E[(X−

E[X|Y ])|Y ](E[X|Y ])T
]
= 0.
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E[(X − E[X|Y ])(X − E[X|Y ])T ] = E[XXT ]− 2E[X(E[X|Y ])T ] + E[E[X|Y ](E[X|Y ])T ]

= E[XXT ]− E[E[X|Y ](E[X|Y ])T ],

and the result follows from Lemma 6.2.2. ⋄

Now, we can move on to the derivation of the Kalman Filter.

Consider
xt+1 = Axt + wt, yt = Cxt + vt,

with E[wtw
T
t ] = W and E[vtv

T
t ] = V where {wt} and {vt} are mutually independent i.i.d. zero-mean Gaussian

processes.

Define
mt = E[xt|y[0,t−1]]

Σt|t−1 = E[(xt − E[xt|y[0,t−1]])(xt − E[xt|y[0,t−1]])
T |y[0,t−1]]

and note that since the estimation error covariance does not depend on the realization y[0,t−1] (see Remark 6.2), we
write also

Σt|t−1 = E[(xt − E[xt|y[0,t−1]])(xt − E[xt|y[0,t−1]])
T ]

Theorem 6.2.1 The following holds:

mt+1 = Amt +AΣt|t−1C
T (CΣt|t−1C

T + V )−1(yt − Cmt) (6.11)

Σt+1|t = AΣt|t−1A
T +W − (AΣt|t−1C

T )(CΣt|t−1C
T + V )−1(CΣt|t−1A

T ) (6.12)

with
m0 = E[x0]

and
Σ0|−1 = E[x0x

T
0 ]

Proof. With xt+1 = Axt + wt, the following hold:

mt+1 = E[Axt + wt|y[0,t]] = E[Axt|y[0,t]] = E[Amt +A(xt −mt)|y[0,t]]
= Amt + E[A(xt −mt)|y[0,t−1], yt − E[yt|y[0,t−1]]]

= Amt + E[A(xt −mt)|y[0,t−1]] + E[A(xt −mt)|yt − E[yt|y[0,t−1]]] (6.13)
= Amt + E[A(xt −mt)|yt − E[yt|y[0,t−1]]]

= Amt + E[A(xt −mt)|Cxt + vt − E[Cxt + vt|y[0,t−1]]]

= Amt + E[A(xt −mt)|C(xt −mt) + vt] (6.14)

In the above, (6.13) follows from Lemma 6.2.3. We also use the fact that wt is independent of (and hence orthogonal
to) y[0,t]. Let X = A(xt −mt) and Y = yt −E[yt|y[0,t−1]] = yt −Cmt = C(xt −mt) + vt. Then, by Lemma 6.2.2,
E[X|Y ] = ΣXYΣ

−1
Y Y Y and thus,

mt+1 = Amt +AΣt|t−1C
T (CΣt|t−1C

T + V )−1(yt − Cmt)

Likewise,
xt+1 −mt+1 = A(xt −mt) + wt −AΣt|t−1C

T (CΣt|t−1C
T + V )−1(yt − Cmt),

leads to, after a few lines of calculations:

Σt+1|t = AΣt|t−1A
T +W − (AΣt|t−1C

T )(CΣt|t−1C
T + V )−1(CΣt|t−1A

T )

⋄



118 6 Partially Observed Markov Decision Processes, Non-Linear Filtering, and the Kalman Filter

The above is the celebrated Kalman filter.

Define now
m̃t := E[xt|y[0,t]] = mt + E[xt −mt|y[0,t]]

Following the analysis above, we obtain

m̃t = mt + E[xt −mt|y[0,t−1]] + E

[
xt −mt|yt − E[yt|y[0,t−1]]

]
.

Note that we also have mt = Am̃t−1. It follows then that

m̃t = Am̃t−1 +Σt|t−1C
T (CΣt|t−1C

T + V )−1(yt − CAm̃t−1) (6.15)

We observe that the zero-mean variable xt − m̃t is orthogonal to y[0,t], in the sense that the error is independent of the
information available at the controller, and since the information available is Gaussian, independence and orthogonality
are equivalent.

We observe that the recursion (6.12) in Theorem 6.2.1 is essentially identical to the recursions in Theorem 5.3.2 with
writing A = AT ,W = Q,V = R,CT = B. This leads to the following result (as a corollary of Theorem 6.2.1).

Theorem 6.2.2 Suppose (AT , CT ) is controllable (this is equivalent to saying that (A,C) is observable) and V > 0.
Then, the recursions for the covariance matrices Σt in Theorem 6.2.1 admit a fixed point. If, in addition, with W =
BBT , (AT , BT ) is observable (that is (A,B) is controllable), the fixed point solution is unique, and is positive definite.
As noted earlier, these can be relaxed to stabilizability (of (A,B)) and detectability of (A,C) but in this case the fixed
point solution may only be positive semi-definite.

Remark 6.4. The above suggest that if the observations are sufficiently informative, then the Kalman filter converges to
a solution (with an appropriate initialization), even in the absence of an irreducibility condition (i.e., the controllability
condition for (A,B) above) on the original state process xt; under irreducibility, however, the solution is unique. This
intuition has been shown to find a precise generalization in the non-linear filtering context [81,214,300], see Definition
6.4.7.

6.2.4 Optimal Control of Partially Observed LQG Systems

Let us revisit (6.9). With the analysis of optimal linear estimation above, we will now reformulate the quadratic opti-
mization problem (6.9) in terms of m̃t, ut and xt − m̃t as follows. First, let us note the following:

Theorem 6.2.3 Consider the controlled linear system (6.8). Then, with

mt = E[xt|y[0,t−1], u[0,t−1]]

and
Σt|t−1 = E[(xt − E[xt|y[0,t−1], u[0,t−1])(xt − E[xt|y[0,t−1], u[0,t−1]])

T ],

the following hold:

mt+1 = Amt +But +AΣt|t−1C
T (CΣt|t−1C

T + V )−1(yt − Cmt)

Σt+1|t = AΣt|t−1A
T +W − (AΣt|t−1C

T )(CΣt|t−1C
T + V )−1(CΣt|t−1A

T )

with
m0 = E[x0]

and
Σ0|−1 = E[x0x

T
0 ]
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The proof follows that of Theorem 6.2.1: the only difference is the presence of control. Observe that, the estimation
can be viewed to be that of estimating:

xn =

(
Anx0 +

n−1∑
k=0

An−k−1wk

)
+

n−1∑
k=0

An−k−1Buk =: x̄n +

n−1∑
k=0

An−k−1Buk

where
x̄n+1 = Ax̄n + wn

is the control-free system. But since
∑n−1
k=0 A

n−k−1Buk is known at time n (by the controller), the estimation problem
is essentially that of estimating the control-free system x̄n. Furthermore, the control adds no additional information
with regard to estimating x̄n, that is, the information generated by

ȳn = Cx̄n + vn

up to time n contains the same information with regard to x̄n as that contained by {yk, uk} up to time n, because
(i) x̄n is not affected by the control, and (ii) the information that control actions contain are already available in the
information content of the current and past ȳn variables under any measurable policy (to see this, note that u0 is a
function of ȳ0, and u1 is a function of u0 and ȳ[0,1], and thus really only that of ȳ[0,1], and so on for n > 1 by an
inductive reasoning). That is, under any policy γ, for any Borel B and any n:

P γ(x̄n ∈ B|ȳ[0,n]) = P γ(x̄n ∈ B|ȳ[0,n], u[0,n−1])

What the above implies is that, under any policy γ

Eγ [xn|y[0,n], u[0,n−1]] =

n−1∑
k=0

An−k−1Buk + E[x̄n|y[0,n], u[0,n−1]] =

n−1∑
k=0

An−k−1Buk + E[x̄n|ȳ[0,n]].

Furthermore, xn−E[xn|y[0,n−1], u[0,n−1]] is sample path equivalent to x̄n−E[x̄n|ȳ[0,n−1]], and these are determined
solely by x0, w[0,n−1], v[0,n−1].

Now, for the controlled case, let us define

m̃t = E[xt|y[0,t], u[0,t−1]].

and observe that the Kalman filtering recursions apply almost verbatim with the control actions added in an additive
fashion:

m̃t = Am̃t−1 +But−1 +Σt|t−1C
T (CΣt|t−1C

T + V )−1(yt − C(Am̃t−1 +But−1)) (6.16)

Let It = {y[0,t], u[0,t−1]}. Observe now that

E[xTt Qxt] = E[(xt − m̃t + m̃t)
TQ(xt − m̃t + m̃t)]

= E[(xt − m̃t)
TQ(xt − m̃t)] + E[m̃T

t Qm̃t] + 2E[(xt − m̃t)
TQm̃t]

= E[(xt − m̃t)
TQ(xt − m̃t)] + E[m̃T

t Qm̃t] + 2E[E[(xt − m̃t)
TQm̃t|It]]

= E[(xt − m̃t)
TQ(xt − m̃t)] + E[m̃T

t Qm̃t] (6.17)

since E[(xt − m̃t)
TQm̃t|It] = 0 by the orthogonality property of the conditional estimation error (recall that m̃t is a

function of It). In particular, the cost:

J(γ, µ0) = Eγµ0
[

N−1∑
t=0

xTt Qxt + uTt Rut + xTNQNxN ], (6.18)

writes as:
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Eγµ0
[

N−1∑
t=0

m̃T
t Qm̃t + uTt Rut + m̃T

NQNm̃N ] + Eγµ0
[

N−1∑
t=0

(xt − m̃t)
TQ(xt − m̃t)]

+Eγµ0
[(xN − m̃N )TQN (xN − m̃N )] (6.19)

for the fully observed system (see (6.16)):

m̃t = Am̃t−1 +But−1 + w̃t−1, (6.20)

with

w̃t−1 = Σt|t−1C
T (CΣt|t−1C

T + V )−1

(
yt − C(Am̃t−1 +But−1)

)
Furthermore, the estimation errors in (6.19) (the second and the third terms) do not depend on the control policy γ so
that the expected cost writes as

Eγµ0
[

N−1∑
t=0

m̃T
t Qm̃t + uTt Rut + m̃T

NQNm̃N ] + Eµ0 [

N−1∑
t=0

(xt − m̃t)
TQ(xt − m̃t)]

+Eµ0
[(xN − m̃N )TQN (xN − m̃N )] (6.21)

Thus, the optimal control problem is equivalent to the control of the fully observed state m̃t, with additive time-varying
independent Gaussian noise process {w̃t} given in (6.20).

Here, that the error term (xt− m̃t) does not depend on the control policy is a consequence of what is known as the lack
of dual effect of control: the control actions up to any time t do not affect the state estimation error process for the future
time stages. Using our earlier analysis, it follows then that the optimal control has the form stated in the following:

Theorem 6.2.4 Consider (6.8) with cost criterion given in (6.9). The optimal control is given with

ut = −(BTPt+1B +R)−1BTPt+1AE[xt|It] = −(BTPt+1B +R)−1BTPt+1Am̃t,

with m̃t computed as in (6.20), and Pt generated as in Theorem 5.3.1 with PN = QN . The optimal cost writes as

E[m̃T
0 P0m̃0] + E[

N−1∑
k=0

w̄Tk Pk+1w̄k + E(xk − m̃k)
TQ(xk − m̃k)] + E[(xN − m̃N )TQN (xN − m̃N )]

In the above problem, we observed that the optimal control has a separation structure: The controller first estimates the
state, and then applies its control action, by regarding the estimate as the state itself.

Separation of Estimation and Control. In the above we observe that the optimal control policy is the same as that
in the fully observed setup in Theorem 5.3.1, except that the state is replaced with its estimate. The sufficiency of
conditional expectation in optimal control is generally known as the separation of estimation and control [134] [193]
[320] [206]–that is, the separation principle is said to hold when an optimal control exists in a subset of admissible
policies where the control depends on the information only through the conditional expectation of the state given the
information available–, and for this particular case, a more special version of it, known as the certainty equivalence
principle, applies: As expressed in [27, eqs. (2.20)–(2.22)], a control problem possesses the certainty equivalence (CE)
property if the closed-loop optimal control policy has the same form as the deterministic optimal control policy under
perfect state observation and in the absence of process noise. More precisely, if in the absence of noise the optimal
control policy for the deterministic system is

uk = ϕk(xk), (6.22)

and CE holds, then the optimal closed-loop control policy for the noisy and not necessarily fully observed system is

uCE
k = ϕk(E[xk|y[0,k], u[0,k−1]]),∀k. (6.23)
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As observed above, the absence of dual effect plays a key part in this analysis leading the separation of estimation and
control principle, in taking E[(xt − m̃)TQ(xt − m̃)] out of the optimization over control policies, since it does not
depend on the policy.

Remark 6.5 (Dual Effect vs. Certainty Equivalence). In [28], dual effect is introduced as the property that the moments
of (xt − m̃t) do not depend on the past applied control actions (leading to a form of probabilistic independence). A
more general condition would be that (xt − m̃t) does not depend on the past control policies (and not necessarily
the actions) in that the control policies do not alter the realization of the random variable (xt − m̃t) (see [98] for an
explicit analysis and relaxations). This distinction is important in certain applications in networked control systems
where separation results are particularly important [331] (as probabilistic independence is often too restrictive when
one goes beyond the Gaussian setup). We also note that separation also applies in the linear quadratic setup when the
noise processes are not Gaussian, though of course the conditional estimations will no longer be linear [33, Lemma
5.2.1]. For results involving non-linear measurement models and for a detailed literature review, the reader is referred
to [98].

In many problems, the dual effect of the control is present and, depending on the control policy, the estimation quality
at the controller regarding future states may be affected. As an example, consider a linear system controlled over an
erasure channel, where the controller applies a control, but does not know if the control reaches the destination or not.
In this case, the control signal which was intended to be sent, does affect the estimation error [166, 272].

6.3 On the Controlled Markov Construction in the Space of Probability Measures and
Extension to General Spaces

In Section 6.1, we observed that we can replace the state with a probability measure valued state. It is important to
provide notions of convergence and continuity on the spaces of probability measures to be able to apply the machinery
of Chapter 5. In view of Theorem 6.1.1, if we can invoke the measurable selection conditions studied earlier (such as
Assumption 5.2.1), we can use the machinery of optimal stochastic control (such as Bellman’s principle) for partially
observed models.

The reader is referred to Appendix D for review of some concepts involving convergences of probability measures.

6.3.1 Non-linear Filter in the Standard Borel setup

The analysis in Section 6.1 applies essentially identically to the standard Borel setup.

We consider (6.1). Let X be a standard Borel set from which the controlled Markov process {xt, t ∈ Z+} takes its
values with transition kernel T . Let Y be a standard Borel space, and let the observation channel Q be defined as the
stochastic kernel (regular conditional probability) from X×U to Y such that Q( · |x, u) is a probability measure on the
Borel σ-algebra B(Y) of Y for every (x, u) ∈ X× U and Q(A| · ) : X× U → [0, 1] is a Borel measurable function for
every A ∈ B(Y).

Let a decision maker (DM) be located at the output of an observation channel Q, with inputs xt and outputs yt. An
admissible policy γ is a sequence of control functions {γt, t ∈} such that γt is measurable with respect to the σ-algebra
generated by the information variables

It = {y[0,t], u[0,t−1]}, t ∈ N, I0 = {y0},

where
ut = γt(It), t ∈ (6.24)

are the U-valued control action variables. We define ΓA to be the set of all such admissible policies. The joint distribu-
tion of the state, control, and observation processes is determined by (12.1) and the following system dynamics:
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P
(
(x0, y0) ∈ B

)
=

∫
B

Q(dy0|x0)P0(dx0), B ∈ B(X× Y),

where P0 is the prior distribution of the initial state x0 and Q0 is the observation channel, and for t ∈ N

P

(
(xt, yt) ∈ B

∣∣∣∣ (x, y, u)[0,t−1] = (x, y, u)[0,t−1]

)
=

∫
B

Q(dyt|xt)T (dxt|xt−1, ut−1), B ∈ B(X× Y),

where T (·|x, u) is a stochastic kernel from X × U to X. This completes the probabilistic description of the partially
observed model. Let a one-stage cost function c : X× U → [0,∞), which is a Borel measurable function from X× U
to [0,∞), be given. Then, we denote by J(γ) the cost function of the policy γ ∈ ΓA, which can be, for instance, finite
horizon, discounted cost or average cost criteria. The goal of the control problem is to find an optimal policy γ∗ that
minimizes J .

As studied earlier, any such problem can be reduced to a completely observable Markov process [338], [248], whose
states are the posterior state distributions or ’beliefs‘ of the observer; that is, the state at time t is

πt( · ) := P{Xt ∈ · |y0, . . . , yt, u0, . . . , ut−1} ∈ P(X).

We call this equivalent process the filter process . The filter process has state space P(X) and action space U. Recall
again that P(X) is equipped with the Borel σ-algebra generated by the topology of weak convergence, where, under
this topology P(X) is also a standard Borel space.

The transition probability of the filter process can be constructed as follows. As in the countable setup case, we have
the following explicit Bayesian recursion to define F under a mild regularity condition: Let Q be dominated in the
sense that there exists a dominating reference measure λ such that ∀x ∈ X, Q(dy|xn = x) ≪ λ. Then, define the
Radon-Nikodym derivative

g(x, y) =
dG(yn ∈ ·|xn = x)

dλ
(y)

as the likelihood function (serving as a conditional probability density function) and we can write the filter πn+1

recursively in terms of πn and yn+1, un explicitly as a Bayesian update:

πn+1(dxn+1) = F (πn, yn+1, un)(dxn+1) =

∫
X g(xn+1, yn+1)T (dxn+1|xn, un)πn(dxn)∫

X
∫
X g(xn+1, yn+1)T (dxn+1|xn, un)πn(dxn)

(6.25)

As earlier in the countable space setup, the transition probability η of the filter process is constructed as follows. If
we define the measurable function F (π, u, y) := F ( · |y, u, π) = P{xt+1 ∈ · |πt = π, ut = u, yt+1 = y} from
P(X) × U × Y to P(X) and use the stochastic kernel P ( · |π, u) = P{yt+1 ∈ · |πt = π, ut = u} from P(X) × U to
Y, we can write η as

η( · |π, u) =
∫
Y
1{F (π,u,y)∈ · }P (dy|π, u). (6.26)

As in the countable setup, the one-stage cost function c̃ : P(X)× U → [0,∞) of the filter process is given by

c̃(π, u) :=

∫
X
c(x, u)π(dx),

With cost function c(x, u) is continuous and bounded on X)×U, by an application of the generalized dominated conver-
gence theorem (see Theorem D.3.1 [199, Theorem 3.5] [273, Theorem 3.5]), we have that that c̃(π, u) = Eπ[c(x, u)] :=∫
π(dx)c(x, u) : P(X)×U → R is also continuous and bounded, and thus Borel measurable as a map from P(X)×U

to R.
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Hence, the filter process defines a completely observable Markov process with the components (P(X),U, c̃, η).

For the filter process, let us define another information variable sequence as

Ĩt = {π[0,t], u[0,t−1]}, t ∈ N, Ĩ0 = {π0}.

Now, building all these together, as in the countable setup, in view of our results in Chapter 5 it is a standard result
that an optimal control policy of the original POMP will use the belief πt as a sufficient statistic for optimal policies
(see [338], [248]). More precisely, the filter process is equivalent to the original POMDP in the sense that for any
optimal policy for the filter process, one can construct a policy for the original POMDP which is optimal, or more
generally, for any policy which uses Ĩt there exists another one which only uses the filter process πt and which is at
least as good as the original policy.

6.3.2 Measurability Issues, Proof of Theorem 6.1.1 and its Extension to Polish Spaces

In (6.2), we need to show that the expression P (πt+1 ∈ D|πt, ut) is a regular conditional probability measure; that
is, for every fixed D, this is a measurable function on P(X) × U and for every πt, ut, it is a conditional probability
measure on P(X). Furthermore, we need to ensure that c̃, the equivalent cost function, is also a measurable function.

A proof of the first result below can be found in [2] (see Theorem 15.13 in [2] or p. 215 in [51])

Theorem 6.3.1 Let S be a Polish space and M be the set of all measurable and bounded functions f : S → R. Then,
for any f ∈M , the integral ∫

π(dx)f(x)

defines a measurable function on P(S) under the topology of weak convergence.

This is a useful result since it allows us to view integral forms as measurable functions on the space of probability
measures when we work with the topology of weak convergence. The second useful result follows from Theorem 6.3.1
and Theorem 2.1 of Dubins and Freedman [104] and Proposition 7.25 in Bertsekas and Shreve [35].

Theorem 6.3.2 Let S be a Polish space. A function F : P(S) → P(S) is measurable on B(P(S)) (under weak
convergence), if for all B ∈ B(S) (F (·))(B) : P(S) → R is measurable under weak convergence on P(S), that is for
every B ∈ B(S), (F (π))(B) is a measurable function when viewed as a function from P(S) to R.

These are useful to establish that under weak convergence topology (πt, ut) forms a standard Borel controlled Markov
chain for dynamic programming purposes, via measurable selection conditions.

6.3.3 Continuity Properties of Belief-MDP

Building on [89], [174] and [122], this section establishes the weak Feller property of the filter process; that is, the
weak Feller property of the kernel defined in (6.3) under two different sets of assumptions.

Assumption 6.3.1 (i) The transition probability T (·|x, u) is weakly continuous in (x, u), i.e., for any (xn, un) →
(x, u), T (·|xn, un) → T (·|x, u) weakly.

(ii) The observation channel Q(·|x, u) is continuous in total variation, i.e., for any (xn, un) → (x, u), Q(·|xn, un) →
Q(·|x, u) in total variation.

Assumption 6.3.2 (i) The transition probability T (·|x, u) is continuous in total variation in (x, u), i.e., for any
(xn, un) → (x, u), T (·|xn, un) → T (·|x, u) in total variation.
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(ii) The observation channel Q(·|x) is independent of the control variable.

Theorem 6.3.3 [122] Under Assumption 6.3.1, the transition probability η(·|z, u), given in (6.26), of the filter process
is weakly continuous in (z, u).

See also [89] for an earlier though slightly more restrictive result along the above.

Theorem 6.3.4 [174] Under Assumption 6.3.2, the transition probability η(·|z, u), given in (6.26), of the filter process
is weakly continuous in (z, u).

A proof for these is given in Section 6.6.

If the cost function c is continuous and bounded, an application of the dominated convergence theorem implies that
c̃(π, u) is also continuous and bounded. If the action set is compact, then under the weak continuity condition noted
above on the non-linear filter, we have that the measurable selection conditions apply, and solutions to the Bellman or
discounted cost optimality equations exist, and accordingly an optimal control policy exists.

See [178, Theorem 7], which builds on [174], for further refinements with explicit moduli of continuity for the weak
Feller property.

Regularity under the Wasserstein metric has been studied in [96] and [95]:

Assumption 6.3.3

1. (X, d) is a bounded compact metric space with diameter D (where D = supx,y∈X d(x, y)).

2. The transition probability T (· | x, u) is continuous in total variation in (x, u), i.e., for any (xn, un) →
(x, u), T (· | xn, un) → T (· | x, u) in total variation.

3. There exists α ∈ R+such that
∥T (· | x, u)− T (· | x′, u)∥TV ≤ αd(x, x′)

for every x, x′ ∈ X, u ∈ U.

4. There exists K1 ∈ R+ such that
|c(x, u)− c(x′, u)| ≤ K1d(x, x

′).

for every x, x′ ∈ X, u ∈ U.

5. The cost function c is bounded and continuous.

Theorem 6.3.5 [95] Assume that X and Y are Polish spaces. If Assumptions 6.3.3-1,3 are fulfilled, then we have

W1 (η(· | z0, u), η (· | z′0, u)) ≤ K2W1 (z0, z
′
0) ,

with K2 := αD(3−2δ(Q))
2 for all z0, z′0 ∈ P(X), u ∈ U.

We refer the reader also to [122, Theorem 7.1] which establishes weak Feller property under further sets of assumptions.
See [96, 121, 123, 178] for further results on the above weak Feller property.

As examples, taken from [174], suppose that the system dynamics and the observation channel are represented as
follows:

xt+1 = H(xt, ut, wt),

yt = G(xt, ut−1, vt),

where wt and vt are i.i.d. noise processes.
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(i) Suppose that H(x, u, w) is a continuous function in x and u. Then, the corresponding transition kernel is weakly
continuous. To see this, observe that, for any c ∈ Cb(X), we have∫

c(x1)T (dx1|xn0 , un0 ) =
∫
c(H(xn0 , u

n
0 , w0))µ(dw0)

→
∫
c(H(x0, u0, w0))µ(dw0) =

∫
c(x1)T (dx1|x0, u0),

where we use µ to denote the probability model of the noise.

(ii) Suppose thatG(x, u, v) = g(x, u)+v, where g is a continuous function and Vt admits a continuous density function
φ with respect to some reference measure ν. Then, the channel is continuous in total variation. Notice that under
this setup, we can write Q(dy|x, u) = φ(y − h(x, u))ν(dy). Hence, the density of Q(dy|xn, un) converges to
the density of Q(dy|x, u) pointwise, and so, Q(dy|xn, un) converges to Q(dy|x, u) in total variation by Scheffé’s
Lemma [41]. Hence, Q(dy|x, u) is continuous in total variation under these conditions.

(iii)Suppose that we haveH(x, u, w) = h(x, u)+w, where f is continuous andwt admits a continuous density function
φ with respect to some reference measure ν. Then, the transition probability is continuous in total variation: with
this setup we have T (dx1|x0, u0) = φ(x1−h(x0, u0))ν(dx1). Thus, continuity ofφ and h guarantees the pointwise
convergence of the densities, so we can conclude that the transition probability is continuous in total variation by
again Scheffé’s Lemma.

Remark 6.6 (Existence results without separation / belief-MDP reduction). Consider a partially observable stochastic
control problem (POMDP) with the following dynamics.

xt+1 = f(xt, ut, wt), yt = g(xt, vt).

If f(·, ·, w) is continuous and g has the form: yt = g(xt)+vt, with g continuous and wt admitting a continuous density
function η, an existence result can be established building on the measurable selection criteria under weak continuity
in view of Theorem 6.3.3.

Without adopting the belief-MDP reduction method, such an existence result can also be established by a mea-
sure transformation argument and using a strategic measures approach: With η denoting the density of vn, we have
P (yn ∈ B|xn) =

∫
B
η(y − g(xn))dy. With η and g continuous and bounded, taking yn := yn, by writing

xn+1 = f(xn, un, wn) = f(f(xn−1, un−1, wn−1), un, wn), and iterating inductively to obtain

xn+1 = hn(x0,u[0,n−1],w[0,n−1]),

for some hn which is continuous in u[0,n−1] for every fixed x0,w[0,n−1], one obtains an effective reduced cost (10.31)
that is a continuous function in the control actions. [332, Section 5.4.2] then implies the existence of an optimal control
policy. This reasoning is also applicable when the measurements are not additive in the noise but with P (yn ∈ B|xn =
x) =

∫
B
m(y, x)η(dy) for some m continuous in x and η a reference measure.

It may be important to note that Bismut [44] arrived at related results for partially observed models in continuous-time,
through an approach which also avoids separation / the construction of a belief-MDP. Please see Section 10.8.1 for
further discussion.

Remark 6.7. A recent paper [333] has presented an alternative approach, without belief-separation, and has arrived
further conditions for the existence of optimal policies for discounted and average cost problems as well as the unique
ergodicity property for both controlled and control-free setups. Such an approach leads to complementary conditions
on the weak Feller property on the state, which considers the entire past as the state endowed with the product topology.

6.3.4 Existence of Optimal Policies: Discounted Cost and Average Cost

Consider the minimization of either the discounted cost criterion (for some β ∈ (0, 1)
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J(µ, γ) := Eγµ [

∞∑
k=0

βkc(xk, uk)] (6.27)

or the average cost criterion

J(µ, γ) := lim sup
N→∞

1

N
Eγµ [

N−1∑
k=0

c(xk, uk)], (6.28)

over all admissible control policies γ = {γ0, γ1, · · · , } ∈ Γ with x0 ∼ µ.

Discounted Cost Cost.

Theorem 6.3.6 If the cost function c : X × U → R is continuous and bounded, and U is compact, under under
Theorems 6.3.3 or 6.3.4, for any β ∈ (0, 1), there exists an optimal solution to the discounted cost optimality problem
with a continuous and bounded value function. Furthermore, under Assumption 6.3.3, with K2 = αD(3−2δ(Q))

2 , if
βK2 < 1 the value function is Lipschitz continuous.

Proof. An application of the dominated convergence theorem implies that c̃(π, u) is also continuous and bounded. If
the action set is compact, then under Theorems 6.3.3 or 6.3.4, which imply that η is weakly continuous, we have that
the measurable selection conditions (see e.g. [155]) apply, and solutions to the Bellman or discounted cost optimality
equations exist, and accordingly an optimal control policy exists. For the second result, Theorem 5.5.3 (see [256, The-
orem 4.37]) leads to Lipschitz regularity under the Wasserstein continuity condition on the kernel. ⋄

Average Cost. The average cost is a significantly more challenging problem as the typical contraction conditions via
minorization is too demanding for η. An alternative approach is based on the Section ??. As noted in Chapter 7, the
average cost optimality equation (ACOE) plays a crucial role for the analysis and the existence results of MDPs under
the infinite horizon average cost optimality criteria. The triplet (h, ρ∗, γ∗), where h, γ : P(X) → R are measurable
functions and ρ∗ ∈ R is a constant forms the ACOE if

h(z) + ρ∗ = inf
u∈U

{
c̃(z, u) +

∫
h(z1)η(dz1|z, u)

}
= c̃(z, γ∗(z)) +

∫
h(z1)η(dz1|z, γ∗(z)) (6.29)

for all z ∈ P(X). It is well known that (see e.g. [155, Theorem 5.2.4]) if (6.29) is satisfied with the triplet (h, ρ∗, γ∗),
and furthermore if h satisfies

sup
γ∈Γ

lim
t→∞

Eγz [h(Zt)]

t
= 0, ∀z ∈ P(X)

then γ∗ is an optimal policy for the POMDP under the infinite horizon average cost optimality criteria, and

J∗(z) = inf
γ∈Γ

J(z, γ) = ρ∗ ∀z ∈ P(X).

Theorem 6.3.7 [95] Under Assumption 6.3.3, with K2 = αD(3−2δ(Q))
2 < 1, a solution to the average cost optimality

equation (ACOE) exists. This leads to the existence of an optimal control policy, and optimal cost is constant for every
initial state.

The proof follows from Corollary 7.3.1. For belief-MDPs, we should emphasize that minorization conditions (as in
Assumption 7.2.1) are typically not applicable.
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6.3.5 A useful structural result: Concavity of the value function in the priors

The following theorem establishes concavity of the optimal cost in a single-stage stochastic control problem over the
space of initial distributions and this also applies for multi-stage setups.

Theorem 6.3.8 Let
∫
c(x, γ(y))PQ(dx, dy) exist for all γ ∈ Γ and P ∈ P(X). Then,

J∗(P,Q) = inf
γ∈Γ

EQ,γP [c(x, γ(y))]

is concave in P .

Proof. For a ∈ [0, 1] and P ′, P ′′ ∈ P(X) we let P = aP ′ + (1 − a)P ′′. Note that PQ = aP ′Q + (1 − a)P ′′Q. We
have

J(aP ′ + (1− a)P ′′, Q) = J(P,Q)

= inf
γ∈Γ

EQ,γP [c(x, γ(y))]

= inf
γ∈Γ

∫
c(x, γ(y))PQ(dx, dy)

= inf
γ∈Γ

(
a

∫
c(x, γ(y))P ′Q(dx, dy)

+(1− a)

∫
c(x, γ(y))P ′′Q(dx, dy)

)
≥ inf
γ∈Γ

(
a

∫
c(x, γ(y))P ′Q(dx, dy)

)
+ inf
γ∈Γ

(
(1− a)

∫
c(x, γ(y))P ′′Q(dx, dy)

)
= aJ(P ′, Q) + (1− a)J(P ′′, Q)

6.4 Filter Stability

The filter stability problem refers to the correction of an incorrectly initialized non-linear filter for a partially observed
stochastic dynamical system (controlled or control-free) with increasing measurements. Let us describe this property
more explicitly: Given a prior µ ∈ P(X) and a policy γ ∈ Γ we can then define the filter and predictor for a POMDP
using the (strategic) measure Pµ,γ .

Definition 6.4.1 (i) We define the one step predictor process as the sequence of conditional probability measures

πµ,γn− (·) = Pµ,γ(Xn ∈ ·|Y[0,n−1], U[0,n−1]) = Pµ,γ(Xn ∈ ·|Y[0,n−1]) n ∈ N

(ii) We define the filter process as the sequence of conditional probability measures

πµ,γn (·) = Pµ,γ(Xn ∈ ·|Y[0,n], U[0,n−1]) = Pµ,γ(Xn ∈ ·|Y[0,n]), n ∈ Z+ (6.30)

Remark 6.8. Recall that the U[0,n−1] are all functions of the Y[0,n−1], so conditioning on the control actions is not
necessary in the above definitions. Yet this conditional probability would be policy dependent; if we condition on the
past actions, this conditioning would be policy-independent.
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Say a prior µ ∈ P(X) and a policy γ ∈ Γ are chosen, an observer sees measurements Y[0,∞) generated via the
strategic measure Pµ,γ . The observer is aware that the policy applied is γ, but incorrectly thinks the prior is ν ̸= µ. The
observer will then compute the incorrectly initialized filter πν,γn while the true filter is πµ,γn . The filter stability problem
is concerned with the merging of πν,γn and πµ,γn as n goes to infinity.

It will be useful to note that the filter is the strategic measure conditioned on the sigma field FY
0,n and restricted to the

sigma field FX
n .

πµ,γn (·) = Pµ,γ(Xn ∈ ·|Y[0,n]) = Pµ,γ |FX
n
|FY

0,n

In the literature, there are a number of merging notions when one considers stability which we enumerate here. Let
Cb(X) represent the set of continuous and bounded functions from X → R.

Definition 6.4.2 Two sequences of probability measuresPn,Qn merge weakly if ∀ f ∈ Cb(X) we have limn→∞
∣∣∫ fdPn −

∫
fdQn

∣∣ =
0.

Definition 6.4.3 For two probability measures P and Q we define the total variation norm as ∥P − Q∥TV =
sup∥f∥∞≤1

∣∣∫ fdP −
∫
fdQ

∣∣ where f is assumed measurable. We say two sequences of probability measures Pn,
Qn merge in total variation if ∥Pn −Qn∥TV → 0 as n→ ∞.

Definition 6.4.4

(i) For two probability measuresP andQwe define the relative entropy asD(P∥Q) =
∫
log dP

dQdP =
∫
dP
dQ log dP

dQdQ

where we assume P ≪ Q and dP
dQ denotes the Radon-Nikodym derivative of P with respect to Q.

(ii) Let X and Y be two random variables, let P and Q be two different joint measures for (X,Y ) with P ≪ Q. Then
we define the (conditional) relative entropy between P (X|Y ) and Q(X|Y ) as

D(P (X|Y )∥Q(X|Y )) =

∫
log

(
dPX|Y

dQX|Y
(x, y)

)
dP (x, y)

=

∫ (∫
log

(
dPX|Y

dQX|Y
(x, y)

)
dP (x|Y = y)

)
dP (y) (6.31)

We define here the different notions of stability for the filter:

Definition 6.4.5 (i) A filter process is said to be stable in the sense of weak merging with respect to a policy γ Pµ,γ

almost surely (a.s.) if there exists a set of measurement sequences A ⊂ YZ+ with Pµ,γ probability 1 such that for
any sequence inA; for any f ∈ Cb(X ) and any prior ν with µ≪ ν (i.e., for all BorelB ν(B) = 0 =⇒ µ(B) = 0)
we have limn→∞

∣∣∫ fdπµ,γn −
∫
fdπν,γn

∣∣ = 0.

(ii) A filter process is said to be stable in the sense of total variation in expectation with respect to a policy γ if for any
measure ν with µ≪ ν we have limn→∞Eµ,γ [∥πµ,γn − πν,γn ∥TV ] = 0.

(iii)A filter process is said to be stable in the sense of total variation with respect to a policy γ Pµ,γ a.s. if there exists a
set of measurement sequences A ⊂ YZ+ with Pµ,γ probability 1 such that for any sequence in A; for any measure
ν with µ≪ ν we have limn→∞ ∥πµ,γn − πν,γn ∥TV = 0 Pµ,γ a.s..

(iv)A filter process is said to be stable in the sense of relative entropy with respect to a policy γ if for any measure ν
with µ≪ ν we have limn→∞Eµ,γ [D(πµ,γn ∥πν,γn )] = 0.

(v) The filter is said to be universally stable in one of the above notions if the notion holds with respect to every
admissible policy γ ∈ Γ .

Predictor stability is defined in an analogous fashion for each of the criteria above.
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Total variation merging implies weak merging, and relative entropy merging (i.e. D(Pn∥Qn) → 0) implies total
variation merging via Pinsker’s inequality [90].

One of the main differences between control-free and controlled partially observed Markov chains is that the filter
is always Markovian under the former, whereas under a controlled model the filter process may not be Markovian
since the control policy may depend on past measurements in an arbitrary (measurable) fashion. This complicates the
dependency structure and therefore results from the control-free case do not directly apply to the controlled setup.

We made the observation earlier that under observability and a controllability assumption, any incorrectly initialized fil-
ter will converge to the correct Kalman filter (we note that partial convergence and robustness results on the asymptotic
equivalence of conditional expectations and linear estimates for non-Gaussian priors for linear systems are reported
in [278]). In the following, we will present a concise discussion on how such results carry over to the stochastic non-
linear setup.

Much of the results on filter stability involves control-free systems. Thus, results have considered partially observed
Markov processes (POMP) as opposed to partially observed Markov decision processes (POMDP). Since there is no
control in such systems, there is no past dependency in the system and the pair (Xn, Yn)

∞
n=0 is always a Markov

chain. For such control-free models, filter stability has been studied extensively and we refer the reader to [82] for
a comprehensive review and a collection of different approaches. As discussed in [82], filter stability arises via two
separate mechanisms:

1. The transition kernel is in some sense sufficiently ergodic, forgetting the initial measure and therefore passing this
insensitivity (to incorrect initializations) on to the filter process.

2. The measurement channel provides sufficient information about the underlying state, allowing the filter to track the
true state process.

To be able to present a concise discussion, building on some prior material in the notes, for both controlled and control-
free setups we review conditions in [212] based on Dobrushin’s coefficients of the measurement channel and the
controlled transition kernel. Recall (3.28). We consider a slight generalization in the following.

Definition 6.4.6 [101, Equation 1.16] For a kernel operatorK : S1 → P(S2) (that is a regular conditional probability
from S1 to S2) for standard Borel spaces S1, S2, we define the Dobrushin coefficient as:

δ(K) = inf

n∑
i=1

min(K(x,Ai),K(y,Ai)) (6.32)

where the infimum is over all x, y ∈ S1 and all partitions {Ai}ni=1 of S2.

Let us define
δ̃(T ) := inf

u∈U
δ(T (·|·, u)).

The following can be viewed as a generalization of Theorem 3.1.8.

Theorem 6.4.1 [212, Theorem 3.3] Assume that for µ, ν ∈ P(X), we have µ≪ ν. Then we have

Eµ,γ
[
∥πµ,γn+1 − πν,γn+1∥TV

]
≤ (1− δ̃(T ))(2− δ(Q))Eµ,γ [∥πµ,γn − πν,γn ∥TV ] .

In particular, defining α := (1− δ̃(T ))(2− δ(Q)), we have

Eµ,γ [∥πµ,γn − πν,γn ∥TV ] ≤ 2αn.

By applying the Borel-Cantelli lemma and Markov’s inequality, we have that exponential stability in expectation im-
plies the same result in an almost sure sense as well: assume that the filter is exponentially stable with coefficient
α = (1− δ(T ))(2− δ(Q) < 1 and let ρ be a value ρ < 1

α . Then we have for every ϵ > 0,
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∞∑
k=0

Pµ(ρk∥πµn − πνn∥TV ≥ ϵ) ≤
∞∑
k=0

ρk
Eµ[∥πµn − πνn∥TV ]

ϵ

≤ ∥µ− ν∥TV
ϵ

∞∑
k=0

(ρα)k

=
∥µ− ν∥TV

ϵ

1

1− ρα

<∞

thus by Borel Cantelli Lemma ρk∥πµn − πνn∥TV → 0 Pµ a.s. for any ρ < 1
α . See [212, Remark 3.10].

This also establishes that the rate of convergence is uniform over all priors ν as long as µ≪ ν.

Another filter stability result which will also be useful in numerical methods for POMDPs to be considered later is via
the following stochastic non-linear observability definition.

Definition 6.4.7 [Stochastic Observability for Non-Linear Systems] [213] A POMDP is called one step observable
(universal in admissible control policies) if for every f ∈ Cb(X) and every ϵ > 0 there exists a measurable and
bounded function g such that

∥f(·)−
∫
Y
g(y)Q(dy|·)∥∞ < ϵ (6.33)

Theorem 6.4.2 [213] Assume that µ ≪ ν and that the POMDP is one step observable. Then the predictor is univer-
sally stable weakly a.s. .

We now present an example for observability.

Example 6.9. [214] Consider a finite setup X = {a1, · · · , an} and let the noise space be V = {b1, · · · , bm}. Now,
assume y = h(x, v) has K distinct outputs, where 1 ≤ K ≤ (n)(m) and Y = {c1, · · · , cK}. We note that for such
a setup, there is already a sufficient and necessary condition for filter stability provided in [301, Theorem V.2] (see
also [299]. We examine this case to show that Definition 6.34 above leads to filter stability.

For each x, hx can be viewed as a partition of V, assigning each bi ∈ X to an output level cj ∈ Y. We can track this by
the matrix Hx(i, j) = 1 if hx(bi) = yj and zero else. Let Q be the 1×m vector representing the probability measure
of the noise. We consider the one step observability (though this can be generalized for the control-free case to N -step

observability for N > 1). Let g(ci) = αi, with α =


α1

α2

...
αK

 and
∫
V g(h(x, v))Q(dv) =: (QHx)α. Any function f(x)

can be expressed as a n × 1 vector and hence the question reduces to finding a vector α so that f = QHα, and the

system is one step observable if and only if the matrix A ≡

QHa1
...

QHan

 is rank n.

Since the spaces are finite, Theorem 6.4.4, to be presented below, leads to filter stability, both in total variation and
weakly, in expectation.

Further examples for measurement channels satisfying Definition 6.4.7 have been reported in [214, Section 3]2.

The observability notion defined above only results in stability of the predictor in the weak sense Pµ,γ a.s. .We next
extend this stability to total variation Pµ,γ a.s. .Let the measurement channel Q be dominated in the sense that there
2For control-free systems, [214] defines the following: A control-free filter is N -step observable if for every f ∈ Cb(X ) and every

ϵ > 0 there exists a measurable and bounded function g such that
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exists a reference measure λ such that ∀x ∈ X , Q(Y ∈ ·|xn = x) ≪ λ(·). Then, we define the Radon-Nikodym
derivative

q(x, y) :=
dQ(Yn ∈ ·|xn = x)

dλ
(y) (6.35)

which serves as a likelihood function. We will consider one of the following assumptions.

Assumption 6.4.1 (i) T (·|x, u) is absolutely continuous with respect to a dominating measure ϕ for every x ∈ X , u ∈
U , so that t(x1, x, u) =

dT (·|x,u)
dϕ (x1) where t is continuous in x for every x1 ∈ X and u ∈ U .

(ii) q(x, y) is bounded and continuous in x for every fixed y. Furthermore, q(x, y) > 0 for all x ∈ X , y ∈ Y .

Assumption 6.4.2 T (·|x, u) is absolutely continuous with respect to a dominating measure ϕ for every x ∈ X , u ∈ U ,
so that t(x1, x, u) =

dT (·|x,u)
dϕ (x1). The family of (conditional densities) {t(·, x, u)}x∈X ,u∈U is uniformly bounded and

equicontinuous.

Theorem 6.4.3 [213] Let µ≪ ν. Let Assumption 6.4.1 or Assumption 6.4.2 hold. If the predictor is universally stable
in the weak sense a.s. then it is also universally stable in total variation a.s. .

One of the key steps in the proof of Theorem 6.4.2 is that Pµ,γ(Yn ∈ ·|Y[0,n−1]) and P ν,γ(Yn ∈ ·|Y[0,n−1]) merge
in total variation Pµ,γ a.s. as n → ∞. To achieve this in a POMDP, we apply Blackwell and Dubins [48] to the
measurement process {Yn}∞n=0. However, [48] is fundamentally about predictive measures of the future given the past,
and hence only directly implies predictor stability results, not the filter. Filter stability is studied next.

Assumption 6.4.3 The measurement channelQ is continuous in total variation. That is, for any sequence an → a ∈ X
we have ∥Q(·|an)−Q(·|a)∥TV → 0 or in other words ∥P (Y0 ∈ ·|X0 = an)− P (Y0 ∈ ·|X0 = a)∥TV → 0.

Assumption 6.4.1(ii), together with the related domination condition (6.35), implies Assumption 6.4.3 (see [174, Sec-
tion 2.3]); see also [174, Theorem 3] for a partial converse result.

Theorem 6.4.4 [213]

(i) Let Assumption 6.4.3 hold. If the predictor is universally stable in weak merging a.s. , then the filter is universally
stable in weak merging in expectation.

(ii) The filter is universally stable in total variation in expectation if and only if the predictor is universally stable in
total variation in expectation.

(iii)The filter is universally stable in total variation in expectation if and only if it is universally stable in total variation
a.s. .

(iv)Let µ ≪ ν, and assume for any policy γ there exists some finite n such that Eµ,γ [D(πµ,γn ∥πµ,γn )] < ∞ and some
m such that Eµ,γ [D(Pµ,γ |FY

0,m
∥(P ν,γ |FY

0,m
)] < ∞. Then the filter is universally stable in relative entropy if and

only if it is universally stable in total variation in expectation.

Applications of these will be discussed in the context of numerical methods for POMDPs later in the notes. Filter
stability is also related to robustness of optimal costs to incorrect initializations for controlled models [213].

∥f(·)−
∫
Y
g(y[1,N ])Q(dy[1,N ]|X1 = ·)∥∞ < ϵ (6.34)

A further notion is observability: A POMP is observable if for every f ∈ Cb(X ) and every ϵ > 0 there exists N ∈ N and a measurable
and bounded function g such that (6.34) applies. Due to the presence of dual effect, these N -step definitions require a more refined
approach for filter stability.
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6.5 Bibliographic Notes

Earlier work on separation results for partially observed Markov Decision Processes include [338], [282], [248]. For
linear systems, classical texts include [8,9,33,71,187,193,194]. See [82] for a comprehensive review on filter stability.

It has been shown relatively recently that one could approach the Riccati/Kalman Filter updates as a contraction map in
positive-definite matrices [66] (see also [202] and [204]), leading to a concise and direct proof of convergence as well
as stability (though with strict controllability and observability conditions, instead of detectability and stabilizability).

On filter stability, related work in the control-free domain includes [81, 82, 149].

6.6 Appendix

6.6.1 Proof of Theorems 6.3.4 and 6.3.3.

We present the unified proof given in [174]. We first recall (D.3) which is used to metrize weak convergence. The following result
plays a key role.

Lemma 6.6.1 [174] Let X be a Borel space. Suppose that we have a family of uniformly bounded real Borel measurable functions
{fn,λ}n≥1,λ∈Λ and {fλ}λ∈Λ, for some set Λ. If, for any xn → x in X, we have

lim
n→∞

sup
λ∈Λ

|fn,λ(xn)− fλ(x)| = 0 (6.36)

lim
n→∞

sup
λ∈Λ

|fλ(xn)− fλ(x)| = 0, (6.37)

then, for any µn → µ weakly in P(X), we have

lim
n→∞

sup
λ∈Λ

∣∣∣∣ ∫
X
fn,λ(x)µn(dx)−

∫
X
fλ(x)µ(dx)

∣∣∣∣ = 0.

In Theorem 6.3.3 and Theorem 6.3.4, we need to show that, for every (zn0 , un) → (z0, u) in Z× U, we have

sup
∥f∥BL≤1

∣∣∣∣ ∫
Z
f(z1)η(dz1|zn0 , un)−

∫
Z
f(z1)η(dz1|z0, u)

∣∣∣∣ → 0,

where we equip Z with the metric ρ to define bounded-Lipschitz norm ∥f∥BL of any Borel measurable function f : Z → R. We
can equivalently write this as

sup
∥f∥BL≤1

∣∣∣∣ ∫
Y
f(z1(z

n
0 , un, y1))P (dy1|zn0 , un)−

∫
Y
f(z1(z0, u, y1))P (dy1|z0, u)

∣∣∣∣ → 0. (6.38)

The term in equation (6.38) can be upper bounded as follows:

sup
∥f∥BL≤1

∣∣∣∣ ∫
Y
f(z1(z

n
0 , un, y1))P (dy1|zn0 , un)−

∫
Y
f(z1(z0, u, y1))P (dy1|z0, u)

∣∣∣∣
≤ sup

∥f∥BL≤1

∣∣∣∣ ∫
Y
f(z1(z

n
0 , un, y1))P (dy1|zn0 , un)−

∫
Y
f(z1(z

n
0 , un, y1))P (dy1|z0, u)

∣∣∣∣
+ sup

∥f∥BL≤1

∫
Y

∣∣f(z1(zn0 , un, y1))− f(z1(z0, u, y1))
∣∣P (dy1|z0, u)

≤ ∥P (·|zn0 , un)− P (·|z0, u)∥TV

+ sup
∥f∥BL≤1

∫
Y

∣∣f(z1(zn0 , un, y1))− f(z1(z0, u, y1))
∣∣P (dy1|z0, u), (6.39)
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where, in the last inequality, we have used ∥f∥∞ ≤ ∥f∥BL ≤ 1. To prove that (6.39) (and so (6.38)) goes to 0, it is sufficient to
establish the following results:

(i) P (dy1|z0, u0) is continuous in total variation,

(ii) limn→∞
∫
Y ρ(z1(z

n
0 , un, y1), z1(z0, u, y1))P (dy1|z0, u) = 0 as (zn0 , un) → (z0, u).

Indeed, suppose that (i) and (ii) hold. Then, the first term in (6.39) goes to 0 as P (·|z0, u) is continuous in total variation. For the
second term in (6.39), we have

sup
∥f∥BL≤1

∫
Y

∣∣f(z1(zn0 , un, y1))− f(z1(z0, u, y1))
∣∣P (dy1|z0, u)

≤
∫
Y
ρ(z1(z

n
0 , un, y1), z1(z0, u, y1))P (dy1|z0, u)

→ 0 as n → ∞ (by (ii)).

Therefore, to complete the proof of Theorem 6.3.3 and Theorem 6.3.4, we will prove (i) and (ii).

Proof of Theorem 6.3.3

We first prove (i); that is, P (dy1|z0, u) is continuous in total variation. To this end, let (zn0 , un) → (z0, u). Then, we write

sup
A∈B(Y)

∣∣P (A|zn0 , un)− P (A|z0, u)
∣∣

= sup
A∈B(Y)

∣∣∣∣ ∫
X
Q(A|x1, un)T (dx1|zn0 , un)−

∫
X
Q(A|x1, u)T (dx1|z0, u)

∣∣∣∣,
where T (dx1|zn0 , un) :=

∫
X T (dx1|x0, un)z

n
0 (dx0). Note that, by Lemma 6.6.1, we can show that T (dx1|zn0 , un) → T (dx1|z0, u)

weakly. Indeed, if g ∈ Cb(X), then we define rn(x0) =
∫
X g(x1)T (dx1|x0, un) and r(x0) =

∫
X g(x1)T (dx1|x0, u). Since

T (dx1|x0, u) is weakly continuous, we have rn(x
n
0 ) → r(x0) when xn

0 → x0. Hence, by Lemma 6.6.1, we have

lim
n→∞

∣∣∣∣∫
X
rn(x0)z

n
0 (dx0)−

∫
X
r(x0)z0(dx0)

∣∣∣∣ = 0.

Hence, T (dx1|zn0 , un) → T (dx1|z0, u) weakly. Moreover, the families of functions {Q(A| · , un)}n≥1,A∈B(Y) and {Q(A| · , u)}A∈B(Y)
satisfy the conditions of Lemma 6.6.1 as Q is continuous in total variation distance. Therefore, Lemma 6.6.1 yields that

lim
n→∞

sup
A∈B(Y)

∣∣∣∣ ∫
X
Q(A|x1, un)T (dx1|zn0 , un)−

∫
X
Q(A|x1, u)T (dx1|z0, u)

∣∣∣∣ = 0.

Thus, P (dy1|z0, u) is continuous in total variation.

To prove (ii), we write ∫
Y
ρ(z1(z

n
0 , un, y1), z1(z0, u, y1))P (dy1|z0, u)

=

∫
Y

∞∑
m=1

2−m+1

∣∣∣∣ ∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)

−
∫
X
fm(x1)z1(z0, u, y1)(dx1)

∣∣∣∣P (dy1|z0, u)

=

∞∑
m=1

2−m+1

∫
Y

∣∣∣∣ ∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)

−
∫
X
fm(x1)z1(z0, u, y1)(dx1)

∣∣∣∣P (dy1|z0, u),

where we have used Fubini’s theorem with the fact that supm ∥fm∥∞ ≤ 1. For each m, let us define

I
(n)
+ :=

{
y1 ∈ Y :

∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1) >

∫
X
fm(x1)z1(z0, u, y1)(dx1)

}
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I
(n)
− :=

{
y1 ∈ Y :

∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1) ≤

∫
X
fm(x1)z1(z0, u, y1)(dx1)

}
. (6.40)

Then, we can write ∫
Y

∣∣∣∣ ∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)−

∫
X
fm(x1)z1(z0, u, y1)(dx1)

∣∣∣∣P (dy1|z0, u)

=

∫
I
(n)
+

(∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)−

∫
X
fm(x1)z1(z0, u, y1)(dx1)

)
P (dy1|z0, u)

+

∫
I
(n)
−

(∫
X
fm(x1)z1(z0, u, y1)(dx1)−

∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)

)
P (dy1|z0, u).

In the sequel, we only consider the term with the set I(n)
+ . The analysis for the other one follows from the same steps. We have∫

I
(n)
+

(∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)−

∫
X
fm(x1)z1(z0, u, y1)(dx1)

)
P (dy1|z0, u)

≤
∫
I
(n)
+

∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)P (dy1|z0, u)

−
∫
I
(n)
+

∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)P (dy1|zn0 , un)

+

∫
I
(n)
+

∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)P (dy1|zn0 , un)

−
∫
I
(n)
+

∫
X
fm(x1)z1(z0, u, y1)(dx1)P (dy1|z0, u)

≤ ∥P (dy1|z0, u)− P (dy1|zn0 , un)∥TV

+

∫
X

∫
I
(n)
+

fm(x1)Q(dy1|x1, un)T (dx1|zn0 , un)

−
∫
X

∫
I
(n)
+

fm(x1)Q(dy1|x1, u)T (dx1|z0, u),

where we have used ∥fm∥∞ ≤ 1 in the last inequality. The first term above goes to 0 since P (dy1|z0, u) is continuous in total
variation. For the second term, we use Lemma 6.6.1. Indeed, families of functions {fm(·)Q(A| · , un) : n ≥ 1, A ∈ B(Y)} and
{fm(·)Q(A| · , u) : A ∈ B(Y)} satisfy the conditions in Lemma 6.6.1 as Q is continuous in total variation. Hence, the second term
converges to 0 by Lemma 6.6.1 since T (dx1|zn0 , un) → T (dx1|z0, u) weakly. Hence, for each m, we have

lim
n→∞

∫
Y

∣∣∣∣ ∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)

−
∫
X
fm(x1)z1(z0, u, y1)(dx1)

∣∣∣∣P (dy1|z0, u) = 0.

By the dominated convergence theorem, we then have

lim
n→∞

∫
Y
ρ(z1(z

n
0 , un, y1), z1(z0, u, y1))P (dy1|z0, u)

≤
∞∑

m=1

2−m+1 lim
n→∞

∫
Y

∣∣∣∣ ∫
X
fm(x1)z1(z

n
0 , un, y1)(dx1)

−
∫
X
fm(x1)z1(z0, u, y1)(dx1)

∣∣∣∣P (dy1|z0, u) = 0.

This establishes (ii), which completes the proof together with (i).

Proof of Theorem 6.3.4

We first show (i); that is, P (dy1|z0, u0) is continuous total variation. Let (zn0 , un) → (z0, u). Then, we have
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sup
A∈B(Y)

|P (A|zn0 , un)− P (A|z0, u)|

= sup
A∈B(Y)

∣∣∣∣ ∫
X

∫
X
Q(A|x1)T (dx1|x0, un)z

n
0 (dx0)

−
∫
X

∫
X
Q(A|x1)T (dx1|x0, u)z0(dx0)

∣∣∣∣.
For each A ∈ B(Y) and n ≥ 1, we define

fn,A(x0) =

∫
X
Q(A|x1)T (dx1|x0, un)

and
fA(x0) =

∫
X
Q(A|x1)T (dx1|x0, u).

Then, for all xn
0 → x0, we have

lim
n→∞

sup
A∈B(Y)

|fn,A(x
n
0 )− fA(x0)|

= lim
n→∞

sup
A∈B(Y)

∣∣∣∣ ∫
X
Q(A|x1)T (dx1|xn

0 , un)−
∫
X
Q(A|x1)T (dx1|x0, u)

∣∣∣∣
≤ lim

n→∞
∥T (dx1|xn

0 , un)− T (dx1|x0, u)∥TV = 0

and

lim
n→∞

sup
A∈B(Y)

|fA(xn
0 )− fA(x0)|

= lim
n→∞

sup
A∈B(Y)

∣∣∣∣ ∫
X
Q(A|x1)T (dx1|xn

0 , u)−
∫
X
Q(A|x1)T (dx1|x0, u)

∣∣∣∣
≤ lim

n→∞
∥T (dx1|xn

0 , u)− T (dx1|x0, u)∥TV = 0.

Then, by Lemma 6.6.1, we have

lim
n→∞

sup
A∈B(Y)

∣∣∣∣ ∫
X
fn,A(x0)z

n
0 (dx0)−

∫
X
fA(x0)z0(dx0)

∣∣∣∣
= lim

n→∞
sup

A∈B(Y)

∣∣∣∣ ∫
X

∫
X
Q(A|x1)T (dx1|x0, un)z

n
0 (dx0)

−
∫
X

∫
X
Q(A|x1)T (dx1|x0, u)z0(dx0)

∣∣∣∣
= 0.

Hence, P (dy1|z0, u0) is continuous in total variation.

Now, we show (ii); that is, for any (zn0 , un) → (z0, u), we have

lim
n→∞

∫
Y
ρ(z1(z

n
0 , un, y1), z1(z0, u, y1))P (dy1|z0, u) = 0.

From the proof of Theorem 6.3.3, it suffices to show that

lim
n→∞

∫
X

∫
I
(n)
+

fm(x1)Q(dy1|x1)T (dx1|zn0 , un)

−
∫
X

∫
I
(n)
+

fm(x1)Q(dy1|x1)T (dx1|z0, u) = 0. (6.41)

Indeed, we have ∣∣∣∣∫
X

∫
I
(n)
+

fm(x1)Q(dy1|x1)T (dx1|zn0 , un)−
∫
X

∫
I
(n)
+

fm(x1)Q(dy1|x1)T (dx1|z0, u)
∣∣∣∣
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≤
∣∣∣∣∫

X2

fm(x1)Q(I
(n)
+ |x1)T (dx1|x0, un)z

n
0 (dx0)

−
∫
X2

fm(x1)Q(I
(n)
+ |x1)T (dx1|x0, u)z

n
0 (dx0)

∣∣∣∣
+

∣∣∣∣∫
X2

fm(x1)Q(I
(n)
+ |x1)T (dx1|x0, u)z

n
0 (dx0)

−
∫
X2

fm(x1)Q(I
(n)
+ |x1)T (dx1|x0, u)z0(dx0)

∣∣∣∣
≤

∫
X
∥T (dx1|x0, un)− T (dx1|x0, u)∥TV zn0 (dx0)

+

∣∣∣∣∫
X2

fm(x1)Q(I
(n)
+ |x1)T (dx1|x0, u)z

n
0 (dx0)

−
∫
X2

fm(x1)Q(I
(n)
+ |x1)T (dx1|x0, u)z0(dx0)

∣∣∣∣,
where we have used supn≥1 supx1∈X

∣∣fm(x1)Q(I
(n)
+ |x1)

∣∣ ≤ 1 in the last inequality. If we define rn(x0) = ∥T (dx1|x0, un) −
T (dx1|x0, u)∥TV , then rn(x

n
0 ) → 0 whenever xn

0 → x0. Then, the first term converges to 0 by Lemma 6.6.1 as zn0 → z0

weakly. The second term also converges to 0 by Lemma 6.6.1, since {
∫
X f(x1)Q(I

(n)
+ |x1)T (dx1|·, u) : n ≥ 1} is a family of

uniformly bounded and equicontinuous functions by total variation continuity of T (dx1|x0, u). This proves (ii) and completes the
proof together with (i).

⋄

6.7 Exercises

Exercise 6.7.1 Consider a linear system with the following dynamics:

xt+1 = axt + ut + wt,

and let the controller have access to the observations given by:

yt = pt(xt + vt).

Here {wt, vt, t ∈ Z} are independent, zero-mean, Gaussian random variables, with variances E[w2] and E[v2]. The
controller at time t ∈ Z has access to It = {ys, us, pt s ≤ t− 1} ∪ {yt}. Here pt is an i.i.d. Bernoulli process such
that pt = 1 with probability p.

The initial state has a Gaussian distribution, with zero mean and variance E[x20], which we denote by ν0. We wish to
find for some r > 0:

inf
γ
J(x0, γ) = Eγν0 [

3∑
t=0

x2t + ru2t ],

Compute the optimal control policy and the optimal cost. It suffices to provide a recursive form.

Hint: Show that the optimal control has a separation structure. Compute the conditional estimate through a revised
Kalman Filter due to the presence of pt.

Exercise 6.7.2 Let X,Y be Rn and Rm valued zero-mean random vectors defined on a common probability space,
which have finite covariance matrices. Suppose that their probability measures are given by PX and PY respectively.

Find
inf
K
E[(X −KY )T (X −KY )],

that is find the best linear estimator of X given Y and the resulting estimation error.
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Hint: You may pose the problem as a Projection Theorem problem.

Exercise 6.7.3 (Optimal Machine Repair) Consider a Markov Decision Problem set up as follows. Let there be two
possible states that a machine can take: X = {0, 1}, where 0 is the bad (‘system is down’) state and 1 is the good
state. Let U = {0, 1}, where 0 is the ‘do nothing’ control and 1 is the ‘repair’ control. Suppose that the transition
probabilities are given by:

P (Xt+1 = 1|Xt = 1, Ut = 0) = 1− η, P (Xt+1 = 0|Xt = 1, Ut = 0) = η > 0

P (Xt+1 = 1|Xt = 1, Ut = 1) = 1, P (Xt+1 = 0|Xt = 1, Ut = 1) = 0

P (Xt+1 = 1|Xt = 0, Ut = 0) = 0, P (Xt+1 = 0|Xt = 0, Ut = 0) = 1

P (Xt+1 = 1|Xt = 0, Ut = 1) = α > 0, P (Xt+1 = 0|Xt = 0, Ut = 1) = 1− α (6.42)

Thus, η is the failure probability when the state is good (and no repair), and α is the success probability in the event of
a repair.

The controller has access only to measurement variables Y0, · · · , Yt and U0, · · · , Ut−1, at time t, where the measure-
ments are generated by a binary symmetric channel: P (Y = X) = 1−ϵ and P (Y ̸= X) = ϵ for allX,Y realizations.
The per-stage cost function c(x, u) is given by c(0, 0) = C, c(1, 0) = 0, c(0, 1) = c(1, 1) = R with 0 < R < C. Show
that there exists an optimal control policy for both finite-horizon as well as infinite horizon discounted cost problems.
Is the optimal policy of threshold type?

Exercise 6.7.4 (Zero-Delay Source Coding) Let {xt}t≥0 be an X-valued discrete-time Markov process where X can
be a finite set or Rn. Let there be an encoder which encodes (quantizes) the source samples and transmits the encoded
versions to a receiver over a discrete noiseless channel with input and output alphabet M = {1, 2, . . . ,M}, where M
is a positive integer. The encoder policy γ is a sequence of functions {κt}t≥0 with κt : Mt × (X)t+1 → M. At time t,
the encoder transmits the M-valued message

qt = κt(It)

with I0 = x0, It = (q[0,t−1], x[0,t]) for t ≥ 1, where. The collection of all such zero-delay encoders is called the
set of admissible quantization policies and is denoted by ΓA. A zero-delay receiver policy is a sequence of functions
γd = {γdt }t≥0 of type γdt : Mt+1 → U, where U denotes the finite reconstruction alphabet. Thus

ut = γdt (q[0,t]), t ≥ 0.

For the finite horizon setting the goal is to minimize the average cumulative cost (distortion)

Jπ0
(γ, γd, T ) = Eγ,γ

d

π0

[
1

T

T−1∑
t=0

c0(xt, ut)

]
, (6.43)

for some T ≥ 1, where c0 : X × U → R is a nonnegative cost (distortion) function, and Eγ,γ
d

π0
denotes expectation

with initial distribution π0 for x0 and under the quantization policy γ and receiver policy γd.

a) Show that an optimal encoder uses a sufficient statistic, in particular, it uses P (dxt|q[0,t−1]) and the time informa-
tion, for optimal performance.

b) Show that, when {xt} is i.i.d., any encoder and decoder pair can be replaced with one which only uses xt, that is:

qt = κt(xt)

and the decoder only uses
ut = γdt (qt), t ≥ 0.

See [316], [307], [291] for finite sources and [329] for real sources and further relevant discussions, among many
other recent references.
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Exercise 6.7.5 Let there be two decision makers, DM1 and DM2. Suppose that DMi (i = 1, 2) has access to:

Y i = X + V i

where X,V 1, V 2 are independent Gaussian random variables with unit variance and zero mean.

a) Find E[(X − E[X|Y i])2] for i = 1, 2.

b) Suppose that DM1 and DM2 share their data Y 1 and Y 2. Find

E[(X − E[X|Y 1, Y 2])2]

c) Suppose that DM1 and DM2 share with each other their estimates E[X|Y i]. That is, DM1 has access to Y 1 and
E[X|Y 2]; and DM2 has access to Y 2 and E[X|Y 1]. Find

E

[(
X − E

[
X

∣∣∣∣Y 1, E[X|Y 2]

])2]
and E

[(
X − E

[
X

∣∣∣∣Y 2, E[X|Y 1]

])2]
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The Average Cost Problem

In this chapter, we consider the following average cost problem of finding

J∗
∞(x) := inf

γ
J∞(x, γ) = inf

γ∈ΓA

lim sup
T→∞

1

T
Eγx [

T−1∑
t=0

c(xt, ut)] (7.1)

This is an important problem in applications where one is concerned about the long-term behaviour, unlike the dis-
counted cost setup where the primary interest is in the short-term time stages.

For the study of the average cost problem, we will follow three distinct approaches; the first two will be based on the
arrival at what we will call as the average cost optimality equation. The third approach will be based on the properties
of expected (or sample path) occupation measures and their limit behaviours, leading to a linear program involving
the space of probability measures. These approaches are related (e.g. via a dual optimization analysis [156, Chapter
12, p. 221], or a more direct stochastic analysis [151, Theorem 5.3]), however the conditions leading to solutions
under these approaches are not identical, therefore, the corresponding conditions of existence and structural results for
optimal policies are slightly different. As such, it will be instructive to study both approaches separately, as we do in
the following.

7.1 Average Cost and the Average Cost Optimality Equation (ACOE) or Inequality (ACOI)

To study the average cost problem, one approach is to establish the existence of an Average Cost Optimality Equation
(ACOE), and an associated verification theorem.

Definition 7.1.1 The collection of functions g : X → R, h : X → R, f : X → U is a canonical triplet if for all x ∈ X,

g(x) = inf
u∈U

∫
g(x′)T (dx′|x, u)

g(x) + h(x) = inf
u∈U

(
c(x, u) +

∫
h(x′)T (dx′|x, u)

)
with

g(x) =

∫
g(x′)T (dx′|x, f(x))

g(x) + h(x) =

(
c(x, f(x)) +

∫
h(x′)T (dx′|x, f(x))

)
We will refer to these relations as the Average Cost Optimality Equation (ACOE).
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Theorem 7.1.1 [Verification Theorem] Let g, h, f be a canonical triplet. a) If g is a constant and

lim sup
n→∞

1

n
Eγx [h(xn)] = 0, (7.2)

for all x and under every policy γ, then the stationary deterministic policy γ∗ = {f, f, f, · · · } is optimal so that

g = J∞(x, γ∗) = inf
γ∈ΓA

J∞(x, γ)

where

J(x, γ) = lim sup
T→∞

1

T
Eγx [

T−1∑
k=0

c(xt, ut)].

Furthermore, if lim supn→∞
1
n |E

γ
x [h(xn)]| = 0,

lim
n→∞

∣∣∣∣ 1nEγ∗

x

n∑
t=1

[c(xt−1, ut−1)]− g

∣∣∣∣ ≤ lim sup
n→∞

1

n

(
|Eγ

∗

x [h(xn)]− h(x)|
)

= 0 (7.3)

b) If g, considered above, is not a constant and depends on x, then under any policy γ

lim sup
N→∞

1

N
Eγ

∗

x [

N−1∑
t=0

g(xt)] ≤ inf
γ

lim sup
N→∞

1

N
Eγx [

T−1∑
t=0

c(xt, ut)],

provided that (7.2) holds. Furthermore, γ∗ = {f} is optimal.

Proof: We prove (a); (b) follows from a similar reasoning. For any admissible policy γ, by the iterated expectations
theorem (see Theorem 4.1.3)

Eγx

[ n∑
t=1

h(xt)− Eγ [h(xt)|x[0,t−1], u[0,t−1]]

]
= 0

Now,

Eγ [h(xt)|x[0,t−1], u[0,t−1]] =

∫
y

h(y)P (xt ∈ dy|xt−1, ut−1) (7.4)

= c(xt−1, ut−1) +

∫
y

h(y)P (dy|xt−1, ut−1)− c(xt−1, ut−1) (7.5)

≥ min
ut−1∈U

(
c(xt−1, ut−1) +

∫
y

h(y)P (dy|xt−1, ut−1)

)
− c(xt−1, ut−1) (7.6)

= g + h(xt−1)− c(xt−1, ut−1) (7.7)

Hence, for any admissible policy γ, x ∈ X, by taking the expectations of both sides and re-arranging the terms, we
have that for all n ∈ N

0 ≤ 1

n
Eγx

n∑
t=1

[h(xt)− g − h(xt−1) + c(xt−1, ut−1)]

and thus

g ≤ 1

n
Eγx [h(xn)]−

1

n
Eγx [h(x0)] +

1

n
Eγx [

n∑
t=1

c(xt−1, ut−1)].

Taking the limit and using (7.2), we observe that g is a lower bound on the cost under any policy.

The above hold with equality if γ∗ = {f} is adopted since γ∗ provides the pointwise minimum. Thus, equality holds
under γ∗ so that



7.1 Average Cost and the Average Cost Optimality Equation (ACOE) or Inequality (ACOI) 141

g =
Eγ

∗
[h(xn)]

n
− Eγ

∗

x [h(x0)]

n
+

1

n
Eγ

∗

x

n∑
t=1

[c(xt−1, ut−1)].

Under (7.2),

g = lim
n→∞

1

n
Eγ

∗

x

n∑
t=1

[c(xt−1, ut−1)].

and ∣∣∣∣ 1nEγ∗

x [

n∑
t=1

c(xt−1, ut−1)]− g

∣∣∣∣ ≤ 1

n

(
|Eγ

∗

x [h(xn)]|+ |h(x)|
)

→ 0,

as n→ ∞ ⋄

Theorem 7.1.2 [Optimality Through Finite Horizon Limits] If γ∗ = {f, f, f, · · · } is so that

J∞(x, γ∗) = lim sup
T→∞

inf
γ∈ΓA

JT (x, γ)

with

JT (x, γ) =
1

T
Eγx [

T−1∑
t=0

c(xt, ut)], (7.8)

then γ∗ is optimal.

Proof. The proof follows from the observation (by Lemma 5.5.1)

J∗
∞(x) ≥ lim sup

T→∞
inf
γ∈ΓA

JT (x, γ),

and that γ achieves this lower bound. ⋄

Remark 7.1. Note that if we have that, in Theorem 7.1.1,

g = lim sup
T→∞

inf
γ∈ΓA

JT (x, γ),

then it suffices to check (7.2) only for the policy γ∗ to certify its optimality as this would ensure that the condition in
Theorem 7.1.2, on the achievability of g by g = J(x, γ∗), is attained. Note the analogy with Lemma 5.5.4.

Remark 7.2. Recall that we had utilized the argument used in the proof of Theorem 7.1.2 while studying average cost
LQG problems in Theorem 5.12)(iii).

Definition 7.1.2 Let g be a constant and h : X → R, f : X → U be so that for all x ∈ X,

g + h(x) ≥ inf
u∈U

(
c(x, u) +

∫
h(x′)T (dx′|x, u)

)
(7.9)

Alternatively, let

g + h(x) ≤ inf
u∈U

(
c(x, u) +

∫
h(x′)T (dx′|x, u)

)
(7.10)

with, in either case

inf
u∈U

(
c(x, u) +

∫
h(x′)T (dx′|x, u)

)
=

(
c(x, f(x)) +

∫
h(x′)T (dx′|x, f(x))

)
We will refer to (7.9) as the Average Cost Optimality Inequality (ACOI).
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See, e.g., [12, Theorem 6.6] for the following:

Theorem 7.1.3 [Verification Theorem]

(i) Let (7.10) hold. If

lim sup
n→∞

1

n
Eγx [h(xn)] ≤ 0, (7.11)

for all x and under every policy γ. Then g is a lower bound under any policy.

(ii) On the other hand, let

g + h(x) ≥ c(x, f(x)) +

∫
h(x′)T (dx′|x, f(x))

and

lim inf
n→∞

1

n
Eγ

∗

x [h(xn)] ≥ 0, (7.12)

holding with γ∗ = {f, f, f, · · · }. Then the stationary deterministic policy γ∗ = {f, f, f, · · · } satisfies

g ≥ J(x, γ∗)

Proof: For (i): for any policy γ, by the iterated expectations

Eγx

[ n∑
t=1

h(xt)− Eγ [h(xt)|x[0,t−1], u[0,t−1]]

]
= 0

Now,

Eγ [h(xt)|x[0,t−1], u[0,t−1]] =

∫
y

h(y)P (xt ∈ dy|xt−1, ut−1) (7.13)

= c(xt−1, ut−1) +

∫
y

h(y)P (dy|xt−1, ut−1)− c(xt−1, ut−1) (7.14)

≥ min
ut−1∈U

(
c(xt−1, ut−1) +

∫
y

h(y)P (dy|xt−1, ut−1)

)
− c(xt−1, ut−1) (7.15)

≥ g + h(xt−1)− c(xt−1, ut−1), (7.16)

where the last inequality is due to (7.10). Hence, for any policy γ

0 ≤ 1

n
Eγx

n∑
t=1

[h(xt)− g − h(xt−1) + c(xt−1, ut−1)]

and

g ≤ 1

n
Eγx [h(xn)]−

1

n
Eγx [h(x0)] +

1

n
Eγx [

n∑
t=1

c(xt−1, ut−1)].

Taking the limit, we observe that g is a lower bound on the cost under any policy under (7.12).

For (ii): if we start the analysis above leading to (7.16) with γ∗, we have

Eγ
∗

x

[ n∑
t=1

h(xt)− Eγ
∗
[h(xt)|x[0,t−1], u[0,t−1]]

]
= 0

and
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Eγ
∗
[h(xt)|x[0,t−1], u[0,t−1]] =

∫
y

h(y)P (xt ∈ dy|xt−1, ut−1) (7.17)

= c(xt−1, f(xt−1)) +

∫
y

h(y)P (dy|xt−1, f(xt−1))− c(xt−1, f(xt−1)) (7.18)

≤ g + h(xt−1)− c(xt−1, f(xt−1)) (7.19)

Iterating the above and dividing by n, we arrive at

g − 1

n
Eγ

∗

x [h(xn)] +
1

n
Eγ

∗

x [h(x0)] ≥
1

n
Eγ

∗

x [

n∑
t=1

c(xt−1, ut−1)].

Taking the limsup on both sides (and replacing lim sup with lim inf by reversing the negative sign on the left), and
(7.12) holding for γ∗ = {f, f, f, · · · }, we establish the desired bound. ⋄

7.2 The Value Iteration and Contraction Approach to the Average Cost Problem

Fix z ∈ X and consider the space of measurable and bounded functions h with the restriction that h(z) = 0. Let
(g, h, f) be a canonical triplet with g ≡ ρ ∈ R so that

ρ+ h(x) = inf
u∈U

(
c(x, u) +

∫
h(x′)T (dx′|x, u)

)

7.2.1 Contraction under the span semi-norm

Consider the following minorization condition.

Assumption 7.2.1 There exists a positive measure µ′ with T (B|x, u) ≥ µ′(B), for all B ∈ B(X).

Consider the following span semi-norm:

∥u∥sp = sup
x
u(x)− inf

x
u(x)

The space of measurable bounded functions that satisfy h(z) = 0 under the semi-norm ∥u∥sp is a Banach space (and
hence the semi-norm becomes a norm in this space since ∥u∥sp = 0 implies u ≡ 0).

Define

T(h)(x) = inf
u∈U

(
c(x, u) +

∫
h(x′)T (dx′|x, u)

)
(7.20)

Let
(Tz(h))(x) = (T(h))(x)− (T(h))(z)

Note that Tz maps the aforementioned Banach space to itself under the measurable selection conditions reviewed in
Chapter 5. Under Assumption 7.2.1, and the measurable selection conditions reviewed in Chapter 5, we will show
(through similar steps as those in Chapter 5) that the map is a contraction:

First note that for pairs (x, u) and (x′, u′), with µ(dx1) := P (dx1|x, u) − P (dx1|x′, u′) defining a signed measure,
by the Jordan-Hahn decomposition theorem [171, Theorem 2.8] there exists A with µ(A) = −µ(Ac) ≥ 0 so that the
restriction of µ to A (i.e., µA(B) := µ(B ∩ A) for every Borel B) defines a non-negative measure and the restriction
of −µ to Ac defines a non-negative measure with µ(A) − µ(Ac) = ∥µ∥TV ≤ 2α and thus µ(A) ≤ α. Thus, for any
x, x′, u, u;
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h(x1)P (dx1|x, u)− h(x1)P (dx1|x′, u′)

=

∫
A

h(x1)(P (dx1|x, u)− P (dx1|x′, u′)) +
∫
Ac

h(x1)(P (dx1|x, u)− P (dx1|x′, u′))

=

∫
A

h(x1)(P (dx1|x, u)− P (dx1|x′, u′))−
∫
Ac

h(x1)(P (dx1|x′, u′)− P (dx1|x, u))

≤
∫
A

(
sup
x1

h(x1)

)
(P (dx1|x, u)− P (dx1|x′, u′))−

∫
Ac

(
inf
x1

h(x1)

)
(P (dx1|x′, u′)− P (dx1|x, u))

≤
(
sup
x1

h(x1)

)
µ(A)−

(
inf
x1

h(x1)

)
((−µ)(Ac))

≤ α∥h∥sp

Then, note that for v1 and v2 bounded and with T(vi)(x) achieved with control uxi at x, we have that for any x, x′(
(T(v1))(x)− (T(v2))(x)

)
−
(
(T(v1))(x′)− (T(v2))(x′)

)
≤
∫
(v1(x1)− v2(x1))

(
P (dx1|x, ux2)− P (dx1|x′, ux

′

1 )

)
≤ α∥v1 − v2∥sp,

(where for the first term (T(v1))(x)− (T(v2))(x)we upper bound the difference by applying ux2 for the right hand side
of (7.20) involving v1, and for the second term (T(v1))(x′)− (T(v2))(x′) we apply ux

′

1 for bounding (T(v2))(x′)) and
thus, since x, x′ are arbitrary, we have

∥T(v1)− T(v2)∥sp ≤ α∥v1 − v2∥sp.

Furthermore, since (T(vi))(z) only serves as a shift term in the following, we have that

∥Tz(v1)− Tz(v2)∥sp = ∥T(v1)− T(v2)∥sp ≤ α∥v1 − v2∥sp.

We can then state the following.

Theorem 7.2.1 [152, Lemma 3.5] The iterations

hn+1 = Tz(hn),

with h0 ≡ 0 converges to a fixed point: Tz(h) = h, which leads to the ACOE triplet in Definition 7.1.1. In particular,
if the cost is bounded, under Assumption 7.2.1, and the controlled kernel satisfies the measurable selection conditions
given in Assumption 5.2.1 or 5.2.2, there exists a solution to the ACOE, which in turn leads to an optimal policy.

7.2.2 Contraction under sup norm via minorization by equivalence with a discounted cost problem

We now present a very direct approach. Under Assumption 7.2.1, we have that with

T ′(·|x, u) = T (·|x, u)− µ′(·)

a positive measure, the map

(T′(h))(x) = min
u

(c(x, u) +

∫
h(x1)T ′(dx1|x, u))

is a contraction (see [152, p.61] for a historical review on this approach). With this approach, one can avoid the use of
the span semi-norm approach. Accordingly, one can apply the standard value iteration algorithm using T′, following
the proof of Theorem 5.5.2. The limit equation

h(x) = min
u

(c(x, u) +

∫
h(x1)T ′(dx1|x, u)) = min

u
(c(x, u) +

∫
h(x1)T (dx1|x, u))−

∫
h(x1)µ

′(dx1)
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is the desired ACOE in Definition 7.1.1 with g ≡
∫
h(x1)µ

′(dx1).

7.3 The Vanishing Discounted Cost Approach to the Average Cost Problem

7.3.1 Finite state and action spaces

Average cost emphasizes the asymptotic values of the cost function whereas the discounted cost emphasizes the short-
term cost functions. However, under technical restrictions, one can show that the limit as the discounted factor converges
to 1, one can obtain a solution for the average cost optimization. We now state one such condition below.

Theorem 7.3.1 [97] [45] [12, Theorem 4.3] Consider a controlled Markov chain where the state and action spaces
are finite, and suppose that under any stationary and deterministic policy the entire state space is a recurrent set. Let

Jβ(x) = inf
γ∈ΓA

Jβ(x, γ) = inf
γ∈ΓA

Eγx [

∞∑
t=0

βtc(xt, ut)]

and suppose that γ∗n is an optimal deterministic policy for Jβn
(x). Then, there exists some γ∗ ∈ ΓSD which is optimal

for every β sufficiently close to 1, and is also optimal for the average cost

J(x) = inf
γ∈ΓA

lim sup
T→∞

1

T
Eγx [

T−1∑
t=0

c(xt, ut)]

Proof. First note that for every stationary and deterministic policy f , by a slight change in notation from what was
considered earlier in the notes, Jβ(x, f) := (1− β)Efx [

∑∞
k=0 β

kc(x,f(xk))] is a continuous function on [0, 1] (in β).
Let βn ↑ 1. For each βn, Jβn

is achieved by a stationary and deterministic policy. Since there are only finitely many
such policies, there exists at least one policy f∗ which is optimal for infinitely many βn; call such a sequence βnk

. We
will show that this policy is optimal for the average cost problem also.

It follows that (1 − βnk
)Jβnk

(x, f∗) ≤ (1 − βnk
)Jβnk

(x, γ) for all γ. Then, infinitely often for every deterministic
stationary policy f :

(1− βnk
)Jβnk

(x, f∗)− (1− βnk
)Jβnk

(x, f) ≤ 0

We now claim that for some β∗ < 1, Jβ(x, f∗) ≤ Jβ(x, γ) for all β ∈ (β∗, 1). The function (1− βnk
)Jβnk

(x, f∗)−
(1 − βnk

)Jβnk
(x, f) is continuous in β and uniformly bounded, therefore if the claim were not correct, the function

must have infinitely many zeros. On the other hand, one can write the equation

Jβ(x, f) = c(x, f) + β
∑
x′

P (x′|x, f(x))Jβ(x′, f)

in matrix form to obtain Jβ(·, f) = (I − βP (· · · |·, f(·)))−1c(·, f(·)). It follows that, (1 − z)(Jz(x, f
∗) − Jz(x, f))

is a rational function (that is, ratio of two polynomials with finite order) on the open unit disk (in the complex region)
|z| < 1, such a function can only have finitely many zeros (unless it is identically zero): this follows by studying
the inverse matrix (I − zP )−1 which is analytic inside the unit disk and if it is non-zero on the boundary of the unit
disk at z = 1, it has to be bounded away from zero in a neighborhood of z = 1 inside the unit disk. Therefore, it
must be that for some β∗ < 1, Jβ(x, f∗) ≤ Jβ(x, γ) for all β ∈ (β∗, 1). We note here that such a policy is called a
Blackwell-Optimal Policy. Now,

(1− βnk
)Jβnk

(x, f∗) ≤ (1− βnk
)Jβnk

(x, γ) (7.21)

for any γ and thus,

J(x, f∗) = lim inf
T→∞

1

T
Ef

∗

x [

T−1∑
k=0

c(xk, uk)] ≤ lim inf
nk→∞

(1− βnk
)Jβnk

(x, f∗) = lim sup
nk→∞

(1− βnk
)Jβnk

(x, f∗)
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≤ lim sup
nk→∞

(1− βnk
)Jβnk

(x, γ) ≤ lim sup
T→∞

1

T
Eγx [

T−1∑
k=0

c(xk, uk)] (7.22)

In the first equality, we use the fact that the limit exists. In the above, the sequence of inequalities follow from the
following Abelian inequalities (see [155, Lemma 5.3.1]): Let an be a sequence of non-negative numbers and β ∈ (0, 1).
Then,

lim inf
N→∞

1

N

N−1∑
m=0

am ≤ lim inf
β↑1

(1− β)

∞∑
m=0

βmam

≤ lim sup
β↑1

(1− β)

∞∑
m=0

βmam ≤ lim sup
N→∞

1

N

N−1∑
m=0

am (7.23)

As a result, f∗ is optimal. The optimal cost does not depend on the initial state by the recurrence condition and
irreducibility of the chain under the optimal policy. ⋄

In the following, we consider more general state spaces and generalize the results presented above.

7.3.2 Standard Borel state and action spaces, ACOE and ACOI

Consider the value function for a discounted cost problem as discussed in Section 5.5:

Jβ(x) = min
u∈U

{
c(x, u) + β

∫
X
Jβ(y)T (dy|x, u)

}
, x ∈ X. (7.24)

Let x0 be an arbitrary state and for all x ∈ X consider

Jβ(x)− Jβ(x0)

= min
u∈U

(
c(x, u) + β

∫
T (dx′|x, u)(Jβ(x′)− Jβ(x0))− (1− β)Jβ(x0)

)
As discussed in Section 5.5, this has a solution for every β ∈ (0, 1) under measurable selection conditions.

Average Cost Optimality Equation. We recall that a family of functions F mapping a metric space S to R is said to be
equicontinuous at a point x0 ∈ S if, for every ϵ > 0, there exists a δ > 0 such that d(x, x0) ≤ δ =⇒ |f(x)−f(x0)| ≤
ϵ for all f ∈ F . The family F is said to be equicontinuous if it is equicontinuous at each x ∈ S.

Now suppose that hβ(x) := Jβ(x) − Jβ(x0) is equi-continuous (over β) and X is compact. By the Arzela-Ascoli
Theorem (Theorem 7.3.2), taking β ↑ 1 along some sequence, for some subsequence, Jβnk

(x) − Jβnk
(x0) → η(x)

uniformly. If the cost is bounded, then, along a further subsequence,

(1− βnk
)Jβnk

(x0) → ζ∗ (7.25)

for some ζ∗ (which is to be shown to be independent of x0). If we could also exchange the order of the minimum and
the limit, one obtains the Average Cost Optimality Equation (ACOE):

η(x) = min
u∈U

(
c(x, u) +

∫
T (dx′|xt, ut)η(x′)− ζ∗

)
, (7.26)

which has the form of the equations in Definition 7.1.1.

We now make this observation formal (and relax the compactness assumption on the state space).

Assumption 7.3.1
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(a) The one stage cost function c is bounded and continuous.

(b) The stochastic kernel T ( · |x, u) is weakly continuous in (x, u) ∈ X × U, i.e., if (xk, uk) → (x, u), then
T ( · |xk, uk) → T ( · |x, u) weakly.

(c) U is compact.

(d) X is σ-compact, that is, X = ∪nSn where Sn ⊂ Sn+1 and each Sn is compact.

In addition to Assumption 7.3.1, we impose the following assumption in this section.

Assumption 7.3.2
There exists α ∈ (0, 1) and N ≥ 0, and a state z0 ∈ X such that,

(e) −N ≤ hβ(z) ≤ N for all z ∈ X and β ∈ [α, 1), where

hβ(z) = Jβ(z)− Jβ(z0),

for some fixed z0 ∈ X.

(f) The sequence {hβ(k)} is equicontinuous, where {β(k)} is a sequence of discount factors converging to 1 which
satisfies limk→∞(1− β(k))J∗

β(k)(z) = ρ∗ for all z ∈ X for some ρ∗ ∈ [0, L].

Note that when the one stage cost function c is bounded by some L ≥ 0, we must have

|(1− β)J∗
β(z)| ≤ L

for all β ∈ (0, 1) and z ∈ X. Let us recall the Arzela-Ascoli theorem.

Theorem 7.3.2 [105] Let F be an equi-continuous family of functions on a compact space X and let hn be a sequence
in F such that the range of fn is compact. Then, there exists a subsequence hnk

which converges uniformly to a
continuous function. If X is σ-compact, that is X = ∪nKn with Kn ⊂ Kn+1 with Kn compact, the same result holds
where hnk

converges pointwise to a continuous function, and and the convergence is uniform on compact subsets of X.

Theorem 7.3.3 Under Assumptions 7.3.1 and 7.3.2, there exist a constant ρ∗ ≥ 0, a continuous and bounded h from X
to R with −N ≤ h( · ) ≤ N , and {f∗} ∈ ΓS such that (ρ∗, h, f∗) satisfies the ACOE; that is,

ρ∗ + h(z) = min
u∈U

(c(z, u) +

∫
X
h(y)T (dy|z, u))

= c(z, f∗(z)) +

∫
X
h(y)T (dy|z, f∗(z)),

for all z ∈ X. Moreover, {f∗} is optimal and ρ∗ is the value function, i.e.,

inf
φ
J(φ, z) =: J∗(z) = J({f∗}, z) = ρ∗,

for all z ∈ X.

Proof. By (7.25), we have that (1−βnk
)Jβ(x0) → ρ∗ for some subsequence nk as βnk

↑ 1 and some ρ∗. Observe that
for any x ∈ X

(1− βnk
)Jβnk

(x) = (1− βnk
)(Jβnk

(x)− Jβnk
(x0)) + (1− βnk

)Jβnk
(x0),

which, by the uniform boundedness of Jβnk
(x) − Jβnk

(x0), implies that the limit ρ∗ does not depend on x. By As-
sumption 7.3.2-(f) and Theorem 7.3.2, there exists a further subsequence of hnk

, {hβ(kl)}, which converges (uniformly
on compact sets) to a continuous and bounded function h. Take the limit in (7.35) along this subsequence, i.e., consider

ρ∗ + h(z) = lim
l
min
U

[c(z, u) + β(kl)

∫
X
hβ(kl)(y)T (dy|z, u)]
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= min
U

lim
l
[c(z, u) + β(kl)

∫
X
hβ(kl)(y)T (dy|z, u)]

= min
U

[c(z, u) +

∫
X
h(y)T (dy|z, u)].

Here, somewhat similar to Lemma 5.2.2, the exchange of limit and minimum follows from writing (using the compact-
ness of U, the continuity of [c(z, u) + β(kl)

∫
X hβ(kl)(y)T (dy|z, u)] on U, and the equicontinuity of {hβ(k)}):

min
U

[c(z, u) + β(kl)

∫
X
hβ(kl)(y)T (dy|z, u)] = c(z, ul) + β(kl)

∫
X
hβ(kl)(y)T (dy|z, ul)

min
U

[c(z, u) +

∫
X
h(y)T (dy|z, u)] = c(z, u∗) +

∫
X
h(y)T (dy|z, u∗)

and showing that

max

(∣∣∣∣ ∫
X
(β(kl)hβ(kl)(y)− h(y))T (dy|z, ul)

∣∣∣∣, ∣∣∣∣ ∫
X
(β(kl)hβ(kl)(y)− h(y))T (dy|z, u∗)

∣∣∣∣)→ 0. (7.27)

The last item follows from a contrapositive argument. Suppose that the term does not converge to zero, implying
that for some subsequence it remains above some ϵ > 0 As in the proof of Lemma 5.2.2, for any such subsequence
we would have the following. By compactness of the action space U, we would have a further subsequence so that
un → u (ignoring the subscripts) for some u along this further subsequence. By weak continuity of the kernel Under
Assumption 7.3.1, we then have that T (dy|z, un) → T (dy|z, u). Since hβ(kl) converges uniformly on compact sets,
convergence to zero follows from Theorem D.3.1(i), concluding the argument (a more direct argument would be as
follows: Since for every {un → u}, the set of probability measures T (dy|z, un) is tight, for every ϵ > 0 (by weak
continuity in Assumption 7.3.1), one can find a compact set Kn ⊂ X so that

∫
X\Kn

hβ(kl)(y)T (dy|z, u)] ≤ ϵ (here,
by Assumption 7.3.2-(e), uniform boundedness of hβ(kl) is critical). Since on Kn, hβ(kl) → h uniformly and h is
bounded, the result follows). ⋄

Remark 7.3. One can also consider (the slightly stronger condition of) Assumptions 4.2.1 and 5.5.1 of [155]; see e.g.
[155, Theorem 5.5.4])); see also [271, Theorem 3.8]. Further conditions also appear in the literature; see Hernandez-
Lerma and Lasserre [156] for a detailed analysis for the unbounded cost setup, and [87] for such results and a detailed
literature review. Further conditions, which only involve weak continuity, are available in [139] [303], among other
references.

Corollary 7.3.1 (Beyond Minorization) [95, Lemma 2.2] Consider Assumption 5.5.1 with K2 < 1 and that U is
compact. Then, Theorem 7.3.3 is applicable.

Proof. The proof follows since the equicontinuity condition is satisfied in view of (5.37) (see [256, Theorem 4.37]) for
all β ∈ (0, 1]. ⋄

For an explicit proof, see [95, Lemma 2.2]. The above is particularly useful for belief-MDPs; see Theorem 6.3.7.

In the following, we obtain two partial generalizations of Theorem 7.3.1 to the standard Borel space setup:

First, we observe that under the conditions of Theorem 7.3.3, since a solution to ACOE exists; every subsequential
limit in (7.25) will need to be identical. This leads to the following.

Theorem 7.3.4 Under the conditions of Theorem 7.3.3, (7.25) can be refined to

lim
β↑1

(1− β)Jβ(x0) → ζ∗, (7.28)

where Jβ is defined in (7.24) and ζ∗ is the optimal average cost. That is, we will have sequential convergence (and not
just subsequential convergence).
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The argument is via contraposition; suppose the limit of two subsequences were different. Each subsequence would
then have further subsequences which would satisfy the ACOE and via the verification theorem would lead to the
(same) optimal cost ζ∗. Hence the limits must be identical.

We showed in Theorem 7.3.4 that the value functions of discounted cost criteria converges to the value under the average
cost criterion under the conditions of Theorem 7.3.3. In practice, we would like to also see whether the policies solving
the discounted cost problem (or that are at least near optimal for the discounted cost problem) are (also) near optimal for
the average cost criterion. Such a result has significant implications for numerical and reinforcement learning theoretic
methods (e.g, [88, Theorem 5]).

Theorem 7.3.5 Let Assumptions 7.3.1 and 7.3.2 hold. Let γβ solve the discounted cost optimality equation (7.24).
Then, for every ϵ > 0, there exists β large enough such that

J(x, γβ)− ζ∗ < ϵ,

where ζ∗ is the optimal average cost. That is, the discounted cost optimal policy is near-optimal for the average cost
criterion.

Proof. Write

hβ(x)

= min
u∈U

(
c(x, u) + β

∫
T (dx′|x, u)(hβ(x′))− (1− β)Jβ(x0)

)
=

(
c(x, γβ(x)) + β

∫
T (dx′|x, γβ(x))(hβ(x′))− (1− β)Jβ(x0)

)
(7.29)

It follows that

hβ(x) + ζ∗ − (ζ∗ − (1− β)Jβ(x0)) + (1− β)

∫
T (dx′|x, γβ(x))(hβ(x′))

=

(
c(x, γβ(x)) +

∫
T (dx′|x, γβ(x))(hβ(x′))

)
(7.30)

We have by assumption that hβ is uniformly bounded. Now, take β sufficiently close to 1 so that |ζ∗−(1−β)Jβ(x0)| ≤
ϵ by (7.28), and that |(1− β)

∫
T (dx′|x, γβ(x))(hβ(x′))| ≤ ϵ. Then, we have

hβ(x) + ζ∗ + 2ϵ

≥
(
c(x, γβ(x)) +

∫
T (dx′|x, γβ(x))(hβ(x′))

)
(7.31)

Via Theorem 7.1.3(ii), since hβ is bounded, the above implies that γβ achieves an average cost not larger than ζ∗ +2ϵ.
⋄

We now establish near optimality of near optimal discounted solutions for the average cost setup.

Theorem 7.3.6 Let Assumptions 7.3.1 and 7.3.2 hold. Let βϵ be taken as in Theorem 7.3.5, be such that

|ζ∗ − (1− βϵ)Jβϵ
(x0)| ≤

ϵ

2

and
(1− βϵ)∥hβϵ

∥∞ ≤ ϵ

2
,

so that γβϵ
is ϵ-optimal. Suppose that γδβϵ

is such that
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Jβϵ
(x, γδβϵ

)− Jβϵ
(x) < δ.

Then,
J(x, γδβϵ

)− ζ∗ < ϵ+ δ

That is, the near optimal discounted cost optimal policy is near-optimal for the average cost criterion as well.

Proof. We follow the proof of Theorem 7.3.5 with a minor variation as follows: Let us write the cost attained by the
policy γδβϵ

as:
Jβϵ(x, γ

δ
βϵ
) = c(x, γδβϵ

) + βϵE[Jβϵ
(x1, γ

δ
βϵ
)|x0 = x, u0 = γδβϵ

(x)]

This follows from the fact that the cost is bounded and the arguments used in Chapter 5 on the verification theorem;
alternatively see Section 8.1.2.

With x0 as in the proof of Theorem 7.3.5, write

h̄βϵ
(x) := Jβϵ

(x, γδβϵ
)− Jβϵ

(x0)

Then, we have that, by substitution,

h̄βϵ
(x) = c(x, γβδ

ϵ
) + βϵE[h̄βϵ

(x1)|x0 = x, u0 = γδβϵ
(x)]− (1− βϵ)Jβϵ

(x0)

Then,

h̄βϵ(x) + (1− βϵ)Jβϵ(x0) + (1− βϵ)

∫
T (dx′|x, γδβϵ

(x))(h̄βϵ(x1)) = c(x, γδβϵ
) + E[h̄βϵ(x1)|x0 = x, u0 = γδβϵ

(x)]

We have that |(1−βϵ)Jβϵ(x0)−ζ∗| ≤ ϵ
2 and that ∥h̄βϵ

∥∞ ≤ supx∈X |Jβϵ
(x, γδβϵ

)−Jβϵ
(x)|+∥hβϵ

∥∞ ≤ δ+∥hβϵ
∥∞.

This implies that

h̄βϵ
(x) +

ϵ

2
+ (1− βϵ)δ +

ϵ

2
≥ c(x, γβδ

ϵ
) + E[h̄βϵ

(x1)|x0 = x, u0 = γδβϵ
(x)]

This has the same form as (7.31) and thus Theorem 7.1.3(ii) implies that γδβϵ
achieves an average cost of no larger than

ζ∗ + ϵ+ δ

⋄

Average Cost Optimality Inequality. If one cannot verify the equi-continuity assumption or the boundedness condi-
tions, the following holds; note that the condition of strong continuity in actions for every fixed state is required here.
The result essentially follows from [155, Theorem 5.4.3] with some variations in the conditions.

Theorem 7.3.7 Let for every measurable and bounded g, the integral
∫
g(xt+1)P (dxt+1|xt = x, ut = u) be continu-

ous in u for every x, and there exist N <∞ and a function b(x) with

−N ≤ hβ(x) ≤ b(x), β ∈ (0, 1), x ∈ X (7.32)

and for all β ∈ [α, 1) for some α < 1 and M ∈ R+:

(1− β)J∗
β(z) ≤M. (7.33)

Under these conditions, the Average Cost Optimality Inequality (ACOI) holds:

η(x) ≥ min
u∈U

(
c(x, u) +

∫
T (dx′|xt, ut)η(x′)− ζ∗

)
=

(
c(x, f(x)) +

∫
T (dx′|x, f(x))η(x′)− ζ∗

)
(7.34)
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In particular, the stationary and deterministic policy γ = {f, f, f, · · · } is optimal.

Proof. By (7.33) and (7.25), we have that (1 − βnk
)Jβnk

(x0) → ζ∗ for some subsequence nk and βnk
↑ 1. On the

other hand, once again by Abelian inequalities, under any policy γ, and any sequence β ↑ 1

lim sup
β→1

(1− β)Jβ(x0) ≤ lim sup
T→∞

1

T
Eγx0

[

T−1∑
k=0

c(xk, uk)]

thus ζ∗ is a lower bound under any admissible policy. We now make the argument that this applies for any initial
condition: Consider some arbitrary state x ∈ X,

(1− βnk
)Jβnk

(x) = (1− βnk
)(Jβnk

(x)− Jβnk
(x0)) + (1− βnk

)Jβnk
(x0)

By (7.32), (1− βnk
)(Jβnk

(x)− Jβnk
(x0)) → 0. Thus, for any x, (1− βnk

)Jβnk
(x) → ζ∗.

We now show that (7.34) holds. For this, consider again:

Jβ(x)− Jβ(x0)

= min
u∈U

(
c(x, u) + β

∫
T (dx′|x, u)(Jβ(x′)− Jβ(x0))− (1− β)Jβ(x0)

)
(7.35)

Observe the following along the subsequence nk, with hβ(x) = Jβ(x)− Jβ(x0), (1− βnk
)Jβnk

(x0) → ζ∗ and

lim inf
nk→∞

Jβnk
(x)− Jβnk

(x0)

= lim inf
nk→∞

min
u∈U

(
c(x, u) + βnk

∫
T (dx′|x, u)hβnk

(x′)

)
− (1− βnk

)Jβnk
(x0)

= lim
nk→∞

inf
nm>nk

min
u∈U

(
c(x, u) + βnm

∫
T (dx′|x, u)hβnm

(x′)

)
− (1− βnk

)Jβnk
(x0)

≥ lim
nk→∞

min
u∈U

(
c(x, u) + βnk

∫
T (dx′|x, u)Hnk

(x′)

)
− (1− βnk

)Jβnk
(x0)

= min
u∈U

(
c(x, u) +

∫
T (dx′|x, u)η(x′)− ζ∗

)
where Hnk

(x) := min(infnm>nk
hβnm

(x), nk) (so that this is a bounded function) and η(x) = limm→∞Hk(x) (so
that η(x) = lim infnk→∞ Jβnk

(x) − Jβnk
(x0) which is the left hand term of the equation above). The last equality

holds since Hk ↑ η as shown in Lemma 5.5.2 (though with an inequality sign since η is not necessarily bounded), and
bounded from below and that

∫
T (dx′|x, u)Hk(x

′) is continuous on U (this is where we use the strong continuity in
actions property given as a hypothesis).

We now show that the stationary policy γ = f∞ =: {f, f, f, · · · } is optimal, via Theorem 7.1.3(ii): Using (7.34)
repeatedly, we have that

Ef
∞

x [

T−1∑
k=0

c(xk, uk)] ≤ Tζ∗ + η(x)− Ef
∞

x [η(xT )] ≤ Tζ∗ + η(x) +N.

Dividing by T and taking the lim sup, leads to the result that

lim sup
T→∞

1

T
Ef

∞

x [

T−1∑
k=0

c(xk, uk)] ≤ ζ∗.

This completes the proof. ⋄

Further sufficient conditions exist in the literature for ACOE or ACOI to hold (see [156], [304]). These conditions
typically have the form of Assumption 5.5.2 or 5.5.3 together with geometric ergodicity conditions with condition



152 7 The Average Cost Problem

(5.39) replaced with conditions of the form:

sup
u∈U

∫
X
w(y)T (dy|x, u) ≤ αw(x) +Kϕ(x, u),

where α ∈ (0, 1), K < ∞ and ϕ a positive function. In some approaches, ϕ and w needs to be continuous, in others it
does not. For example if ϕ(x, u) = 1{x∈C} for some small set C, then we recover a condition similar to (4.26) leading
to geometric ergodicity.

We also note that for the above arguments to hold, there does not need to be a single invariant distribution. Here in
(7.35), the pair x and x0 should be picked as a function of the reachable set under a given sequence of policies. The
analysis for such a condition is tedious in general since for every β a different optimal policy will typically be adopted;
however, for certain applications the reachable set from a given point may be independent of the control policy applied.

7.4 The Convex Analytic Approach to Average Cost Markov Decision Problems

The convex analytic approach (typically attributed to Manne [209] and Borkar [57] (see also [155])) is a powerful ap-
proach to the optimization of infinite-horizon problems. It is particularly effective in proving results on the optimality
of stationary policies, which can leads to a linear program. This approach is particularly effective for constrained opti-
mization problems and infinite horizon average cost optimization problems. It avoids the use of dynamic programming
or iterative contraction methods.

We are interested in the minimization

inf
γ∈ΓA

lim sup
T→∞

1

T
Eγx0

[

T∑
t=1

c(xt, ut)], (7.36)

where, as before, Eγx0
[·] denotes the expectation over all sample paths with initial state given by x0 under some admis-

sible policy γ.

7.4.1 Finite state/action setup

We first consider the finite space setting where both X and U are finite sets. We study the limit distribution of the
following empirical occupation measures (and their expected values), under any policy γ in ΓA. Let for T ≥ 1

vT (D) =
1

T

T−1∑
t=0

1{(xt,ut)∈D}, D ∈ B(X× U).

Consider policy γ in ΓA, x0 ∼ η, and let for T ≥ 1, the expected empirical occupation measures be given with

µT (D) = Eγη [vT (D)] = Eγη
1

T

[ T−1∑
t=0

1{xt,ut)∈D}

]
, D ∈ B(X× U)

Let for η ∈ P(X× U),
ηT (A× U) :=

∑
x∈X,u∈U

T (A|x, u)η(x, u).

We then have

(µTT )(A× U)



7.4 The Convex Analytic Approach to Average Cost Markov Decision Problems 153

=
∑

x∈X,u∈U
T (A|x, u)µT (x, u)

=
∑

x∈X,u∈U
E[1{x1∈A}|x0 = x, u0 = u]µT (x, u)

=
1

T

T−1∑
k=0

E

[ ∑
x∈X,u∈U

E[1{xk+1∈A}|xk = x, uk = u]1{xk=x,uk=u}

]

=
1

T

T−1∑
k=0

∑
x∈X,u∈U

E[1{xk+1∈A}|xk = x, uk = u]P (xk = x, uk = u)

=
1

T

T−1∑
k=0

E[1{xk+1∈A}] (7.37)

Then, through what is often referred to as a Krylov-Bogoliubov-type argument, for every A ⊂ X,

|µT (A× U)− µTT (A× U)|

= Eγµ0

1

T

[ T−1∑
t=0

1{xt,ut)∈(A×U)} −
T−1∑
t=0

1{xt+1,ut+1)∈(A×U)}

]
(7.38)

≤ 1

T
→ 0,

as T → ∞. Notice that the above applies for any policy γ ∈ ΓA. Now, if we can ensure that for some subsequence,
µtk → µ for some probability measure µ, it would follow that µtkT (A× U) → µT (A× U).

Now define

G =

{
v ∈ P(X× U) : v(B × U) =

∑
x,u

P (xt+1 ∈ B|xt = x, ut = u)v(x, u), B ∈ B(X)
}

Further define

GX =

{
v ∈ P(X× U) : ∃γ ∈ ΓS , v(A) =

∑
x,u

P γ((xt+1, ut+1) ∈ A|xt = x, ut = u)v(x, u), A ∈ B(X× U)
}

(7.39)

We can establish the equivalence of these sets of measures: It is evident that GX ⊂ G since there are (seemingly) fewer
restrictions for G. We can show that these two sets are indeed equal: For v ∈ G, if we write: v(x, u) = π(x)η(u|x) for
some η, then, we can construct a consistent v ∈ GX: v(B × C) =

∑
x∈B η(C|x)π(x). The set G is called the set of

invariant occupation measures (or, as is used more commonly in the literature: ergodic occupation measures).

Thus, every converging subsequence µtk will converge to G. And hence, any sequence {µk} will have a converging
subsequence whose limit will be in the set G. This is where finiteness is helpful: If the state space were countable,
there would be no guarantee that every sequence of occupation measures would have a converging subsequence. The
following has thus been established.

Lemma 7.4.1 Under any admissible policy, any converging subsequence {µtk} will converge to the set G.

Let ⟨µ, c⟩ :=
∑
µ(x, u)c(x, u). Let us again write that

J∗(x) := inf
γ∈ΓA

J(x, γ),

with
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J(x, γ) := lim sup
T→∞

1

T
Eγx [

T−1∑
t=0

c(xt, ut)],

or
J(x, γ) := lim sup

T→∞
⟨µT , c⟩,

where µT is the expected empirical occupation measure under γ. Now, we have that, for any policy γ,

lim sup
T→∞

⟨µT , c⟩ ≥ lim inf
T→∞

⟨µT , c⟩ ≥ δ∗

where
δ∗ = inf

v∈G

∑
v(x, u)c(c, u)

This follows since for any sequence µTk
which converges to the liminf value, there exists a further subsequence µT ′

k

(due to the compactness of the space of expected empirical occupation measures) which has a limit, and this limit is in
G. That is,

lim
Tk→∞

⟨µTk
, c⟩ = ⟨ lim

T ′
k
→∞

µT ′
k
, c⟩ ≥ δ∗.

Thus, we have established that
J∗(x) ≥ δ∗

If the initial state, or measure on the initial state, can be selected appropriately, or if the controlled Markov chain under
an optimal policy is positive Harris recurrent the above also becomes an equality. The solution to this problem then
gives us the optimal cost (under any policy). Thus, an optimal policy can be obtained through the following linear
program:

Linear Program For Finite Models.

Given a cost function c and transition kernel T , find the minimum of the linear function∑
X×U

ν(x, u)c(x, u). (7.40)

over all probability measures ν that satisfy

ν ∈ G =

{
µ ∈ P(X× U) : µ(z,U) =

∑
X×U

T (z|(x, u))µ(x, u), z ∈ X
}
.

where the constraint set can also be written as∑
j

µ(z, j) =
∑
X×U

T (z|(x, u))µ(x, u), z ∈ X

with
µ(x, u) ≥ 0, x ∈ X, u ∈ U∑

x∈X,u∈U
µ(x, u) = 1

All of these are linear/affine constraints.

Let µ∗ be the optimal occupation measure (this exists since the state space is finite, and thus G is compact, and∑
X×U µ(x, u)c(x, u) is continuous in µ). This induces an optimal policy γ∗(u|x) as (defined almost surely, i.e., for x

with
∑

U µ
∗(x, u) > 0):

γ∗(u|x) = µ∗(x, u)∑
U µ

∗(x, u)
.

Thus, we can find the optimal policy through a linear program.
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7.4.2 General state/action spaces under weak continuity

The arguments presented above apply to general spaces as well. However, for the more general case considered here,
we need to ensure that the set of expected occupation measures is tight, and that the set G is closed. In the following,
we follow the presentation in [14].

We first study the weakly continuous setup, studied in [12, 12, 57, 151, 155, 188], on the existence of an optimal µ ∈ G
under the hypothesis that the transition kernel T is weakly continuous (Assumption 5.2.1(i)).

(H1)The transition kernel T is weakly continuous, that is

T (f)(x) :=

∫
X
f(z)T (dz|x, u)

is continuous in x, u for all f ∈ Cb(X). Recall that this is the same as Assumption 5.2.1(i).

Continuing, for T ≥ 1, we let

vT (D) =
1

T

T−1∑
t=0

1D(Xt, Ut), D ∈ B(X× U) .

Consider any policy γ in ΓA, X0 ∼ ν, and let for T ≥ 1,

µγT (D) = Eγν [vT (D)] =
1

T
Eγν

[
T−1∑
t=0

1D(Xt, Ut)

]
, D ∈ B(X× U) .

We refer to
{
µγT
}
T>0

as the family of mean empirical occupation measures under the policy γ ∈ ΓA, and with initial
distribution ν. Again, through a Krylov-Bogoliubov-type argument, for every A ∈ B(X), we have

|µγT (A× U)− µγTT (A)| = 1

T
|Eγν

[
T−1∑
t=0

1A×U(Xt, Ut)−
T∑
t=1

1A×U(Xt, Ut)

]
|

≤ 1

T
→ 0 as T → ∞ .

(7.41)

Observe that (7.41) holds for any policy γ ∈ ΓA. Suppose that, along some subsequence {tk} ⊂ N, µγt converges
weakly to some µ ∈ (

{
(x, u) : x ∈ X, u ∈ U(x)

}
), which we denote as µγtk ⇒ µ. We write the triangle inequality

|µ(f)− µT (f)| ≤ |µ(f)− µγtk(f)|+ |µγtk(f)− µγtkT (f)|+ |µγtkT (f)− µT (f)| (7.42)

for f ∈ Cb(X). This notation is consistent since f may be viewed also as an element of Cb(
{
(x, u) : x ∈ X, u ∈

U(x)
}
). Suppose that Assumption 5.2.1(i)) holds. The first term on the right hand side of (7.42) vanishes as k → ∞

by weak convergence, while the second term does the same by (7.41). Since

µγtkT (f) = µγtk(T f), (7.43)

and T f ∈ Cb(
{
(x, u) : x ∈ X, u ∈ U(x)

}
) by Assumption 5.2.1(i)), it follows that the third term also vanishes

as k → ∞ by the weak convergence µγtk ⇒ µ. Since the class Cb(X) distinguishes points in P(X), this shows that
µ(A,U) = µT (A) for all A ∈ B(X), which implies that µ ∈ G by the definition of the latter. Thus we have shown the
following.

Lemma 7.4.2 Under Assumption 5.2.1(i)), the limit of any weakly converging subsequence of mean empirical occupa-
tion measures is in G.

This expected average cost can be written as
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J(x, γ) = lim sup
T→∞

⟨µγT , c⟩ ,

where µγT is the mean empirical occupation measure under γ. Let {tk} ⊂ N be a subsequence along which ⟨µγtk , c⟩
converges to J(x, γ) and suppose that µtk ⇒ µ ∈ G. Then

J(x, γ) = lim inf
tk→∞

⟨µγtk , c⟩ ≥
〈

lim
tk→∞

µγtk , c
〉

= ⟨µ, c⟩ ≥ δ∗ , (7.44)

where for the first inequality we use the fact that, since c is lower semi-continuous (l.s.c.) and bounded from below, the
map µ → ⟨µ, c⟩ is lower semi-continuous. The above shows that J∗(x) ≥ δ∗. We now establish conditions for which
the above is indeed an equality.

Assumption 7.4.1 (A) The state and action spaces X and U are Polish. The set-valued map U : X → B(U) is upper
semi-continuous and closed-valued.

(A’)The state and action spaces X and U are compact. The set-valued map U : X → B(U) is upper semi-continuous
and closed-valued.

(B) The non-negative running cost function c(x, u) is is l.s.c. and c :
{
(x, u) : x ∈ X, u ∈ U(x)

}
→ R is inf-compact,

i.e. {(x, u) ∈
{
(x, u) : x ∈ X, u ∈ U(x)

}
: c(x, u) ≤ α} is compact for every α ∈ R+.

(B’)The cost function c is bounded and l.s.c..

(C) There exists a policy and an initial state leading to a finite cost η ∈ R+.

(D)Assumption 5.2.1(i)) holds.

(E) Under every stationary policy, the induced Markov chain is Harris recurrent.

Before we present a theorem, we recall the discussion in Section 3.4.1 concerning ergodic properties of (control-free)
Markov chains: Let c ∈ L1(µ) := {f : X → R,

∫
|f(x)|µ(dx) < ∞}. Suppose that µ is an invariant probability

measure for an X-valued Markov chain Xk. Then, by the individual ergodic theorem for µ almost everywhere x ∈ X:
limT→∞

1
T

∑T
t=1 c(Xt) =

∫
c(x)µ(dx), Px almost surely (that is conditioned on x0 = x, with probability one, the

above holds). Furthermore, again with c ∈ L1(µ), for µ almost everywhere x ∈ X

lim
T→∞

1

T
Ex

[ T∑
t=1

c(Xt)

]
=

∫
c(x)µ(dx), (7.45)

On the other hand, the positive Harris recurrence property allows the almost sure convergence to take place for every
initial condition: If µ is the invariant probability measure for a positive Harris recurrent Markov chain, it follows that
for all x ∈ X and for every c ∈ L1(µ)

lim
T→∞

1

T

T∑
t=1

c(Xt) =

∫
c(x)µ(dx), (7.46)

almost surely. However, as discussed earlier, it is not generally true that

lim
T→∞

1

T
Ex[

T∑
t=1

c(Xt)] =

∫
c(x)µ(dx),

for all x ∈ X. Thus, we can not in general relax the boundedness condition for the convergence of the expected costs.
With c bounded, for all x ∈ X

lim
T→∞

1

T
Ex

[ T∑
t=1

c(Xt)

]
=

∫
c(x)µ(dx) (7.47)
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In the following, we follow the arguments in [14].

Theorem 7.4.1 a) Under (7.4.1) A, B, C, D there exists an optimal measure in G. b) Under (7.4.1) A’, B’, D, E, there
exists a policy in which is optimal for the control problem given in (7.62) for every initial condition.

Proof. a) Consider (7.4.1) A, B, C, D. By (B, C) we have that the set of policies γ which lead to a finite cost is so
that ⟨µγT , c⟩ < ∞ for all T , which implies that {µγT , T > 0} is tight. Thus along some subsequence µtk → µ ∈
(
{
(x, u) : x ∈ X, u ∈ U(x)

}
). As shown in the paragraph preceding (7.4.2), µ ∈ G.

Furthermore, under hypothesis (A), the set K = {(x,U(x)), x ∈ X} is closed by [155, Lemma D.3]. Thus, by the
Portmanteau theorem that every weak limit of a converging sequence of probability measures K) = 1 is also supported
on K.

Consider a sequence {µk}k∈N ⊂ G such that ⟨µk, c⟩ → δ∗ as k → ∞, the sequence µtk is tight by inf-compactness,
and any limit point µ∗ of this sequence is in G with µ∗({(x,U(x)), x ∈ X}) = 1. Thus, by [155, Prop. D.8] we have
an optimal control policy ϕ. Taking limits as in (7.44), we obtain ⟨µ∗, c⟩ = δ∗. This establishes the first part of the
theorem.

Define a stationary policy γ via the disintegration

µ∗(dx,du) = γ∗(du|x)π∗(dx) (7.48)

µ∗ almost surely. Note that via this disintegration the control γ∗ is defined π∗-a.e. Let ϕ ∈ be any policy that agrees
with γ∗ on the support of π∗.

b) Under (A’, B’, D), via (7.43) and that T f ∈ Cb(
{
(x, u) : x ∈ X, u ∈ U(x)

}
) by Assumption 5.2.1(i)), we have

that G is compact; we also have that Portmanteau theorem applies as in part a). By hypothesis (E), since the chain
under an optimal ϕ, is Harris recurrent, π∗ is its unique invariant probability measure. Optimality of ϕ, for every initial
condition, then follows by positive Harris recurrence given that c is bounded via (7.47) under hypothesis (B’). Thus,
J(x, ϕ) = ⟨µ∗, c⟩ and µ∗ is optimal.

⋄

Theorem 7.4.1 can be stated under weaker assumptions. See, for example, [11, Theorem 2.1] among other references
in the literature.

In general, in the absence of (7.4.1) (E), there is a consideration of reachability. Suppose that the chain under the
policy ϕ as defined in the proof of Theorem 7.4.1 is a T model (see [295]). Then, as asserted in [295, Theorem 6.1],
the Doeblin decomposition of the state space contains, in general, a countable collection of maximal Harris sets. In
particular, we have a decomposition into the disjoint union X =

(
∪i∈NHi

)
∪ E , where each Hi is a maximal Harris

set with invariant measure πi, and E is transient. Now, by part (ii) of Theorem 6.1 in [295], only a finite number of the
sets Hi may have a nonempty intersection with any given compact set. This implies that π∗ can always be expressed
as a convex combination of finitely many ergodic invariant measures. Thus, if the Markov Chain is not recurrent, the
stationary policy defined above, in general, is only optimal in a restricted set of initial conditions. On implications
related to insensitivity to such initial state dependence, the reader is referred to [201] and [156, Prop. 11.4.4(c) and
Lemma 11.4.5(a)], among other references, for further results on sample path average cost optimality and expected
average cost optimality.

Following the above, there exists an optimal expected empirical occupation measure, say v. This defines the optimal
stationary control policy by the decomposition:

µ(·|u) = dv(·, du)
d
∫
u∈U v(·, du)

(u),

v almost surely, where d·
d· denotes the Radon-Nikodym derivative.

There is a final consideration of reachability; that is, whether from any initial state, or an initial occupation set, the
region where the optimal policy is defined is attracted (see [12]).



158 7 The Average Cost Problem

7.4.3 General state/action spaces under strong continuity in actions

There are many important applications where the kernel T is not weakly continuous. For example, consider dynamics
described by a stochastic difference equation on Rd of the form

Xn+1 = F (Xn, Un) +Wn , n = 0, 1, 2, . . . ,

where X = Rn and the Wn’s are independent and identically distributed (i.i.d.) random vectors whose distribution
has a bounded and continuous density function. We assume that F is bounded and u 7→ F (x, u) is continuous for all
x ∈ X. It is clear that the transition kernel T is not, in general, weakly continuous. However, it satisfies the following
hypothesis.

(H2)The transition kernel T satisfies the following:

(a) For any x ∈ X, the map u 7→
∫
f(z)T (dz|x, u) is continuous for every bounded measurable function f . That

is, Assumption 5.2.2(i)) holds.

(b) There exists a finite measure ν majorizing T , that is

T (dy|x, u) ≤ ν(dy) , x ∈ X, u ∈ U . (7.49)

If in addition, the distribution of Wn has a continuous, bounded, and a strictly positive probability density function
(a non-degenerate Gaussian distribution satisfies this condition), then positive Harris recurrence can be established
by Lebesgue-irreducibility and a uniform countable additivity condition for compact sets following [296, Condition
A], which leads to the presence of accessible compact petite sets (where one can take V (x) = x2 as the Lyapunov
function). For more details see [255, Example 3.1].

Assumption 7.4.2 The following hold:

(A) The state and action spaces X and U are Polish. The set K = {(x,U(x)), x ∈ X} is measurable (see [155, Lemma
D.3] for conditions) and the set-valued map U : X → B(U) is compact-valued.

(A’) The state and action spaces X and U are compact. The set K is measurable and set-valued map U : X → B(U) is
compact-valued.

(B) The non-negative running cost function c(x, u) is continuous in u ∈ U(x) for every x ∈ X and c :
{
(x, u) : x ∈

X, u ∈ U(x)
}
→ R is inf-compact.

(B’) The cost function c is bounded, and continuous in u ∈ U(x) for every x ∈ X.

(C) There exists a policy and an initial state leading to a finite cost η ∈ R+.

(D) (H2) holds.

(E) Under every stationary policy, the induced Markov chain is Harris recurrent.

We again recall the w-s topology studied in Appendix (Section D.4).

By Theorem D.4.1 (see [270, Theorem 3.10] or [25, Theorem 2.5]), (7.49) implies that setwise sequential pre-
compactness of marginal measures on the state ensures that every weakly converging sequence of mean empirical
occupation measures also converges in the w-s sense. (7.49) implies setwise sequential pre-compactness by [255,
Proposition 3.2], which in turn builds on [158, Corollary 1.4.5]; see also [144, Theorem 4.17].

First, note the following counterpart to Lemma 7.4.2.

Lemma 7.4.3 [14] Under (H2), the limit of any w-s converging subsequence of mean empirical occupation measures
is in G.
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Proof. We follow the notation used in the discussion leading to Lemma 7.4.2. Suppose that, along some subsequence
{tk} ⊂ N, µγt converges to some µ ∈ (

{
(x, u) : x ∈ X, u ∈ U(x)

}
) in the w-s sense, which we denote as µγtk ⇒ µ.

As in (7.42) we have the triangle inequality

µ(f)− µT (f) ≤ µ(f)− µγtk(f) + µγtk(f)− µγtkT (f)

+ µγtkT (f)− µT (f)
(7.50)

for f ∈ Mb(X). If (H2) holds, the first term on the right hand side of (7.50) vanishes as k → ∞ by w-s convergence,
while the second term does so by (7.41). We have

µγtkT (f) = µγtk(T f), (7.51)

Since T f is continuous in u for every fixed x, by (H2), it follows that the third term also vanishes as k → ∞ by the
w-s convergence µγtk ⇒ µ. This shows that µ(A,U) = µT (A) for all A ∈ B(X), which implies that µ ∈ G. ⋄

Theorem 7.4.2 [14] a) Under (7.4.2) A, B, C, D, there exists an optimal measure in G. b) Under (7.4.2) A’, B’, D, E,
there exists a policy in which is optimal for the control problem given in (7.62) for every initial condition.

7.4.4 Optimality of deterministic stationary policies

In this section, we will present conditions on the optimality of deterministic policies via the convex analytic method;
see [14] for a detailed review and [219, Proposition 9.2.5], [57, Lemma 2.4] and [151, Corollary 5.4(b)] for related
results on the optimality of stationary and deterministic policies arrived at via different approaches.

Hernandez-Lermá [151, Theorem 5.3] shows that an average cost optimal randomized policy ϕ, with invariant measure
πϕ satisfies the ACOI πϕ almost everywhere:

g + h(x) ≥ c(x, ϕ(x)) +

∫
h(x′)T (dx′|x, ϕ(x)) (7.52)

where h is bounded from below. If one can ensure that the above holds for all x ∈ X (and not just πϕ almost everywhere)
[151, Prop. 5.2] shows that under this condition on h, (7.52) implies that such a policy is indeed optimal. Again, if the
above holds for all x ∈ X, by utilizing Blackwell’s theorem 5.1.1 on optimality of deterministic policies we can replace
ϕ with a deterministic f ∈ ΓSD, which will then be optimal [151, Corollary 5.4(b)].

This approach can be generalized to the case where the induced Markov chain is not positive Harris recurrent, but when
the action space is finite [14]: Accordingly, one can relax the condition of (7.52) holding for every x. Let g be a constant
and h : X → R+, f : X → P(U) be so that for all x ∈ B for some Borel set B ⊂ X,

g + h(x) ≥
(
c(x, f(x) +

∫
h(x′)T (dx′|x, f(x))

)
:=

∫ (
c(x, u) +

∫
h(x′)T (dx′|x, u)

)
f(du|x) (7.53)

Lemma 7.4.4 Let (7.53) hold with

lim inf
n→∞

1

n
Eγ

∗

x [h(Xn)] ≥ 0, (7.54)

for all x ∈ B where γ∗ = {f, f, f, · · · } and P γ
∗
(x,B) = 1 for all x ∈ B. Then the stationary (possibly randomized)

policy γ∗ = {f, f, f, · · · } satisfies
g ≥ J(x, γ∗),

for all x ∈ B.

Proof. We have, as in the proof of Theorem 7.1.1,
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Eγ [h(Xt)|x[0,t−1], u[0,t−1]] =

∫
y

h(y)P (Xt ∈ dy|xt−1, ut−1) (7.55)

= c(xt−1, ut−1) +

∫
y

h(y)P (dy|xt−1, ut−1)− c(xt−1, ut−1) (7.56)

By iterated expectations,

Eγ
∗

x

[ n∑
t=1

h(Xt)− Eγ
∗
[h(Xt)|X[0,t−1], U[0,t−1]]

]
= 0

Now, under γ∗ we have that B is an absorbing set and thus, by (7.53) holding on the absorbing set, the following will
apply almost surely with X0 = x where x ∈ B:

Eγ
∗
[h(Xt)|x[0,t−1], u[0,t−1]] =

∫
y

h(y)P (Xt ∈ dy|xt−1, ut−1) (7.57)

= c(xt−1, f(xt−1)) +

∫
y

h(y)P (dy|xt−1, f(xt−1))− c(xt−1, f(xt−1)) (7.58)

≤ g + h(xt−1)− c(xt−1, f(xt−1)) (7.59)

Iterating the above and dividing by n, we arrive at

g − 1

n
Eγ

∗

x [h(Xn)] +
1

n
Eγ

∗

x [h(X0)] ≥
1

n
Eγ

∗

x [

n∑
t=1

c(Xt−1, Xt−1)].

Taking the limsup on both sides (and replacing lim sup with lim inf by reversing the negative sign on the left), and
(7.54) holding for γ∗ = {f, f, f, · · · }, we establish the desired bound. ⋄

In particular if we have that g is a lower bound on the optimal cost (say via the convex analytic method), we can claim
that γ∗ is optimal for all initializations X0 = x where x ∈ B. Now, the analysis in [151, Theorem 5.3] shows that if
we have an optimal invariant measure, then this leads to (7.52) for some randomized ϕ on a set of measure 1 under πϕ
with h bounded from below. Building on [46, 49], via [151, (5.7)], this implies the existence of a deterministic control
policy k which is defined on B and which satisfies

g + h(x) ≥
(
c(x, k(x)) +

∫
h(x′)T (dx′|x, k(x))

)
(7.60)

However, with κ∗ = {k, k, k, · · · }, to be able to claim the optimality of k over B via Lemma 7.1.3, we need to show
Pκ

∗
(x,B) = 1 for all x ∈ B; that is an absorbing set under k should be a subset of the absorbing set under ϕ when

X0 = x with x ∈ B. If the induced Markov chain under ϕ is positive Harris recurrent, then [151, Theorem 5.3(b)]
shows that 7.52 holds everywhere (that is, for all x ∈ X), and the result follows. Additionally, when U is countable,
this result also follows via the following argument: By Blackwell’s theorem 5.1.1 and by the measurable selection
theorem of Blackwell and Ryll-Nardzewski [49], k can be (without loss) constructed such that for all x : k(x) ∈ {u :
(c(x, u) +

∫
h(x′)T (dx′|x, u)) ≤ c(x, ϕ(x)) +

∫
h(x′)T (dx′|x, ϕ(x))} ∩ {u : ϕ(u|x) > 0}. In this case, it follows

by expressing the transition probabilities in terms of the countable collection of control realizations, we will have that
Pκ

∗
(x,B) = 1 for all x ∈ B. This leads to the following result.

Theorem 7.4.3 Assume that either Theorem 7.4.1 or Theorem 7.4.2 apply. Let µ∗ be an optimal invariant measure.
Define a stationary policy γ via the disintegration

µ∗(dx, du) = γ∗(du|x)π∗(dx) (7.61)

µ∗ almost surely. Take ϕ ∈ ΓS be any policy that agrees with γ∗ on the support of π∗.

(i) [151] If the induced Markov chain under ϕ is positive Harris recurrent, then the optimal policy can be assumed
deterministic.
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(ii) [14] If the induced Markov chain under an optimal policy is not positive Harris recurrent, then with U countable,
on the support of π∗, ϕ can be assumed to be deterministic. This would lead to an optimal policy for all initial
states x with X0 = x where x ∈ supp (π∗).

There exist alternative arguments in the literature: [219, Proposition 9.2.5], [57, Lemma 2.4] focus on the properties
of return sets for countable state/action space models and characterize conditions under which an optimal policy is
deterministic, and the analysis in [57, Section 3.2] builds on Schauder’s fixed point theorem under restrictive regularity
conditions on a continuous space model. Furthermore, it can be shown that, under mild ergodicity conditions, deter-
ministic policies are dense in the sense that the performance under stationary deterministic policies is dense in the set
of performance values under randomized stationary policies [14].

Remark 7.4 (ACOI through duality with the convex analytic method). Though not directly related to the discussion
above, one could note that there is a further duality relationship between ACOI (see Definition 7.1.2) and the convex
analytic method, see [156, Chapter 12, p. 221].

7.4.5 Sample-path optimality

The above optimality arguments also apply in the somewhat stronger sample-path sense, rather than only in expectation.

Finite state/action setup

Consider the following:

inf
γ∈ΓA

lim sup
T→∞

1

T

T∑
t=1

[c(xt, ut)], (7.62)

where there is no expectation. The above is known as the sample path cost. In the analysis to follow, we will build on
Exercise 4.5.11.

Suppose that under any stationary policy the induced Markov chain is irreducible.

Let Ft be the σ−field generated by {xs, us, s ≤ t}, under any given admissible policy. Define a Ft measurable process
with A ∈ B(X):

Ft(A) =

( t∑
s=1

1{xs∈A} − t
∑
X×U

P (A|x, u)vt(x, u)
)
,

where

vt(x, u) =

t∑
k=0

1{xs=x,ut=u},

is the empirical occupation measure. Note that the above can also be written as

Ft(A) =

( t∑
s=1

(
1{xs∈A} −

∑
X×U

P (A|x, u)1{xs=x,ut=u}

))

Thus, for t ≥ 1,

E[Ft(A)|Ft−1]

= E

[ t∑
s=1

1{xs∈A} −
t−1∑
s=0

∑
X×U

P (xs+1 ∈ A|xs = x, us = u)1{(xs,us)=(x,u)}|Ft−1

]
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= E

[(
1{xt∈A} −

∑
X×U

P (xs+1 ∈ A|xs = x, us = u)1{(xt−1,ut−1)=(x,u)}

)
|Ft−1

]

+

( t−1∑
s=1

1{xs∈A} −
t−2∑
s=0

∑
X×U

P (xs+1 ∈ A|xs = x, us = u)1{(xs,us)=(x,u)}

)
= 0 (7.63)

+

( t−1∑
s=1

1{xs∈A} −
t−2∑
s=0

∑
X×U

P (xs+1 ∈ A|xs = x, us = u)1{(xs,us)=(x,u)}

)
|Ft−1

]
(7.64)

= Ft−1(A), (7.65)

where (7.63) follows from the fact that E[1{xt∈A}|Ft−1] = P (xt ∈ A|Ft−1).

We have then that
E[Ft(A)|Ft−1] = Ft−1(A) ∀t ≥ 0,

and {Ft(A)} is a martingale sequence.

Furthermore, Ft(A) is a bounded-increment martingale since |Ft(A) − Ft−1(A)| ≤ 1. Hence, for every T > 2,
{F1(A), . . . , FT (A)} forms a martingale sequence with uniformly bounded increments, and we could invoke the
Azuma-Hoeffding inequality [94] to show that for all x > 0

P (|Ft(A)
t

| ≥ x) ≤ 2e−2x2t

Finally, invoking the Borel-Cantelli Lemma (see Theorem B.2.1) for the summability of the estimate above, that is:

∞∑
n=1

2e−2x2t <∞,∀x > 0,

we deduce that

lim
t→∞

Ft(A)

t
= 0 a.s.

Thus,

lim
T→∞

(
vT (A)−

∑
X×U

P (A|x, u)vT (x, u)
)

= 0, A ⊂ X

Thus, somewhat similar to the arguments in (7.38), every converging subsequence would have to be in the set G defined
in (7.39).

Let ⟨v, c⟩ :=
∑
v(x, u)c(x, u). Now, we have that

lim inf
T→∞

⟨vT , c⟩ ≥ δ∗

since for any sequence vTk
which converges to the liminf value, there exists a further subsequence vT ′

k
(due to the

(weak) compactness of the space of occupation measures) which has a weak limit, and this weak limit is in G. Then,

lim
Tk→∞

⟨vTk
, c⟩ = ⟨ lim

T ′
k
→∞

vTk
, c⟩ ≥ γ∗.

Furthermore, this cost is attained by an optimal stationary policy as a consequence of positive Harris recurrence.

Note that, the above would lead to the same for the average cost problem as well (though as we studied earlier, a more
direct argument is applicable for the average cost setup):

lim inf
T→∞

E[⟨vT , c⟩] ≥ E[lim inf
T→∞

⟨vT , c⟩] ≥ γ∗.



7.4 The Convex Analytic Approach to Average Cost Markov Decision Problems 163

The standard Borel setup

As we observed, the discussion in Section 7.4.1 applies to the sample path optimality also. We now discuss a more
general setting where the state and action spaces are Polish. Let ϕ : X → R be a continuous and bounded function.
Define:

vT (ϕ) =
1

T

T∑
t=1

ϕ(x, u).

Define a Ft measurable process, with π an admissible control policy (not necessarily stationary or Markov):

Ft(ϕ) =

( t∑
s=1

ϕ(xt)

)
− t

(∫
P×U

∫
ϕ(x′t)P

π(dx′t, du
′
t)|x)vt(dx)

)
(7.66)

As earlier, we define GX to be the following set in this case.

GX = {η ∈ P(X× U) : η(D) =

∫
X×U

P (D|z)η(dz), ∀D ∈ B(X)}.

Consider the following sample-path cost:

inf
γ

lim sup
T→∞

1

T

T∑
t=1

[c(xt, ut)], (7.67)

where there is no expectation. Let ⟨v, c⟩ :=
∑
v(x, u)c(x, u). If one can guarantee that every sequence of empirical

measures {vt} would have a converging subsequence to some measure v, we would have that

lim
Tk→∞

⟨vTk
, c⟩ ≥ ⟨ lim

T ′
k
→∞

vTk
, c⟩,

by the fact that for c continuous, non-negative if vk → v,

lim inf
k→∞

⟨vk, c⟩ ≥ ⟨v, c⟩.

Since for any sequence vTk
which converges to the liminf value, there exists a further subsequence vT ′

k
(due to the

(weak) compactness of the space of occupation measures) which has a weak limit, and this weak limit is in G. By
Fatou’s Lemma:

lim
Tk→∞

⟨vTk
, c⟩ = ⟨ lim

T ′
k
→∞

vTk
, c⟩ ≥ γ∗.

To apply the convex analytic approach, we require that under any admissible policy, the set of sample path occupation
measures would be tight, for almost every sample path realization. If this can be established, then the result goes through
not only for the expected cost, but also the sample-path average cost, as discussed for the finite state-action setup.

Researchers in the literature have tried to establish conditions which would ensure that the set of empirical occupa-
tional measures are tight. These typically follow one of two conditions: Either cost functions are near-monotone type
conditions [57] (this includes, but is more general than, the condition: lim|x|→∞ infu∈U c(x, u) = ∞) or behave like
moments [201] (when X × U is locally compact, there exists a sequence of compact sets Kn so that X × U = ∪nKn

withlimKn↑X inf(x,u)/∈Kn
c(x, u) = ∞), or the Markov chain satisfies strong recurrence properties [57] [13, Chapter 3].

Under such conditions, the sequence of empirical occupation measures {vn} which give rise to a finite cost are almost
surely tight, every such sequence has a convergent subsequence and thus the arguments above apply: Every expected
average-cost optimal policy is also sample-path optimal provided that the initial condition belongs to the support of the
invariant probability measure under an optimal policy.
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Note also that one often can obtain more relaxed conditions for sample path optimality when compared with expected
cost optimality as a consequence of the ergodic theorems for positive Harris recurrent Markov chains (Section 3.4.1).

Note, however, that for sample path optimality, we need to invoke weak continuity almost surely, by the martingale
argument above, and accordingly the measurable selection criteria will need to be under Assumption 5.2.1.

7.5 Constrained Markov Decision Processes

Consider the following average cost problem:

inf
γ
J(x, γ) = inf

γ
lim sup
T→∞

1

T
Eγx

T−1∑
t=0

c(xt, ut) (7.68)

subject to the constraints:

lim sup
T→∞

1

T
Eγx

T−1∑
t=0

di(xt, ut) ≤ Di (7.69)

for i = 1, 2, · · · ,m where m ∈ N.

A linear programming formulation leads to the following result.

Theorem 7.5.1 [251] [5] Let X,U be countable. Consider (7.68-7.69). An optimal policy will randomize between at
most m+ 1 deterministic policies.

Ross also discusses a setup with one constraint where a non-stationary history-dependent policy may be used instead
of randomized stationary policies.

Finally, the theory of constrained Markov Decision Processes is also applicable to Polish state and action spaces, but
this requires further technicalities. If there is an accessible atom (or an artificial atom as considered earlier in Chapter
3) under any of the policies considered, then the randomizations can be made at the atom.

7.6 Bibliographic Notes

7.7 Exercises

Exercise 7.7.1 Let X,U be finite sets and consider the occupation measure corresponding to a controlled Markov chain
under some arbitrary admissible control policu:

vT (A×B) =
1

T

T−1∑
t=0

1{(xt,ut)∈A×B}, A ⊂ X, B ⊂ U.

While proving that the limit of such a measure process lives in a specific set, the following is used, which you are asked
to prove. Let γ be some arbitrary but admissible control policy and let Ft be the σ−field generated by {xs, us, s ≤ t}.
Define a Ft measurable process

Ft(A) =

( t∑
s=1

1{xs∈A} − t
∑
X×U

P (A|x)vt(x, u)
)
,
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Show that, {Ft(A), t ∈ Z+} is a martingale sequence.

Hint: Observe that for all t ∈ {1, 2, . . . , T}( t∑
s=1

1{xs∈A} − t
∑
X×U

P (x1 ∈ A|x0 = x, u0 = u)vt(x, u)

)

=

( t∑
s=1

1{xs∈A} −
t−1∑
s=0

∑
X×U

P (xs+1 ∈ A|xs = x, us = u)1{(xs,us)=(x,u)}

)
(7.70)

Then, show that E[Ft(A)|Ft−1] = Ft−1(A). You may follow Exercise 4.5.11.

Exercise 7.7.2 a) Let, for a Markov control problem, xt ∈ X, ut ∈ U, where X and U are finite sets denoting the state
space and the action space, respectively. Consider the optimal control problem of the minimization of

lim sup
T→∞

1

T
Eγx [

T−1∑
t=0

c(xt, ut)],

where c is a bounded function. Further assume that under any stationary control policy, the state transition kernel
P (xt+1|xt, ut) leads to an irreducible Markov Chain.

Does there exist an optimal control policy? Propose a method to find an optimal policy.

b) Is the optimal policy also sample-path optimal?

Exercise 7.7.3 Consider a controlled Markov Chain with state space X = {0, 1}, action space U = {0, 1}, and
transition kernel for t ∈ Z+:

P (xt+1 = 1|xt = 0, ut = 1) = α ∈ (0, 1)

P (xt+1 = 1|xt = 0, ut = 0) = β ∈ (0, 1)

P (xt+1 = 1|xt = 1, ut = 0) = P (xt+1 = 1|xt = 1, ut = 1) =
1

2

Let
c(0, 1) = κ ∈ R+, c(0, 0) = 1

c(1, 0) = c(1, 1) = 1

Suppose, the goal is to minimize the quantity

lim sup
T→∞

1

T
Eγ0 [

T−1∑
t=0

c(xt, ut)],

over all admissible policies γ ∈ ΓA.

Find the optimal policy and the optimal cost, as a function of α, β, κ. Explain your answer and how you arrived at your
solution.

Exercise 7.7.4 Consider a controlled Markov chain with state space X = {0, 1}, action space U = {0, 1}, and
transition kernel for t ∈ Z+:

P (xt+1 = 1|xt = 0, ut = 1) = 1

P (xt+1 = 1|xt = 0, ut = 0) =
1

2

P (xt+1 = 1|xt = 1, ut = 0) = P (xt+1 = 1|xt = 1, ut = 1) =
1

2
.
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Let a cost function c : X× U → R+ be given by

c(0, 1) = κ ∈ R+, c(0, 0) = 1

c(1, 0) =
1

2
, c(1, 1) = 1.

Suppose that the goal is to minimize the quantity

lim sup
T→∞

1

T
Eγ0 [

T−1∑
t=0

c(xt, ut)],

over all admissible policies γ ∈ γA. Recall that a policy is admissible if the controller has access to {xs, s ≤ t;ul, l ≤
t− 1} at time t ∈ Z+.

Find an optimal policy and the optimal expected cost explicitly, as a function of κ. Explain your answer and how you
arrived at your solution.

Exercise 7.7.5 Consider a two-state, controlled Markov Chain with state space X = {0, 1}, and transition kernel for
t ∈ Z+:

P (xt+1 = 0|xt = 0) = u0t

P (xt+1 = 1|xt = 0) = 1− u0t

P (xt+1 = 1|xt = 1) = u1t

P (xt+1 = 0|xt = 1) = 1− u1t .

Here u0t ∈ [0.2, 1] and u1t ∈ [0, 1] are the control variables. Suppose, the goal is to minimize the quantity

lim sup
T→∞

1

T
Eγ0 [

T−1∑
t=0

c(xt, ut)],

where
c(0, u0) = 1 + u0,

c(1, u1) = 1.5, ∀u1 ∈ [0, 1],

with given α, β ∈ R+.

Find an optimal policy and find the optimal cost.

Hint: Consider deterministic and stationary policies and analyze the costs corresponding to such policies.

Exercise 7.7.6 [Machine repair revisited] Recall Exercise 7.7.6 with an average cost formulation. Show that there
exists an optimal control policy and that this policy is stationary.

Exercise 7.7.7 For the model considered in Section 7.2, under Assumption 7.2.1, establish that Tz) is a contraction on
the space of bounded functions h with h(z) = 0, with modulus α.

Exercise 7.7.8 (Risk-sensitive average cost criterion) Let X,U be finite and consider the following risk-sensitive cri-
terion:

λ∗ = inf
γ∈ΓA

lim sup
N→∞

1

N
log

(
Eγ
[
e
∑N−1

m=0
c(xm,um)

])
For this criterion, show that the verification theorem (dynamic programming equation) satisfies [65]:
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λ∗V (x) = min
u∈U

(
ec(x,u)

∑
x1

T (x1|x0 = x, u0 = u)V (x1)

)
If one views the operator on the right as a function of V , we have an eigenvalue problem with λ∗ being the optimal
cost. Hint. Divide both sides by λ∗, and apply iteratively the inequality under an arbitrary admissible control. Show
that equality holds when an optimal policy is considered.

Exercise 7.7.9 Study [252] as an example where an average cost optimal policy may not be stationary (and even
possibly randomized stationary).

Exercise 7.7.10 In some problems one needs to relate the discounted cost problem, a finite horizon average cost prob-
lem and an infinite horizon average cost problem. Under what conditions do we have that

lim
β→1

(1− β)Jβ(x0) → J∗(x0)?,

and with JT as given in (7.8),
lim
T→∞

inf
γ∈ΓA

JT (x0, γ) → J∗(x0)?

Exercise 7.7.11 a) For an infinite horizon discounted cost partially observed Markov decision problem with finite state,
action and measurement spaces, suppose that we wish to restrict the policies to be stationary control policies which
only are based on the most recent observation; that is ut = γ(yt) for some γ : Y → U (clearly, this is suboptimal
among all admissible policies, as the analysis in the Chapter shows). Given this restrictive class of policies, can one
obtain an optimal policy through linear programming? b) Can you consider a setup where an optimal policy above
may not be optimal among all policies (e.g., an optimal one-memory policy may not be stationary)? Hint: Consider
linear systems theory (stationary output feedback vs. time-varying output feedback).
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Numerical and Approximation Methods

In this chapter, we will first study several computational algorithms, first in the context of finite space MDPs. After
this, we will study rigorous approximation methods for continuous (standard Borel) space MDPs and POMDPs.

8.1 Value and Policy Iteration Algorithms

8.1.1 Value Iteration

Consider expected discounted cost criterion, for some β ∈ (0, 1),

Jβ(x0, γ) = Eγx0
[

∞∑
t=0

βtc(xt, ut)], (8.1)

to be minimized. The Value Iteration Algorithm was presented earlier in Theorems 5.5.1 and 5.5.2; the bounded setup
is re-stated in the following.

Theorem 8.1.1 Suppose the cost function c is bounded, non-negative, and one of the measurable selection conditions
(Assumption 5.2.1 or Assumption 5.2.2) applies. Then, there exists a unique solution to the discounted cost optimality
equation

v(x) = min
u

(
c(x, u) + β

∫
X
v(y)T (dy|x, u)

)
, x ∈ X

Furthermore, the optimal cost (value function) is obtained by a successive iteration of policies (known as the Value
Iteration Algorithm):

vn(x) = min
u

{c(x, u) + β

∫
X
vn−1(y)T (dy|x, u)}, ∀x, n ∈ N (8.2)

For any v0 ∈ L∞(X) (or Cb(X) under measurable selection Condition 1 in Assumption 5.2.1), the sequence converges
to a unique fixed point. If v0(x) = 0 for all x ∈ X, then vn(x) ↑ v(x) for all x ∈ X. Under the measurable selection
Condition 1, the limit is also continuous with v0 ∈ Cb(X).

We also recall that under Assumptions 5.2.1 and 5.5.1, the value function is Lipschitz; see Theorem 5.5.3.

8.1.2 Policy Iteration

We now discuss the Policy Iteration Algorithm. Let X be countable and c be a bounded cost function. Consider again
(8.1). Let γ0 := {γ0, γ0, γ0, · · · , γ0, · · · } ∈ ΓS denote a deterministic stationary policy (which naturally leads to a
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finite discounted expected cost here). Let this expected cost be W0(·); that is,

W0(x) = Eγ0x [

∞∑
k=0

βkc(xk, γ0(xk))], x ∈ X

Then, similar to (5.22), and using the stationarity of γ0, we obtain

W0(x) = c(x, γ0(x)) + β
∑
x′

W0(x
′)P (xt+1 = x′|xt = x, ut = γ0(x))

Let

T(W0)(x) = min
u∈U

(
c(x, u) + β

∑
x′

W0(x
′)P (xt+1 = x′|xt = x, ut = u)

)
.

Clearly T(W0) ≤W0 pointwise (in x). Now, let γ1 be such that

T(W0)(x) = c(x, γ1(x)) + β
∑
x′

W0(x
′)P (x1 = x′|x0 = x, u0 = γ1(x)) (8.3)

Observe that, iterative application of (8.3) one more time (to W0(x
′) above with T(W0)(x

′) ≤W0(x
′)) leads to

W0(x) ≥ Eγ1x

[ 1∑
k=0

βkc(xk, γ1(xk)) + β2

∫
W0(x2)T (dx2|x1 = x, u1 = γ1(x))

]
.

and, continuing further, for any x ∈ X, n ∈ Z+, we arrive at

W0(x) ≥ Eγ1x [

n−1∑
k=0

βkc(xk, γ1(xk)) + βn
∫
W0(xn)T (dxn|xn−1 = x, un−1 = γ1(x))]. (8.4)

Taking the limit n→ ∞, this leads to the relation

W0(x) ≥ T(W0)(x) ≥W1(x),

with

W1(x) = Eγ1x [

∞∑
k=0

βkc(xk, γ1(xk))]

so that
W1(x) := c(x, γ1(x)) + β

∑
x′

W1(x
′)P (xt+1 = x′|xt = x, ut = γ1(x)).

We can interpret the steps of the discussion above as follows: We start with the policy, {γ0, γ0, γ0, · · · } and then make
the point that the policy {γ1, γ0, γ0, · · · } is a better one and then {γ1, γ1, γ0, · · · } is a better one and ultimately the
policy {γ1, γ1, γ1, · · · , γ1, · · · } is a better policy than what we started with.

We then continue this procedure for m = 2 by replacing W1 with W0 above, to arrive at

T(W1)(x) = min
u∈U

(
c(x, u) + β

∑
x′

W1(x
′)P (xt+1 = x′|xt = x, ut = u)

)
= c(x, γ2(x)) + β

∑
x′

W1(x
′)P (x1 = x′|x0 = x, u0 = γ2(x)) (8.5)

and ultimately W2(x) ≤ T(W1)(x) ≤W1(x), where



8.1 Value and Policy Iteration Algorithms 171

W2(x) = Eγ2x [

∞∑
k=0

βkc(xk, γ1(xk))]

Then, we repeat the process for m > 2 with

T(Wm)(x) = min
u∈U

(
c(x, u) + β

∑
x′

Wm(x′)P (xt+1 = x′|xt = x, ut = u)

)
= c(x, γm+1(x)) + β

∑
x′

Wm(x′)P (x1 = x′|x0 = x, u0 = γm+1(x)) (8.6)

and ultimately Wm+1(x) ≤ T(Wm)(x) ≤Wm(x), where

Wm+1(x) = Eγm+1
x [

∞∑
k=0

βkc(xk, γm+1(xk))]

Remark 8.1. Note that for a finite state action problem, the following holds

W1(x) = Eγ
1

x [

∞∑
k=0

βkc(xk, γ1(xk))] = c(x, γ1(x)) + β
∑

W1(xt+1)T (dxt+1|xt = x, ut = γ1(x))]

More generally, for a given stationary policy γ:

Jβ(x, γ) = Eγx [

∞∑
k=0

βkc(xk, γ(xk))] = c(x, γ(x)) + β
∑
x′

Jβ(x
′, γ)P (xt+1 = x′|xt = x, ut = γ(x)) (8.7)

can be computed by solving the following matrix equation

W = cγ + βP γW,

leading to
W = (I − βP γ)−1cγ ,

whereW is a column vector consisting of {W (x), x ∈ X}; cγ is a column vector consisting of elements {c(x, γ(x)), x ∈
X}; and P γ is a stochastic matrix with entries P γ(x, x′) = P (xt+1 = x′|xt = x, ut = γ(x)) (note that (I − βP γ) is
always invertible for β ∈ (0, 1)). Thus, the implementation of the policy iteration algorithm is quite simple.

Theorem 8.1.2 Through the policy iteration algorithm, there exists W : X → R such that Wn ↓ W pointwise in x,
provided that for some n ∈ N, Wn(x) <∞ for x ∈ X. If γ = {f, f, · · · } satisfies

Eγx [

∞∑
k=0

βkc(xk, f(xk))] =W (x), (8.8)

then γ is optimal among all stationary policies. And if (5.28) holds with W replacing v, γ is optimal among all
policies (note that this always holds if c is bounded). For a problem with finite state and action spaces, convergence is
guaranteed in a finite number of stages and the resulting policy is optimal.

Proof. By (8.4) the sequence Wn ≥ T(Wn) ≥ Wn+1, and thus there is a limit W (since the cost per state is bounded
from below) and the limit satisfies W = T(W ), which is precisely the optimality equation (5.27). Since such a W
leads to a lower bound under any stationary policy by the construction of the algorithm, an argument similar to the one
in the proof of Lemma 5.5.4 leads to the result. Note that for finite models we have the condition, as noted in Lemma
5.5.4,

lim
t→∞

βtEγx [W (xt)] = 0,

by (8.8), since W is bounded. ⋄
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8.2 Approximation through Quantization of the State and the Action Spaces

For cases where the spaces are not finite or countable, numerical methods require approximation procedures. In the fol-
lowing, let X,U be standard Borel spaces with U(x) = U compact. We will arrive at rigorously justified approximation
algorithms and resulting convergence results, both via analytical as well as learning theoretic methods.

8.2.1 Finite Action Approximation to MDPs

Definition 8.2. A measurable function q : X → U is called a quantizer from X to U if the range of q, i.e., q(X) =
{q(x) ∈ U : x ∈ X}, is finite.

The elements of q(X) (the possible values of q) are called the levels of q.

Finite Action Approximate MDP: Quantization of the Action Space

Let dU denote the metric on U. Since the action space U is compact and thus totally bounded, one can find a sequence
of finite sets Λn = {an,1, . . . , an,kn} ⊂ U such that for all n,

min
i∈{1,...,kn}

dU(a, an,i) < 1/n for all a ∈ U.

In other words, Λn is a 1/n-net in U. In the rest of Section 8.2.1, we assume that the sequence {Λn}n≥1 is fixed. To
ease the notation in the sequel, let us define the mapping

Υn(f)(x) := argmin
a∈Λn

dU(f(x), a), (8.9)

where ties are broken so that Υn(f)(x) is measurable.

Our main objective in this section is to find conditions on the components of the MDP under which there exists a
sequence of finite subsets {Λn}n≥1 of U for which the following holds:

(P) If for each n, MDPn is defined as the Markov decision process having the components
{
X, Λn, p, c

}
, then we

would like to find conditions under which the value function of MDPn converges to the value function of the original
MDP as n→ ∞.

Near optimality of quantized policies under weak continuity

Consider (P) for MDPs with weakly continuous transition probability. We will show that the value function of MDPn
converges to the value function of the original MDP, which is equivalent to (P).

Recall Assumption 5.2.1, essentially repeated for convenience of the reader:

Assumption 8.2.1 (a) The one stage cost function c is bounded and continuous.

(b) The stochastic kernel T ( · |x, a) is weakly continuous in (x, a) ∈ X× U.

(c) U is compact.

(d) X is compact.

For any real-valued measurable function u on X, let T be given by

(Tv)(x) := min
u∈U

(
c(x, u) + β

∫
X
v(y)T (dy|x, u)

)
. (8.10)
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Recall that here, T is the Bellman discounted cost optimality operator for the MDP considered earlier in (5.27). Anal-
ogously, let us define the Bellman optimality operator Tn of MDPn as

Tnv(x) := min
u∈Λn

(
c(x, u) + β

∫
X
v(y)T (dy|x, u)

)
. (8.11)

We have seen that both T and Tn are contraction operators. Furthermore, value functions of MDP and MDPn are
fixed points of these operators; that is, TJ∗ = J∗ and TnJ∗

n = J∗
n. Let us define v0 = v0n ≡ 0, and vt+1 = Tvt

and vt+1
n = Tnvtn for t ≥ 1; that is, {vt}t≥1 and {vtn}t≥1 are successive approximations to the discounted value

functions of the MDP and MDPn, respectively (via value iteration). The following can be shown, inductively for each
t = 0, 1, 2, · · · :

Lemma 8.2.1 Under Assumption 8.2.1, for any t ≥ 1, we have

lim
n→∞

sup
x∈X

|vtn(x)− vt(x)| = 0. (8.12)

The following theorem states that the discounted value function of MDPn converges to the discounted value function of
the original MDP. The proof builds on Lemma 8.2.1 and taking into account that {vt}t≥1 and {vtn}t≥1 are successive
approximations to the value functions J∗ and J∗

n, respectively.

Theorem 8.2.1 [Discounted Cost] [259] [256, Theorem 3.16] Under Assumption 8.2.1, we have

lim
n→∞

sup
x∈X

|J∗
n(x)− J∗(x)| = 0. (8.13)

The proof follows from a successive approximation argument applied iteratively for value iteration updates; see the
proof of Theorem 12.3.2 for an explicit analysis and Section 12.5.2 for further relations between the problem considered
here and the robustness problem considered there, where the approximation problem here is viewed as a particular
instance of robustness.

We state an approximation result analogous to Theorem 8.2.1 for the average cost criterion. To do this, some new
assumptions are needed on the components of the original MDP in addition to Assumption 8.2.1: For average cost
criteria, we impose relatively stronger ergodicity/minorization conditions on the controlled Markov chain. Note that
this was utilized to establish the existence of a solution to the average cost optimality equation in Section 7.2 (see
Assumption 7.2.1).

Assumption 8.2.2 Suppose Assumption 5.2.1 holds with compact X and Assumption 7.2.1 holds.

Suppose that Assumption 8.2.2 holds. This implies that, as we have seen earlier in Section 7.3, there is a solution to the
average cost optimality equation (ACOE) and the stationary policy which minimizes this ACOE is an optimal policy.

Theorem 8.2.2 [Average Cost] [259], [256, Theorem 3.22] Under Assumption 8.2.2, the value functions (that is, the
optimal expected average cost) satisfy

lim
n→∞

|V ∗
n − V ∗| = 0,

where V ∗ and V ∗
n (n ≥ 1) (the value functions of the true model and the approximate model sequence, respectively)

do not depend on x.

Remark 8.3. As we have observed earlier, when one considers partially observed MDPs (POMDPs), any POMDP can
be reduced to a (completely observable) MDP whose states are the posterior state distributions or beliefs of the observer.
Thus the results in this section are applicable to POMDPs as we will study in Section 9.2.1.
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Near optimality of quantized policies under strong continuity in actions for each state

Consider the problem (P) for MDPs with strongly continuous transition probabilities in actions. Recall Assumption
5.2.2, essentially repeated for reader’s convenience:

Assumption 8.2.3

(a) The one stage cost function c is nonnegative and bounded satisfying c(x, · ) ∈ Cb(U) for all x ∈ X.

(b) The stochastic kernel T ( · |x, u) is setwise continuous in u ∈ U for every x ∈ X.

(c) U is compact.

The following theorem states that for any f ∈ F, the discounted cost function of Υn(f) converges to the discounted
cost function of f as n → ∞. Therefore, it implies that the discounted value function of the MDPn converges to the
discounted value function of the original MDP.

Theorem 8.2.3 [261][Discounted Cost] Consider problem (P) for the discounted cost under Assumption 8.2.3. Then,
for any stationary policy defined withf : X → U, J(Υn(f), x) → J(f, x) as n→ ∞, for all x ∈ X.

Observe that any deterministic stationary policy f defines a stochastic kernel on X given X via

Qf ( · |x) := T ( · |x, f(x)). (8.14)

Let Qtf denote the t-step transition probability of this Markov chain. If Qf admits an ergodic invariant probability
measure νf , then by [158, Theorem 2.3.4 and Proposition 2.4.2], there exists an invariant set Mf ∈ B(X) with full νf
measure such that for all x in that set we have

V (f, x) =

∫
X
c(x, f(x))νf (dx). (8.15)

Assumption 8.2.4 Suppose Assumption 8.2.3 holds. In addition, we have

(d) For any f ∈ F, Qf has a unique invariant probability measure νf .

(e1) The set of invariant probability measures ΓF := {ν ∈ P(X) : νQf = ν for some f ∈ F} is relatively sequentially
compact in the setwise topology.

(e2) There exists x ∈ X such that for all B ∈ B(X), Qtf (B|x) → νf (B) uniformly in f ∈ F.

(f) M :=
⋂
f∈F Mf ̸= ∅.

The following theorem states that for any f ∈ F, the average cost function of Υn(f) ∈ Q(Λn) converges to the average
cost function of f as n→ ∞. In particular, the average value function of MDPn converges to the average value function
of the original MDP.

Theorem 8.2.4 [261][Average Cost] Let x ∈ M and f ∈ F. Then, we have V (Υn(f), x) → V (f, x) as n→ ∞, under
Assumption 8.2.4 with either (e1) or (e2).

One can also obtain rates of convergence results [261] [256].

8.2.2 Finite State Approximation to MDPs

In this section we study the finite-state approximation problem for MDPs, by reducing them to finite state MDPs
obtained through quantization of the state space on a finite grid following [261] [256, Chapter 4]. Here two questions
could be posed:
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(i) Q1 Under what conditions on the components of the MDP do the true cost functions of the policies obtained from
finite models converge to the optimal value function as the number of grid points goes to infinity?

(ii) Q2 Can we obtain bounds on the performance loss due to discretization in terms of the number of grid points if we
strengthen the conditions sufficient in (Q1)?

We will not discuss Q2 here, but address Q1. For Q2, the reader is referred to [256, 261]. We just note that, under
further explicit regularity conditions, one can indeed arrive at rates of convergence to optimality. The approach to solve
problem (Q1) can be summarized as follows: First, we obtain approximation results for the compact-state case. We
find conditions under which a compact representation leads to near optimality for non-compact state MDPs: solve the
approximate MDP, and apply the optimal solution for the approximate MDP to the original MDP. We then obtain the
convergence of the finite-state models to non-compact models. Consider (Q1) for MDPs with compact state space.

Finite State Approximate MDP: Quantization of the State Space

Let dX denote the metric on X. For the case with compact X, for each m ≥ 1, there exists a finite subset {zm,i}kmi=1 of
X such that

min
i∈{1,...,km}

dX(z, zm,i) < 1/m for all z ∈ X.

Let Xm := {xm,1, . . . , xm,km} and define Qm mapping any z ∈ X to the nearest element of Xm, i.e.,

Qm(z) := argmin
zm,i∈Xm

dX(z, zm,i).

For each m, a partition {Sm,i}kmi=1 of the state space X is induced by Qm by setting

Sm,i = {z ∈ X : Qm(z) = zm,i}.

Let ψ be a probability measure on X which satisfies

ψ(Sm,i) > 0 for all i,m,

and define probability measures ψm,i on Sm,i by restricting ψ to Sm,i:

ψm,i( · ) := ψ( · )/ψ(Sm,i).

Using {ψm,i}, we define a sequence of finite-state MDPs, denoted as f-MDPm, to approximate the compact-state MDP.

For each m, f-MDPm is defined as:
(
Xm,U, {U(z) : z ∈ Xm}, Tm, dm

)
, where U(z) = U for all z ∈ Xm, and the

one-stage cost function dm : Xm × U → [0,∞) and the transition probability Tm on Xm given Xm × U are given by

dm(zm,i, a) :=

∫
Sm,i

d(z, a)ψm,i(dz)

Tm( · |zm,i, a) :=
∫
Sm,i

Qm ∗ T ( · |z, a)ψm,i(dz),

where Qm ∗ T ( · |z, a) ∈ P(Xm) is the pushforward of the measure T ( · |z, a) with respect to Qm; that is,

Qm ∗ T (zm,j |z, a) = T
(
{y ∈ X : Qm(y) = zm,j}|z, a

)
,

for all zm,j ∈ Xm.

Upon constructing the finite state MDP, we can obtain an optimal solution and apply it to the original MDP. We state
the following results.
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Theorem 8.2.5 [261] [256, Theorem 4.27][Discounted Cost] Suppose that Assumption 8.2.1 holds. Then, for any
β ∈ (0, 1) the discounted cost of the deterministic stationary policy f̂m, obtained by extending the discounted optimal
policy f∗m of f-MDPm to X (i.e., f̂m = f∗m ◦Qm), converges to the discounted value function J∗ of the compact-state
MDP:

lim
m→∞

∥Jβ(f̂m, · )− J∗
β∥ = 0. (8.16)

One challenge to be addressed in a proof of Theorem 8.2.5 is that in the quantized models (as an intermediate step in
the proof) we do not have the weak continuity condition for each of the quantized kernels Tm. The issue is that the value
function in the dynamic programming update iterations is not continuous (and would only be piece-wise continuous),
and accordingly the map

∫
Tn(dx1|x, u)v(x), with v being a value function, is not necessarily continuous in the action

variables which violates the measurable selection conditions noted in Section 5.2. Nonetheless, the machinery of uni-
versally measurable policies (see Appendix C) can be utilized and the existence of optimal policies for the approximate
kernels does not arise as an immediate problem (see [261, p. 6-7]) for the proof of the theorem.

Alternatively, one can first quantize the action set and work on the approximate (finite-action) MDP, whose near opti-
mality was established earlier. Note that for the finite action setup, continuity of the kernels in actions always holds.
Accordingly, we assume that the action set is finite in the following analysis.

Theorem 8.2.6 [256] [172, Theorem 4.2] [Average Cost] Suppose that Assumption 8.2.2 holds. Then,

lim
m→∞

∥J(f̂m, · )− J∗∥ = 0. (8.17)

Remark 8.4. We note that [256] imposes total variation continuity, but building on [173, Theorem 16] and adapting the
arguments in the proof of [172, Theorem 4.2] (see Section 12.4), the total variation condition continuity condition on
the kernel can be relaxed to weak Feller continuity, leading to the above. This will be studied in Chapter 12.

Wasserstein regularity.

Suppose that the transition kernel is Lipschitz continuous in x (uniform in u) under Wasserstein distance W1. Let
X ⊂ Rn. Define

L̄ := max
i=1,...,M

sup
x,x′∈Bi

∥x− x′∥. (8.18)

Here, L̄ is the largest diameter among the quantization bins.

Theorem 8.2.7 [175, Theorem 5] Let Assumption 5.5.1 hold and let X be compact. We have

sup
x0∈X

∣∣∣Ĵβ(x0)− J∗
β(x0)

∣∣∣ ≤ αc
(1− βαT )(1− β)

L̄

where L̄ is defined in (8.18).

The following result is similar to [256, Theorem 4.38] with a slightly improved bound.

Theorem 8.2.8 [175, Theorem 6] Let Assumption 5.5.1 hold and let X be compact. We have

sup
x0∈X

∣∣Jβ(x0, γ̂)− J∗
β(x0)

∣∣ ≤ 2αc
(1− β)2(1− βαT )

L̄.

where L̄ is defined in (8.18) and γ̂ denotes the optimal policy of the finite-state approximate model extended to the state
space X via the quantization function q.
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Non-compact space case. The results above apply also to the non-compact setup, though under restrictive uniform (in
control actions) Lyapunov drift/stability conditions. Let X be a σ-compact separable metric space. Then, there exists a
nested sequence of compact sets {Kn} such that Kn ⊂ Kn+1 and X =

⋃∞
n=1Kn.

Similar to the finite-state MDP construction, define a sequence of compact-state MDPs, denoted as c-MDPn, to approx-
imate the original model. To this end, for each n let Xn = Kn ∪ {∆n}, where ∆n ∈ Kc

n is a so-called pseudo-state.

We can define the transition probability Tn on Xn given Xn×U and the one-stage cost function cn : Xn×U → [0,∞)
by

Tn( · |x, a) =

T
(
· ∩Kn|x, a

)
+ T

(
Kc
n|x, a

)
δ∆n( · ), if x ∈ Kn∫

Kc
n

(
T
(
· ∩Kn|z, a

)
+ T

(
Kc
n|z, a

)
δ∆n( · )

)
νn(dz), if x = ∆n,

cn(x, a) =

{
c(x, a), if x ∈ Kn∫
Kc

n
c(z, a)νn(dz), if x = ∆n.

With such a construction, similar approximation results can be shown to hold under technical drift conditions for both
discounted and average cost problems [256].

8.2.3 Finite Model MDP Approximation: Quantization of both the State and Action Spaces

It was shown in Theorems 8.2.3 and 8.2.4 that any MDP with (infinite) compact action space and with bounded one-
stage cost function can be well approximated by an MDP with finite action space under assumptions that are satisfied
by c-MDPn for each n, for both the discounted cost and the average cost cases. Recall the sequence of finite subsets
{Λk} of U. We define c-MDPn,k as the Markov decision process having the components

{
Xn, Λk, Tn, cn

}
and we let

Fn(Λk) denote the set of all deterministic stationary policies for c-MDPn,k. Note that Fn(Λk) is the set of policies in
Fn taking values only in Λk. Therefore, in a sense, c-MDPn,k and c-MDPn can be viewed as the same MDP, where
the former has constraints on the set of policies. For each n and k, by an abuse of notation, let f∗n and f∗n,k denote the
optimal stationary policies of c-MDPn and c-MDPn,k, respectively, for both the discounted and average costs. Then
Theorems 8.2.3 and 8.2.4 show that for all n, we have

lim
k→∞

Jn(f
∗
n,k, x) = Jn(f

∗
n, x) := J∗

n(x)

lim
k→∞

Vn(f
∗
n,k, x) = Vn(f

∗
n, x) := V ∗

n (x)

for all x ∈ Xn. In other words, the discounted and average value functions of c-MDPn,k converge to the discounted
and average value functions of c-MDPn as k → ∞.

Let us fix x ∈ X. For n sufficiently large (so x ∈ Kn), we choose kn such that |Jn(f∗n,kn , x) − Jn(f
∗
n, x)| < 1/n (or

|Vn(f∗n,kn , x)− Vn(f
∗
n, x)| < 1/n for the average cost).

We have |J̄n(f∗n,kn , x) − J(f∗n,kn , x)| → 0 and |V̄n(f∗n,kn , x) − V (f∗n,kn , x)| → 0 as n → ∞, where again by
an abuse of notation, the policies extended to X are also denoted by f∗n,kn . Since J̄n(f∗n,kn , x) = Jn(f

∗
n,kn

, x) and
V̄n(f

∗
n,kn

, x) = Vn(f
∗
n,kn

, x), it follows that

lim
n→∞

J(f∗n,kn , x) = J∗(x) lim
n→∞

V (f∗n,kn , x) = V ∗(x).

Therefore, before discretizing the state space to compute the near optimal policies, one can discretize, without loss of
generality, the action space U in advance on a finite grid using sufficiently large number of grid points. Then, near
optimality of finite models follow from Theorems 8.2.5 and 8.2.6.

Remark 8.5 (An alternative direct argument via the convex analytic method for average cost criteria). For average cost
criteria, an alternative argument is presented in [14, Theorem 4.2], where it is shown that under either weak or setwise
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continuity conditions, both finite state and action models are near optimal by considering the set of invariant occupation
measures. Furthermore, under the conditions noted, deterministic and stationary policies are shown to be dense among
those that are randomized and stationary, in the sense that the cost under any randomized stationary policy can be
approximated arbitrarily well by deterministic and stationary policies. Furthermore, the dense set of deterministic and
stationary policies can be assumed to have finite range.

8.3 Numerical Methods for POMDPs

8.3.1 Near optimality of quantized policies under weak Feller or Wasserstein regularity of non-linear filters

As we have seen, any POMDP can be reduced to a completely observable Markov process [338], [248], whose states
are the posterior state distributions or ’beliefs‘ of the observer; that is, the state at time t is

πt( · ) := P{Xt ∈ · |y0, . . . , yt, u0, . . . , ut−1} ∈ P(X).

We called this conditional probability measure process the filter process. The filter process has state space P(X) and
action space U. Here, P(X) is equipped with the Borel σ-algebra generated by the topology of weak convergence. The
transition probability of the filter process is given in (6.26).

Accordingly, we have a fully observed belief-MDP. Now, by combining the approximation results in Section 8.2 and
reinforcement learning theoretic results to be presented in Section 9.3, together with the the weak Feller continuity
results presented in Section 6.3.3, we can conclude that the numerical methods can also be applied to POMDPs under
the conditions reported in Theorems 6.3.3 and 6.3.4 [122] [174].

This has explicitly been demonstrated in [262, Theorem 3], where also methods for quantizing probability measures
have been studied. This also applies under Wasserstein regularity of non-linear filter kernels, with explicit conditions
given in Theorem 6.3.5 [95]; see Theorem 8.2.7.

Accordingly, due to the weak Feller property of controlled non-linear filters, we can obtain rigorous approximation
results by quantizing probability measures.

In the following, we present an alternative approach.

8.3.2 Near-optimality of finite window policies under filter stability

One can also show that under filter stability (see Section 6.4), finite window policies are near optimal [178]. Consider
the following:

Jβ(µ, T , γ) = ET ,γ
µ

[ ∞∑
t=0

βtc(xt, ut)

]
, J∗

β(µ, T ) = inf
γ∈Γ

Jβ(µ, T , γ).

The question we ask is: suppose that instead of using all available history, we construct an approximate model using
the finite window information variables

INt = {y[t−N,t], u[t−N,t−1]}, if t ≥ N,

INt = {y[0,t], u[0,t−1]}, if 0 < t < N,

I0 = {y0}, (8.19)

that is we observe the information variables through a window whose length is N . Suppose, we denote the optimal
value function of the approximate model by JNβ and the approximate policy by γN .
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Inspired from filter stability, consider the following: For any time step t ≥ N and for a fixed observation realization
sequence y[0,t] and control action sequence u[0,t−1], the state process can be viewed as

Pµ(xt ∈ ·|y[0,t], u[0,t−1]) = Pπt−N− (Xt ∈ ·|y[t−N,t], u[t−N,t−1])

where

πt−N−(·) = Pµ(xt−N ∈ ·|y[0,t−N−1], u[0,t−N−1]).

That is, we can view the state as the Bayesian update of πt−N− , the predictor at time t − N , using the observations
yt−N , . . . , yt. Notice that with this representation only the most recent N observation realizations are used for the
update and the past information of the observations is embedded in πt−N− . Consider the following set (state space):

Z =
{
(π, y[0,N ], u[0,N−1]);π ∈ P(X), y[0,N ] ∈ YN+1, u[0,N−1] ∈ UN

}
We place the product metric on this new space: weak convergence on the belief and usual metric on the measurements
and actions.

The approach is summarized in Figure 8.1.

Now, for a fixed π̂ ∈ P(X), consider the quantized state space:

ZN =
{
(π̂, y[0,N ], u[0,N−1]); y[0,N ] ∈ YN+1, u[0,N−1] ∈ UN

}
The idea is to quantize Z as follows: collapse all π to a fixed state π̂, define an approximate finite MDP and establish
performance bounds utilizing filter stability and the robustness approach presented earlier

In the following, we will assume that X is Rn for some n and that U,Y are finite sets.

The actual state space and the finite approximation are:

Z =
{
(π, y[0,N ], u[0,N−1]);π ∈ P(X), y[0,N ] ∈ YN+1, u[0,N−1] ∈ UN

}
ZN =

{
(π̂, y[0,N ], u[0,N−1]); y[0,N ] ∈ YN+1, u[0,N−1] ∈ UN

}
Define the map and F : Z → ZN , such that for (π, y[0,N ], u[0,N−1]) ∈ Z

γ ut

πt−N
−

; yt−N , ut−N ; · · · , yt−1, ut−1; yt

y0, u0; y1, u1; y2, u2; y3, u3; · · · ; yt−1, ut−1; yt

γ ut

πt utγ

ADMISSIBLE POLICY

BELIEF REDUCTION

FINITE WINDOW BELIEF REDUCTION

π̂; yt−N , ut−N ; · · · ; yt−1, ut−1; yt ut APPROXIMATE FINITE WINDOW MDPγ

Quantizing the prior πt−N
−

Fig. 8.1: Construction of the Finite-Window Approximate MDP from the Finite-Window Belief-MDP
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F (π, y[0,N ], u[0,N−1]) = (π̂, y[0,N ], u[0,N−1]).

Using the map F and the finite set ZN , one can define a finite belief MDP, and construct a policy for this finite model,
by extending it, we can use the policy, say ϕ̃N for the original model.

The cost function for the approximate model is

ĉ(ẑNt , ut) = ĉ(π̂, INt , ut) := c̃(ϕ(π̂, INt ), ut)

=

∫
X
c(xt, ut)P

π̂(dxt|yt, . . . , yt−N , ut−1, . . . , ut−N ).

We define the controlled transition model for the approximate model by

η̂N (ẑNt+1|ẑNt , ut) = η̂N (π̂, INt+1|π̂, INt , ut) := η̂

(
P(X), INt+1|π̂, INt , ut

)
. (8.20)

We will write ZN
π̂ to make the dependence on π̂ and N more explicit.

For simplicity, if we assume N = 1, then the transitions can be rewritten for some INt+1 = (ŷt+1, ŷt, ût) and INt =
(yt, yt−1, ut−1)

η̂N (π̂, ŷt+1, ŷt, ût|π̂, yt, yt−1, ut−1, ut) = η̂(P(X), ŷt+1, ŷt, ût|π̂, yt, yt−1, ut−1, ut)

= 1{yt=ŷt,ut=ût}P
π̂(ŷt+1|yt, yt−1, ut, ut−1). (8.21)

Denoting the optimal value function for the approximate model by JNβ , we can write the following fixed point equation

JNβ (ẑN ) = min
u∈U

ĉ(ẑN , u) + β
∑

ẑN1 ∈ẐN
π̂

JNβ (ẑN1 )η̂N (ẑN1 |ẑN , u)

 . (8.22)

E.g., for N = 1, we rewrite the fixed point equation for some ẑN0 = (π̂, y1, y0, u0) as

JNβ (π̂, y1, y0, u0) = min
u1∈U

ĉ(π̂, y1, y0, u0, u1) + β
∑
y2∈Y

JNβ (π̂, y2, y1, u1)P
π̂(y2|y1, y0, u1, u0)

 . (8.23)

We can now investigate the following approximation error terms:

|J̃Nβ (ẑ)− J∗
β(ẑ)|, Jβ(ẑ, ϕ̃N )− J∗

β(ẑ).

The first one is the difference between the optimal value function of the original model and that for the approximate
model. The second term is the performance loss due to the policy calculated for the approximate model being applied
to the true model.

Using the approaches presented in Section 8.2 and what is to be presented in Chapter 12 (building on [173, 177], we
can show that the loss is related to the term:

Lt :=

sup
γ̂∈Γ̂

Eγ̂
π−
0

[
∥Pπ

−
t (Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])− P π̂(Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])∥TV

]
(8.24)

Notice that this term is directly related to filter stability studied in Chapter 6.
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Theorem 8.3.1 [178,179] [Continuity of Value Functions] For ẑ0 = (π−
0 , I

N
0 ), if a policy γ̂ acts on the first N step of

the process which produces IN0 , we then have

Eγ̂
π−
0

[∣∣∣J̃Nβ (ẑ0)− J∗
β(ẑ0)

∣∣∣ |IN0 ] ≤ ∥c∥∞
(1− β)

∞∑
t=0

βtLt

Theorem 8.3.2 [178, 179] [Robustness of Approximate Finite Window Model Solution applied to Actual Model] For
ẑ0 = (π−

0 , I
N
0 ), with a policy γ̂ acting on the first N steps

Eγ̂
π−
0

[∣∣∣Jβ(ẑ0, ϕ̃N )− J∗
β(ẑ0)

∣∣∣ |IN0 ] ≤ 2∥c∥∞
(1− β)

∞∑
t=0

βtLt.

As one example, we now show that the term Lt can be bounded by the filter stability result presented in Theorem 6.4.1.
Recall that this states that

Eµ,γ [∥πµ,γn − πν,γn ∥TV ] ≤ 2αn.

which holds uniformly for all µ≪ ν where α := (1− δ̃(T ))(2− δ(Q)).

Since δ̃(T ) is a uniform Dobrushin coefficient over all control actions, the above bound is valid under any control
policy. Thus we have that

Lt = sup
γ̂∈Γ̂

Eγ̂
π−
0

[
∥Pπ

−
t (Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])− P π̂(Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])∥TV

]
≤ 2αN (8.25)

Theorem 8.3.3 [178, 179] Assume the following holds:

(i) The exponential filter stability condition applies:

α := (1− δ̃(T ))(2− δ(Q)) < 1 (8.26)

(ii) The transition kernel T is dominated, i.e. there exists a dominating measure π̂ ∈ P(X) such that for every x ∈ X
and u ∈ U, T (·|x, u) ≪ π̂(·).

Then, by choosing the dominating measure π̂ for the approximate model,

Eγ̂
π−
0

[∣∣∣Jβ(ẑ0, ϕ̃N )− J∗
β(ẑ0)

∣∣∣ |IN0 ] ≤ 4∥c∥∞
(1− β)2

αN . (8.27)

Instead of the Dobrushin based analysis, the more relaxed stability condition presented in Example 6.9 can also be
adopted, though not leading to an exponential convergence rate in the memory size. In that case, Lt → 0 asymptotically
and thus (8.27) converges to 0 as N increases only asymptotically, without a geometric convergence rate in N .

Implementing the above is still tedious; though possible. Can reinforcement learning be feasible? Can we view the
finite history as state? We will address this question in the following chapter.

8.4 Bibliographic Notes

For computational and learning methods, there is an extensive literature, where various approaches have been devel-
oped. A partial list of these techniques is as follows: approximate dynamic programming, approximate value or policy



182 8 Numerical and Approximation Methods

iteration, simulation-based techniques, neuro-dynamic programming (or reinforcement learning), state aggregation,
etc. [37, 39, 84, 106].

We refer the reader to the monograph [256] for a general treatment of approximation results along what has been
presented for continuous spaces; these also build on on [175, 255, 258, 259, 261]. presentation, only focus on the setup
where the state spaces considered are compact. A generalization of some of the approximation results are presented
in [177] in view of robustness properties.

8.5 Exercises

Exercise 8.5.1 Consider a controlled Markov chain with state space X = {0, 1}, action space U = {0, 1}, and
transition kernel for t ∈ Z+:

P (xt+1 = 1|xt = 0, ut = 1) = P (xt+1 = 1|xt = 1, ut = 1) = α

P (xt+1 = 1|xt = 0, ut = 0) = P (xt+1 = 1|xt = 1, ut = 0) = 1− α.

where α ∈ (0, 1). Let a cost function c(x, u), with c : X× U → R+ be given by

c(0, 1) = c(0, 0) = 1 c(1, 0) = c(1, 1) = 2.

Suppose that the goal is to minimize the quantity

Eγ0 [

∞∑
t=0

βtc(xt, ut)],

for a fixed β ∈ (0, 1), over all admissible policies γ ∈ ΓA.

Find an optimal policy and the optimal expected cost explicitly, as a function of α, β (note that the initial condition is
x0 = 0).

Exercise 8.5.2 Consider the following problem: Let X = {1, 2},U = {1, 2}, where X denotes whether a fading
channel is in a good state (x = 2) or a bad state (x = 1). There exists an encoder who can either try to use the channel
(u = 2) or not use the channel (u = 1). The goal of the encoder is send information across the channel.

Suppose that the encoder’s cost (to be minimized) is given by:

c(x, u) = −1{x=2,u=2} + α(u− 1),

for α = 1/2 (if you view this as a maximization problem, you can see that the goal is to maximize information trans-
mission efficiency subject to a cost involving an attempt to use the channel; the model can be made more complicated
but the idea is that when the channel state is good, u = 2 can represent a channel input which contains data to be
transmitted and u = 1 denotes that the channel is not used).

Suppose that the transition kernel is given by:

P (xt+1 = 2|xt = 2, ut = 2) = 0.8, P (xt+1 = 1|xt = 2, ut = 2) = 0.2

P (xt+1 = 2|xt = 2, ut = 1) = 0.2, P (xt+1 = 1|xt = 2, ut = 1) = 0.8

P (xt+1 = 2|xt = 1, ut = 2) = 0.5, P (xt+1 = 1|xt = 1, ut = 2) = 0.5

P (xt+1 = 2|xt = 1, ut = 1) = 0.9, P (xt+1 = 1|xt = 1, ut = 1) = 0.1

We will consider either a discounted cost criterion for some β ∈ (0, 1) (you can fix an arbitrary value)
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inf
γ
Eγx [

∞∑
t=0

βtc(xt, ut)] (8.28)

or the average cost criterion

inf
γ

lim sup
T→∞

1

T
Eγx [

T−1∑
t=0

c(xt, ut)]. (8.29)

a) Using Matlab or some other program, obtain a solution to the problem given above in (9.30) through the following:

(i) Policy Iteration

(ii) Value Iteration.

b) Consider the criterion given in (9.31). Apply the convex analytic method, by solving the corresponding linear pro-
gram, to find the optimal policy. In Matlab, the command linprog can be used to solve linear programming problems.
See (7.40).

Exercise 8.5.3 (Convex Analytic Method for Discounted Cost) Consider the convex analytic method for a discounted
cost problem, where the expected occupation measures are defined, for a given γ ∈ ΓA as

η(A×B) =

∞∑
k=0

βkP γ(Xk ∈ A,Uk ∈ B)

Show that the set of all such expected occupation measures η are equivalent to the set of all expected occupation
measures achieved by stationary (and randomized) γ, that is, by γ ∈ ΓSR.

Hint: Obtain a recursive equation involving

η(A× U) = P (X0 ∈ A) + β

∞∑
k=1

βt−1P γ(Xk ∈ A)

= P (X0 ∈ A) + β

∞∑
k=1

βk−1

∫
T (A|x, u)P γ(Xk−1 ∈ dx, Uk−1 ∈ du)

= P (X0 ∈ A) + β

∫ ∫
T (A|x, u)

∞∑
k=1

βk−1P γ(Xk−1 ∈ dx, Uk−1 ∈ du)

= P (X0 ∈ A) + β

∫ ∫
T (A|x, u)η(dx, du)

Then, note the similarity with (8.7), in that this equation is also satisfied by selecting a stationary control κ defined
almost everywhere with κ(du|x) = dη(dx,du)

dη(dx) (x).

Exercise 8.5.4 Let c : X× U → R+ be bounded, where X is the state space and U is the action space for a controlled
stochastic system. Suppose that under a stationary policy γ, the expected discounted cost, for β < 1, is given by

Jβ(x, γ) := Eγx [

∞∑
k=0

βkc(xk, γ(xk))] = c(x, γ(x)) + β

∫
Jβ(xt+1, γ)T (dxt+1|xt = x, ut = γ(x))

Let f1 and f2 be two stationary policies. Define a third policy, g, as:

g(x) = f1(x)1{x∈C} + f2(x)1{x∈X\C}

where
C = {x : Jβ(x, f1) ≤ Jβ(x, f2)}
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and X \ C denotes the complement of this set.

Show that Jβ(x, g) ≤ Jβ(x, f1) and Jβ(x, g) ≤ Jβ(x, f2) for all x ∈ X.

Exercise 8.5.5 Consider a controlled Markov chain with state space X = {0, 1}, action space U = {0, 1}, and
transition kernel for t ∈ Z+:

P (xt+1 = 1|xt = 0, ut = 1) = 1

P (xt+1 = 1|xt = 0, ut = 0) =
1

2

P (xt+1 = 1|xt = 1, ut = 0) = P (xt+1 = 1|xt = 1, ut = 1) =
1

2
.

Let a cost function c : X× U → R+ be given by

c(0, 1) =
1

2
, c(0, 0) = 1

c(1, 0) =
5

4
, c(1, 1) = 2

Suppose that the goal is to minimize the quantity

Eγ0 [

∞∑
t=0

(
1

2
)tc(xt, ut)],

over all admissible policies γ ∈ ΓA.

Find an optimal policy using Policy Iteration.

Note. Please note that you can only use a pen and paper for this problem. Note that for an invertible 2x2 matrix

A =

[
a b
c d

]
we have

A−1 =

[
d −b
−c a

]
ad− bc
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Reinforcement Learning

In this chapter, we will study stochastic learning and reinforcement learning methods, in the context of finite space
MDPs and later on for general continuous (standard Borel) space MDPs and POMDPs.

9.1 Stochastic Learning Algorithms and the Q-Learning Algorithm

In some Markov Decision Problems (MDPs), one does not know the true transition kernel or the cost function, and
may wish to use past data to obtain an asymptotically optimal solution (that is, via learning from past data). In some
problems, this may be used as an efficient numerical method to obtain approximately optimal solutions. There may
also be setups where a prior probabilistic knowledge on the system dynamics may be used to learn the true system. In
particular, one may apply Bayesian (probabilistically driven given some prior information) or non-Bayesian (primarily
empirical, without assuming a prior probabilistic model) methods.

An important class of non-Bayesian methods are known as stochastic approximation algorithms: such approximation
methods are used extensively in many application areas. A typical stochastic approximation algorithm has the following
form

xt+1 = xt + αt(F (xt)− xt + wt) (9.1)

where wt is a zero-mean noise variable, xt is a stochastic process and wt is some driving noise. The goal is to arrive at
a point x∗ which satisfies x∗ = F (x∗), where F may correspond to an optimality condition.

Exercise 9.1.1 (Stochastic gradient descent) We revisit the stochastic gradient descent algorithm discussed in Theo-
rem 4.3.4 noting the similarity with (9.1). Consider a convex function f : Rn → R and denote the set of minima of f
by X∗. Let a sequence of iterates be given by

xk+1 = xk − γk

(
∇xf(xk) + nk

)
, x0 ∈ Rn, (9.2)

where nk are zero-mean, orthogonal, and have their second moments uniformly bounded. If
∑
k γk = ∞ and

∑
k γ

2
k <

∞, the sequence of iterates (9.2) converges almost surely to some element x∗ ∈ X∗

9.1.1 Q-Learning

Q−learning [24, 39, 286, 289, 292, 309] is a stochastic approximation algorithm used for fully observed finite space
MDPs that does not require the knowledge of the transition kernel, or even the cost (or reward) function for its im-
plementation. In this algorithm, the incurred per-stage cost variable is observed through simulation of a single sample
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path. When the state and action spaces are finite, under mild conditions regarding infinitely often hits for all state-action
pairs, this algorithm is known to converge to the optimal cost. We now discuss this algorithm.

Consider a Markov Decision Problem with finite state and action sets with the criterion given in (8.1) for some β ∈
(0, 1).

Let Q : X × U → R denote the Q-factor of the controller. Let us assume that the decision maker applies an arbitrary
admissible policy γ and updates its Q-factors as follows for t ≥ 0,

Qt+1(x, u) = Qt(x, u) + αt(x, u)
(
c(x, u) + βmin

v
Qt(Xt+1, v)−Qt(x, u)

)
(9.3)

where the initial condition Q0 is given, αt(x, u) is the step-size for (x, u) at time t, ut is chosen arbitrarily -e.g.,
according to some random exploration policy γ- as long as some technical conditions noted below hold, and the
random state Xt+1 evolves according to P (Xt+1 ∈ · |Xt = x, Ut = u). It is assumed that, for all (x, u), t ≥ 0, the
following hold

Assumption 9.1.1 For all (x, u), t ≥ 0,

(i) αt(x, u) ∈ [0, 1]

(ii) αt(x, u) = 0 unless (x, u) = (xt, ut)

(iii)αt(x, u) is a (deterministic) function of (x0, u0), . . . , (xt, ut).

(iv)
∑
t≥0 αt(x, u) → ∞, almost surely

(v)
∑
t≥0 α

2
t (x, u) ≤ C, almost surely, for some (deterministic) constant C <∞.

A common way to pick α coefficients in the algorithm is to take for every (x, u) pair:

αt(x, u) =
1

1 +
∑t
k=0 1{Xk=x,Uk=u}

The selection of the control actions for each state can be arbitrary, as long as the assumptions above are guaranteed to
hold.

Let F be an operator acting on the Q factors defined by:

F (Q)(x, u) = c(x, u) + β
∑
x′

T (x′|x, u)min
v
Q(x′, v), (9.4)

where T (x′|x, u) = P (x1 = x′|x0 = x, u0 = u) is the transition kernel. Consider the following fixed point equation.

Q∗(x, u) = F (Q∗)(x, u) = c(x, u) + β
∑
x′

T (x′|x, u)min
v
Q∗(x′, v) (9.5)

whose existence and uniqueness follow essentially identically from arguments used in the contraction analysis utilized
in Chapter 5 (see Theorem 5.5.2), by using the norm ∥Q∥∞ = max(x,u) |Q(x, u)|: Since for every realization xt+1 of
Xt+1, |minv Qt(xt+1, v)−minv′ Q

∗
t (xt+1, v

′)| ≤ maxv |Qt(xt+1, v)−Q∗
t (xt+1, v)|, we have that

|F (Qt)(x, u)− F (Q∗)(x, u)| ≤ β∥Qt −Q∗∥∞ := βmax
x,u

|Qt(x, u)−Q∗(x, u)| (9.6)

Now, note that we can write (9.3) as

Qt+1(x, u) = Qt(x, u) + αt(x, u)

(
F (Qt)(x, u)−Qt(x, u)
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+

(
c(x, u) + βmin

v
Qt(xt+1, v)− F (Qt)(x, u)

))
(9.7)

which is in the same form as (9.1) since

wt :=

(
c(xt, ut) + βmin

v
Qt(xt+1, v)− F (Qt)(xt, ut)

)
, (9.8)

conditioned on the filtration generated by {xt, ut} up to time t, is a zero-mean random variable.

Let us write (9.7) as

Qt+1(x, u) = (1− αt(x, u))Qt(x, u) + αt(x, u)

(
F (Qt)(x, u) +

(
c(x, u) + βmin

v
Qt(xt+1, v)− F (Qt)(x, u)

))
and by (9.5)

Qt+1(x, u)−Q∗(x, u)

= (1− αt(x, u))(Qt(x, u)−Q∗(x, u)) + αt(x, u)

(
F (Qt)(x, u)− F (Q∗)(x, u)

+

(
c(x, u) + βmin

v
Qt(xt+1, v)− F (Qt)(x, u)

))
(9.9)

Theorem 9.1.1 (i) Under Assumption 9.1.1, the algorithm (9.3) converges almost surely to Q∗.

(ii) A stationary policy f∗ which satisfies minuQ
∗(x, u) = Q∗(x, f∗(x)) is an optimal policy.

Proof. (i) From (9.9), the process Qt satisfies the following form, with St = Qt −Q∗
t :

St+1(x, u) = (1− αt(x, u))St(x, u) + αt(x, u)

(
(F (Qt)(x, u)− F (Q∗)(x, u)) + wt

)
,

where {αt} satisfies Assumption 9.1.1 and wt is given in (9.8).

We will consider the following two parallel dynamics, as in [168, Theorem 1]:

Sat+1(x, u) = (1− αt(x, u))S
a
t (x, u) + αt(x, u)wt, (9.10)

Sbt+1(x, u) = (1− αt(x, u))S
b
t (x, u) + αt(x, u)

(
F (Qt)(x, u)− F (Q∗)(x, u)

)
. (9.11)

We have St(x, u) = Sat+1(x, u) + Sbt+1(x, u). We will study each of these two additive terms separately.

The first step is to show that Sat+1(x, u) → 0 almost surely. We will show this further below.

Assume then for now that Sat (x, u) → 0 almost surely. We then focus on Sbt+1(x, u) + Sat+1(x, u), using the fact that,
by (9.6)

∥(F (Qt)(·, ·)− F (Q∗)(·, ·))∥∞ ≤ β∥St∥∞ ≤ β∥Sat+1∥∞ + β∥Sbt+1∥∞
Almost surely, for every ϵ > 0, there exists N such that for t ≥ N , ∥Sat+1∥∞ ≤ ϵ (where we suppress the sample path
dependence). In the following, we assume that t ≥ N . Now, for some M large enough, let β̂ := β(1 + 1

M ) < 1 and
for ∥Sbt ∥∞ > Mϵ note that

β∥Sbt (x, u) + ϵ∥ ≤ β̂∥Sbt ∥∞
and

|Sbt+1(x, u)| ≤ (1− αt(x, u))|Sbt (x, u)|+
∣∣∣∣αt(x, u)(F (Qt)(x, u)− F (Q∗)(x, u)

)∣∣∣∣
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≤ (1− αt(x, u))|Sbt (x, u)|+ αt(x, u)(β∥Sat+1∥+ β∥Sbt+1∥) (9.12)

≤ (1− αt(x, u))|Sbt (x, u)|+ αt(x, u)β̂∥Sbt ∥∞ (9.13)

< ∥Sbt ∥∞ (9.14)

Hence maxx,u(S
b
t (x, u)) monotonically decreases for ∥Sbt ∥∞ > Mϵ leading to two possibilities: it either gets below

Mϵ or it never gets belowMϵ in which case by the monotone non-decreasing property it will converge to some number,
say M1 with M1 ≥Mϵ.

Now, if the former is the case: once ∥Sbt ∥∞ ≤ Mϵ we can show via (9.12) and β(M + 1)/M < 1 that it will remain
there thereafter.

We now show that the latter, that is with the limit being M1 ≥Mϵ, is not possible. The relation

|Sbt+1(x, u)| ≤ (1− αt(x, u))|Sbt (x, u)|+ αt(x, u)β̂∥Sbt ∥∞

implies that (via an argument similar to what is known as Grönwall’s lemma, as can be inductively shown) the solution
is bounded from above by the solution to the equation

|Sbt+1(x, u)| = (1− αt(x, u))|Sbt (x, u)|+ αt(x, u)β̂∥Sbt ∥∞

which can be shown to converge to zero. This follows from the reasoning that, for any fixed D, the iterate

|Sbt+1(x, u)| = (1− αt(x, u))|Sbt (x, u)|+ αt(x, u)β̂D

converges to β̂D; this follows since the effects of the initial condition diminish by the summability of αt (see Exercise
3.5.7) and hence there exists only one limit solution, which by inspection will be equal to β̂D (the uniqueness of the
solution can be shown by subtracting β̂D from the iterates, whose limit would be zero for any initialization). Therefore,
if there is an upper bound D0 on the iterates, the bounds for future iterations eventually get smaller and smaller than
β̂D0+δ =: D1 for any arbitrarily small δ > 0, and as time progresses by an inductive reasoning, eventually the iterates
would have to converge to zero (see also [168, Proof of Lemma 3] or [292, p. 196]).

Thus, for any ϵ > 0, for large enough t, we have that ∥Sbt ∥∞ ≤ Mϵ. Since ϵ > 0 is arbitrary, the convergence result
follows.

We now discuss Sat
1.

1We note that an alternative, more direct, argument, due to A.D. Kara [179, Theorem 4.1], is also possible under additional structure
on the random exploration policy used to generate the actions and if the learning rate leads to averaging dynamics as in Exercise 9.1.2;
see [179, Theorem 4.1] for the analysis to follow and [180, Theorem 2.1]: In particular, if the policy adopted to randomly generate
actions leads to a positive Harris recurrent Markov chain, then the following more direct argument is possible to establish convergence
without apriori showing boundedness of the iterates: Write

Qt+1(x, u) = (1− αt(x, u))Qt(x, u) + αt(x, u)

(
F (Qt)(x, u) +

(
c(x, u) + βmin

v
Qt(xt+1, v)− F (Qt)(x, u)

))
and

Qt+1(x, u)−Q∗(x, u) = (1− αt(x, u))(Qt(x, u)−Q∗(x, u))

+αt(x, u)

(
F (Qt)(x, u)− F (Q∗)(x, u) + βmin

v
Qt(xt+1, v)− βE[min

v
Qt(xt+1, v)|xt = x, ut = u]

)
(9.15)

Now, let
rt(x, u) := βmin

v
Qt(xt+1, v)− βE[min

v
Qt(xt+1, v)|xt = x, ut = u].

r∗t (x, u) := βmin
v

Q∗(xt+1, v)− βE[min
v

Q∗(xt+1, v)|xt = x, ut = u]

Then,
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Taking the square of Sat , we obtain:

E[(Sat+1(x, u))
2|Ft] ≤ (Sat (x, u))

2 − 2αt(S
a
t (x, u))

2 + α2
t (S

a
t (x, u))

2 + α2
t (x, u)w

2
t (9.19)

First, by an argument identical to that used in the proof of the Comparison Theorem (Theorem 4.2.3), we have that for
any T > 0:

E[

T−1∑
t=0

(2αt − α2
t )(S

a
t (x, u))

2 ≤ (Sa0 (x, u))
2 + E[

T−1∑
t=0

α2
t (x, u)w

2
t ]

≤ (Sa0 (x, u))
2 + C(sup

t
w2
t ), (9.20)

where we use Assumption 9.1.1(v). We now show that (supt w
2
t ) is uniformly bounded: By (9.7), we have that

Qt+1(x, u) = (1− αt(x, u))Qt(x, u) + αt(x, u)(c(x, u) + βmin
v
Qt(xt+1, v))

which implies that
|Qt+1(x, u)| ≤ (1− αt(x, u))∥Qt∥∞ + αt(x, u)(c(x, u) + β∥Qt∥∞)

Now, if ∥Qt∥∞ > ∥c∥∞
1−β =: L1, we have that

|Qt+1(x, u)| ≤ (1−αt(x, u))∥Qt∥∞+αt(x, u)(c(x, u)+β∥Qt∥∞) = ∥Qt∥∞+αt(x, u)(c(x, u)+(β−1)∥Qt∥∞) < ∥Qt∥∞,

And thus, since this holds for all (x, u) pairs, ∥Qt+1∥∞ < ∥Qt∥∞ whenever ∥Qt∥∞ > L1 and hence |Qt∥∞ would
be a decreasing sequence as long as it is above L1. On the other hand, if ∥Qt∥∞ ≤ L1, then ∥Qt+1∥∞ ≤ L1 as well.
These imply that ∥Qt∥∞ is uniformly bounded almost surely. As a consequence wt is also bounded, uniformly over
time. Thus, the right hand side of (9.20) is bounded.

Furthermore, by re-writing (9.19), in the expression

E[(Sat+1(x, u))
2|Ft] ≤ (Sat (x, u))

2 − (2αt − α2
t )(S

a
t (x, u))

2 + α2
t (x, u)w

2
t ,

the term α2
t (y, u)w

2
t is finite almost surely. This implies, by Theorem 4.3.1, that Sat converges to some random variable

almost surely. The inequality (9.20) then implies that this limit must be zero: Suppose not; since αt is not summable,
there exists an infinite sequence of times so that each summation of αt between the times is bounded from below by a
positive constant. Through this, if (Sat )

2 were not to converge to zero (given that it does converge to something else), it

Qt+1(x, u)−Q∗(x, u) = (1− αt(x, u))(Qt(x, u)−Q∗(x, u))

+αt(x, u)

(
F (Qt)(x, u)− F (Q∗)(x, u) + r∗t (x, u) + (rt(x, u)− r∗t (x, u))

)
Obtain the sum:

Ra
t+1(x, u) = (1− αt(x, u))S

a
t (x, u) + αt(x, u)r

∗(x, u)t, (9.16)

Rb
t+1(x, u) = (1− αt(x, u))S

b
t (x, u) + αt(x, u)

(
(rt(x, u)− r∗t (x, u)

)
, (9.17)

Rc
t+1(x, u) = (1− αt(x, u))S

b
t (x, u) + αt(x, u)

(
F (Qt)(x, u)− F (Q∗)(x, u)

)
, (9.18)

St(x, u) = Ra
t+1(x, u) + Rb

t+1(x, u) + Rc
t+1(x, u). By ergodicity, Ra

t → 0 almost surely by averaging and the positive Harris
recurrence under the exploration policy (by the additional assumption noted). Note that

|(rt(x, u)− r∗t (x, u) + F (Qt)(x, u)− F (Q∗)(x, u)| = |βmin
v

Qt(xt+1, v)− βmin
v

Q∗(xt+1, v)| ≤ β∥Qt −Q∗
t ∥∞

and thus,
Rb

t+1(x, u) +Rc
t+1(x, u) ≤ β∥Qt −Q∗

t ∥∞
As a result, by replacing Sb

t+1 with Rb
t+1 +Rc

t+1 we can trace the proof steps presented above without the analysis on Sa
t to follow.
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would remain above a positive constant after a sufficiently large time, and then it would follow that
∑
t(2αt − α2

t )S
a
t
2

would not remain bounded. Therefore, if this were to happen with non-zero measure, the expectation of this term would
be unbounded, which in turn would, as T → ∞, violate (9.20). You can also, alternatively, build on Theorem 4.3.2.

(ii) Now, consider
Q∗(x, u) = F (Q∗)(x, u) = c(x, u) + β

∑
x′

P (x′|x, u)min
v
Q∗(x′, v)

Note that the minimum of u, for each x, is essentially the solution to the Discounted Cost Optimality Equation studied
in Chapter 5 (see Theorem 5.5.2). Hence, the stationary policy {f∗} is optimal. ⋄

We also refer the reader to the proof of [168, Theorem 1] for an alternative proof.

Exercise 9.1.2 To gain some further intuition, and also a more direct proof for the case where the αk term is taken
as 1

k (or more precisely; for every (x, u) pair: αt(x, u) = 1

1+
∑t

k=0
1{xk=x,uk=u}

), consider the following averaging

dynamics: Let at be a sequence of scalars and define:

sT =
1

T

T−1∑
k=0

ak

Observe that for T > 1, TsT = (T − 1)sT−1 + aT−1 which leads to

sT = sT−1 +
1

T
(aT−1 − sT−1)

In view of this observation, conclude that with αk in Assumption 9.1.1 taken as 1
k , we have an averaging dynamics.

One may interpret the Q-learning algorithm and its convergence properties with this insight. Furthermore, one can see
that the convergence holds under more relaxed conditions, this will be utilized in Sections 9.2.2 and 9.3.

Remark 9.1. Via studying separately (9.10) and (9.13), one can also arrive at convergence rates as a function of the
number of iterates, see [3, 115, 285].

Receding Horizon Algorithms / Model Predictive Control

Roll-out algorithms, also known as sliding-horizon or receding horizon algorithms, are practically important. Such
an algorithm is provably near-optimal as the horizon length increases under some conditions. We refer the reader
to [154], [75], [93] and [38] among many other papers in this direction.

9.2 Reinforcement Learning Methods for POMDPs

We recall the discussion in Section 8.3.1.

9.2.1 Near optimality of quantized policies under weak Feller property of non-linear filters

As we have seen, any POMDP can be reduced to a completely observable Markov process, whose states are the
posterior state distributions or ’beliefs‘ of the observer; that is, the state at time t is

πt( · ) := P{Xt ∈ · |y0, . . . , yt, u0, . . . , ut−1} ∈ P(X).

As discussed earlier, this conditional probability measure process is the filter process. The filter process has state
space P(X) and action space U. Here, P(X) is equipped with the Borel σ-algebra generated by the topology of weak
convergence. The transition probability of the filter process is given in (6.26).
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Accordingly, we have a fully observed belief-MDP. Now, by combining the approximation results in Section 8.2 and
reinforcement learning theoretic results to be presented in Section 9.3, together with the the weak Feller continuity
results presented in Section 6.3.3, we can conclude that the numerical methods can also be applied to POMDPs under
the conditions reported in Theorems 6.3.3 and 6.3.4 [122] [174].

Accordingly, due to the weak Feller property of controlled non-linear filters, we can apply quantized Q-learning, to be
introduced in Section 9.3, to also belief-based models to also arrive at near optimality of control policies. However, one
should note that some subtleties with regard to unique ergodicity properties arise; see [180].

9.2.2 Near-optimality of finite window policies under filter stability and Q-learning convergence

As an alternative approach, we also saw earlier in Section 8.3.2 that finite memory policies are near optimal under filter
stability conditions; see the program in Figure 8.1. We now study the reinforcement learning implementation of this
approach.

Recall that under mild conditions, for finite state and action MDPs, the Q-learning algorithm given in (9.3) converges
to a fixed point which leads to the Discounted Cost Optimality Equation (DCOE).

Learning in POMDPs is challenging, mainly due to the non-Markovian behavior of the observation process. For
POMDPs, an attempt may be to study the iterations given by

Qk+1(yk, uk) = (1− αk(yk, uk))Qk(yk, uk)

+ αk(yk, uk)
(
Ck(yk, uk) + βmin

v
Qk(Yk+1, v)

)
However, the observation process yt is not a controlled Markov process and the cost that is realized is c(xk, uk), which
is not a function of yk and uk only. A two-part question then is the following:

(i) Would the Q-learning iterates for such a setup indeed converge?,

(ii) And, if they do converge, where do they converge to?

The answer to the first part of the question is positive under mild conditions [276] and [288]; and the answer to the
second part of the question is that under filter stability conditions, the convergence is to near optimality with an explicit
error bound between the performance loss and the memory window size.

Thus, to answer this, we consider a generalization using a finite window and use again filter stability [179] :

Assume that we start keeping track of the last N + 1 observations and the last N control action variables after at least
N + 1 time steps. That is, at time t, we keep track of the information variables

INt =

{
{yt, yt−1, . . . , yt−N , ut−1, . . . , ut−N} if N > 0

yt if N = 0.

We will construct the Q-value iteration using these information variables. In what follows, we will drop the N depen-
dence on INt and sometimes we will use N = 1 for simplicity of the notation. For these new approximate states, we
follow the usual Q learning algorithm such that for any I ∈ YN+1 × UN and u ∈ U

Qt+1(I, u) = (1− αt(I, u))Qt(I, u) + αt(I, u)
(
Ct(I, u) + βmin

v
Qt(I

t
1, v)

)
, (9.21)

where It1 = {Yt+1, yt, . . . , yt−N+1, ut, . . . , ut−N+1}, we put the t dependence to emphasize that the distribution of
Yt+1 and hence It1 are different for every t.

To choose the control actions, we use polices that choose the control actions randomly and independent of everything
else such that at time t

ut = ui, w.p σi
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for any ui ∈ U with σi > 0 for all i.

We note that for the convergence of the learning algorithm, it is sufficient for the hidden state process to converge to its
invariant distribution under the exploration policy. Hence, any policy that leads the hidden state process to its invariant
measure and visits every action with positive probability can be used for the exploration. For example, the control
action can also be chosen to be a function of the most recent measurement and randomized (as long as all actions have
positive probability of being selected for every measurement realization); this would again lead to a uniquely ergodic
hidden state process under our assumptions. The algorithm is summarized in Algorithm 9.2.1.

Algorithm 9.2.1 Set Parameters
Input: Q0 (initial Q-function), γ∗ (exploration policy), N (memory window length for IN ), L (number of data points),
{M(I, u) = 0}I,u)∈(N+⊮×UN)× U (number of visits to finite memory, state pairs)

Initialize Start with Q0

Iterate If (It, Ut) is the current memory state-action pair =⇒ generate the cost c(Xt, Ut) and the next state Yt+1 ∼
T ( · |Xt, Ut), and update It+1 given It, Yt, Ut.

Iterate set
N(It, Ut) = N(It, Ut) + 1.

Iterate For t = 0, . . . , L− 1,

Update Q-function Qt for the inputs (It, Ut) as follows:

Qt+1(It, Ut) = (1− αt(It, Ut))Qt(It, Ut)

+ αt(It, Ut)

(
c(Xt, Ut) + βmin

v∈U
Qt(It+1, v)

)
,

where
αt(It, Ut) =

1

1 +N(It, Ut)
.

43 Generate Ut+1 ∼ γ∗.

End

Return QL

Algorithm 9.2.1 differs from the usual Q-value iterations:

(i) The distribution of It1, which is the consecutive N-window information variable when we hit the (I, u), is generally
different for every t and the pair (I, u) is not a controlled Markov process.

In other words, the controlled transitions are time dependent, that is, if we assume N = 1 then for some I =
(yt, yt−1, ut−1) and u = ut:

Pr(It1 = (y′t+1, y
′
t, u

′
t)|z = (yt, yt−1, ut−1), ut) = ⊮{yt=y′t,ut=u′

t}Pr(yt+1|yt, yt−1, ut, ut−1)

is not stationary and might change at every time step t, since Pr(yt+1|yt, yt−1, ut, ut−1) depends on the marginal
distribution of xt−1 (xt−N in the general case).

(ii) Here, we only observe the cost realizations of the underlying state process {xt}t and the control actions. For
example, if we assume that N = 1 then the cost we observe is c(xt, ut). However, c(xt, ut) depends on (I, u) pair
randomly and in a time dependent way so that for some I = (yt, yt−1, ut−1) and u = ut:

Ct(I, u) = c(xt, ut) ∈ B, w.p. Pr(Xt ∈ {x : c(x, ut) ∈ B}|yt, yt−1, ut−1)
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where Pr(dxt|yt, yt−1, ut−1) can be seen as some pseudo-belief on the underlying state variable given I =
(yt, yt−1, ut−1), the most recent N = 1 information variables. In other words, Pr(dxt|yt, yt−1, ut−1) is the
Bayesian update of πt−1, the marginal distribution of the true state xt−1 at the time step t − 1, using I =
(yt, yt−1, ut−1) and thus, it is time dependent. ⋄

We will observe that, if one assumes that the hidden state process, {xt}t is positive Harris recurrent, or at least, admits
a unique invariant probability measure π∗ under a stationary exploration policy γ, then the average of approximate state
transitions gets closer to

P ∗(It+1|It, ut) := η̂N ((π∗, It+1)|(π∗, It), ut) (9.22)

with η̂N is defined as in (8.20) and (8.21). In particular, if we assume N = 1, then we write

P ∗(It+1 = (y′t+1, y
′
t, u

′
t)|It = (yt, yt−1, ut−1), ut) = ⊮{y′t=yt,u′

t=ut}P
π∗
(yt+1|yt, yt−1, ut, ut−1) (9.23)

where Pπ
∗
(yt+1|yt, yt−1, ut, ut−1) denotes the distribution of yt+1 when the marginal distribution on xt−1 is given by

the invariant measure π∗.

We also have that the sample path averages of the random cost realizations get close to,

C∗(I, u) = ĉ(π∗, I, u) =

∫
X
c(x, u)Pπ

∗
(dx|I)

where, P ∗(x|I) is the Bayesian update of π∗, using I . If we assume N = 1, we can write for some I = (y1, y0, u0)
and u = u1

C∗(y1, y0, u0, u1) = ĉ(π∗, (y1, y0, u0), u1) =

∫
X
c(x1, u1)P

π∗
(dx1|y1, y0, u0). (9.24)

Now consider the following fixed point equation

Q∗(I, u) = C∗(I, u) + β
∑
I′

P ∗(I ′|I, u)min
v
Q∗(I ′, v) (9.25)

where P ∗ is defined in (9.22) and C∗ is defined in (9.24).

The existence of a such fixed point follows from usual contraction arguments. The same fixed equation can also be
written as, for N = 1, and for I = (y1, y0, u0) and u = u1

Q∗ ((y1, y0, u0), u1) = C∗ ((y1, y0, u0), u1) + β
∑
y2∈Y

Pπ
∗
(y2|y1, y0, u1, u0)min

v∈U
Q∗ ((y2, y1, u1), v) . (9.26)

We note that the stationary distribution π∗ does not have to be calculated by the decision maker. The Q value iterations
given in (9.21) only use the finite-memory variables I , and π∗ is not used in the iterations. We will show that the
algorithm naturally converges to (9.25), if the state process is positive Harris recurrent, or at least, admits a unique
invariant probability measure π∗ under a stationary exploration policy γ, where π∗ will be the stationary distribution of
the hidden state process xt under the exploration policy. The performance loss will depend on the stationary distribution
π∗ that is learned via the exploration policy, however, we will establish further upper bounds that are uniform over such
π∗ which decrease exponentially with the window size N .

That is, one runs Q-learning algorithm by pretending that the finite window is the state. We first need to specify some
conditions that would be needed.

Assumption 9.2.1 (i) αk(I, u) =
1
k if Ik = I, uk = u.

(ii) Under the stationary {memoryless or finite memory exploration} policy, say γ, the true state process, {Xt}t, admits
a unique invariant probability measure π∗

γ .
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(iii)During the exploration phase, every (I, u) pair is visited infinitely often.

Condition (iii) can be relaxed: However, one needs to ensure that the set of all (y, u) pairs which are visited infinitely
often during exploration is so that an optimal policy is learned (visited infinitely often), and when this optimal policy
(learned via the convergence of Q-learning) is implemented, the closed-loop process always remains in this set; see
[180] and [88, Lemma 6 and Corollary 2].

Theorem 9.2.1 [179] Under the previous assumption, the algorithm given by

Qk+1(I, u) = (1− αk(I, u))Qk(I, u) + αk(I, u)
(
Ck(I, u) + βmin

v
Qk(I1, v)

)
,

converges almost surely to Q∗ which satisfies

Q∗(I, u) = C∗(I, u) + β
∑
I′

P ∗(I ′|I, u)min
v
Q∗(I ′, v)

which are the Q values for the approximate belief MDP.

Corollary 9.2.1 [179] Under the filter stability conditions, finite window Q learning is nearly optimal:

(a) Under the exponential filter stability condition, for any policy γN that satisfies Q∗(I, γN (I)) = minuQ
∗(I, u)

E
[
Jβ(π

−
N , T , γ

N )− J∗
β(π

−
N , T )|IN0

]
≤ 4∥c∥∞

(1− β)2
αN .

(b) If we only have asymptotic filter stability (uniform in policies) in total variation, as N → ∞,

E
[
Jβ(π

−
N , T , γ

N )− J∗
β(π

−
N , T )|IN0

]
→ 0.

Remark 9.2. We caution the reader that our result assumes that the cost starts running after time N : that is the effective
cost is:

E

[ ∞∑
k=N

βk−Nc(xk, uk)

]
. (9.27)

Of course, this criterion is also applicable if the system starts running prior to time −N and the costs become in effect
after time 0.

If this criterion is not applicable, and the first N stages are also crucial, (i) if β is large enough, we can conclude that
the first N stages are not as critical for the analysis as their contributions will be minor in comparison with the future
stages for the criterion, which can also be seen by noting that for large enough β, the contributions of the first N time
stages become negligible:

(1− β)E

[ ∞∑
k=0

βkc(xk, uk)

]
.

(ii) On the other hand, if β is not large and if the cost starts running at time 0, then, we can first run the Q-learning
algorithm above to find the best N -window policies which optimizes (9.27). The remaining question would be to
optimize:

E

[
N−1∑
k=0

c(xk, uk) + V (Ik)

]
(9.28)

as a finite-horizon optimal control problem with a terminal cost and the terminal cost V can be estimated by (9.27) via
Theorem 8.3.1 and Theorem 9.2.1. The question then becomes how to select the first N actions, leading to a problem
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with a finite search complexity for a finite horizon problem, without knowing the system dynamics. For this, one can
run a MCMC algorithm in parallel simulations to find the optimal policy for the first N time stages. Since the resulting
policy minimizing (9.28) will be at least as good as the first N -window policy under the optimal (belief-MDP) policy
(which is not designed to optimize (9.28) but the original cost, the bounds presented in Theorem 8.3.2 will be applicable
even when the cost criterion includes the first N time stages.

See Theorem 6.4.4 for sufficient conditions for asymptotic filter stability under total variation.

9.3 Q-Learning For Continuous State and Action Spaces: Quantized Q-Learning, its
Convergence and Near-Optimality

With the approach above, by quantizing the state space and viewing the quantization output as a measurement (and
quantizer as a measurement kernel), and thus as a POMDP; we can arrive at an approximate finite MDP. First note that
under Assumption 8.2.1, Theorem 8.2.1 leads to near-optimality of finite actions.

Let ρ ≡ Qm as defined in (8.16), be a nearest-neighbour quantizer for the finite set Xm. Then, one runs the following:
Using the nearest neighbour map ρ, write for any (x, u) ∈ X× U

Qk+1(ρ(x), u) = (1− αk(ρ(x), u))Qk(ρ(x), u) (9.29)

+ αk(ρ(x), u)
(
Ck(ρ(x), u) + βmin

v
Qk(ρ(X1), v)

)
that is for any true value of the state, we use its representative state from the finite set Xm: Thus, one run Q-learning
as if the quantized state is the actual state.

For exploration, we again use polices that choose the control actions randomly and independent of everything else with
positive probability for every action: the invariant measure of the state process xt (under the exploration policy) should
put positive measure on these bins and satisfy an ergodicity condition to be presented in the following:

Assumption 9.3.1 (i) With y = ρ(x), we let αt(y, u) = 0 unless (Yt, Ut) = (y, u). Otherwise, let

αt(y, u) =
1

1 +
∑t
k=0 1{Yk=I,Uk=u}

.

(ii) Under the exploration policy γ∗, the state process is uniquely ergodic (and thus has a unique invariant probability
measure πγ∗ .

(iii)During the exploration phase, every observation-action pair (y, u) is visited infinitely often.

As noted in Remark 4.3, Meyn and Tweedie [220, Theorem 13.0.1] show that for an aperiodic Harris recurrent Markov
chain, for each initial state x ∈ X,

lim
n→∞

sup
B∈B(X)

|Pn(x,B)− π(B)| = 0,

that is Pn(x, ·) converges to π in total variation. This assumption is sufficient, but not necessary for the second item to
hold.

Algorithm 9.3.1 (H) Set Parameters
Input: Q0 (initial Q-function) q : X → Y (quantizer), γ∗ (exploration policy), L (number of data points), {N(y, u) =
0}(y,u)∈×U (number of visits to state-action pairs).

Initialize Start with Q0

Iterate If (Xt, Ut) is the current state-action pair =⇒ generate the cost c(Xt, Ut) and the next state Xt+1 ∼
T ( · |Xt, Ut),
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Iterate set
N(q(Xt), Ut) = N(q(Xt), Ut) + 1.

Iterate For t = 0, . . . , L− 1,

Update Q-function Qt for the inputs (q(Xt), Ut) as follows:

Qt+1(q(Xt), Ut) = (1− αt(q(Xt), Ut))Qt(q(Xt), Ut)

+ αt(q(Xt), Ut)

(
c(Xt, Ut) + βmin

v∈U
Qt(q(Xt+1), v)

)
,

where
αt(q(Xt), Ut) =

1

1 +N(q(Xt), Ut)
.

43 Generate Ut+1 ∼ γ∗.

End

Return QL

Theorem 9.3.1 [175] Let Assumptions 8.2.1 and 9.3.1 hold.

(i) If the goal is just asymptotic convergence to optimality as the quantization rate goes to ∞, only weak Feller property
of T is sufficient for the quantized Q-learning algorithm in Algorithm refQit to be near optimal.

(ii) If the transition kernel T (·|x0, u0) admits a density function f with respect to a measure ϕ such that T (dx1|x0, u0) =
f(x1, x0, u0)ϕ(dx1), f(x1, x0, u0) > 0 for all x1, x0, u0 and f is Lipschitz continuous in x0, u0 with constant αT
and if c(x, u) is Lipschitz continuous in x, u with constant αc, then the Q learning algorithm in (9.29) converges
and for any policy γn that satisfies Q∗(x̂, γn(x̂)) = minuQ

∗(x̂, u), we have

Jβ(T , γn)− J∗
β(T ) ≤

τ(β, αT )αc
1

1−βαT
+ 2αc

1−β

1− β
2α1(1/n)

1/d

where τ(β, αT ) = (2 + β)βαT + β2+4β+2
(1−β)2 and α1(1/n)

1/d arises from the quantization error.

9.4 A General Q-Learning Convergence Theorem

In many problems including most of those in health, applied and social sciences, and financial mathematics, one may
not even know whether the problem studied can be formulated as a fully observed Markov Decision Process (MDP),
or a partially observable Markov Decision Process (POMDP) or a multi-agent system where other agents are present
or not. There are many practical settings where one works with data and does not know the possibly very complex
structure under which the data is generated and tries to respond to the environment.

A common practical and reasonable response is to view the system as an MDP, with a perceived state and action
(which may or may not define a genuine controlled Markov chain and therefore, the MDP assumption may not hold in
actuality), and arrive at corresponding solutions via some learning algorithm.

Toward this end, a general convergence theorem was given in [180, Theorem 2.1], with further implications and refine-
ments reported in [88, Section IV.B]. This generalizes [179, Theorem 4.1]. See also [74, 102, 179].
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9.5 Bibliographic Notes

Q-learning was introduced and studied in [309], [292], [24]. An ODE approach to Q-learning presents a rather direct
proof of convergence [62] [305]. Two comprehensive resources on reinforcement learning are [287] and [218].

Quantized Q-learning and its convergence and near-optimality is studied in [175].

Q-learning for partially observed MDPs have been studied in [131, 216, 275, 288]. Our analysis here builds on [179]
which also establishes convergence to near optimality.

9.6 Exercises

Exercise 9.6.1 Consider a controlled Markov chain with state space X = {0, 1}, action space U = {0, 1}, and
transition kernel for t ∈ Z+:

P (xt+1 = 1|xt = 0, ut = 1) = P (xt+1 = 1|xt = 1, ut = 1) = α

P (xt+1 = 1|xt = 0, ut = 0) = P (xt+1 = 1|xt = 1, ut = 0) = 1− α.

where α ∈ (0, 1). Let a cost function c(x, u), with c : X× U → R+ be given by

c(0, 1) = c(0, 0) = 1 c(1, 0) = c(1, 1) = 2.

Suppose that the goal is to minimize the quantity

Eγ0 [

∞∑
t=0

βtc(xt, ut)],

for a fixed β ∈ (0, 1), over all admissible policies γ ∈ ΓA.

Find an optimal policy and the optimal expected cost explicitly, as a function of α, β (note that the initial condition is
x0 = 0).

Exercise 9.6.2 Consider the following problem: Let X = {1, 2},U = {1, 2}, where X denotes whether a fading
channel is in a good state (x = 2) or a bad state (x = 1). There exists an encoder who can either try to use the channel
(u = 2) or not use the channel (u = 1). The goal of the encoder is send information across the channel.

Suppose that the encoder’s cost (to be minimized) is given by:

c(x, u) = −1{x=2,u=2} + α(u− 1),

for α = 1/2 (if you view this as a maximization problem, you can see that the goal is to maximize information trans-
mission efficiency subject to a cost involving an attempt to use the channel; the model can be made more complicated
but the idea is that when the channel state is good, u = 2 can represent a channel input which contains data to be
transmitted and u = 1 denotes that the channel is not used).

Suppose that the transition kernel is given by:

P (xt+1 = 2|xt = 2, ut = 2) = 0.8, P (xt+1 = 1|xt = 2, ut = 2) = 0.2

P (xt+1 = 2|xt = 2, ut = 1) = 0.2, P (xt+1 = 1|xt = 2, ut = 1) = 0.8

P (xt+1 = 2|xt = 1, ut = 2) = 0.5, P (xt+1 = 1|xt = 1, ut = 2) = 0.5

P (xt+1 = 2|xt = 1, ut = 1) = 0.9, P (xt+1 = 1|xt = 1, ut = 1) = 0.1
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We will consider either a discounted cost criterion for some β ∈ (0, 1) (you can fix an arbitrary value)

inf
γ
Eγx [

∞∑
t=0

βtc(xt, ut)] (9.30)

or the average cost criterion

inf
γ

lim sup
T→∞

1

T
Eγx [

T−1∑
t=0

c(xt, ut)]. (9.31)

a) Using Matlab or some other program, obtain a solution to the problem given above in (9.30) through the following:

(i) Policy Iteration

(ii) Value Iteration.

(iii)Q-Learning. Note that a common way to pick α coefficients in the Q-learning algorithm is to take for every x, u
pair:

αt(x, u) =
1

1 +
∑t
k=0 1{xk=x,uk=u}

b) Consider the criterion given in (9.31). Apply the convex analytic method, by solving the corresponding linear pro-
gram, to find the optimal policy. In Matlab, the command linprog can be used to solve linear programming problems.
See (7.40).

Exercise 9.6.3 Revisit Exercise 9.6.3, part a). Apply Q-Learning, noting that a common approach to pick α coefficients
in the Q-learning algorithm is to take for every x, u pair:

αt(x, u) =
1

1 +
∑t
k=0 1{xk=x,uk=u}

Exercise 9.6.4 One can apply Q-learning even when the model is not known, but for the results to be optimal, it is
essential that the system we are dealing with is an actual MDP.

a) However, imagine that we have a POMDP but we run the Q-learning algorithm as if the system is an MDP. Sections
9.2 and 9.3 have shown that Q-learning, when a finite window memory of the most recent measurements and actions
is viewed as a state, converges even in this case, and even to near optimality under mild conditions related to either
filter stability or appropriate approximation bounds. Study Exercise 7.7.6 and apply finite memory Q-learning for this
example.

b) [Quantized Q-learning]As a further instance we have considered the finite-state quantization of a continuous space
MDP and view this as a POMDP.

Consider the setup in Exercise 9.6.3. Revise the problem above with the following transition kernel so that X = [0, 1]
(thus the channel’s quality is not binary) and for each Borel A ∈ [0, 1]

P (xt+1 ∈ A|xt = z0, ut = 1) = 2

∫
A

(1− x)dx, P (xt+1 ∈ A|xt = z0, ut = 0) = 2

∫
A

xdx,

for all z0 ∈ [0, 1], and suppose that the encoder’s per-stage cost (to be minimized) is given by:

c(x, u) = −xu+ ηu.

for some η ∈ R. Apply quantized Q-learning by quantizing the channel state with uniform quantization of increasing
granularity.
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Decentralized Stochastic Control

10.1 Introduction

In classical stochastic control problems considered so far, we were given a system of the form

xt+1 = f(xt, ut, wt), t ∈ Z+,

where actions are to be generated using some control policy γ = {γt} with

ut = γt(It), t ∈ Z+,

where It is the information available at t. Here, wt is i.i.d. noise. If It = {x0, · · · , xt;u0, · · · , ut−1}, we have a fully
observed system. If the controller only has measurements

yt = g(xt, vt),

It = {y0, · · · , yt;u0, · · · , ut−1}, we have a partially observed system.

As we observed earlier in these notes, given an optimality criterion (e.g. expected finite horizon cost, discounted cost,
average cost, terminal cost), for such classical stochastic control setups, there are few powerful techniques to establish
the existence/computation of optimal policies:

(i) The dynamic programming approach and backward induction: Weak-continuity / strong continuity properties and
measurable selection conditions leads to existence / explicit computations.

(ii) The strategic measures approach (see Section 5.4).

(iii) For infinite horizon problems, linear programming/convex analytic techniques.

All of these crucially build on the fact that It ⊂ It+1, that is, information is expanding. In the absence of this condition,
which facilitates the applicability of the iterated expectations theorem (Theorem 4.1.3), much of the standard analysis
on existence/structure/recursions is no longer applicable: The reader is referred to the derivation at the beginning of
Chapter 5.

However, a very important class of optimal stochastic control problems involve setups where a number of decentralized
decision makers are present. In this context, we will consider a collection of decision makers (DMs) where each has
access to some local information variable: Such a collection of decision makers who wish to minimize a common cost
function and who has an agreement on the system (that is, the probability space on which the system is defined, and
the policy and action spaces) is said to be a stochastic team. Such problems are called decentralized stochastic control
problems.

To gain some insight, let us consider the following model.

xt+1 = f(xt, u
1
t , . . . , u

L
t , wt),
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with each decision maker DM m arriving at their action um at time t using only local information:

umt = γmt (Imt ), t ∈ Z+,

where Imt denotes some information variable. Decentralized stochastic control theory requires more general approaches
when compared with the classical setup that we have considered up until this chapter, primarily due to the informational
subtleties, to be presented further in the following.

To study such problems in a systematic fashion, we will present a classification for decentralized stochastic control
based on the informational and dynamical relations between the decentralized decision makers in the following. Toward
this goal, in the following we introduce Witsenhausen’s intrinsic model.

10.2 Solution Concepts, Information Structures and Witsenhausen’s Intrinsic Model

10.2.1 Witsenhausen’s intrinsic model

Witsenhausen’s contributions (e.g., [313, 314, 317]) to dynamic teams and characterization of information structures
have been crucial in our understanding of stochastic team theory. In this section, we introduce the characterizations as
laid out by Witsenhausen, termed as the Intrinsic Model [314]; see [335] for a comprehensive overview and further
characterizations and classifications of information structures. In this model (described in discrete time), any action
applied at any given time is regarded as applied by an individual decision maker/agent, who acts only once. One
advantage of this model, in addition to its generality, is that the characterizations regarding information structures can
be compactly described.

Suppose that in the decentralized system considered below, there is a pre-defined order in which the decision makers
act. Such systems are called sequential systems (for non-sequential teams, we refer the reader to Andersland and
Teneketzis [6], [7] and Teneketzis [290], in addition to Witsenhausen [312] and [335, p. 113]). Suppose that in the
following, the action and measurement spaces are standard Borel spaces, that is, Borel subsets of Polish (complete,
separable and metric) spaces. In the context of a sequential system, the Intrinsic Model of Witsenhausen [315] is the
following characterization of information structures, where we consider a decentralized stochastic control model with
N decision makers (DMs) (also called agents).

– A collection of measurable spaces {(Ω,F), (Ui,U i), (Yi,Yi), i ∈ N}, specifying the system’s distinguishable
events, and the control and measurement spaces. Here N = |N | is the number of control actions taken, and each
of these actions is taken by an individual (different) DM (hence, even a DM with perfect recall can be regarded
as a separate decision maker every time it acts). The pair (Ω,F) is a measurable space (on which an underlying
probability may be defined). The pair (Ui,U i) denotes the measurable space from which the action, ui, of decision
maker i is selected. The pair (Yi,Yi) denotes the measurable observation/measurement space for DM i.

– A measurement constraint which establishes the connection between the observation variables and the system’s
distinguishable events. The Yi-valued observation variables are given by yi = ηi(ω,u[1,i−1]), u[1,i−1] = {uk, k ≤
i−1}, ηi measurable functions and uk denotes the action of DM k. Hence, the information variable yi induces a σ-
field, σ(Ii) over Ω×

∏i−1
k=1 Uk. The collection {J i; i = 1, . . . , N} or {ηi; i = 1, . . . , N} is called the information

structure of the system.

– A design constraint which restricts the set of admissible N -tuple control laws γ = {γ1, γ2, . . . , γN}, also called
designs or policies, to the set of all measurable control functions, so that ui = γi(yi), with yi = ηi(ω,u[1,i−1]),
and γi, ηi measurable functions. Let Γ i denote the set of all admissible policies for DM i and let Γ =

∏
k Γ

k.

We note that, the intrinsic model of Witsenhausen gives a set-theoretic characterization of information fields, however,
for standard Borel spaces, the model above is equivalent to that of Witsenhausen’s; see Exercise 1.6.6.

One can also introduce a fourth component.

– A probability measure P defined on (Ω,F) which describes the measures on the events in the model.
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10.2.2 Solution concepts

Thus, we will assume that we are given a probability measure P on (Ω,F). Additionally, we have a loss (or cost)
function c : Ω0 × (U1 × · · · × UN ) → R+ to be optimized where Ω0 is an appropriate signal space.

Let
γ = {γ1, · · · , γN} ∈ Γ.

We then have,

J(γ) = E[c(ω0,u)] = E[c(ω0, γ
1(y1), · · · , γN (yN ))], (10.1)

for some non-negative measurable loss (or cost) function c : Ω ×
∏
k Uk → R+. Here, we have the notation u =

{ut, t ∈ N}. Here, ω0 may be viewed as the cost function relevant exogenous variable and is contained in ω.

Definition 10.2.1 For a given stochastic team problem with a given information structure, {J ;Γ i, i ∈ N}, a policy
(strategy) N -tuple γ∗ := (γ1

∗
, . . . , γN

∗
) ∈ Γ is an optimal team decision rule (team-optimal decision rule or simply

team-optimal solution) if
J(γ∗) = inf

γ∈Γ
J(γ) =: J∗, (10.2)

provided that such a strategy exists. The cost level achieved by this strategy, J∗, is the minimum (or optimal) team cost.

Definition 10.2.2 For a givenN -person stochastic team with a fixed information structure, {J ;Γ i, i ∈ N}, anN -tuple
of strategies γ∗ := (γ1

∗
, . . . , γN

∗
) constitutes a Nash equilibrium (synonymously, a person-by-person optimal (pbp

optimal) solution) if, for all β ∈ Γ i and all i ∈ N , the following inequalities hold:

J∗ := J(γ∗) ≤ J(γ−i∗, β), (10.3)

where we have adopted the notation

(γ−i∗, β) := (γ1
∗
, . . . , γi−1∗, β, γi+1∗, . . . , γN

∗
). (10.4)

For notational simplicity, let for any 1 ≤ k ≤ N , γ−k := {γi, i ∈ {1, · · · , N} \ {k}. In the following, we will denote
by bold letters the ensemble of random variables across the DMs; that is y = {yi, i = 1, · · · , N} and u = {ui, i =
1, · · · , N}.

Example 10.1. Consider the following model of a system with two decision makers [335]. Let Ω = {ω1, ω2, ω3}, F be
the power set of Ω. Let the action space be U1 = {U(up), D(down)}, U2 = {L(left), R(right)}, and U1 and U2 be
the power sets of U1 and U2 respectively.

Suppose the probability measure P is given by P (ωi) = pi, i = 1, 2, 3 and p1 = p2 = 0.3, p3 = 0.4, and the loss
function c(ω, u1, u2) is given by the following matrices

u2

L R
u1 U 1 0

D 3 1
ω : ω1 ↔ 0.3

u2

L R
U 2 3
D 2 1
ω2 ↔ 0.3

u2

L R
U 1 2
D 0 2
ω3 ↔ 0.4

Case 1. First, let us consider the case where both agents have access to the true state of nature, and hence Y1 = Y2 =
σ({{ω1}, {ω2}, {ω3}}), the σ−field generated by the singletons.

In this case, the unique team-optimal decision rules are:
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γ1
∗
(ω) =

U, ω = ω1

D, else
γ2

∗
(ω) =

L, ω = ω3

R, else
,

which we may write symbolically as
γ∗ = (UDD,RRL).

As a final note we point to the observation that even though the policy pair (UDD,RRL) is unique as a team-
optimal solution (which is also, by definition, pbp optimal), it is not the unique pbp optimal solution. The policy
pair (UUD,RLL) is also pbp optimal, but it is suboptimal.

Case 2. Let the information fields J 1 = {∅, {ω1}, {ω2, ω3}, Ω} and J 2 = {∅, {ω1, ω2}, {ω3}, Ω}.

For the above model, the unique optimal control strategy is given by

γ1,∗(y1) =

{
U, y1 = {ω1}
D, else

γ2,∗(y2) =

{
R, y2 = {ω1, ω2}
L, else

The development of a systematic solution approach in optimal decentralized stochastic control requires a cautious
classification of such problems, primarily in view of the information structures.

10.2.3 Classification of information structures

Static vs. dynamic information structures

Under the intrinsic model presented, an Information structure (IS) is dynamic if the information available to at least
one DM is affected by the action of at least one other DM. An IS is static, if the information available at every decision
maker is only affected by exogenous disturbances:

(i) A sequential team is static, if the information available at every decision maker is only affected by exogenous
disturbances (Nature); that is no other decision maker can affect the information at any given decision maker.

(ii) A sequential team problem is dynamic if the information available to at least one DM is affected by the action of at
least one other DM.

Figure 10.1 is a depiction for a static team problem.

ω0

Q1 Q2 Q3

y1 y2 y3

γ
1 γ

2 γ
3

u1 u2 u3

Fig. 10.1: An example of a static information structure. Here, Qi(yi ∈ ·|ω0) := P (ηi(ω) ∈ ·|ω0), i = 1, 2, 3.

Classical, quasi-classical (partially nested), and nonclassical information structures
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(i) An IS {yi, 1 ≤ i ≤ N} is classical if yi contains all of the information available to DM k for k < i. E.g.: Classical
stochastic control problems; the material in these lecture notes up to this chapter (involving fully observed or
partially observed models) has thus been with regard to classical information structures.

(ii) An IS is quasi-classical or partially nested, if whenever uk, for some k < i, affects yi, yi contains yk.

(iii)An IS which is not partially nested is nonclassical.

Fully and partially observable models reviewed earlier in the chapter are classical in the sense described above. Non-
classical problems can be very challenging. As we will see in Section 10.4.2, even a linear system with Gaussian
noise can lead to a problem which is very difficult to study and can admit an optimal solution which is not linear; this
example is known as Witsenhausen’s counterexample [311]. This is called a counterexample since it shows that even
linear quadratic Gaussian (LQG) models can admit solutions which are not linear and hence it is a counterexample
to a natural conjecture (that all solutions to such LQG problems should be linear) when the information structure is
nonclassical.

Quasi-classical information structures possess useful characteristics which allow for solution methods tailored for such
models, as we will see in the chapter.

10.2.4 A state space model

A sub-class of sequential teams involve setups where there is a controlled state model, where unlike the classical
single-agent model, the state realizations are not available to the agents. In a state space model, one assumes that the
decentralized control system has a state xt that is evolving with time. The evolution of the state is controlled by the
actions of the agents (control stations). We may assume that the system has N control stations where each control
station i chooses a control action uit at time t. The system considered runs in discrete time, either for a finite or an
infinite horizon. In the context of Witsenhausen’s intrinsic model, any decision maker applying an action at a given
time stage is interpreted as a different decision maker.

Let X denote the space of realizations of the state xt, and Ui denote the space of realization of control actions uit. Let
T denote the set of time for which the system runs.

The initial state x1 is a random variable and the state of the system evolves as

xt+1 = ft(xt, u
1
t , . . . , u

N
t ;w0

t ) , t ∈ T , (10.5)

where {w0
t , t ∈ T} is an independent noise process that is also independent of x1. We assume that each control station i

observes the following at time t
yit = git(xt, w

i
t), (10.6)

where {wit, t ∈ T} are measurement noise processes that are independent across time, independent of each other, and
independent of {w0

t , t ∈ T} and x1.

The above evolution does not completely describe the dynamic control system, because we have not specified the data
available at each control station. In general, the random variable Iit available at control station i at time t will be a
function of all the past system variables {x[1,t],y[1,t],u[1,t−1],w[1,t]}, i.e.,

Iit = ηit(x[1,t],y[1,t],u[1,t−1],w[1,t]), (10.7)

where we use the notation u = {u1, . . . , uN} and x[1,t] = {x1, . . . , xt}. The collection {Iit , i = 1, . . . , N , t ∈ T} is
called the information structure of the system, in analogy with Witsenhausen’s intrinsic model.

When T is finite, say equal to {1, . . . , T}, the above model is a special case of the sequential intrinsic model presented
above. The set {x1, w0

t , w
1
t , . . . , w

N
t , t ∈ T} denotes the primitive random variable with probability measure given by

the product measure of the marginal probabilities; the system hasN×T DMs, one for each control station at each time.
DM (i, t) observes Iit and chooses uit. The information sub-fields J k are determined by {ηit, i = 1, . . . , N , t ∈ T}.

Some important information structures are
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1. Complete information sharing: In complete information sharing, each DM has access to present and past measure-
ments and past actions of all DMs. Such a system is equivalent to a centralized system.

Iit = {y[1,t],u[1,t−1]}, t ∈ T.

2. Complete measurement sharing: In complete measurement sharing, each DM has access to the present and past
measurements of all DMs. Note that past control actions are not shared.

Iit = {y[1,t]}, t ∈ T.

3. Delayed information sharing In delayed information sharing, each DM has access to n-step delayed measurements
and control actions of all DMs.

Iit =

{
{yi[t−n+1,t], u

i
[t−n+1,t−1]y[1,t−n],u[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

(10.8)

4. Delayed measurement sharing In delayed measurement sharing, each DM has access to n-step delayed measure-
ments of all DMs. Note that control actions are not shared.

Iit =

{
{yi[t−n+1,t], u

i
[1,t−1],y[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

5. Delayed control sharing In delayed control sharing, each DM has access to n-step delayed control actions of all
DMs. Note that measurements are not shared.

Iit =

{
{yi[1,t], u

i
[t−n+1,t−1],u[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

6. Periodic information sharing In periodic information sharing, the DMs share their measurements and control peri-
odically after every k time steps. No information is shared at other time instants.

Iit =


{yi[⌊t/k⌋k,t], u

i
[⌊t/k⌋k,t],y[1,⌊t/k⌋k],u[1,⌊t/k⌋k]},

t ≥ k

{yi[1,t], u
i
[1,t−1]}, t < k

7. Completely decentralized information In a completely decentralized system, no data is shared between the DMs.

Iit = {yi[1,t], u
i
[1,t−1]}, t ∈ T.

In all the information structures given above, each DM has perfect recall (PR), that is, each DM has full memory of its
past information. In general, a DM need not have perfect recall. For example, a DM may only have access to its current
observation, in which case the information structure is

Iit = {yit}, t ∈ T. (10.9)

To complete the description of the team problem, we have to specify the loss function. For some applications, one may
have that the loss function is of additive form:

c(x[1,T ],u[1,T ]) :=
∑
t∈T

c(xt,ut) (10.10)
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where each term in the summation is known as the incremental (or stagewise) loss. The objective would be to choose
control policies γit such that uit = γit(I

i
t) so as to minimize the expected loss (10.10).

10.3 Solutions to Static Teams

Definition 10.3.1 Given a static stochastic team problem {J ;Γ i, i ∈ N}, a policy N -tuple γ ∈ Γ is stationary if
(i) J(γ) is finite, (ii) the N partial derivatives in the following equations are well defined, and (iii) γ satisfies these
equations: [

∇uiEω|yic(ω0; γ
−i(y), ui)

]
|ui=γi(yi) = 0, a.s. i ∈ N . (10.11)

There is a close connection between stationarity and person-by-person-optimality, as we discuss in the following.

The results to be presented below are due to Krainak et. al. [184] and [335], generalizing Radner [246]. We follow the
presentation in [335], which also contains the proofs of the results.

Theorem 10.3.1 [246] [184] Let {J ;Γ i, i ∈ N} be a static stochastic team problem where Ui = Rmi , i ∈ N , the
loss function c(ω0,u) is convex and continuously differentiable in u a.s., and J(γ) is bounded from below on Γ. Let
γ∗ ∈ Γ be a policy N -tuple with a finite cost (J(γ∗) < ∞), and suppose that for every γ ∈ Γ such that J(γ) < ∞,
the following holds: ∑

i∈N
E{∇uic(ω0; γ

∗(y))[γi(yi)− γi∗(yi)]} ≥ 0, (10.12)

where E{·} denotes the total expectation and the notation ∇uic(ω0; γ
∗(y)) means that the partial derivatives are

evaluated under policy γ∗. Then, γ∗ is a team-optimal policy, and it is unique if c is strictly convex in u.

Proof Sketch. First, by the convexity of c, we obtain

1

α

[
c(ω0; γ

∗(y) + α[γ(y)− γ∗(y)])− c(ω0; γ
∗(y))

]
≤ c(ω0; γ(y))− c(ω0; γ

∗(y)),

for all α ∈ (0, 1]. Using the definition of J , this inequality can equivalently be written as (by taking the total expecta-
tion):

h(α) :=
1

α
[E{c(ω0; γ

∗(y) + α[γ(y)− γ∗(y)])} − J(γ∗)] ≤ J(γ)− J(γ∗),

where α ∈ (0, 1]. Note that both J(γ) and J(γ∗) are finite, by hypothesis, and the first random variable (i.e., the first
loss function) also has a finite expectation for every α ∈ (0, 1] because of the bound provided by the inequality. Now,
due to the convexity of c, its finite integral, E{c(ω0; γ

∗(y) + α[γ(y)− γ∗(y)])} is also convex in α. This leads to the
conclusion that (by a property of convex functionals that h(α) is a monotonically nonincreasing function as α ↓ 0, and
furthermore h(1) = J(γ)−J(γ∗) is bounded (by hypothesis). It then follows from the monotone convergence theorem
that limα↓0 h(α) exists, and the limit and expectation operations can be interchanged. As a consequence of continuous
differentiability, this then leads to the inequality

N∑
i=1

E{∇uic(ω0; γ
∗(y))[γi(yi)− γi

∗
(yi)]} ≤ J(γ)− J(γ∗)

from which team-optimality of γ∗ follows, since the left-hand-side is nonnegative, by (10.12).

If c were strictly convex in u, a.s., then all the inequalities above would be strict, for γ ̸= γ∗, thus leading to

J(γ∗) < J(γ)

which implies that γ∗ is the unique team-optimal solution. ⋄
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Note that the conditions of Theorem 10.3.1 above do not include the stationarity of γ∗, and furthermore inequality
(10.12) may not generally be easy to check, since they involve all permissible policies γ (with finite cost).

If the following N inequalities hold:

E{∇uic(ω; γ∗(y))[γi(yi)− γi∗(yi)]} ≥ 0, i ∈ N , (10.13)

then (10.12) would also hold.

Then, either one of the following two conditions will achieve this objective [184] [335]:

(c.1) For all γ ∈ Γ such that J(γ) <∞, the following random variables are integrable

∇uic(ω0; γ
∗(y))[γi(yi)− γi∗(yi)], i ∈ N

(c.2) Γ i is a Hilbert space for each i ∈ N , and J(γ) <∞ for all γ ∈ Γ . Furthermore,

Eω|yi{∇uic(ω0; γ
∗(y)} ∈ Γ i, i ∈ N .

Here, (c.2) can directly be obtained from (c.1) if Γ i, i ∈ N , are taken as Hilbert spaces. Here we give it as a separate
condition because in some problems (such as linear quadratic—as we shall see shortly) (c.2) follows quite readily from
the problem formulations (due to the condition that a finite expected cost is attained under the considered policies).

Theorem 10.3.2 [184] [335] Let {J ;Γ i, i ∈ N} be a static stochastic team problem which satisfies all the hypotheses
of Theorem 10.3.1, with the exception of the inequality (10.12). Instead of (10.12), let either (c.1) or (c.2) be satisfied.
Then, if γ∗ ∈ Γ is a stationary policy it is also team optimal. Such a policy is unique if c(ω0;u) is strictly convex in u,
a.s.

What needs to be shown is that under stationarity, (c.1) or (c.2) implies Theorem 10.3.1; this follows once again from
the law of the iterated expectations (Theorem 4.1.3); see [335]. If (c.1) holds, then for all i ∈ N ,

E

[
∇uic(ω0; γ

∗(y))[γi(yi)− γi∗(yi)]

]
= E

[
E

[
∇uic(ω0; γ

∗(y))[γi(yi)− γi∗(yi)]

∣∣∣∣yi]]
= E

[
E

[
∇uic(ω0; γ

∗(y))

∣∣∣∣yi](γi(yi)− γi∗(yi))

]
= 0 (10.14)

under stationarity (where, again the order of expectation and differentiation is justified by the monotone convergence
theorem) and thus Theorem 10.3.2 holds.

To appreciate some of the fine points of Theorems 10.3.1 and 10.3.2, let us now consider the following example, which
was discussed by Radner (1962) [246], and Krainak et al. (1982) [184].

Example 10.2. Let N = 2, U1 = U2 = R, ξ = x be a Gaussian random variable with zero mean and unit variance
(∼ N(0, 1)), and the loss functional be given by

c(x;u1, u2) = (u1 − u2)2ex
2

+ 2u1u2.

Note that c is strictly convex and continuously differentiable in (u1, u2) for every value of x. Hence, if the true value
of x were known to both agents, the problem would admit a unique team optimal solution: u1 = u2 = 0, which is
also stationary. Since this team-optimal solution does not use the precise value of x, it is certainly optimal also under
“no-measurement” information at the decision makers. Note, however, that in this case the only pairs that make J(γ)
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finite, are u1 = u2 = u ∈ R, since

E[ex
2

] =
1√
2π

∫ ∞

−∞
e+

x2

2 dx = ∞.

The set of permissible policies not being an open set, we cannot talk about stationarity in this case. Theorem 10.3.1
(which does not involve stationarity) is applicable here. Note also that for every u ∈ R, u1 = u2 = u is a pbp optimal
solution, but only one of these is team optimal.

Now, perhaps as a more practical case, consider the measurement scheme:

y1 = x+ w1; y2 = x+ w2

where w1 and w2 are independent random variables uniformly distributed on the interval [−1, 1], which are also in-
dependent of x. Note that here the random state of nature, ξ, is chosen as (x,w1, w2)′. Clearly, u1 = u2 = 0 is
team-optimal for this case also, but it is not obvious at the outset whether it is stationary or not. Toward this end, let us
evaluate (10.11) for i = 1 and with γ2(y2) = 0:

(∂/∂u1)Ex,y2|y1{(u1)2eξ
2

} = (∂/∂u1)[(u1)2Ex|y1{eξ
2

}] = 2u1Ex|y1{eξ
2

}

where the last step follows because the conditional probability density of x given y1 is nonzero only in a finite interval
(thus making the conditional expectation finite). By symmetry, it follows that both derivatives in (10.11) vanish at
u1 = u2 = 0, and hence the team-optimal solution is stationary. It is not difficult to see that in fact this is the only pair
of stationary policies. Note that all the hypotheses of Theorem 10.3.2 are satisfied here, under condition (c.2). ⋄

Quadratic-Gaussian teams

Given a probability space (Ω,F, PΩ), and an associated vector-valued random variable ξ, let {J ;Γ i, i ∈ N} be a static
stochastic team problem with the following specifications [335]:

(i) Ui = Rmi , i ∈ N ; i.e., the action spaces are unconstrained Euclidean spaces.

(ii) The loss function is a quadratic function of u for every ξ (where we use the notation L instead of c):

L(ξ;u) =
∑
i,j∈N

ui
′
Rij(ξ)u

j + 2
∑
i∈N

ui
′
ri(ξ) + c(ξ) (10.15)

where Rij(ξ) is a matrix-valued random variable (with Rij = R′
ji), ri(ξ) is a vector-valued random variable, and

c(ξ) is a random variable, all generated by measurable mappings on the random state of nature, ξ.

(iii) L(ξ;u) is strictly (and uniformly) convex in u a.s., i.e., there exists a positive scalar α such that, withR(ξ) defined
as a matrix comprised of N blocks, with the ij’th block given by Rij(ξ), the matrix R(ξ)− αI is positive definite
a.s., where I is the appropriate dimensional identity matrix.

(iv) R(ξ) is uniformly bounded above, i.e., there exists a positive scalar β such that the matrix βI − R(ξ) is positive
definite a.s.

(v) Y i = Rri , i ∈ N , i.e., the measurement spaces are Euclidean spaces.

(vi) yi = ηi(ξ), i ∈ N , for some appropriate Borel measurable functions ηi, i ∈ N .

(vii) Γ i is the (Hilbert) space of all Borel measurable mappings of γi : Rri → Rmi , which have bounded second
moments, i.e., Eyi{γi

′
(yi)γi(yi)} <∞.

(viii) Eξ[r′i(ξ)ri(ξ)] <∞, i ∈ N ; Eξ[c(ξ)] <∞.

Definition 10.3.2 A static stochastic team is quadratic if it satisfies (i)–(viii) above. It is a standard quadratic team
if furthermore the matrix R is constant for all ξ (i.e., it is deterministic). If, in addition, ξ is a Gaussian distributed
random vector, and ri(ξ) = Qiξ, η

i(ξ) = Hiξ, i ∈ N , for some deterministic matrices Qi, Hi, i ∈ N , the decision



208 10 Decentralized Stochastic Control

problem is a quadratic-Gaussian team (more widely known as a linear-quadratic-Gaussian (LQG) team under some
further structure on Qi and Hi). ⋄

One class of quadratic teams for which the team-optimal solution can be obtained in closed form are those where the
random state of nature ξ is a Gaussian random vector. Let us decompose ξ into N + 1 block vectors

ξ = (x′, y1
′
, y2

′
, . . . , yN

′
)′ (10.16)

of dimensions r0, r1, r2, . . . , rN , respectively. Being a Gaussian random vector, ξ is completely described in terms of
its mean value and covariance matrix, which we specify below:

E[ξ] =: ξ̄ = (x̄′, y1
′
, . . . , yN

′
) (10.17)

cov (ξ) =: Σ, with [Σ]ij =: Σij , i, j = 0, 1, . . . , N (10.18)

[Σ]ij denotes the ij’th block of the matrix Σ of dimension ri × rj , which stands for the cross-variance between the
i’th and j’th block components of ξ. We further assume (in addition to the natural condition Σ ≥ 0) that Σii > 0 for
i ∈ N , which means that the measurement vectors yi’s have nonsingular distributions. To complete the description of
the quadratic-Gaussian team, we finally take the linear terms ri(ξ) in the loss function (10.15) to be linear in x, which
makes x the “payoff relevant” part of the state of nature:

ri(ξ) = Dix, i ∈ N (10.19)

where Di is an (ri × r0) dimensional constant matrix.

In the characterization of the team-optimal solution for the quadratic-Gaussian team we will need the following im-
portant result on the conditional distributions of Gaussian random vectors, generalizing our earlier results in Chapter
6.

Lemma 10.3.1 Let z and y be jointly Gaussian distributed random vectors with mean values z̄, ȳ, and covariance

cov (z, y) =

(
Σzz Σzy
Σ′
zy Σyy

)
≥ 0, Σyy > 0. (10.20)

Then, the conditional distribution of z given y is Gaussian, with mean

E[z|y] = z̄ +ΣzyΣ
−1
yy (y − ȳ) (10.21)

and covariance
cov(z|y) = Σzz −ΣzyΣ

−1
yy Σ

′
zy (10.22)

⋄

The complete solution to the quadratic-Gaussian team is given in the following.

Theorem 10.3.3 [335] The quadratic-Gaussian team decision problem as formulated above admits a unique team-
optimal solution, that is affine in the measurement of each agent:

γi∗(yi) = Πi(yi − yi) +M ix̄, i ∈ N . (10.23)

Here, Πi is an (mi × ri) matrix (i ∈ N ), uniquely solving the set of linear matrix equations:

RiiΠ
iΣii +

∑
j∈N ,j ̸=i

RijΠ
jΣji +DiΣ0i = 0, (10.24)

and M i is an (mi × r0) matrix for each i ∈ N , obtained as the unique solution of
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j∈N

RijM
j +Di = 0, i ∈ N . (10.25)

Remark 10.3. The proof of this result follows immediately from Theorem 10.3.1 and noting that Condition (c.2) holds.
However, a Projection Theorem based concise proof can also be provided exploiting the quadratic nature of the problem
(see [335, p. 55], [247] and [132]), by defining the problem as an inner-product minimization and projection (onto the
closed subspace of decentralized control policies viewed as a product of individual policies of each DM) problem the
solution of which builds on an orthogonality condition.

An important application of the above result is the following static Linear Quadratic Gaussian Problem: Consider a two-
controller system evolving in Rn with the following description: Let x1 be Gaussian and x2 = Ax1+B

1u11+B
2u21+w1

y11 = C1x1 + v11 ,

y21 = C2x1 + v21 ,

with w, v1, v2 zero-mean, i.i.d. disturbances. For ρ1, ρ2 > 0, let the goal be the minimization of

J(γ1, γ2) = E
[
||x1||22 + ρ1||u11||22 + ρ2||u21||22 + ||x2||22

]
(10.26)

over the control policies of the form:
uit = µit(y

i
1), i = 1, 2

For such a setting, optimal policies are linear.

10.4 Static Reduction of Dynamic Teams: Policy-Dependent and Policy-Indepent Reductions

Following Witsenhausen [317], we say that two information structures are equivalent if: (i) The policy spaces are equiv-
alent/isomorphic in the sense that policies under one information structure are realizable under the other information
structure, (ii) the costs achieved under equivalent policies are identical almost surely, and (iii) if there are constraints in
the admissible policies, the isomorphism among the policy spaces preserves the constraint conditions.

A large class of sequential team problems admit an equivalent information structure which is static. This is called the
static reduction of an information structure.

10.4.1 Static reduction I: Dynamic teams with quasi-classical information structures and their
policy-dependent static reduction

An important information structure which is not nonclassical, is of the quasi-classical type, also known as partially
nested; an IS is partially nested if an agent’s information at a particular stage t can depend on the action of some other
agent at some stage t′ ≤ t only if she also has access to the information of that agent at stage t′. For such team problems
with partially nested information, one talks about precedence relationships among agents: an agent DM i is precedent
to another agent DM j (or DM i communicates to DM j), if the former agent’s actions affect the information of the
latter, in which case (to be partially nested) DM j has to have the information based on which the action-generating
policy of DM i was constructed.

For partially nested (or quasi-classical) information structures, static reduction has been studied by Ho and Chu in
the specific context of LQG systems [161] and for a class of non-linear systems satisfying restrictive invertibility
properties [162].

Under quasi-classical information, LQG stochastic team problems are tractable by conversion into equivalent static
team problems: Consider the following dynamic team with N agents, where each agent acts only once, with Ak,
k ∈ N , having the following measurement
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yk = Ckξ +
∑
i:i→k

Diku
i, (10.27)

where ξ is an exogenous random variable picked by nature, and i → k denotes the precedence relation that the action
of Ai affects the information of Ak and ui is the action of Ai.

If the information structure is quasi-classical, then

Ik = {yk, {Ii, i→ k}}.

That is, Ak has access to the information available to all the signaling agents. Such an IS is equivalent to the IS
Ik = {ỹk}, where ỹk is a static measurement given by

ỹk =

{
Ckξ, {Ciξ, i→ k}

}
. (10.28)

Such a conversion can be done provided that the policies adopted by the agents are deterministic, with the equivalence
to be interpreted in the sense that any deterministic policy measurable under the original IS being measurable also
under the new (static) IS and vice versa, since the actions are determined by the measurements. The restriction of using
only deterministic policies is, however, without any loss of optimality: with policies of all other agents fixed (possibly
randomized) no agent can benefit from randomized decisions in such team problems. We discussed this property of
irrelevance of random information/actions in optimal stochastic control in Chapter 5 in view of Blackwell’s Irrelevant
Information Theorem (see [332, Remark 2]).

This observation, made by Ho and Chu [161] leads to the following result.

Theorem 10.4.1 Consider an LQG system with a partially nested information structure. For such a system, optimal
solutions are affine (that is, linear plus a constant).

The linearity condition can be relaxed via the following more general condition, which is also due to Ho and Chu [162].

Assumption 10.4.1 Under a quasi-classical information structure, with

Ik = {yk, {Ii, i→ k}}.

if yk = g(ξ, u[1,k−1]), then the map g(·, u[1,k−1]) : ξ 7→ yk is invertible.

Under this assumption, static reduction is possible.

Policy-dependence of the static reduction. In the above, under Assumption 10.4.1, while mapping the policies that
are equivalent under the dynamic setup to those that are expressed in terms of exogenous variables in the static-reduced
form, we note that the policies’ dependence on the exogenous variables explicitly depend on the policies adopted by
the preceding DMs. Accordingly, we refer to the static reduction of partially nested dynamic teams as policy-dependent
static reduction (as opposed to the policy-independent reduction to be presented in the following). Some restrictions
and limitations due to such policy-dependence will be studied later in the chapter.

If the control actions are also shared under the static measurement reductions, called static-measurements with control-
sharing reduction [263], even though this reduced information structure is not static in a strict sense, where only the
measurements are so, this reduction is policy-independent.This follows since g(·, u[1,k−1]) in Assumption 10.4.1 is
invertible given previous actions u[1,k−1] regardless of the policies of the previous decision makers.

Remark 10.4. Another class of dynamic team problems that can be converted into solvable dynamic optimization prob-
lems are those where even though the information structure is nonclassical, there is no incentive for signaling because
any signaling from say agent Ai to agent Aj conveys information to the latter which is “cost irrelevant”, that is it does
not lead to any improvement in performance [328] [335].
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10.4.2 Static reduction II: Non-classical information structures and their policy-independent reduction

In this sub-section, we introduce another static reduction method, due to Witsenhausen [317], applicable also to non-
classical information structures and call it a policy-independent static reduction, since this reduction does not depend
on the policies adopted.

For some of the results of the chapter, we need to go beyond a static reduction, and we will need to make the measure-
ments independent of each other as well as ω0. This is not possible for every team which admits a static reduction, for
example quasi-classical team problems with LQG models [161] do not admit such a further reduction, since the mea-
surements are partially nested. Witsenhausen refers to such an information structure as independent static in [317, Sec-
tion 4.2(e)].

Consider now dynamic team setting according to the intrinsic model where each DM t measures

yt = gt(ω0, ωt, y
1, . . . , yt−1, u1, . . . , ut−1),

and the decisions are generated by ut = γt(yt), with 1 ≤ t ≤ N . Here ω0, ω1, · · · , ωN are primitive (exogenous)
variables. We will indeed, for every 1 ≤ n ≤ N , view the relation

P (dyn|ω0, y
1, y2, · · · , yn−1, u1, u2, · · · , un−1),

as a (controlled) stochastic kernel (to be defined later), and through standard stochastic realization results (see [137,
Lemma 1.2] or [54, Lemma 3.1]), we can represent this kernel in a functional form through

yn = gn(ω0, ωn, y
1, y2, · · · , yn−1, u1, u2, · · · , un−1)

for some independent ωn and measurable gn.

This team admits an independent-measurements reduction provided that the following absolute continuity condition
holds: For every t ∈ N , there exists a function ft such that for all Borel S:

P (yt ∈ S|ω0, u
1, u2, · · · , ut−1, y1, y2, · · · , yt−1)

=

∫
S

ft(y
t, ω0, u

1, u2, · · · , ut−1, y1, y2, · · · , yt−1)Qt(dy
t), (10.29)

We can then write (since the action of each DM is determined by the measurement variables under a policy)

P (dω0, dy, du)

= P (dω0)

N∏
t=1

(
ft(y

t, ω0, u
1, u2, · · · , ut−1, y1, y2, · · · , yt−1)Qt(dy

t)1{γt(yt)∈du}

)
.

The cost function J(γ) can then be written as

J(γ) =

∫
P (dω0)

N∏
t=1

(ft(y
t, ω0, u

1, u2, · · · , ut−1, y1, y2, · · · , yt−1)Qt(dy
t))c(ω0,u), (10.30)

with uk = γk(yk) for 1 ≤ k ≤ N , and where now the measurement variables can be regarded as independent from
each other, and also from ω0, and by incorporating the {ft} terms into c, we can obtain an equivalent static team
problem. Hence, the essential step is to appropriately adjust the probability space and the cost function.

The new cost function may now explicitly depend on the measurement values, such that

cs(ω0,y,u) = c(ω0,u)

N∏
t=1

ft(y
t, ω0, u

1, u2, · · · , ut−1, y1, y2, · · · , yt−1). (10.31)
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Here we can reformulate even a static team to one which is, clearly still static, but now with independent measurements
which are also independent from the cost relevant exogenous variable ω0.

Such a condition is in general not restrictive. Indeed, as Witsenhausen notes, a static reduction always holds when
the measurement variables take values from countable set since a reference measure as in Qi above can be always
constructed on the measurement space Yi (e.g., Qi(z) =

∑
j≥1 2

−j1{z=mj} where Yi = {mj , j ∈ N}) so that the
absolute continuity condition always holds. We refer the reader to [76] for relations with classical continuous-time
stochastic control where the relation with Girsanov’s classical measure transformation [138] [31] is recognized. For
discrete-time partially observed stochastic control, similar arguments had been presented in Borkar [56], [60] again in
the context of measure transformation.

Remark 10.5. [Change of Measure Formula] Denote the joint probability measure on (ω0, u
1, . . . , uN , y1, . . . , yN )

by P , and the probability measure of ω0 by P0. If the preceding absolute continuity condition (10.29) holds,
then (under any admissible policy profile γ1, · · · , γN ) there exists a joint reference probability measure Q on
(ω0, u

1, . . . , uN , y1, . . . , yN ) such that the probability measure P is absolutely continuous with respect to Q (P ≪ Q),
so that for every Borel set A in (Ω0 ×

∏N
i=1(Ui × Yi))

P (A) =

∫
A

dP

dQ
Q(dω0, du

1, . . . , duN , dy1, . . . , dyN ), (10.32)

where the reference probability measure

Q(dω0, du
1, . . . , duN , dy1, . . . , dyN ) := P0(dω0)

N∏
i=1

Qi(dyi)1{γi(yi)∈dui}, (10.33)

leads to a Radon-Nikodym derivative, which is policy-independent:

dP

dQ
(ω0, u

1, . . . , u1, y1 . . . , yN ) =

N∏
i=1

f i(yi, ω0, u
1, . . . , ui−1, y1, . . . , yi−1). (10.34)

Indeed, one may slightly relax the condition in (10.29) (which requires the absolute continuity to hold for all
ω0, u

1, · · · , ut−1, y1, · · · , yt−1), to an almost sure existence condition of a derivative under a reference measure, in
the sense that (10.34) holds.

Witsenhausen’s Counterexample and its static reduction

The celebrated Witsenhausen’s counterexample [311] is a dynamic non-classical team problem

Suppose x and w1 are two independent, zero-mean Gaussian random variables with variance σ2 and 1 so that

y0 = x, y1 = u0 + w1

u0 = γ0(x), u1 = γ1(y).

with the performance criterion:
QW (x, u0, u1) = k(u0 − x)2 + (u1 − u0)

2 , (10.35)

This can also be viewed as a standard discrete-time two-stage stochastic optimal control problem, with state equations
(see Figure 10.3)

x1 = x0 + v0 , x2 = x1 − v1 , (10.36)

measurement equations
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y0 = x0 , y1 = x1 + w1 , (10.37)

and memoryless controls

v0 = γ0(y0) , v1 = γ1(y1) , (10.38)

where µ0 and µ1 are the instantaneous measurement output control policies at stages 0 and 1, respectively. This becomes
equivalent to the earlier formulation in view of the correspondences

u0 = x0 + v0 , u1 = v1 , x = x0 , w = w1 , y = y1 ,

if we pick the cost function as

Q̃(x2, v0) = (x2)
2 + k(v0)

2 ≡ QW (x1 − v0, x1, x1 − x2) .

This problem is described by a linear system; all primitive variables are Gaussian and the performance criterion is
quadratic, yet linear policies are not optimal. We note that this is a non-convex problem [337] and thus variational
methods do not necessarily lead to optimality. In fact, we don’t even have a good lower bound on the optimal cost for
Witsenhausen’s counterexample even though approximation results exist (see [260] for a detailed discussion).

The static reduction for Witsenhausen’s counterexample proceeds as follows:∫
(k(u1 − y1)2 + (u1 − u2)2)Q(dy1)γ1(du1|y1)γ1(du2|y2)P (dy2|u1)

=

∫
(k(u1 − y1)2 + (u1 − u2)2)Q(dy1)γ1(du1|y1)γ1(du2|y2)η(y2 − u1)dy2

=

∫ (
(ku20 + (u0 − u1)

2)γ1(du1|y1)γ1(du2|y2)
η(y2 − u1)dy2

η(y2)

)
Q(dy1)η(y2)dy2

=

∫ (
(ku20 + (u0 − u1)

2)γ1(du1|y1)γ1(du2|y2)
η(y2 − u1)dy2

η(y2)

)
Q(dy1)Q(dy2) (10.39)

where Q denotes a Gaussian measure with zero mean and unit variance and η its density.

x γ0 γ1
y u1u0

w1

Fig. 10.2: Flow of information in Witsenhausen’s counterexample.

γ0 γ1

x0

y0

x1

w1

y1

x2

v1v0

Fig. 10.3: Witsenhausen’s counterexample in two-stage state-space linear stochastic control form.
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10.4.3 Equivalent static reductions preserve optimality but may not person-by-person-optimality or
stationarity

We showed earlier that static reduction can be a very useful method for deriving and studying properties of optimal
policies in stochastic teams. We note, however, that static reduction has its limitations when the solution concept is
not global optimality but only person-by-person-optimality or stationarity. This, in particular, is a concern for policy-
dependent reductions.

Theorem 10.4.2 [263] Consider a stochastic dynamic team with a policy-independent static reduction.

(i) A policy γ∗ is pbp optimal (globally optimal) for a dynamic team if and only if γ∗ is pbp optimal (globally optimal)
for a policy-independent static reduction of the dynamic team;

(ii) Let a policy γ∗ satisfy P -almost surely

∇uiEγ
−i∗

Q

[
dP
dQ

∣∣∣∣yi]∣∣∣∣
ui=γi∗(yi)

= 0 ∀i ∈ N , (10.40)

where dP
dQ is defined in (10.34). Then, γ∗ is stationary for dynamic team if and only if γ∗ is stationary for a policy-

independent static reduction of dynamic team.

Theorem 10.4.3 [263] Consider a stochastic dynamic team with partially nested information structure. Let Assump-
tion 10.4.1 hold. Then:

(i) γD,∗ is a globally optimal policy for for the dynamic team if and only if its static equivalent γS,∗ is a globally
optimal policy for its static reduction, under the policy-dependent static reduction.

(ii) If γD,∗ is a stationary (pbp optimal) policy for (PD), then its static equivalent γS,∗ is not necessarily a stationary
(pbp optimal) policy for (PS) under the policy-dependent static reduction;

(iii)If γS,∗ is a stationary (pbp optimal) policy for a static reduced dynamic team, then γD,∗, satisfying the policy-
dependent static reduction relation, is not necessarily pbp optimal for the dynamic team problem.

10.4.4 All stochastic dynamic teams are nearly static (with independent measurements) reducible

Now that we have seen the benefits of static reduction, a natural question arises as to whether we can perturb any
stochastic dynamic team by adding some additive noise to the measurements to make it static-reducible with arbitrarily
small error in the optimal cost: That is, are all dynamic team problems ϵ-away from being static reducible as far as
optimal cost is concerned for any ϵ > 0? This is indeed the case, see [163].

10.5 Expansion of information Structures: A recipe for identifying sufficient information

We start with a general result on optimum-performance equivalence of two stochastic dynamic teams with different
information structures. This is in fact a result which has a very simple proof, but it is quite effective as we will see
shortly.

Proposition 10.5.1 Let D1 and D2 be two stochastic dynamic teams with the same loss function, and differing only in
their information structures, η

1
and η

2
, respectively, with corresponding composite strategy spaces Γ1 and Γ2, such

that Γ2 ⊆ Γ1. Let D1 admit a team-optimal solution, denoted by γ∗
1
∈ Γ1, with the further property that γ∗

1
∈ Γ2.

Then γ∗
1

also solves D2.

A recipe for utilizing the result above would be [335]:
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Given a team problem, sayD2, with IS η
2
, which is presumably difficult to solve, obtain a finer IS η

1
, and solve

the team problem under this expanded IS (assuming that this new team problem is easier to solve). Then, if the
team-optimal solution here is adapted to the sigma-field generated by the original coarser IS, it solves also the
original problem D2.

10.6 Convexity of Decentralized Stochastic Control Problems

We have already seen the utility of convexity in team theoretic problems earlier in the chapter, e.g. in Theorem 10.3.1.
We will study convexity further in this section.

10.6.1 Convexity of static team problems and an equivalent representation of cost functions

Definition 10.6.1 A (static or dynamic) team problem is convex on Γ if J(γ) < ∞ for all γ ∈ Γ and for any α ∈
(0, 1), γ

1
, γ

2
∈ Γ:

J(αγ
1
+ (1− α)γ

2
) ≤ αJ(γ

1
) + (1− α)J(γ

2
)

We state the following immediate result without proof, more general refinements will be stated later in the chapter.

Theorem 10.6.1 Consider a static team. J(γ) is convex if c(ω0,u) is convex in u for all ω0, provided that J(γ) < ∞
for all γ ∈ Γ.

The condition in Theorem 10.6.1 is not tight, however, due to information structure and measurability aspects.

Example 10.6. Consider Ω = [0, 1] and let P be the uniform distribution on Ω, with N = 2, U1 = U2 = [1, 2]. Let:

c(ω, u1, u2) = 1{ω∈[0,0.9]}

(
(u1 − 2)2 + (u2 − 2)2

)
+ 1{ω∈(0.9,1]}

(√
1 + u1 +

√
1 + u2

)
Now, suppose further that I1 = I2 = η1(ω) = η2(ω) = 1{ω∈[0,0.1)}. It follows that here the team problem is convex,
even though c(ω, u1, u2) is not convex on {ω : ω ∈ (0.9, 1]}, which has a non-zero probability measure. To see this,
note that one may view this optimization problem as J(u11, u

1
2;u

2
1, u

2
2) where uij = γi(ωj), with ω1 ≡ {ω : ω ∈

[0, 0.1)} and ω2 ≡ {ω : ω ∈ [0.1, 1]}. It follows that

J(u11, u
1
2;u

2
1, u

2
2) =

∑
i=1,2

0.1(ui1 − 2)2 + 0.8(ui2 − 2)2 + 0.1(
√
ui2 + 1)

The Hessian of J is a diagonal matrix with strictly positive entries, leading to the convexity of the problem.

In the following, we will make use of the fact that uk ↔ yk ↔ {y−k, ω} form a Markov chain almost surely. Before
proceeding further, let us note that the join of two σ-fields over some set X is the coarsest σ-field containing both. The
meet of two σ-fields is the finest σ-field which is a subset of both. Let F i be the σ-field generated by ηi over Ω, and let
Fc =

⋂
k Fk be the meet of these fields, this is termed as common knowledge by Aumann [20] for finite probabilities

spaces. In addition, let Fj be the join of the σ-field, denoted with Fj =
⋃
k Fk.

In the following, as earlier in the chapter, we assume that the measurement and the control action spaces are standard
Borel.

An equivalent representation of the cost through iterated expectations. Let us express the expected cost under a
given measurable team policy γ as follows. With the interpretation that P (uk ∈ ·|yk) = 1{uk=γk(yk)∈·}, we obtain
from the law of the iterated expectations that
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E[c(ω0,u)] = E

[
E[c(ω0,u)|y]

]
(10.41)

Under any measurable policy, given y, u is specified. Thus, with

c̃(y1, · · · , yN , u1, · · · , uN ) := E[c(ω0,u)|y],

that is c̃(y1, · · · , yN , u1, · · · , uN ) =

(∫
P (dω0|y)c(ω0, u

1, · · · , uN )

)
, the cost function becomesE[c̃(y1, · · · , yN , u1, · · · , uN )].

We will use this representation in the following.

Theorem 10.6.2 (i)If a team problem is convex, then

E[c(ω0,u)|Fc]

is convex in u almost surely.
(ii) If

E[c(ω0,u)|Fj ]

is convex in u almost surely, then the team problem is convex on the set of team policies that satisfy J(γ) <∞.

Proof. (i) We will show the contra-positive. Let B be a Borel set such that P (B) > 0, B ∈ Fc, and E[c(ω0,u)|B] be
non-convex so that there exist u and u′ and λ ∈ (0, 1) such that

E[c(ω0, λu+ (1− λ)u′)|B] > λE[c(ω0,u)|B] + (1− λ)E[c(ω0,u
′)|B]

Now, let γ and γ be two team policies so that these only differ on B; and on B γ = u and γ = u′. Such measurable
policies exist, for example by taking γ(ω) = {0, 0, · · · , 0} when ω /∈ B. These policies are both Borel measurable and
are admissible given the information structure. Then

J(λγ + (1− λ)γ) > λJ(γ) + (1− λ)J(γ)

and convexity fails.

(ii) We adopt the equivalent representation (10.41) in this part of the proof. Note that under any measurable policy, the
random variable c̃(y1, · · · , yN , u1, · · · , uN ) is measurable on the σ-field generated by y and thus the join σ-field. The
proof then follows from the following. Consider two policies γ and γ̄ with finite expected costs. It follows then that

J(λγ + (1− λ)γ̄)

=

∫
P (dy)c̃(y1, · · · , yN , λγ1(y1) + (1− λ)γ̄1(y1), · · · , λγN (yN ) + (1− λ)γ̄N (yN ))

≤
∫
P (dy)

(
λc̃(y1, · · · , yN , γ1(y1), · · · , γN (yN ))

+(1− λ)c̃(y1, · · · , yN , γ̄1(y1), · · · , γ̄N (yN ))

)
= λJ(γ) + (1− λ)J(γ̄)

⋄

It can be observed that Example 10.6 satisfies the conditions of Theorem 10.6.2. These conditions will also be used to
study Witsenhausen’s counterexample [311] later in the chapter.
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A generalization of Radner and Krainak et. al.’s theorems

We provide a generalization of Radner’s or Krainak et al.’s theorem by utilizing an information structure dependent
nature of convexity. For example, Radner or Krainak et.al’s theorems are not applicable to Example 10.6.

Theorem 10.6.3 Let {J ;Γ i, i ∈ N} be a static stochastic team problem, the loss function E[c(ω0,u)|Fj ] is convex
and continuously differentiable in u almost surely. Let γ∗ ∈ Γ be a policy N -tuple with a finite cost (J(γ∗) <∞), and
suppose that for every γ ∈ Γ such that J(γ) <∞, the following holds:∑

i∈N
E{∇ui c̃(y, γ∗(y))[γi(yi)− γi∗(yi)]} ≥ 0, (10.42)

where c̃(y,u) := E[c(ω0,u)|Fj ]. Then, γ∗ is a team-optimal policy, and it is unique if c̃(y,u) is strictly convex in u
almost surely.

Proof. The proof follows by defining the new loss function:

c̃(y,u) = E[c(ω0,u)|Fj ],

almost surely. The result then follows as in Theorem 10.3.1. ⋄

Theorem 10.6.4 Let {J ;Γ i, i ∈ N} be a static stochastic team problem which satisfies all the hypotheses of The-
orem 10.6.3, with the exception of inequality (10.42). Instead of (10.42), let either (c.5) or (c.6) be satisfied with c
replaced with c̃. Then, if γ∗ ∈ Γ is a stationary policy it is also team optimal. Such a policy is unique if E[c(ω0,u)|Fj ]
is strictly convex in u, a.s.

Proof. The proof follows by defining the new loss function c̃ as in the proof of Theorem 10.6.3, and following Theorem
10.3.2. ⋄

10.6.2 Convexity of Sequential Dynamic Teams

Convexity of the reduced model

The static reduction of a sequential dynamic team problem, if exists, is not unique. However, the following holds: Either
all of the static reductions are convex or none is. This holds under a minor technicality for quasi-classical patterns. Here,
first the information is to be expanded to allow for control sharing. Thus, we can state that a stochastic dynamic team
problem with a static reduction is convex if and only if its static reduction is.

Non-convexity of the Witsenhausen counterexample and its variants. Consider the celebrated Witsenhausen’s coun-
terexample [311]: This is a dynamic non-classical team problem with y1 and w1 zero-mean independent Gaussian
random variables with unit variance and u1 = γ1(y1), u2 = γ2(u1 + w1) and the cost function c(ω, u1, u2) =
k2(y1 − u1)2 + (u1 − u2)2 for some k > 0: The static reduction is given in (10.39).

Another interesting example is the point-to-point communication problem: Here, the setup is exactly as in the Witsen-
hausen’s counterexample, but c(ω, u1, u2) = k2(u1)2+(y1−u2)2. This problem is a peculiar one in that, even though
the information structure is non-classical, and is non-convex; an optimal encoder and decoder is linear. A proof of this
result builds on information theoretic ideas, such as the data-processing inequality (see Chapters 3, 11 in [335] for a
detailed account). In this case, the reduction (10.30) writes as:∫

(k(u1)2 + (y1 − u2)2)Q(dy1)γ1(du1|y1)γ1(du2|y2)P (dy2|u1)

=

∫ (
(k(u1)2 + (y1 − u2)2)Q(dy1)γ1(du1|y1)γ1(du2|y2)

η(y2 − u1)dy2

η(y2)

)
Q(dy1)Q(dy2)
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(10.43)

Consider the static reduction of Witsenhausen’s counterexample and the Gaussian signaling problem (10.39)-(10.43).
For both (10.39) and (10.43), using the fact that e−x

2

is not a convex function, we recognize that this problem is not
convex by Theorem 10.6.2(i) (with the common knowledge/information being the trivial σ-algebra consisting of the
empty set and its complement).

We note that Witsenhausen states without proof in [311] (p. 134) that the counterexample is non-convex in γ1 for every
optimal γ2 (selected as a best response to γ1). The discussion above can be viewed as an explicit proof for this result.
Note also that for both problems above, linear policies contain person by person optimal policies, but this does not
imply global optimality. For the first problem, Witsenhausen had shown the suboptimality of linear policies. For the
second problem (10.43), however, linear policies are indeed optimal.

Partially nested information structures: Convexity of the reduced model

As reviewed earlier, an important information structure which is not nonclassical, is of the partially nested type. For
such team problems with partially nested information, a static reduction exists under certain invertibility conditions as
discussed earlier. For such problems, the cost function is not altered by the static reduction. This leads to the following
result.

Theorem 10.6.5 Consider a partially nested stochastic dynamic team which admits a static reduction where the cost
function c(ω0,u) convex in u. If the information structure is expanded to also include control sharing whenever mea-
surements are shared under the partially nested information structure, then the team problem is convex.

See [337]. We note that Ho and Chu [161] established this result that for the special setup involving the partially nested
LQG teams. In this case, optimal policies are linear through an equivalence to static teams.

10.6.3 Symmetric Team Problems: Optimality of Symmetric Policies

If a team problem, static or dynamic, is convex and symmetric (i.e., exchangeable; meaning that any permutation of
DM policies does not alter the induced expected cost), then an optimal team policy can be taken to be symmetric across
agents without loss.

In the absence of convexity, one can only show exchangeability of an optimal team policy [264–266].

10.7 The Strategic Measures Approach to Decentralized Stochastic Control

For classical stochastic control problems, strategic measures were defined (see [270], [240], [111] and [118]) as the
set of probability measures induced on the product (sequence) spaces of the states, measurements, and actions; that is,
given an initial state distribution and a policy, one can uniquely define a probability measure on the product space of the
states, measurements, and actions. Certain measurability, compactness, and convexity properties of strategic measures
for classical stochastic control problems were studied in [47, 111, 118, 240].

In [337], strategic measures for decentralized stochastic control problems were introduced and many of their properties
were established. For decentralized stochastic control problems, considering the set of strategic measures along with
compactification and/or convexification of these sets of measures through introducing private and/or common random-
ness allow one to place operationally flexible topologies (such as those leading to a standard Borel space, e.g., weak
convergence topology, among others) on the set of strategic measures, as we will study in the following.
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10.7.1 Measurable policies as a subset of randomized policies and strategic measures

A common method in control theory is to view a measurable policy as a special case of relaxed policies where relaxation
is often employed by randomization. Such an approach has been ubiquitously adopted in various fields often with dif-
ferent terminology (e.g., relaxed controls (Young topology) in optimal deterministic control [211] [326], distributional
strategies in economics [225] [217], local hidden variables in quantum information theory etc.)

We recall here the following representation result [54]. Let X,M be Borel spaces. Let the notation P(X) denote the set
of probability measures on X. Consider the set of probability measures

Θ :=
{
ζ ∈ P(X×M) : ζ(dx, dm) = P (dx)Qf (dm|x), Qf (·|x) = 1{f(x)∈·}, f : X → M

}
,

on X ×M having fixed input marginal P on X and the stochastic kernel from X to M is realized by some measurable
function f : X → M. We equip this set with weak convergence topology. This set is the (Borel measurable) set of the
extreme points of the set of probability measures on X ×M with a fixed marginal P on X. For compact M, the Borel
measurability of Θ follows from [238] since the set of probability measures on X ×M with a fixed marginal P on X
is a convex and compact set in a complete separable metric space, and therefore, the set of its extreme points is Borel
measurable. Moreover, the non-compact case holds by [54, Lemma 2.3]. Furthermore, given a fixed marginal P on X,
any stochastic kernel Q from X to M can be identified by a probability measure ξ ∈ P(Θ) such that

Q(·|x) =
∫
Θ

ξ(dQf )Qf (·|x). (10.44)

In particular, a stochastic kernel can thus be viewed as an integral representation over probability measures induced by
deterministic policies.

For a team setup, for any DM k, let

Θk :=

{
ζ ∈ P(Yk × Uk) : ζ = PkQ

γk

,

Qγ
k

(·|yk) = 1{γk(yk)∈·}, γ
k ∈ Γ k, Pk(·) = P (yk ∈ ·)

}
.

For a static team, Pk would be fixed; that is, independent of the policies of the preceding DMs. Therefore, in static
case, in view of (E.4), any element ζ ∈ P(Yk × Uk) with fixed marginal Pk on Yk can be expressed as the mixture of
Θk

ζ(A) =

∫
Θk

ξk(dQ)Q(A), A ∈ B(Yk × Uk), (10.45)

for some ξ ∈ P(Θk). In the sequel, we generalize this idea to the set of strategic measures induced by measurable
policies and define various relaxed policies that are obtained as a mixture of measurable policies. Indeed, instead of
viewing N -tuple of policies as the joint strategy of DMs, we regard the induced probability distribution on the product
space of state, measurements, and actions as the joint strategy and name it strategic measure.

10.7.2 Sets of strategic measures for static teams

Consider a static team problem defined under Witsenhausen’s intrinsic model. In the following,B = B0×
∏N
k=1(A

k×
Bk) are used to denote the cylindrical Borel sets in Ω0 ×

∏N
k=1(Yk × Uk).

Let LA(µ) be the set of strategic measures induced by all admissible measurable policies with (ω0,y) ∼ µ; that is,

P ∈ LA(µ) ⊂ P
(
Ω0 ×

∏N
k=1(Yk × Uk)

)
if and only if
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P (B) =

∫
B0×

∏N

k=1
Ak

µ(dω0, dy)

N∏
k=1

1{uk=γk(yk)∈Bk}, (10.46)

for all cylindrical B ∈ B
(
Ω0 ×

∏N
k=1(Yk × Uk)

)
, where γk ∈ Γ k for k = 1, . . . , N . Let LA(µ, γ) be the strategic

measure under a particular strategy γ ∈ Γ.

The first relaxation is obtained via individual randomization of policies. Namely, let LR(µ) be the set of strategic
measures induced by all individually randomized team policies where ω0,y ∼ µ; that is,

LR(µ) :=

{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × Uk)
)

: P (B) =

∫
B

µ(dω0, dy)

N∏
k=1

Πk(duk|yk)
}
,

where Πk takes place from the set of stochastic kernels from Yk to Uk for each k = 1, . . . , N .

Another relaxation, which is stronger than the former one, is obtained by taking the mixture of the elements of LA(µ).
To this end, define Υ = [0, 1]N . We then let

LC(µ) :=

{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × Uk)
)

: P (B) =

∫
η(dz)LA(µ, γ(z))(B), η ∈ P(Υ )

}
,

where γ(z) denotes a collection of team policies measurably parametrized by z ∈ Υ so that the map LA(µ, γ(·)) :

Υ → LA(µ) is Borel measurable as LA(µ) is a Borel subset of P
(
Ω0 ×

∏N
k=1(Yk × Uk)

)
under weak convergence

topology (as we will see in Theorem 10.10).

Let LCR denote the set of strategic measures that are induced by some fixed but common independent randomness and
arbitrary private independent randomness; that is,

LCR(µ) :=

{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × Uk)
)

:

P (B) =

∫
B×Υ

η(dz)µ(dω0, dy)
∏
k

Πk(duk|yk, z)
}
,

where Πk takes place from the set of stochastic kernels from Yk × Υ to Uk for each k = 1, . . . , N . Here, the common
randomness η is fixed.

Let LCCR denote the set of strategic measures that are induced by some arbitrary but common independent randomness
and arbitrary private independent randomness, as in LC(µ); that is,

LCCR(µ) :=

{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × Uk)
)

:

P (B) =

∫
B×Υ

η(dz)µ(dω0, dy)
∏
k

Πk(duk|yk, z), η ∈ P(Υ )

}
,

where Πk takes place from the set of stochastic kernels from Yk × Υ to Uk for each k = 1, . . . , N . Here, the common
randomness η is arbitrary, unlike LCR(µ). The following result, essentially from [337], states some structural results
about above-defined sets of strategic measures. In particular, it establishes convexity related properties of these sets.

There also exist further convex relaxations: Quantum Relaxations, Non-Signaling Relaxations and Local-Markov Re-
laxations. We do not discuss these in these notes.
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Theorem 10.7. Consider a static team problem. Then, we have the following characterizations.
(i) LR(µ) has the following representation:

LR(µ) =

{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × Uk)
)

: P (B) =

∫
U(dz)LA(µ, γ(z))(B),

U ∈ P(Υ ), U(dv1, · · · , dvN ) =
∏
s

ηk(dvk), ηk ∈ P([0, 1])

}
;

that is, U ∈ P(Υ ) is constructed by the product of N independent random variables on [0, 1].
(ii) LC(µ) = LCCR(µ) and this is a convex set. The set of extreme points of LC(µ) is LA(µ). Furthermore, LR(µ) ⊂
LC(µ).
(iii) We have the following equalities:

inf
γ∈Γ

J(γ) = inf
P∈LA(µ)

∫
P (ds)c(s) = inf

P∈LR(µ)

∫
P (ds)c(s) = inf

P∈LC(µ)

∫
P (ds)c(s).

In particular, deterministic policies are optimal among the randomized class. In other words, individual and common
randomness does not improve the optimal team cost.
(iv) The sets LR(µ) and LCR(µ) are not convex. In particular, the presence of independent or (fixed) common ran-
domness does not convexify the set of strategic measures.
(v) LR(µ) and LC(µ) are not necessarily weakly closed.

10.7.3 Sets of strategic measures for dynamic teams in the absence of static reduction

Note that if the dynamic team setup admits a static reduction (in particular independent static reduction), then one can
define strategic measures by considering equivalent static problem and characterize the convexity properties of the set
of strategic measures, as done in the previous section. In this section, we suppose that dynamic team does not admit
a static reduction. Let µ be the distribution of ω0. Recall that in dynamic setup, the distribution of measurements y is
not fixed as opposed to the static case. In this case, we present the following characterization for strategic measures in
dynamic sequential teams. Let, for all n ∈ N ,

hn = {ω0, y
1, u1, · · · , yn−1, un−1, yn, un},

and pn(dyn|hn−1) := P (dyn|hn−1) be the transition kernel characterizing the measurements of DM n according to
the intrinsic model. We note that this may be obtained by the relation:

pn(y
n ∈ ·|ω0, y

1, u1, · · · , yn−1, un−1)

:= P

(
ηi(ω,u[1,i−1]) ∈ ·

∣∣∣∣ω0, y
1, u1, · · · , yn−1, un−1

)
= P

(
gn(ω0, ωn, u

1, · · · , un−1) ∈ ·
∣∣∣∣ω0, y

1, u1, · · · , yn−1, un−1

)
. (10.47)

Note that once a policy is fixed, pn(dyn|hn−1) represents the conditional distribution of yn given the past history
hn−1. Let LA(µ) be the set of strategic measures induced by measurable policies and let LR(µ) be the set of strategic
measures induced by individually randomized policies for the dynamic team. We have the following characterizations
of LA(µ) and LR(µ) that are quite useful when establishing the closedness of these sets.

Theorem 10.8 ( [337, Theorem 2.2]). Consider a dynamic team problem that does not admit a static reduction. Then,
we have the following characterizations.

(i) A probability measure P ∈ P
(
Ω0 ×

∏N
k=1(Yk × Uk)

)
is a strategic measure induced by a measurable policy

(that is in LA(µ)) if and only if, for every n = 1, . . . , N , we have



222 10 Decentralized Stochastic Control∫
P (dhn−1, dy

n) g(hn−1, y
n) =

∫
P (dhn−1)

(∫
Yn

g(hn−1, z) pn(dz|hn−1)

)
and ∫

P (dhn) g(hn−1, y
n, un) =

∫
P (dhn−1, dy

n)

(∫
Un

g(hn−1, y
n, a) 1{γn(yn)∈da}

)
,

for all continuous and bounded function g with appropriate arguments, where P (dω0) = µ(dw0) and γn ∈ Γn.

(ii) A probability measure P ∈ P
(
Ω0×

∏N
k=1(Yk×Uk)

)
is a strategic measure induced by a individually randomized

policy (that is in LR(µ)) if and only if, for every n = 1, . . . , N , we have∫
P (dhn−1, dy

n) g(hn−1, y
n) =

∫
P (dhn−1)

(∫
Yn

g(hn−1, z) pn(dz|hn−1)

)
(10.48)

and ∫
P (dhn) g(hn−1, y

n, un) =

∫
P (dhn−1, dy

n)

(∫
Un

g(hn−1, y
n, an)Πn(dan|yn)

)
(10.49)

for all continuous and bounded function g with appropriate arguments, where P (dω0) = µ(dw0) and Πn is a stochas-
tic kernel from Yn to Un.

Remark 10.9. A result similar to Theorem 10.7 can also be stated for the dynamic case, in particular with regard to
LA(µ) being the set of extreme points of the convex hull of LR(µ). The reader is referred to [337, Theorem 2.3] which
essentially establishes this; see also [117, Theorem 1.c] for related discussions.

A celebrated result in economics theory, known as Kuhn’s theorem [186], notes that the convex hull of admissible (i.e.
those in LA(µ)) strategic measures (hence LC(µ)) is equivalent to LR(µ) when the information structure is classical.
We can thus state that this does not apply in the absence of classical-ness, as LR(µ) would not be convex (if the
information structure is not classical, then convexity fails [337, p.12]), but the convex hull of admissible policies is, by
definition, convex; but the convex hull of LR(µ) is LC(µ).

10.7.4 Measurability properties of sets of strategic measures

As noted earlier, the set LA(µ) is a Borel subset of P
(
Ω0 ×

∏
k(Yk × Uk)

)
under weak convergence topology. The

same is true for LR(µ), which is stated in the following theorem. This result will be crucial in the analysis to follow.

Theorem 10.10 ( [337, Theorem 2.10]). Consider a sequential (static or dynamic) team.

(i) The set of strategic measures LR(µ) is Borel when viewed as a subset of the space of probability measures on
Ω0 ×

∏N
k=1(Yk × Uk) under the topology of weak convergence.

(ii) The set of strategic measures LA(µ) is Borel when viewed as a subset of the space of probability measures on
Ω0 ×

∏N
k=1(Yk × Uk) under the topology of weak convergence.

For further properties of the sets of strategic measures, see [337].

10.8 Existence of Optimal Solutions

The following theorem states a general existence result for static teams and for dynamic teams admitting static reduc-
tion. Its proof depends on Weierstrass Extreme Value Theorem.
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Theorem 10.11. Consider a static team or the static reduction of a dynamic team with c denoting the cost function. Let
c be lower semi-continuous in u for every fixed ω0,y and LR(µ) or LC(µ) be a compact set under weak convergence
topology. Then, there exists an optimal team policy. This policy can be chosen deterministic and hence induces a
strategic measure in LA(µ).

Remark 10.12. Since the cost function cs in independent static reduction of a dynamic team also depends on the mea-
surements y, we include y as an argument to the cost function c in the previous theorem.

Theorem 10.13. [332, Theorem 5.2] Consider a static or a dynamic team that admits an independent static reduction.
Let c be lower semi-continuous in u for any ω0,y. Suppose further that Ui is σ−compact (that is, Ui = ∪nKn for a
countable collection of increasing compact sets Kn) and, without any loss, the control laws can be restricted to those
with E[ϕi(ui)] ≤ M for some lower semi-continuous ϕi : Ui → R+ which satisfies limn→∞ infui /∈Kn

ϕi(ui) = ∞.
Then, an optimal team policy exists.

Remark 10.14. Building on [337, Theorems 2.3 and 2.5] and [143, p. 1691] (due to Blackwell’s theorem on irrelevant
information [46, 49], [335, p. 457]), an optimal policy, when exists, can be assumed to be deterministic.

So far, we presented existence results for static or dynamic teams that admit independent static reduction. In the fol-
lowing, we present existence results for teams that do not admit independent static reduction.

Theorem 10.15. [337, Theorem 2.9] Consider a sequential team with a classical information structure with the further
property that σ(ω0) ⊂ σ(y1) (under every policy, y1 contains ω0). Suppose further that

∏N
k=1 Uk is compact. If c is

lower semi-continuous and each of the kernels pn (defined in (10.47)) is weakly continuous so that∫
f(yn) pn(dy

n|ω0, y
1, . . . , yn−1, u1, · · · , un−1) (10.50)

is continuous in ω0, y
1, · · · , yn−1, u1, · · · , un−1 for every continuous and bounded f , then there exists an optimal

team policy which is deterministic.

A further existence result along similar lines, for a class of static teams, is presented next.

Theorem 10.16. [332, Theorem 5.6] Consider a static team with a classical information structure (that is, with an
expanding information structure so that σ(yn) ⊂ σ(yn+1), n ≥ 1). Suppose further that

∏N
k=1(Yk × Uk) is compact.

If
c̃(y1, · · · , yN , u1, · · · , uN ) := E[c(ω0,u)|y,u]

is lower semi-continuous in u for every y, then there exists an optimal team policy which is deterministic.

Remark 10.17. The power of this last result may first seem limited. However, some reflection leads to the conclusion
that, in the continuous-time theory of stochastic control, a related but not identical argument has remarkable conse-
quences. If one makes the measurements independent via a change of measure argument, as in Girsanov’s celebrated
argument, so that the information structure is first made static, and then makes the information structure classical by
considering the actions at time t measurable on the filtration generated by the past noise processes and actions up
to time t; the proof of Theorem 10.16 can be slightly adapted to show that such a set of measurement-action mea-
sures (with fixed marginal on the measurements) that satisfy conditional independence u[0,t] ↔ y[0,t] ↔ ys − yt is
weakly closed (these are known as wide-sense admissible control policies). Furthermore, the value is continuous in
this joint measure on {(u, y)s, s ∈ [0, T ]} and this set of measures is tight. These lead to the compactness-continuity
conditions and accordingly an existence result for optimal policies follows. Furthermore, by showing that the set of
{(u, y)s, s ≥ 0} measures which have quantized support in the measurement variable are dense, one can show also
that piece-wise constant control policies are nearly optimal. This allows one to approximate a continuous-time process
with a (sampled) discrete-time process and the machinery developed earlier in the lecture notes are applicable. This
approach is the essence of Kushner’s method [190], though stated somewhat differently.
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10.8.1 Some Applications and Revisiting Existence Results for Classical (Single-DM) Stochastic Control

Witsenhausen’s counterexample with Gaussian variables

Consider the celebrated Witsenhausen’s counterexample [311] as depicted in Figures 10.3 and 10.2: This is a dynamic
non-classical team problem with y1 and w1 zero-mean independent Gaussian random variables with unit variance and
u1 = γ1(y1), u2 = γ2(u1 + w1) and the cost function c(ω, u1, u2) = k(y1 − u1)2 + (u1 − u2)2 for some k > 0.
Witsenhausen’s counterexample can be expressed, through a change of measure argument (also due to Witsenhausen)
as in (10.39).

Since the optimal policy for γ2(y2) = E[u1|y1] and E[(E[u1|y1])2] ≤ E[(u1)2], it is evident with a two-stage analysis
(see [143, p. 1701]) that without any loss we can restrict the policies to be so that E[(ui)2] ≤M for some finite M , for

i = 1, 2; this ensures a weak compactness condition on both γ̂1 and γ̂2. Since the reduced cost
(
(k(u1 − y1)2 +(u1 −

u2)2)η(y
2−u1)
η(y2)

)
is continuous in the actions, Theorem 10.13 applies.

Existence for partially observable Markov Decision Processes (POMDPs)

Consider a partially observable stochastic control problem (POMDP) with the following dynamics.

xt+1 = f(xt, ut, wt), yt = g(xt, vt).

Here, xt is the X-valued state, ut is the U-valued the control, yt is the Y-valued measurement process. In this section, we
will assume that these spaces are finite dimensional real vector spaces. Furthermore, (wt, vt) are i.i.d noise processes
and {wt} is independent of {vt}. The controller only has causal access to {yt}: A deterministic admissible control
policy Π is a sequence of functions {γt} so that ut = γ(y[0,t];u[0,t−1]). The goal is to minimize

EΠx0
[

T−1∑
t=0

c(xt, ut)],

for some continuous and bounded c : X× U → R+.

Such a problem can be viewed as a decentralized stochastic control problem with increasing information, that is, one
with a classical information structure.

Any POMDP can be reduced to a (completely observable) MDP [338], [248], whose states are the posterior state
distributions or beliefs of the observer. A standard approach for solving such problems then is to reduce the partially
observable model to a fully observable model (also called the belief-MDP) by defining

πt(A) := P (xt ∈ A|y[0,t], u[0,t−1]), A ∈ B(X)

and observing that (πt, ut) is a controlled Markov chain where πt is P(X)-valued with P(X) being the space of
probability measures on X under the weak convergence topology. Through such a reduction, existence results can be
established by obtaining conditions which would ensure that the controlled Markovian kernel for the belief-MDP is
weakly continuous, that is if

∫
F (πt+1)P (dπt+1|πt = π, ut = u) is jointly continuous (weakly) in π and u for every

continuous and bounded function F on P(X).

This was studied recently in [122, Theorem 3.7, Example 4.1] and [174] (see also [70] in a control-free context). In the
context of the example presented, if f(·, ·, w) is continuous and g has the form: yt = g(xt) + vt, with g continuous
and wt admitting a continuous density function η, an existence result can be established building on the measurable
selection criteria under weak continuity [155, Theorem 3.3.5, Proposition D.5], provided that U is compact.

On the other hand, through Theorem 10.16, such an existence result can also be established by obtaining a static
reduction under the aforementioned conditions. Indeed, through (10.31), with η denoting the density of vn, we have
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P (yn ∈ B|xn) =
∫
B
η(y − g(xn))dy. With η and g continuous and bounded, taking yn := yn, by writing xn+1 =

f(xn, un, wn) = f(f(xn−1, un−1, wn−1), un, wn), and iterating inductively to obtain

xn+1 = hn(x0,u[0,n−1],w[0,n−1]),

for some hn which is continuous in u[0,n−1] for every fixed x0,w[0,n−1], one obtains a reduced cost (10.31) that is
a continuous function in the control actions. Theorem 10.16 then implies the existence of an optimal control policy.
This reasoning is also applicable when the measurements are not additive in the noise but with P (yn ∈ B|xn = x) =∫
B
m(y, x)η(dy) for some m continuous in x and η a reference measure.

Revisiting fully observable Markov Decision Processes with the construction presented in the chapter

Consider a fully observed Markov decision process where the goal is to minimize

EΠx0
[
T−1∑
t=0

c(xt, ut)],

for some continuous and bounded c : X × U → R+. Suppose that the controller has access to x[0,t], u[0,t−1] at time
t. This system can always be viewed as a sequential team problem with a classical information structure. Under the
assumption that the transition kernel according to the usual formulation, that is P (dx1|x0 = x, u0 = u) is weakly
continuous (in the sense discussed in the previous application above), it follows that the transition kernel according to
the formulation introduced in (10.47) is also weakly continuous by an application [273, Theorem 3.5]. It follows that
when U is compact, and hence the existence of an optimal policy follows. A similar analysis is applicable when one
considers the case where P (dx1|x0 = x, u0 = u) is strongly continuous in u for every fixed state x and the bounded
cost function is continuous only in u (this is another typical setup where measurable selection conditions hold (see
Assumptions 5.2.1 and 5.2.2)).

10.9 Approximation of Optimal Solutions via Finite Approximations

In this section, we consider the finite approximation of static team problems. Since results of this section can also be
applied to static reduction of dynamic teams, we suppose that the cost function c also depends on the measurements y
(which is not the case in the original problem formulation). Recall that, in the independent static reduction of a dynamic
team, the reduced cost function cs is a function of ω0, u, and y. To obtain finite approximation result, the following
assumptions are imposed on the components of the model.

Assumption 10.9.1 (a) The cost function c is continuous in (u,y) for any fixed ω0. In addition, it is bounded on any
compact subset of Ω0 ×

∏N
k=1(Yk × Uk).

(b) For each k, Uk is a closed and convex subset of a completely metrizable locally convex vector space.

(c) For each k, Yk is locally compact.

(d) For any subset G of
∏N
k=1 Uk, the function wG(ω0,y) := supu∈G c(ω0,y,u) is integrable with respect to

µ(dω0, dy), for any compact subset G of
∏N
k=1 Uk of the form G =

∏N
k=1G

k.

(e) For any γ ∈ Γ with J(γ) < ∞ and each k, there exists uk,∗ ∈ Uk such that J(γ−k, γkuk,∗) < ∞, where γkuk,∗ ≡
uk,∗.

In what follows, for any subset G of
∏N
k=1 Uk, we let

ΓG :=

{
γ ∈ Γ : γ

(
N∏
k=1

Yk
)

⊂ G

}
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and Γc,G := Γc ∩ ΓG, where Γc denotes the set of continuous strategies. Using these definitions, let us define the
following set of strategic measures for any subset G of

∏N
k=1 Uk:

LGA(µ)

:=

{
P ∈ LA(µ) : P (B) =

∫
B0×

∏N

k=1
Ak

µ(dω0, dy)

N∏
k=1

1{uk=γk(yk)∈Bk}, γ ∈ ΓG

}
.

Let LG,cA (µ) denote the set of strategic measures in LGA(µ) induced by continuous policies.

The following result states that, there exists a near optimal strategic measure whose support on the product of action
spaces

∏N
k=1 Uk is convex and compact (and thus bounded) subset G of it, and conditional distributions of actions

given measurements are induced by continuous policies.

Proposition 10.18. Suppose Assumption 10.9.1 holds. Then, for any ε > 0 there exists a compact subsetG of
∏N
k=1 Uk

of the form G =
∏N
i=1G

i, where each Gi is convex and compact, such that

inf
P∈LG,c

A
(µ)

∫
P (ds) c(s) < J∗ + ε.

Given any strategic measure, using Assumption 10.9.1-(e) and the fact that every measure on a Borel space is tight [236,
Theorem 3.2], one can construct a strategic measure in LA(µ) whose support on the product of action spaces is convex
and compact and whose cost is ε/2-close to the cost of the given strategic measure. For the new strategic measure,
since it has a convex and compact support on the product of action spaces, using Lusin’s theorem [105, Theorem
7.5.2], we can construct a strategic measure induced by continuous policies whose cost function is ε/2-close to the cost
of bounded support strategic measure. We can complete the proof by combining these two results.

Since each Yi is a locally compact separable metric space, there exists an increasing sequence of compact subsets {Ki
l }

such that Ki
l ⊂ intKi

l+1 and Yi =
⋃∞
l=1K

i
l [2, Lemma 2.76], where intD denotes the interior of the set D.

Let di denote the metric on Yi. For each l ≥ 1, let Yil,n :=
{
yi,1, . . . , yi,il,n

}
⊂ Ki

l be an 1/n-net in Ki
l . Recall that if

Yil,n is an 1/n-net in Ki
l , then for any y ∈ Ki

l we have

min
z∈Yi

l,n

di(y, z) <
1

n
.

For each l and n, let qil,n : Ki
l → Yil,n be a nearest neighborhood quantizer given by

qil,n(y) = arg min
z∈Yi

l,n

di(y, z),

where ties are broken so that qil,n is measurable. If Ki
l = [−M,M ] ⊂ Yi = R for some M ∈ R+, the finite set Yil,n

can be chosen such that qil,n becomes a uniform quantizer. We let Qil,n : Yi → Yil,n denote the extension of qil,n to Yi
given by

Qil,n(y) :=

{
qil,n(y), if y ∈ Ki

l ,

yi,0, otherwise,

where yi,0 ∈ Yi is some auxiliary element.

Define Γ il,n = Γ i ◦Qil,n ⊂ Γ i; that is, Γ il,n is defined to be the set of all strategies γ̃i ∈ Γ i of the form γ̃i = γi ◦Qil,n,
where γi ∈ Γ i. Define also Γl,n :=

∏N
i=1 Γ

i
l,n ⊂ Γ. Note that, for any i = 1, . . . , N , Γ il,n is the set of policies for

DM i which can only use the output levels of the quantizer Qil,n. In other words, in addition to measurement channel
gi(dyi|ω0) between DM i and the Nature, there is also an analog-to-digital converter (quantizer) between them.
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Using these definitions, let us define the following set of strategic measures for any l and n:

Ll,nA (µ)

:=

{
P ∈ LA(µ) : P (B) =

∫
B0×

∏N

k=1
Ak

µ(dω0, dy)

N∏
k=1

1{uk=γk(yk)∈Bk}, γ ∈ Γl,n

}
.

The following theorem states that an optimal (or almost optimal) strategic measure can be approximated with arbitrarily
small approximation error for the induced costs by strategic measures in Ll,nA (µ) for sufficiently large l and n.

Theorem 10.19. [260] For any ε > 0, there exist (l, n(l)), a compact subsetG of
∏N
k=1 Uk of the formG =

∏N
i=1G

i,
where each Gi is convex and compact, and P ∈ L

l,n(l)
A (µ)

⋂
LGA(µ) such that∫

P (ds) c(s) < J∗ + ε

For each (l, n), we define a team model with finite measurement spaces. We prove that, for sufficiently large l and n,
optimal strategic measure of the team model corresponding to (l, n) will provide a strategic measure to the original
team model which is nearly optimal.

To this end, fix any (l, n). For the pair (l, n), the corresponding finite measurement team model has the following
measurement spaces: Zil,n := {yi,0, yi,1, . . . , yi,il,n} (i.e., the output levels of Qil,n), i ∈ N . The stochastic kernels
gil,n( · |ω0) from Ω0 to Zil,n denotes the measurement constraints and given by:

gil,n( · |ω0) :=

il,n∑
j=0

g(Sl,ni,j |ω0) δyi,j ( · ),

where Sl,ni,j :=
{
y ∈ Yi : Qil,n(y) = yi,j

}
. Indeed, gil,n( · |ω0) is the push-forward of the measure gi( · |ω0) with respect

to the quantizer Qil,n.

Let Φin,l :=
{
ϕi : Zil,n → Ui, ϕi measurable

}
denote the set of measurable policies for DM i and let Φl,n :=∏N

i=1 Φ
i
l,n. The cost of this team model is Jl,n : Φl,n → R+ and defined as

Jl,n(ϕ) :=

∫
Ω0×

∏N

i=1
Zi
l,n

c(ω0,y,u)Pl,n(dω0, dy),

where ϕ = (ϕ1, . . . , ϕN ), u = ϕ(y), and

Pl,n(dω0, dy) = P (dω0)

N∏
i=1

gil,n(dy
i|ω0) =: µl,n(dω0, dy).

For any compact subset G of
∏N
k=1 Uk, we also define ΦG

l,n := {ϕ ∈ Φl,n : ϕ(
∏N
i=1 Zil,n) ⊂ G}.

In order to obtain the approximation result, we need to impose the following additional assumption.

Assumption 10.9.2 For any compact subset G of
∏N
k=1 Uk of the form G =

∏N
i=1G

i, we assume that the function wG
is uniformly integrable with respect to the measures {µl,n}; that is,

lim
R→∞

sup
l,n

∫
{wG>R}

wG(ω0,y) dµl,n = 0.

Note that Assumption 10.9.1-(d),(e) hold if the cost function is bounded. Indeed, conditions in Assumption 10.9.1 are
quite mild and hold for the celebrated counterexample of Witsenhausen.
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Theorem 10.20. [260] Suppose Assumptions 10.9.1 and 10.9.2 hold. Then, for any ε > 0, there exists a pair (l, n(l))
and a compact subset G =

∏N
i=1G

i of
∏N
k=1 Uk such that an optimal (or almost optimal) strategic measure P l,n(l)

in the set TGA (µl,n(l)) for the (l, n(l)) team is ε-optimal for the original team problem when P l,n(l) is extended to
Ω ×

∏N
k=1(Yk × Uk) via quantizers Qil,n(l); that is,

P l,n(l)ex (·) =
∫
·
µ(dω0, dy)

N∏
k=1

1{uk=γk◦Qk
l,n(l)

(yk)∈·}

where

P l,n(l)(B) =

∫
·
µl,n(l)(dω0, dy)

N∏
k=1

1{uk=γk(yk)∈·}

10.10 Dynamic Programming and Centralized Reduction Approaches to Team Decision
Problems

10.10.1 Dynamic programming approach based on Common Information and a Controlled Markov State

In a team problem, if all the random information at any given decision maker is common knowledge between all
decision makers, then the system is essentially centralized. If only some of the system variables are common knowledge,
the remaining unknowns may or may not lead to a computationally tractable program generating an optimal solution.
A possible approach toward establishing a tractable program is through the construction of a controlled Markov chain
where the controlled Markov state may now live in a larger state space (for example a space of probability measures) and
the actions are elements in possibly function spaces. This controlled Markov construction may lead to a computation
of optimal policies.

Such a dynamic programming approach has been adopted extensively in the literature (see for example, [17], [324],
[83], [1], [328], and unified and generalized in [228, 229]) through the use of a team-policy which uses common
information to generate partial functions for each DM to generate their actions using local information. Thus, in the
dynamic programming approach, a separation of team decision policies in the form of a two-tier architecture, a higher-
level controller and a lower-level controller, can be established with the use of common knowledge.

In the following, we present the ingredients of such an approach, as formalized by Nayyar, Mahajan and Teneketzis
[229] and termed the common information approach:

1. Elimination of irrelevant information at the DMs: In this step, irrelevant local information at the DMs, say DM k,
is identified as follows. By letting the policy at other DMs to be arbitrary, the policy of DM k can be optimized as
a best-response function, and irrelevant data at DM k can be removed.

2. Construction of a coordinated system: This step identifies the common information and local/private information
at the DMs, after Step 1 above has been carried out. A fictitious coordinator (higher-level controller) uses the
common information to generate team policies, which in turn dictates the (lower-level) DMs what to do with their
local information.

3. Formulation of the cost function as a Partially Observed Markov Decision Process (POMDP), in view of the coor-
dinator’s optimal control problem: A fundamental result in stochastic control is that the problem of optimal control
of a partially observed Markov chain (with additive per-stage costs) can be solved by turning the problem into a
fully observed one on a larger state space where the state is replaced by the “belief” on the state.

4. Solution of the POMDP leads to the structural results for the coordinator to generate optimal team policies, which
in turn dictates the DMs what actions to take given their local information realizations.

5. Establishment of the equivalence between the solution obtained and the original problem, and translation of the
optimal policies. Any coordination strategy can be realized in the original system. Note that, even though there is
no real coordinator, such a coordination can be realized implicitly, due to the presence of common information.



10.10 Dynamic Programming and Centralized Reduction Approaches to Team Decision Problems 229

We will provide a further explicit setting with such a recipe at work, in the context of the k-stage periodic belief
sharing pattern in the next section. In particular, Lemma 10.10.1 and Lemma 10.10.2 will highlight this approach.
When a given information structure does not allow for the construction of a controlled Markov chain even in a larger,
but fixed for all time stages, state space, one question that can be raised is what information requirements would lead
to such a structure. We will also investigate this problem in the context of the one-stage belief sharing pattern in the
next section.

k-Stage Periodic Information or Belief Sharing Pattern

In this section, we will use the term belief for a probability measure-valued random variable. This terminology has
been used particularly in the artificial intelligence and computer science communities, which we adopt here. We will,
however, make precise what we mean by such a belief process in the following.

As mentioned earlier in Chapter 6, a fundamental result in stochastic control is that the problem of optimal control of a
partially observed Markov chain can be solved by turning the problem into a fully observed one on a larger state space
where the state is replaced by the belief on the state. Such an approach is very effective in the centralized setting; in
a decentralized setting, however, the notion of a state requires further specification. In the following, we illustrate this
approach under the k-step periodic belief sharing information pattern.

Consider a joint process {xt, yt, t ∈ Z+}, where we assume for simplicity that the spaces where xt, yt take values from
are finite dimensional real-valued or countable. They are generated by

xt+1 = f(xt, u
1
t , . . . , u

L
t , wt),

yit = g(xt, v
i
t),

where xt is the state, uit ∈ Ui is the control action, (wt, vit, 1 ≤ i ≤ L) are second order, zero-mean, mutually
independent, i.i.d. noise processes. We also assume that the state noise, wt, either has a probability mass function, or a
probability measure with a density function. To minimize the notational clutter, P (x) will denote the probability mass
function for discrete-valued spaces or probability density function for continuous spaces.

Suppose that there is a common information vector Ict at some time t, which is available to all the decision mak-
ers. At times ks − 1, with k > 0 fixed, and s ∈ Z+, the decision makers share all their information: Icks−1 =
{y[0,ks−1],u[0,ks−1]} and for Ic0 = {P (x0)}, that is at time 0 the DMs have the same a priori belief on the initial state.
Hence, at time t, DM i has access to {yi[ks,t], I

c
ks−1}.

Until the next common observation instant t = k(s+1)− 1 we can regard the individual decision functions specific to
DM i as {uit = γis(y

i
[ks,t], I

c
ks−1)}; we let γs denote the ensemble of such decision functions and let γ denote the team

policy.

It then suffices to generate γs for all s ≥ 0, as the decision outputs conditioned on yi[ks,t], under γis(y
i
[ks,t], I

c
ks−1), can

be generated. In such a case, we can define γs(., Icks−1) to be the joint team decision rule mapping Icks−1 into a space
of action vectors: {γis(yi[ks,t], I

c
ks−1), i ∈ L = {1, 2 . . . , L}, t ∈ {ks, ks+ 1, . . . , k(s+ 1)− 1}}.

Let [0, T − 1] be the decision horizon, where T is divisible by k. Let the objective of the decision makers be the joint
minimization of

Eγ
1,γ2,...,γL

x0
[

T−1∑
t=0

c(xt, u
1
t , u

2
t , . . . , u

L
t )],

over all policies γ1, γ2, . . . , γL, with the initial condition x0 specified. The cost function

Jx0
(γ) = E

γ
x0

T−1∑
t=0

c(xt,ut)

can be expressed as:
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Jx0
(γ) = E

γ
x0 [

T
k −1∑
s=0

c̄(γs(., Icks−1), x̄s)]

with

c̄(γs(., Icks−1), x̄s) = E
γ

x̄s
[

k(s+1)−1∑
t=ks

c(xt,ut)]

Lemma 10.10.1 [328] Consider the decentralized system setup above. Let Ict be a common information vector sup-
plied to the DMs regularly every k time stages, so that the DMs have common memory with a control policy generated
as described above. Then, {x̄s := xks, γs(·, Icks−1), s ≥ 0} forms a controlled Markov chain.

In view of the above, we have the following separation result.

Lemma 10.10.2 [328] Let Ict be a common information vector supplied to the DMs regularly every k time steps. There
is no loss in performance if Icks−1 is replaced by P (x̄s|Icks−1).

An essential issue for a tractable solution is to ensure a common information vector which will act as a sufficient
statistic for future control policies. This can be done via sharing information at every stage, or some structure possibly
requiring larger but finite delay.

The above motivates us to introduce the following pattern.

Definition 10.10.1 k-stage periodic belief sharing pattern [328] An information pattern in which the decision makers
share their posterior beliefs to reach a joint belief about the system state is called a belief sharing information pattern.
If the belief sharing occurs periodically every k-stages (k > 1), the DMs also share the control actions they applied in
the last k − 1 stages, together with intermediate belief information. In this case, the information pattern is called the
k-stage periodic belief sharing information pattern.

Remark 10.21. For k > 1, it should be noted that, the exchange of the control actions is essential. ⋄

10.10.2 A Universal Dynamic Program

[332] considered the following topology on control policies, while developing a universal dynamic programming
algorithm applicable to any sequential decentralized stochastic control problem, generalizing Witsenhausen’s program
[313] which is tailored primarily for countable probability spaces.

Define

(i) State: xt = {ω0, u
1, · · · , ut−1, y1, · · · , yt}, 1 ≤ t ≤ N .

(i’) Extended State: πt ∈ P(Ω0 ×
∏t
i=1 Yi ×

∏t−1
i=1 Ui) where, for Borel B ∈ Ω0 ×

∏t
i=1 Yi ×

∏t−1
i=1 Ui,

πt(B) := Eπt
[1{(ω0,y1,··· ,yt;u1,··· ,ut−1)∈B}].

Thus, πt ∈ P(Ω0 ×
∏t
i=1 Yi ×

∏t−1
i=1 Ui) where the space of probability measures is endowed with the weak

convergence topology.

(ii) Control Action: Given πt, γ̂t is a probability measure in P(Ω0×
∏t
k=1 Yk×

∏t
k=1 Uk) that satisfies the conditional

independence relation:
ut ↔ yt ↔ xt = (ω0, y

1, · · · , yt;u1, · · · , ut−1)

(that is, for every Borel B ∈ Ui, almost surely under γ̂t, the following holds:

P (ut ∈ B|yt, (ω0, y
1, · · · , yt;u1, · · · , ut−1)) = P (ut ∈ B|yt)
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with the restriction
xt ∼ πt.

Denote with Γ t(πt) the set of all such probability measures. Any γ̂t ∈ Γ t(πt) defines, for almost every realization
yt, a conditional probability measure on Ut. When the notation does not lead to confusion, we will denote the action
at time t by γt(dut|yt), which is understood to be consistent with γ̂t.

(ii’)Alternative Control Action for Static Teams with Independent Measurements: Given πt, γ̂t is a probability measure
on Yt × Ut with a fixed marginal P (dyt) on Yt, that is πYt

t (dyt) = P (dyt). Denote with Γ t(πYt

t ) the set of all
such probability measures. As above, when the notation does not lead to confusion, we will denote the action at
time t by γt(dut|yt), which is understood to be consistent with γ̂t. In particular, (yt, ut) is independent of (yk, uk)
for k ̸= t.

With the control actions defined as in the above [332] developed a universal dynamic program for any sequential
decentralized stochastic control and established, as a corollary of the program, further existence results, one which is
essentially identical to that presented in 10.13, but slightly more restrictive in that the cost function is assumed to be
continuous in all of its arguments.

Theorem 10.22. [332]

(i) Under the kernel (10.47) and controlled Markov construction presented, the optimal team problem admits a well-
defined backwards-induction (dynamic programming) recursion.

(ii) In particular, if the problem is independent static-reducible, actions are compact-valued and the cost function is
continuous, an optimal policy exists and the value function is continuous in the prior (that is, in the distribution of
primitive noise variables) under weak convergence.

Remark 10.23. The above construction is related to an interpretation put forward by Witsenhausen in his standard form
[313] where all the uncertainly is embedded into the initial state and the controlled system evolves deterministically.
Witsenhausen had considered only countable probability spaces for an optimality analysis.

Remark 10.24. The fully observed MDP setup can be viewed as a special case of the above. In this context, by Black-
well’s theorem (Theorem 5.1.1), we know that we can reduce the search space to policies that are Markov. In this case,
the optimality analysis via Bellman’s principle (Theorem 5.1.3) can be recovered via the Universal Dynamic Program.

10.11 Bibliographic Notes

We primarily followed [332], [337] and Chapters 2, 3, 4 and 12 of [335] for this topic. For a more complete coverage,
the reader may follow [335].

In the economics and game theory literature, information structures are also studied extensively. Stochastic team prob-
lems are termed as identical interest games. In this literature, LC(µ) appears in the analysis of Aumann’s correlated
equilibrium [21]. Common and independent randomness discussions appear in the analysis of comparison of informa-
tion structures [203]. For further discussions, including a multi-stage generalization known as communication equilib-
ria, see [129]. For a detailed treatment, we refer the reader to [217, p. 131].

10.12 Exercises

Exercise 10.12.1 Consider the following static team decision problem with dynamics:

x1 = ax0 + b1u
1
0 + b2u

2
0 + w0,
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y10 = x0 + v10 ,

y20 = x0 + v20 ,

Here v10 , v
2
0 , w0 are independent, Gaussian, zero-mean with unit variance.

Let γi : R → R be policies of the controllers: u10 = γ10(y
1
0), u

2
0 = γ20(y

2
0).

Find
min
γ1,γ2

Eγ
1,γ2

ν0 [x21 + ρ1(u
1
0)

2 + ρ2(u
2
0)

2],

where ν0 is a zero-mean Gaussian distribution and ρ1, ρ2 > 0.

a) Find an optimal team policy γ = {γ1, γ2}.

b) When b1 = b2 and ρ1 = ρ2, can you conclude that an optimal solution will be identical for both Decision Makers?
See [264–266] for further structural results on convex and exchangeable teams.

Exercise 10.12.2 Consider the following team decision problem with dynamics:

xt+1 = axt + b1u
1
t + b2u

2
t + wt,

y1t = xt + v1t ,

y2t = xt + v2t ,

Here x0, v1t , v
2
t , wt are mutually and temporally independent zero-mean Gaussian random variables.

Let {γi} be the policies of the controllers so that uit = γit(y
i
0, y

i
1, · · · , yit) for i = 1, 2.

Consider:

min
γ1,γ2

Eγ
1,γ2

x0

[( T−1∑
t=0

x2t + ρ1(u
1
t )

2 + ρ2(u
2
t )

2]

)
+ x2T

]
,

where ρ1, ρ2 > 0.

Explain if the following are correct or not:

a) For T = 1, the problem is a static team problem.

b) For T = 1, optimal policies are linear.

c) For T = 1, linear policies may be person-by-person-optimal. That is, if γ1 is assumed to be linear, then γ2 is linear;
and if γ2 is assumed to be linear then γ1 is linear.

d) For T = 2, optimal policies are linear.

e) For T = 2, linear policies may be person-by-person-optimal.

Exercise 10.12.3 Consider a common probability space (with a finite sample space Ω) on which the information avail-
able to two decision makers DM1 and DM2 are defined, such that I1 is available at DM1 and I2 is available at DM2.

R. J. Aumann [20] defines that an information E is common knowledge between two decision makers DM1 and DM2,
if whenever E happens, DM1 knows E, DM2 knows E, DM1 knows that DM2 knows E, DM2 knows that DM1 knows
E, and so on.

Let Ω be finite. Suppose that one claims that an event E is common knowledge if and only if E ∈ σ(I1)∩σ(I2), where
σ(I1) denotes the σ−field over Ω generated by information I1 and likewise for σ(I2).

Is this argument correct? Provide an answer with precise arguments. You may wish to consult [20], [231], [68] and
Chapter 12 of [335].
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Exercise 10.12.4 Let X be a binary random variable. Suppose two decision makers DM 1 and DM 2 have access to
some local random variables Y 1 and Y 2, respectively, defined on a common probability space and correlated with X ,
and exchange their conditional expectations over time. Suppose further that:

– the information σ-fields at each decision maker is increasing: F i
t ⊂ F i

t+1, i = 1, 2, t ∈ Z+.

– for all n ∈ N, there exists m > n such that F i
m contains information on E[X|F j

n], i, j = 1, 2. That is, the decision
makers exchange their estimates (but not their raw data -Y i is private to DM i, i = 1, 2-) infinitely often.

State and rigorously justify your answers for the following:

a) [10 Points] Is there a limit for limn→∞E[X|F j
n], j = 1, 2? Either argue that the limit exists, or provide a coun-

terexample.

b) [10 Points] For the cases where the limit exists, is it the case that

lim
n→∞

E[X|F1
n] = lim

n→∞
E[X|F2

n]

Either prove the result, or provide a counterexample.

Hint: See [63] (see also [133] and [293])

Exercise 10.12.5 Consider a linear Gaussian system with mutually independent and i.i.d. noises:

xt+1 = Axt +

L∑
j=1

Bjujt + wt ,

yit = Cixt + vit , 1 ≤ i ≤ L, (10.51)

with the one-step delayed observation sharing pattern.

Construct a controlled Markov chain for the team decision problem: First show that one could have

{y1t , y2t , . . . , yLt , P (dxt|y1[0,t−1], y
2
[0,t−1], . . . , y

L
[0,t−1])}

as the state of the controlled Markov chain.

Consider the following problem:

E
γ
ν0 [

T−1∑
t=0

c(xt, u
1
t , · · · , uLt )]

For this problem, if at time t ≥ 0 each of the decision makers (say DM i) has access toP (dxt|y1[0,t−1], y
2
[0,t−1], . . . , y

L
[0,t−1])

and their local observation yi[0,t], show that they can obtain a solution where the optimal decision rules only uses
{P (dxt|y1[0,t−1], y

2
[0,t−1], . . . , y

L
[0,t−1]), y

i
t}:

What if, they do not have access to P (dxt|y1[0,t−1], y
2
[0,t−1], . . . , y

L
[0,t−1]), and only have access to yi[0,t]? What would

be a sufficient statistic for each decision maker for each time stage?

Exercise 10.12.6 Two decision makers, Alice and Bob, wish to control a system:

xt+1 = axt + uat + ubt + wt,

yat = xt + vat ,

ybt = xt + vbt ,

where uat , y
a
t are the control actions and the observations of Alice, ubt , y

b
t are those for Bob and vat , v

b
t , wt are indepen-

dent zero-mean Gaussian random variables with finite variance. Suppose the goal is to minimize for some T ∈ Z+:
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EΠ
a,Πb

x0

[ T−1∑
t=0

x2t + ra(u
a
t )

2 + rb(u
b
t)

2

]
,

for ra, rb > 0, whereΠa, Πb denote the policies adopted by Alice and Bob. Let the local information available to Alice
be Iat = {yas , uas , s ≤ t− 1}∪ {yat }, and Ibt = {ybs, ubs, s ≤ t− 1}∪ {ybt} is the information available at Bob at time t.

Consider an n−step delayed information pattern: In an n−step delayed information sharing pattern, the information
at Alice at time t is

Iat ∪ Ibt−n,

and the information available at Bob is
Ibt ∪ Iat−n.

State if the following are true or false:

a) If Alice and Bob share all the information they have (with n = 0), it must be that, the optimal controls are linear.

b) Typically, for such problems, for example, Bob can try to send information to Alice to improve her estimation on the
state, through his actions. When is it the case that Alice cannot benefit from the information from Bob, that is for what
values of n, there is no need for Bob to signal information this way?

c) If Alice and Bob share all information they have with a delay of 2, then their optimal control policies can be written
as

uat = fa(E[xt|Iat−2, I
b
t−2], y

a
t−1, y

a
t ),

ubt = fb(E[xt|Iat−2, I
b
t−2], y

b
t−1, y

b
t ),

for some functions fa, fb. Here, E[.|.] denotes the expectation.

d) If Alice and Bob share all information they have with a delay of 0, then their optimal control policies can be written
as

uat = fa(E[xt|Iat , Ibt ]),

ubt = fb(E[xt|Iat , Ibt ]),

for some functions fa, fb. Here, E[.|.] denotes the expectation.
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Controlled Stochastic Differential Equations

This chapter introduces the basics of stochastic differential equations and then studies controlled such equations. A
complete treatment is beyond the scope of these notes, however, the essential tools and ideas will be presented so that a
student who is comfortable with the discrete-time discussion thus far in the notes can realize that with a little additional
effort the continuous-time case can also be followed with ease. The reader is referred to e.g. [13,165,171,191,235] for
more comprehensive treatments on various aspects ranging from mathematical foundations, stability, optimal control,
filtering, and numerical methods.

Our approach here will primarily be to map the material presented so far in the notes to the continuous-time case,
with the understanding that the discrete-time theory is well understood. With Xt an R-valued random variable for each
t ∈ R+, consider a stochastic process Xt, t ∈ R+. Given a sufficiently regular function f suppose that we can define

lim
h→0

E[f(Xh)|X0 = x]− f(x)

h
=: Af(x), x ∈ R

for some map A (to be studied further). This means that E[f(Xh)|X0 = x] = f(x)+Af(x)h+o(h), where o(h)
h → 0

as h→ 0. Notably, if µt(B) = E[1{Xt∈B}], for all Borel B, then the above implies under mild conditions on A that∫
µt(dx)f(x) =

∫ t

0

(∫
Af(z)µs(dz)

)
ds+

∫
f(x)µ0(dx)

We will observe that, the above can be viewed as a limit (as h→ 0) of the strategic measure evolution for the sampled
(and thus discrete with k ∈ Z+) stochastic process

X(k+1)h = Xkh + hb(Xkh) + σ(Xkh)
√
hZ (11.1)

where Z ∼ N (0, 1) and Af(x) = b(x) ddxf(x) +
1
2 (σ

2(x))∂
2f
∂x2 (x). In the limit as h→ 0, we arrive in some particular

sense (that of weak convergence of path valued random processes under the topology of uniform convergence over
compact sets), at the limit equation

dXt = b(Xt) + σ(Xt)dBt,

which is called a stochastic differential equation. Here, Bt is the Brownian motion.

The discussion (11.1) also leads to the following chain rule: Let f(x, t) be differentiable so that the operations to follow
are well-defined (e.g., twice continuously differentiable in x and continuously differentiable in t): Then, if we attempt
to write

f(xt+h, t+ h) ≈ f(x, t) +
∂f

∂t
h+

∂f

∂x
dx = f(x, t) +

∂f

∂t
h+

∂f

∂x
(b(x)h+ σ(x)

√
hZ)

what we observe is that in the last term ∂f
∂xdx = ∂f

∂x (b(x)h + σ(x)
√
hZ), when normalization by h is made, the

expression
√
h/h does not decay to zero and and the second derivative term appearing in the Taylor’s expansion, which

would be 1
2
∂2f
∂x2 (dx)(dx), remains non-negligible. Accordingly, a more appropriate expression is:
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f(xt+h, t+ h) ≈ f(x, t) +
∂f

∂t
h+

∂f

∂x
dx+

1

2

∂2f

∂x2
(dx)(dx)

leading to

f(xt+h, t+ h) ≈ f(x, t) +
∂f

∂t
h+

∂f

∂x
(hb(xt) + σ(xt)

√
hZ) +

1

2

∂2f

∂x2
σ2(xt)hZ

2

This essentially leads to Itô’s formula to be studied. A number of technical questions will arise with respect to the notion
of convergence as h ↓ 0 and the non-differentiability of the Brownian process Bt. This model will be generalized, and
there will also be control entering the flow, e.g. via b(x, u) with u denoting the control term and possibly in σ(·) as
well.

We will restrict the model to certain systems, e.g. those driven by the Brownian process, though one can in principle
study more general models (the term multiplying σ(Xkh) does not need to be a Gaussian measure and there exist many
other processes that can be considered.

We should note that the construction of a stochastic process on a continuous time interval, such as [0, T ] requires more
caution when compared with a discrete-time stochastic process, as we will observe. In this chapter, we will primarily
be concerned with controlled Markov processes Xt, each taking values in Rn for t ∈ [0, T ] or t ∈ [0,∞) and where
the integration term involves the Brownian process or semimartingale processes [165].

11.1 Continuous-time Markov processes

11.1.1 Two ways to construct a continous-time Markov process

As discussed in Chapter 1 and Section 1.4, one way to define a stochastic process is to view it as a vector valued random
variable. This requires us to place a proper topology on the set of sample paths, to be discussed further below.

Another definition would involve defining the process on finitely many time instances: Let {Xt(ω), t ∈ [0, T ]} be
stochastic process so that for each t, Xt(ω) is an Rn-valued random variable measurable on some probability space
(Ω,F , P ). We can define the σ-algebra generated by cylinder sets (as in Chapter 1) of the form:

{ω ∈ Ω : Xt1(ω) ∈ A1, Xt2(ω) ∈ A2, · · · , XtN (ω) ∈ AN , Ak ∈ B(Rn), N ∈ N}

By defining a stochastic process in this fashion and assigning probabilities to such finite dimensional events, Theorem
1.2.3 implies that there exists a unique stochastic process on the σ-algebra generated by the sets of this form. However,
unlike a discrete-time stochastic process, in general, not all properties of the stochastic process are captured by finite
dimensional distributions of it and the σ-field generated by such sets is not a sufficiently rich set of sets. For example
the set of sample paths that satisfy supt∈[0,1] |Xt(ω)| ≤ 10 may not be a well-defined event (that is, a set) in this σ-
algebra. Likewise, the extension theorem considered in Theorem 1.2.2 requires a probability measure already defined
on the cylinder sets; it may not be possible to define such a probability measure by only considering finite dimensional
distributions [318].

One may expect that if a stochastic process has continuous sample paths, then by specifying the process on rational
time instances will uniquely define the process. Thus, if the process is known to admit certain regularity properties, the
technical issues with regard to defining a process on finitely many sample points will disappear.

11.1.2 The Brownian motion

Definition 11.1.1 A stochastic process Bt is called a Wiener process or Brownian motion if (i) the finite dimensional
distributions of Bt are such that Bt1 , Bt2 − Bt1 , · · · , Btn − Btn−1

are independent Gaussian zero mean random
variables with Bk −Bs ∼ N (0, k − s), and (ii) Bt has continuous sample paths.
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Such a process exists and can be constructed as a limit of random walks as briefly suggested in Remark 11.1 below.
Going back to the construction we discussed in the previous section, we can define the Brownian motion as aC([0,∞))-
valued (that is, a continuous path valued) random variable: The topology on C([0,∞)) is the topology of uniform
convergence on compact sets (this is a stronger convergence than the topology of point-wise convergence but weaker
than the topology of uniform convergence over R). This is in agreement with the finite dimensional characterization
through which we could define the Brownian motion.

Remark 11.1. [Why Brownian Motion?] The Gaussian property of the continuous limit process is universal in the sense
that, any continuous time process with sufficiently regular independent increments must be the Brownian process (via a
result known as Donsker’s theorem). In particular, even though typically in the construction of the Brownian motion (or
its existence), one considers Gaussian i.i.d. random increments and takes its limit; this is not necessary for the Gaussian
properties of the limit: Let {Z1, Z2, · · · , } be an i.i.d. random sequence with mean 0 and variance 1. For each n ∈ N
define the random variable (with variance t for each n ∈ N):

Wn(t) =
1√
n

∑
1≤k≤⌊nt⌋

Zk, t ∈ [0, 1]. (11.2)

This is a random function. By the central limit theorem,Wn(t)−Wn(s) → N (0, t−s) (in distribution, that is weakly).
However, one can also show that the path-valued random variable converges weakly (where one needs to define an
appropriate metric on the path-valued realization space, as the elements of the sequence may not be continuous) to the
standard Brownian motion. In this context, an appropriate topology is the Skorokhod topology defined on the space of
functions which are right continuous with left limits: Such a topology defines a separable metric space [40].

For many interesting properties of the Brownian motion, the reader is referred to [239].

Remark 11.2.

Remark 11.3 (Going beyond the Brownian motion). While the discussion above justifies the typical usage of the Brown-
ian motion for many stochastic integration models studied later in the chapter, one can consider more general processes
(known as semimartingales) for the analysis in the following sections to be applicable [165]. Some applications may
force one to even be more general and consider driving signals that are to be studied under the theory of rough-
paths [130, 208], which seeks to give a sample path sense meaning to stochastic integration, to be discussed further, as
well as several robustness properties to approximate models and continuity of solutions in the driving noise.

On White Noise

In many physical systems, one encounters models of the form

dx

dt
= (f(xt) + ut) + nt,

where nt is some noise process. In engineering, one would like to model the noise process to be white, in the sense
that nt, ns are independent for t ̸= s, and yet, nt is zero-mean and with a finite variance for all t. We call such a
process white, because the Fourier transform (and thus the frequency spectrum) of the correlation function defined
as R(τ) = E[xtxt+τ ] of such a process is a constant: If the process is a discrete-time process with finite support,
then this interpretation would be directly applicable since the Fourier transform of a discrete-time impulse would be
constant for all frequency values. For a continuous-time process, however, if R(τ) = E[xtxt+τ ] = 0 for all τ ̸= 0,
then a mathematical complication arises: If R(0) < ∞, then this signal has zero-energy and its Fourier transform
would be identically 0. If R(0) = ∞, then such an R would have significant irregularities; such a process would have
its correlation function as E[nsnt] = δ(t − s); where the Dirac delta function δ is a distribution acting on a proper
set of test functions (such as the Schwartz signals S [164]). Such a process is not a well-defined Gaussian process
since it does not have a well-defined correlation function as δ itself is not a function. But, one can view this process
as a distribution, or always cautiously always work under an integral sign; this way one can make an operational use
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for such a definition. With such a cautious interpretation, as we see in Exercise 11.10.4, the Fourier transform of a
Brownian motion, over a bounded support, is i.i.d. across its discrete spectrum coefficients, and Gaussian. This justifies
the term white noise.

Thus, it is evident that {nt}, as a signal, would not be an ordinary process and instead of nt, we will only work with its
integral, Bt. Thus, while working with Bt, instead of derivatives, we will study integral equations. On the other hand,
it will be evident that we cannot take the ordinary Lebesgue or Riemann integrations for Bt since Bt is too irregular.
Instead, a method to obtain integrations will be introduced: The Itô integral provides a well-defined integration. The
properties of integration, differentiation, chain rule etc. for such integrations is called stochastic calculus. Later in the
chapter, we will add control to the dynamics.

11.2 Stochastic Integration, the Itô Integral and Stochastic Differential Equations

11.2.1 Some subtleties on stochastic integration

We define a differential equation or a stochastic integral as an appropriate limit to make sense of the expression:∫ T

0

f(s, ω)dBs(ω)

In the following, let t(n)k := kT2−n, k = {0, 1, · · · , 2n − 1}. Thus, we have Btn
k
:= BkT2−n .

We first note that one cannot define the above in the Riemann-Stieltjes sense (i.e., by partitioning the domain and taking
limits as the partition gets fined) for an arbitrary measurable f 1. To gain further insight as to why this leads to an issue,
we discuss the following. Using the independent-increments property (that is (i) in Definition 11.1.1) of the Brownian
motion (e.g. via the construction of (11.2)), the following can be shown:

Lemma 11.2.1 In L2 (that is, mean-square) and hence in probability

lim
n→∞

∑
k

(Btn
k+1

−Btn
k
)2 = T.

Observe the following [298].

Theorem 11.2.1 Define the total variation of the Wiener process in the interval [a, b] as:

TV (B, a, b) = sup
a≤t1≤t2≤···≤tk≤b,k∈N

∑
k

|Btk+1
−Btk |

Almost surely, TV (B, a, b) = ∞.

Proof. By Lemma 11.2.1, and Theorem B.3.2, it follows that there exists some subsequence nm so that
∑
k(Btnm

k+1
−

Btnm
k

)2 → b− a almost surely (see Theorem B.3.2). Now, if TV (B, a, b) <∞, this would imply that∑
k

(Btnm
k+1

−Btnm
k

)2 ≤ sup
k

|Btn
k+1

−Btn
k
|
∑
k

|Btn
k+1

−Btn
k
| → 0,

as n→ ∞, since by continuity of sample paths (which would then be uniformly continuous due to compactness of the
support, for any sample path with probability one) supk |Btnk+1

−Btn
k
| → 0. This would lead to a contradiction. ⋄

To appreciate some subtleties on stochastic integration, let us consider simple functions of the form:

1However, this would be applicable if one has further regularities on the integrand f [325].
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f(t, ω) =

2n−1∑
k=0

ek(ω)1{t∈[kT2−n,(k+1)T2−n]}

where n ∈ N. Let us define ∫ T

0

f(t, ω)dBt(ω) =
∑
k

ek(ω)[Btk+1
(ω)−Btk(ω)]

where tk = t
(n)
k = kT2−n, k = {0, 1, · · · , 2n − 1}. In the following, we use the notation: Btn

k
:= BkT2−n .

Now, note that if one defines:
f1(t, ω) =

∑
k

B{kT2−n}1{t∈[kT2−n,(k+1)T2−n]}

it can be shown that

E[

∫ T

0

f1(t, ω)dBt(ω)] = 0,

but instead with
f2(t, ω) =

∑
k

B{(k+1)T2−n}1{t∈[kT2−n,(k+1)T2−n]}

it can be shown that

E[

∫ T

0

f2(t, ω)dBt(ω)] = T.

Thus, even though both f1 and f2 look to be reasonable approximations for some function f(t, ω), such as Bt(ω), the
integrals have drastically different meanings.

In particular the variations in the Bt process is too large to define an integration (in the usual sense of Riemann-Stieltjes),
as we discussed above: It does make a difference on whether one defines

∫ T
0
f(t, ω)dBt(ω) as an appropriate limit of a

sequence of expressions ∑
k

f(t∗j , ω)[Bmin(T,tk+1)(ω)−Bmax(0,tk)(ω)]

for different f(t∗j , ω) with (t∗j ∈ [tj , tj+1]. If we take t∗j = tj (the left end point), this is known as the Itô Integral. If we
take t∗j =

1
2 (tj + tj+1), this is known as the Stratonovich integral (and is denoted with

∫
f ◦ dBt, to distinguish it from the

Itô integral).

11.2.2 The Itô Integral

Itô’s integral will be well-defined2, if we restrict the integrand f(t, ω) to be such that f(t, ω) is measurable on the σ-field
generated by {Bs, s ≤ t}. With this intuition, we define Ft to be the σ-algebra generated by Bs, s ≤ t. In other words, Ft
is the smallest σ-algebra containing sets of the form:

{ω : Bt1(ω) ∈ A1, · · · , Btk(ω) ∈ Ak}, tk ≤ t,

for Borel A1, · · · , Ak. We also assume that all sets of measure zero are included in Ft (this operation is known as the
completion of a σ-field).

2In the theory of integration, as a student has seen over many courses, one chooses a definition of integration and identifies conditions
under which integration is possible. Of course, one expects that different integration concepts should be compatible whenever they are
simultaneously applicable. We have seen the Riemann integration and the Lebesgue integration, and how they both are defined as limits
of particular constructions. We will see in the following that the Itô integration has a similar flavour but with a very different construction.
This approach carries over to other types of integrations, such as the rough integral [130, 208].
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Definition 11.2.1 Let Nt, t ≥ 0, be an increasing family of σ-algebras of subsets of Ω. A process g(t, ω) is called Nt

adapted if for each t, g(t, ·) is Nt-measurable.

Definition 11.2.2 Let V(S, T ) be the class of functions:

f(t, ω) : [0,∞)×Ω → R

such that (i) f(t, ω) is B([0,∞))×F-measurable, (ii) f(t, ω) is Ft-adapted and (iii) E[
∫ T
S
f2(t, ω)dt] <∞.

We will often take S = 0 in the following. For functions in V , the Itô integral is defined as follows: A function ϕ is called
�elementary if it has the form:

ϕ(t, ω) =
∑
k

ek(ω)1{t∈[tk,tk+1)}

with ek being Ftk -measurable. For elementary functions, we define the Itô integral as:∫ T

0

ϕ(t, ω)dBt(ω) =
∑
k

ek(ω)

(
Btk+1

(ω)−Btk(ω)

)
(11.3)

With this definition, it follows that for a bounded and elementary ϕ,

E

[(∫ T

0

ϕ(t, ω)dBt(ω)

)2]
= E[

∫ T

0

ϕ2(t, ω)dt]. (11.4)

This property is known as the Itô isometry. The proof follows from expanding the summation in (11.3) and using the
properties of the Brownian motion. Now, the remaining steps to define the Itô integral are as follows:

– Step 1: Let g ∈ V and g(·, ω) be continuous for each ω. Then, there exist elementary functions ϕn ∈ V such that

E[

∫ T

0

(g − ϕn)
2dt] → 0,

as n→ ∞. The proof here follows from the dominated convergence theorem.

– Step 2: Let h ∈ V be bounded. Then there exist gn ∈ V such that gn(·, ω) is continuous for all ω and n and

E[

∫ T

0

(h− gn)
2dt] → 0.

One can follow Lusin’s theorem (Theorem D.5.1) to establish this result.

– Step 3: Let f ∈ V . Then, there exists a sequence hn ∈ V such that hn is bounded for each n and

E[

∫ T

0

(f − hn)
2dt] → 0.

Here, we use truncation and then the dominated convergence theorem.

Definition 11.2.3 (The Itô Integral) Let f ∈ V(S, T ) and ϕn be an approximating sequence of elementary functions as
above given in Steps 1-2-3. The Itô integral of f is defined by∫

f(t, ω)dBt(ω) = lim
n→∞

∫ T

0

ϕn(t, ω)dBt(ω),

where the convergence to the limit is in L2(P ) in the sense; that is,
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lim
n→∞

E

[(∫ T

0

ϕn(t, ω)dBt(ω)−
∫
f(t, ω)dBt(ω)

)2]
= 0

The existence of a limit is established through the construction of a Cauchy sequence and the completeness of L2(P ),
the space of measurable functions with a finite second moment under P , with the corresponding norm. A computationally
useful result is the following (generalizing (11.4)).

Corollary 11.2.1 For all f ∈ V(S, T )

E

[(∫ T

0

f(t, ω)dBt(ω)

)2]
= E

[ ∫ T

0

f2(t, ω)dt

]
.

And thus, if f, fn ∈ V(S, T ) and

E[

∫ T

0

(fn − f)2dt] → 0,

then in L2(P ) ∫ T

0

fn(t, ω)dBt(ω) →
∫ T

0

f(t, ω)dBt(ω)

Example 11.4. Let us show that ∫ t

0

BsdBs =
1

2
B2
t −

1

2
t. (11.5)

If we define the elementary function to be: ϕn(ω) =
∑
Bj(ω)1{t∈[tj ,tj+1)}, it follows that E[

∫ t
0
(ϕn − Bs)

2ds] → 0.
Therefore, the limit of the integrals of ϕn(ω), that is the L2(P ) limit of

∑
j Bj(Bj+1 −Bj), will be the integral. Observe

now that
−(Bj+1 −Bj)

2 = 2Bj(Bj+1 −Bj) +B2
j −B2

j+1

and thus summing over j, we obtain∑
j

−(Bj+1 −Bj)
2 =

∑
j

2Bj(Bj+1 −Bj) +B2
j −B2

j+1,

leading to
B2
t −

∑
j

(Bj+1 −Bj)
2 =

∑
j

2Bj(Bj+1 −Bj) +B2
0 ,

withB0 = 0. Now, taking the intervals [j, j+1] arbitrarily small, we see that the first term converges toB2
t −t (see Lemma

11.2.1) and the term on the right hand side converges to 2
∫ t
0
BsdBs, leading to the desired result. We will derive the same

result using Itô’s formula shortly. The message of this example is to highlight the computational method: Find a sequence
of elementary function which converges in L2(P ) to f , and then compute the integrals, and take the limit as the intervals
shrink.

Remark 11.5. An important extension of the Itô integral is to a setup where ft is Ht-measurable, where Ht ⊂ Ft =
σ(Bs, s ≤ t). In applications, this is important to let us apply the integration to settings where the process that is integrated
is measurable only on a subset of the filtration generated by the Brownian process. This allows one to define multi-
dimensional Itô integrals as well. This is particularly useful for controlled stochastic differential equations, where the
control policies are measurable with respect to a filtration that does not contain that generated by the Brownian motion, but
the controller policy cannot depend on the future realizations of the Brownian motion either.

Remark 11.6 (Itô vs. Stratonovich Integrations). A curious reader may question the selection of choosing the Itô integral
over any other, and in particular the Stratonovich integral: Different applications are more suitable for either interpreta-
tion. In stochastic control, measurability aspects (of admissible controls) are the most crucial ones. If one appropriately
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defines the functional or stochastic dependence between a function to be integrated or a noise process, the application of
either will come naturally: If the functions are to not look at the future, then Itô’s formula is appropriate. However, for
many applications involving white noise-like disturbances, physical processes, or stochastic stability, ergodicity [15, 183]
and smoothness properties of densities of solutions [146] to stochastic differential equations where one would build on
connections with geometric control theory [283] with piece-wise constant control action sequences replacing the driving
noise process, Stratonovich integral has been shown to be more relevant. Additionally, the Stratonovich integration has
desirable robustness properties with regard to the approximation of the Brownian noise, as will be discussed in Section
11.8. A conclusion is that the application itself should determine the right notion of the stochastic integral to be used, in
view of the assumptions imposed by the application.

11.2.3 The Itô Formula

Itô’s formula allows us to take integrations of functions of processes and it generalizes the chain rule in classical calculus.

Definition 11.2.4 We say v(S, T ) ∈ WH if
v(t, ω) : [S, T )×Ω → R

is such that (i) v(t, ω) is B([0,∞)) × F-measurable, (ii) v(t, ω) is Ht-adapted where Ht is as in Remark 11.5 and (iii)
P (
∫ T
0
f2(t, ω)dt <∞) = 1.

Definition 11.2.5 (Itô Process) Let Bt be a one-dimensional Brownian motion on (Ω,F , P ). A (one-dimensional) Itô
process is a stochastic process Xt on (Ω,F , P ) of the form

Xt = X0 +

∫ t

0

b(s, ω)ds+

∫ t

0

v(s, ω)dBs (11.6)

where v ∈ WH so that v is Ht-adapted and P (
∫ t
0
v2(t, ω)dt < ∞) = 1 for all t ≥ 0. Likewise, b is also Ht-adapted and

P (
∫ t
0
b2(t, ω)dt <∞) = 1 for all t ≥ 0.

Instead of the integral form in (11.6), we may use the differential form notation:

dXt = bdt+ vdBt,

with the understanding that this means the integral form.

Theorem 11.2.2 [Itô Formula] Let Xt be an Itô process given by

dXt = bdt+ vdBt.

Let g(t, x) ∈ C1,2([0,∞) × R) (that is, g is continuously differentiable, C1, in t, and twice continuously differentiable,
C2, in x). Then,

Yt = g(t,Xt),

is again an Itô process and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2

where
(dXt)

2 = (dXt)(dXt)

with dtdt = dtdBt = dBtdt = 0 and dBtdBt = dt

Remark 11.7. Let us note that if instead of dBt, we only had a differentiable function mt so that dXt = bdt + vdmt, the
regular chain rule would lead to:
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dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)(udt+ vdmt).

Note then that Itô’s Formula is a generalization of the ordinary chain rule for derivatives. The difference is the presence of
the quadratic term that appears in the formula; see also the discussion at the beginning of the chapter.

Example 11.8. Compute: ∫ t

0

BsdBs

View Yt =
1
2B

2
t . Then, by Itô’s formula,

dYt = BtdBt +
1

2
dt

and thus ∫
dYs = Yt − Y0 =

1

2
B2
t =

∫
BsdBs +

1

2
t.

Note that this is in agreement with (11.5)

Itô’s Formula can be extended to higher dimensions by considering each coordinate separately.

11.2.4 Stochastic Differential Equations

Consider now an equation of the form:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (11.7)

with the interpretation that this means

Xt = X0 +

∫ t

0

b(t,Xt)dt+

∫ t

0

σ(t,Xt)dBt

Three natural questions are as follows: (i) Does there exist a solution to this differential equation? (ii) Is the solution
unique? (iii) How can one compute the solution?

Theorem 11.2.3 (Existence and Uniqueness Theorem) Let T > 0 and b : [0, T ]× Rn → Rn, σ : [0, T ]× Rn → Rn×m
be measurable functions satisfying:

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), t ∈ [0, T ], x ∈ Rn

for some C ∈ R with |σ|2 =
∑
i,j σ

2
ij , and

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D(|x− y|), t ∈ [0, T ], x, y ∈ Rn

for some constant D. Let X0 = Z be a random variable which is independent of the σ-algebra generated by Bs, s ≥ 0
with E[|Z|2] < ∞. Then, the stochastic differential equation (11.7) has a unique solution Xt(ω) that is continuous in t
with the property that Xt is adapted to the filtration generated by {Z,Bs, s ≤ t} and E[

∫ T
0
|Xt|2] <∞.

Proof Sketch. The proof of existence follows from a similar construction for the existence of solutions to ordinary differ-
ential equations: One defines a sequence of iterations:

dY k+1
t = X0 +

∫ t

0

b(s, Y kt )ds+

∫ t

0

σ(s, Y kt )dBs

with Y 0
t := X0 for all t ∈ [0, T ]. Then, the goal is to obtain a bound on the L2-errors so that
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lim
m,n→∞

E[|Y mt − Y nt |2] → 0,

so that Y nt is a Cauchy sequence under the L2(P ) norm; this is where the Lipschitz bounds in the hypothesis are utilized.
Call the limit X . The next step is to ensure that X indeed satisfies the equation and that there can only be one solution.
Finally, one proves that Xt can be taken to be continuous. ⋄

Let us appreciate some of the conditions stated above in the context of deterministic models.

Remark 11.9. Consider the following deterministic differential equations:

–
dx

dt
= 4

x

t

with x(1) = 1 does not admit a unique solution on the interval [−1, 1].

– The differential equation
dx

dt
= x2

with x(0) = 1 admits the solution xt = 1
1−t and as t ↑ 1, the solution blows up in finite time so that there is no

solution for t ≥ 1.

The solution discussed above is what is called a strong solution. Such a solution is such that Xt is unique for a given
sample path. Furthermore, the solution is measurable on the filtration generated by the Brownian motion and the initial
variable (which can be seen by the construction of the integral, where each pre-limit approximation is measurable on
the filtration, and since L2-limit implies a pointwise almost sure limit along a subsequence, the limit is also measurable,
assuming completeness of the filtration). Such a solution has an important engineering/control appeal in that the solution
is completely specified once the realizations of the Brownian motion (together with the initial state) are specified.

Weak solutions. In many applications, however, the conditions of Theorem 11.2.3 do not hold. In this case, one cannot
always find a strong solution. However, in this case, one may be able to find a solution which satisfies the probabilistic
flow in the system so that the evolution of the probabilities are well-defined: Note, however that, this solution may no
longer be adapted to the filtration generated by the actual Brownian motion and the initial state; but may be adapted to
some other Brownian process defined on some probability space. Such a solution is called a weak solution or a martingale
solution. While such a definition has a physical interpretation limitation in the sense that the input-output relation does
not correspond to one where the noise is an input and the solution is the output, this concept is instrumental in studying
controlled stochastic differential equations as we will discuss later in the chapter and is appropriate if one is concerned
with expected behaviour of the solutions. This concept is also related to the solution to the Fokker-Planck equation that we
will discuss further in the chapter in Section 11.2.6. For weak solutions, it suffices to have b to be bounded and only σ to
satisfy the Lipschitz continuity and the growth conditions provided that σ(·)σT (·) has its eigenvalues uniformly bounded
from below (at least locally). We will discuss this further in the context of Girsanov’s measure transformation.

11.2.5 Some Properties of SDEs

Definition 11.2.6 A diffusion (also called Itô diffusion) is a stochastic process Xt(ω) satisfying a stochastic differential
equation of the form:

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s,Xs = x

where Bt is m-dimensional Brownian motion and b, σ satisfy the conditions of Theorem 11.2.3 so that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|.

Note that here b, σ only depend on x and not on t. Thus, the process here is time-homogenous.
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Theorem 11.2.4 Let Xt be a diffusion and f be bounded and (Borel) measurable. Then, for t, h ≥ 0:

Ex[f(Xt+h)|Ft](ω) = EXt(ω)[f(Xh)]

Theorem 11.2.5 (Strong Markov Property) Let f be bounded and Borel, and τ be a stopping time with respect to Ft.
Then, for h ≥ 0, conditioned on the event that τ <∞:

Ex[f(Xτ+h)|Fτ ](ω) = EXτ (ω)[f(Xh)]

Definition 11.2.7 Let Xt be a time-homogenous Itô diffusion in Rn. The infinitesimal generator A of Xt is defined by:

Af(x) = lim
t→0

Ex[f(Xt)]− f(x)

t
, x ∈ Rn,

whenever f is so that the limit is defined.

Lemma 11.2.2 Let Yt = Y xt be an Itô process in Rn of the form:

Y xt (ω) = x+

∫ t

0

u(s, ω) +

∫ t

0

v(s, ω)dBs(ω).

Let f ∈ C2
c (Rn), that is f is twice continuously differentiable and has compact support, and τ be a stopping time with

respect to Ft with Ex[τ ] <∞. Assume that u, v are bounded. Then,

E[f(Yτ )] = f(x) + Ex

[ ∫ τ

0

(∑
i

ui(s, ω)
∂f

∂xi
(Ys) +

1

2

∑
i,j

(vvT )ij(s, ω)
∂2f

∂xi∂xj
(Ys)

)
ds

]
.

This lemma, combined with Definition 11.2.7 gives us the following result:

Theorem 11.2.6 Let dXt = b(Xt)dt+ σ(Xt)dBt. If f ∈ C2
c (Rn), then,

Af(Xs) =

(∑
i

bi(x)
∂f

∂xi
(Xs) +

1

2

∑
i,j

(σσT )ij(s, ω)
∂2f

∂xi∂xj
(Xs)

)

In particular, if we have that Xt = Bt, then with b(x) = 0 we obtain

Af(Xs) =
1

2

∑
i

(σσT )ii(s, ω)
∂2f

∂(xi)2
f(Xs)

or more concisely, with ∆ denoting the Laplacian operator

A(f) =
1

2
∆f

(
=

1

2

∑
i

∂2f

∂(xi)2
f(x)

)
(11.8)

A very useful result follows.

Theorem 11.2.7 (Dynkin’s Formula) Let f ∈ C2
c (Rn) and τ be a stopping time with Ex[τ ] <∞. Then,

Ex[f(Xτ )] = f(x) + Ex[

∫ τ

0

Af(Xs)ds]

Remark 11.10. The conditions for Dynkin’s Formula can be generalized. As in Theorem 4.1.5, if the stopping time τ is
bounded by a fixed constant, the conditions on f can be relaxed. Furthermore if τ is the exit time from a bounded set, then
it suffices that the function is C2 (and does not necessarily have compact support).
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Remark 11.11. Consider a stochastic differential equation:dXt = b(Xt)dt + σ(Xt)dBt. A probability measure P on the
sample path space (or its stochastic realization Xt) is said to be a weak solution if under P

f(Xt)−
∫ t

0

Af(Xs)ds (11.9)

is a martingale with respect to Mt = σ(Xs, s ≤ t), for any C2 function f with bounded first and second order partial
derivatives. Every strong solution is a weak solution, but not every weak solution is a strong solution; every such P
admits a stochastic realization [171] but the stochastic realization may not be defined on the original probability space as
a measurable function of the original Brownian motion. For example, if Xt can be defined to be randomized, where the
randomization variables are independent noise processes, one could embed the noise terms into a larger filtration; this will
lead to a weak solution but not a strong solution since there is additional information required (that is not contained in the
original Brownian process).

11.2.6 Fokker-Planck equation

The discussion on the infinitesimal generator function (and Dynkin’s formula) suggests that one can compute the evolution
of the probability measure µt(·) = P (Xt ∈ ·), by considering for a sufficiently rich class of functions f ∈ D

E[f(Xt)] =

∫
µt(dx)f(x).

Note that continuous and bounded functions are measure determining (as discussed in the proof of Theorem 10.8, see
[40, p. 13] or [114, Theorem 3.4.5]) and since smooth signals are dense among such functions, we can take f to be
smooth. Suppose that we assume that µt admits a density function and this is denoted by the same letter. Furthermore, let
p(x, t) := µt(x). By taking D to be the space of smooth signals with compact support, which is a dense subset of the space
of square integrable functions on R, using the expectation of the infinitesimal generator function equation (11.9), writing

d

dt

∫
µt(dx)f(x) =

d

dt
E[f(Xt)] =

d

dt
E[

∫ t

0

Af(Xs)ds] =

∫
µt(dx)

(
df

dx
b(x) +

1

2

∂2f(x)

∂x2
σ2(x)

)
and applying integration by parts (twice for the term on the right), we obtain that for a process of the form

dXt = b(Xt)dt+ σ(Xt)dBt (11.10)

the following holds:

∂p(x, t)

∂t
= − ∂

∂x
(b(x)p(x, t)) +

1

2

∂2

∂x2
(σ2(x)p(x, t)) (11.11)

This is the celebrated Fokker-Planck equation. Notably, if there exists a stationary measure p, the time-independence on
the right hand side will lead to an ODE for this stationary measure.

The Fokker-Planck equation is a partial differential equation whose existence for a solution requires certain technical
conditions. As we discussed earlier, this is related to having a weak solution to a stochastic differential equation and in
fact they typically imply one another. Of course, the Fokker-Planck equation may admit a density as a solution, but it may
also admit a solution in a further weaker sense in that the evolution of the solution measure P (Xt ∈ ·) may not admit a
probability density function.

11.2.7 Rough Integration

We end this section with a brief reflection on the limitations of the integrations noted above. From the way we have
constructed the Itô integral is that the integral is constructed as an L2 limit of approximations. In particular, the integral
is not defined in a sample path sense (and typically only would allow for convergence in probability and thus almost



11.3 Controlled Stochastic Differential Equations and the Hamilton-Jacobi-Bellman Equation 247

sure convergence along a subsequence, though this does occur also in a sample path almost sure sense under additional
conditions on the regularity of the integrand; see e.g. [325] or [298, p. 91]), and it is not continuous with respect to the
driving noise. Rough paths theory allows for a pathwise theory of solutions to differential equations driven by irregular
signals, such as and including the Brownian motion. The fundamental insight of rough paths theory is that the issue of
defining solutions to differential equations driven by an irregular signal X = (X1, ..., Xd) can be reduced to defining the
iterated integrals

∫ t
s
(Xi(r)−Xi(s))dXj(r). More precisely, rough paths theory treats Hölder continuous driving signals

- or in the case of stochastic differential equations, stochastic processes that are almost surely Hölder. Recall the definition
of Hölder continuity: Define for α ∈ (0, 1] the space Cα([0, T ],Rd) of α-Hölder functions f : [0, T ] → Rd equipped with
the norm ∥f∥α := supt ̸=s

|f(t)−f(s)|
|t−s|α .

Now, if X is a signal that is α-Hölder continuous with α ∈ (1/3, 1/2] and F is a smooth function, then for a partition of
[0, t], P = {0 = t0 < ... < tn = t} we have that in the integral∫ t

0

F (X(r))dX(r) =

n∑
k=0

∫ tk+1

tk

F (X(r))dX(r)

=

n∑
k=0

∫ tk+1

tk

F (X(tk)) + F ′(X(tk))(X(r)−X(tk)) +O(|r − tk|2α)dX(r)

=

n∑
k=0

(
F (X(tk))(X(tk+1)−X(tk)) + F ′(X(tk))

∫ tk+1

tk

(X(r)−X(tk))dX(r)

+O(|tk+1 − tk|3α)
)
, (11.12)

as 3α > 1, the remainder term should go to 0. This reduces the problem of defining the integral
∫ t
0
F (X(r))dX(r) to

just defining
∫ tk+1

tk
(X(r)−X(tk))dX(r). We may take the right hand side as a definition of the left hand side, so long as

we define the iterated integral first. However, if X is irregular then the iterated integral does not exist “canonically” as a
Riemann-Stieltjes integral and therefore must be defined or postulated. This leads to a new construction, called the rough
integral. A rough path above a signal X is therefore a pair Xs,t = (Xs,t,Xs,t) where Xs,t is the increment of X and Xs,t
is a definition or postulation of the iterated integral

∫ t
s
(X(r) − X(s))dX(r) [?]. Then, one constructs the definition in a

sense that it is compatible with the usual integration notions. For example, if X ∈ C1 and
∫ t
s
(X(r)−X(s))dX(r) is the

Riemann-Stieltjes integral, Xs,t := (X(t) − X(s),
∫ t
s
(X(r) − X(s))dX(r)) is consistent with such a postulation. The

main utility of rough integration is that, by imposing conditions on the rough integration, solutions to equations of the form
[ [?], Theorem 4.10]

dY 1 = b1(Y
1)dt+ σ(Y 1)dX1,

is continuous in the driving noise. It should be noted that the conditions impose that the rough integral definition itself is
continuous in the driving noise.

11.3 Controlled Stochastic Differential Equations and the Hamilton-Jacobi-Bellman
Equation

11.3.1 Revisiting the deterministic optimal control problem in continuous-time

Consider
dx

dt
= f(x, u), x(0) = x

and suppose that the goal is to minimize

J(γ) =

∫ T

t0

c(s, x(s), u(s))ds+ P (x(T ))
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over all feedback control policies γ, where we take c to be continuous and bounded. Via Bellman’s principle, as in
Theorem 5.1.3, we define value functions:

V (t, x) = inf
γ

∫ T

t

c(s, x(s), u(s))ds+ P (x(T ))

with the terminal condition
V (T, x) = P (x(T ))

Remark 11.12. For the existence of an optimal policy, very mild conditions can be arrived at via the theory of Young
measures: See Section 11.5.1 for a detailed analysis leading to general existence conditions.

In the following, we first present an informal derivation for an optimality equation, but this analysis will be justified
in Theorem 11.3.1. Applying Bellman’s principle from the theory studied earlier, for a policy to be optimal it looks
reasonable to arrive at the following (which will be justified shortly):

V (t, x) = inf
γ

∫ t+h

t

c(s, x(s), u(s))ds+ V (t+ h, x(t+ h)) (11.13)

Now, take h small, which will soon be taken to zero: we have that x(t + h) = x(t) + f(x(t), u(t))h + o(h), where
o(h)/h→ 0 as h→ 0. If we assume that V is continuously differentiable in its entries, we then have

V (t+ h, x(t+ h)) = V (t, x(t)) + Vt(x, t)h+ (Vx(t, x) · f(x, u))h+ o(h).

If we also have that,
∫ t+h
t

c(s, x(s), u(s))ds = c(t, x(t), u(t))h+ o(h), then (11.13) would write as

V (t, x) = inf
γ

{
c(t, x(t), u(t))h+ V (t, x) + Vt(t, x)h+ (Vx(t, x) · f(x, u))h+ o(h)

}
and

0 = inf
γ

{
c(t, x(t), u(t))h+ Vt(t, x)h+ (Vx(t, x) · f(x, u))h+ o(h)

}
Dividing by zero the above simplifies as only the last term depends on h, and then taking the limit as h→ 0, assuming
that o(h)/h→ 0 uniformly for all control policies, we arrive at

0 = inf
γ

{
c(t, x(t), u(t)) + Vt(t, x) + (Vx(t, x) · f(x, u))

}
In a more standard form, this leads to, provided the minimum exists

−Vt(t, x) = min
u(t)

(
c(t, x, u(t)) + (Vx(t, x) · f(x, u(t)))

)
(11.14)

This is the celebrated HJB (Hamilton-Jacobi-Bellman) equation. This defines a partial differential equation with bound-
ary condition V (T, x) = P (x(T )).

The above analysis has some admitted gaps: we imposed the value functions to be so that local linearized approxi-
mations could be made and some uniformity assumptions were not even justified. Nonetheless, as is often the case
in applied mathematics, heuristic reasoning may lead to important equations whose validity however then needs to be
rigorously justified. In particular, the above leads to an important equation which is a surprisingly strong result, as
established in the following verification theorem:

Theorem 11.3.1 [Optimality of HJB Solutions] Let V (t, x) be C1 (i.e., continuously differentiable) in both t and x,
and solve the HJB equation (11.14). Suppose further that the policy γ satisfies (11.14) with u(t) = γ(t). Then, γ is
optimal.
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Proof. Let V (t, x) be C1 in both entries. Consider any admissible policy γ for deterministic control. Let the HJB
equation hold. Then, for any control action:

∂V

∂t
(t, x) + min

u

(
∂V

∂x
(t, x) · f(x, u) + c(t, x, u)

)
= 0, V (T, x) = P (xT ),

and thus, for any action u:

∂V

∂t
(t, x) +

(
∂V

∂x
(t, x) · f(x, u) + c(t, x, u)

)
≥ 0, V (T, x) = P (xT ),

and thus, for any policy γ (which is open-loop without any loss in optimality for deterministic systems)

∂V

∂t
(t, x) +

(
∂V

∂x
(t, x) · f(x, γ(t)) + c(t, x, γ(t))

)
≥ 0.

Now, consider V (t, xγt ) where γ denotes the explicit dependence on the policy. We have that

dV (t, xγt )

dt
=
∂V

∂t
(t, xγt ) +

∂V

∂x
(t, x) · f(x, u)|x=xγ

t ,u=γ(t)

By the above, we have then

−(
∂V (t, xγt )

∂t
+
∂V

∂x
(t, x) · f(x, u)|x=xγ

t ,u=γ(t)
) ≤ c(x, γ(t))

and

−dV (t, xγt )

dt
≤ c(x, γ(t)) (11.15)

Taking the integral and noting that this holds for any γ, we arrive at

V (0, x0) ≤
∫ T

0

c(xt, γ(t))dt+ P (xγT )

Note that the initial value is independent of control and hence V (0, x0) is a lower bound for any control. Equality holds
if the HJB is satisfied by some admissible control policy, which would then be optimal. ⋄

Remark 11.13. For some generalizations on HJB and optimal control:

(i) One can relax the regularity conditions on V so that V may not be differentiable everywhere (leading to solution
concepts such as viscosity solutions). An intuitive way to appreciate viscosity solutions is to consider the verification
theorem above and replace V at a neighborhood of a point x where V is not differentiable with a continuously
differential function ϕ which satisfies two properties: With V (t, x) = ϕ(t, x), if V (t, y) − ϕ(t, y) has its local
minimum at (t, x), then a version of (11.14) holds with

−ϕt(t, x) ≤ min
u(t)

(
c(t, x, u(t)) + (ϕx(t, x) · f(x, u(t)))

)
,

which then leads to ϕ(t, x)− ϕ(t, y) ≥ V (t, x)− V (t, y) in a neighborhood of (t, x). Noting (ϕx(t, x) · f(x, u(t))
as the partial derivative of ϕ(t, ·), and moving it to the left hand side, we arrive at (11.15) and this leads to the
lower bound property of v. For the other direction, if V (t, y)−ϕ(t, y) has its local maximum at (t, x), we have that
ϕ(t, x)− ϕ(t, y) ≤ V (t, x)− V (t, y) in a neighborhood of (t, x) and in the equation

−ϕt(t, x) ≥ min
u(t)

(
c(t, x, u(t)) + (ϕx(t, x) · f(x, u(t)))

)
,
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fix the control policy attaining the minimum, and then arrive that

V (0, x0) ≥
∫ T

0

c(xt, γ(t))dt+ P (xγT )

Note the parallels in the argumentation, in terms of lower bounds and the attainability, with that in Theorem 5.5.3
in the order of the inequalities, as well as with the ACOI in Theorem 7.1.3.

(ii) Instead of sufficiency, one can arrive at necessary conditions via what is known as the maximum principle via
variational local optimality conditions. We refer the reader to [205] for a rather comprehensive and accessible
discussion and [125] for the stochastic setup.

11.3.2 The stochastic case and classes of admissible policies

Suppose now that we have a controlled system:

dXt = b(t,Xt, ut)dt+ σ(t,Xt)dBt,

where ut ∈ U is the control action variable. We assume that ut is measurable at least on Ft (but we can restrict this
further so that it is measurable on a strictly smaller sigma field). Thus, the differential equation is well defined as an Itô
integral. We will assume that a solution exists.

Often, one has a time-homogenous diffusion model, which is more suitable for infinite horizon analysis.

dXt = b(Xt, Ut)dt+ σ(Xt)dBt (11.16)

Control policies and existence of solutions

As we discussed extensively throughout the notes, the selection of the control actions need to be measurable with
respect to some information at the controller and this dependency leads to fundamental differences on the behaviour of
solutions and optimization methods.

(i) If for every t, ut is measurable on the filtration generated by Xt, then the policy is called admissible.

(ii) If the control at time t is only a function of Xt and t, then the policy is called a Markov policy. If it only depends on
Xt, then it is stationary. Randomization also is possible, but this requires a more careful treatment when compared
with the discrete-time counterpart [13].

(iii)One often considers adapted open-loop policies; these are policies which are measurable with respect to σ(X0, (Bs, s ≤
t) at time t.

(iv)One further relaxes these with non-anticipative policies; these are policies which satisfy the condition that
X0, (Us, Bs) is independent of Bt −Bs for every t > 0.

The above entail subtle distinctions on whether they lead to strong solutions: To ensure existence and uniqueness of
strong solutions, consider the following assumptions on the drift b and the diffusion matrix σ .

(A1) Lipschitz continuity: The functions σ, b are Lipschitz continuous in x (uniformly with respect to the other variables
for b). In other words, for some constant C > 0

|b(x, ζ)− b(y, ζ)|2 + ∥σ(x)− sigma(y)∥2 ≤ C|x− y|2

for all x, y and ζ ∈ U, where ∥∥is an appropriate metric on matrices such as ∥σ(x)∥ =
√

Traceσ(x)σT (x).
Furthermore, b is jointly continuous in (x, ζ).
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(A2) Affine growth condition: b and sigma satisfy a global growth condition of the form

sup
ζ∈U

|⟨b(x, ζ), x⟩|+ ∥σ(x)∥2 ≤ C0(1 + |x|2) ∀x

for some constant C0 > 0.

Recall that in Theorem 11.2.3 we had noted that for a control-free stochastic differential equation, if b and σ satisfy
Lipschitz regularity and growth properties, then a strong solution exists. However, if we only restrict that the control
policy is measurable, with no additional assumptions, it is not guaranteed that a strong solution for Xt would exist.

The above global Lipschitz constant C can be relaxed to a local one, that is one may have for all R > 0,
|b(x, ζ)− b(y, ζ)|2 + ∥σ(x)− sigma(y)∥2 ≤ CR|x− y|2 for all ∥x∥, ∥y, ∥ ≤ R; here one considers solutions up
to an exit time, establish a uniqueness result and take take the exit set boundary to infinity.

If b and σ satisfy similar regularity conditions, as in Theorem 11.2.3 with uniformity over control actions, and the
control policies are non-anticipative, then the existence of strong solutions under the hypotheses above follows from a
similar argument [13, Theorem 2.2.4] (by viewing the control as an exogenous process).

Under the hypotheses (A1)–(A2), for any admissible control (11.16) has a unique weak solution [13, Theorem 2.2.11],
and under any stationary Markov strategy there is a unique strong solution which is a strong Feller (therefore strong
Markov) process [13, Theorem 2.2.12].

If feedback policies (policies which are σ(X[0,t])-measurable) are considered one can apply measure transformation
(via Girsanov’s method), establish a strong solution for the control-free term dXt = σ(Xt)dBt, and then construct a
solution under the original space; which then leads to a weak solution for the original space.

Finally, if σ were allowed to also depend on control in general, existence in this setup is a non-trivial problem, since
measure change arguments cannot be directly applied when the control is present in the diffusion term. However, if
non-anticipative policies are considered, then under strict Lipschitz and growth conditions, a strong solution exists. We
refer the reader to [13, Section 2] as well as [31, 91, 92] for a detailed analysis and literature review. Notably, if we
replace σ(x) by σ(x, ζ), if σ(·, v(·)) is Lipschitz continuous for stationary v then there is a unique strong solution. But
in general stationary policies are just measurable functions, and existence of suitable strong solutions is more delicate
(see, [13, Remarks 2.3.2]).

In the following, let us first restrict the policies to be Markov. We will see that under a verification theorem, this is
without loss, under certain conditions. The reader is encouraged to take a look at the verification theorems for discrete-
time problems: These are Theorem 5.1.3 for finite horizon problems, Theorem 5.5.3 for discounted cost problems,
and Theorem 7.1.1 for average cost problems. One can see that the essential difference is to express the expectations
through Dynkin’s formula and the differential generators.

Finite Horizon Cost Criterion

Suppose that given a control policy, the goal is to minimize

E[

∫ T

0

c(s,Xs, us)ds+ cT (XT )],

where cT is some terminal cost function.

As in Chapter 5, if a policy is optimal, we will arrive at the following equation for every possible state:

V (r,Xr) = min
γ
E[

∫ t

r

c(s,Xs, us)ds+ V (t,Xt)|Xr].

In the following, following the same flow of ideas as in the deterministic case in Section 11.3.1, we first provide a
rather informal derivation of the optimality equation, but the formal verification result will be precise. We assume that
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V (s, x) is C2. Then,

0 = min
u

(
E[

∫ t

r

c(s,Xs, us)ds+ V (t,Xt)|Xr]− V (r,Xr)

)
In particular,

0 = lim
h→0

min
u

(
E[
∫ r+h
r

c(s,Xs, us)ds+ V (r + h,Xr+h)|Xr]− V (r,Xr)

h

)
Now, if V is so that it is in the domain of the generator for every control policy, with

Lut V (t, x) =
∑
i

bi(t, x, u)
∂V

∂xi
(t, x) +

1

2

∑
i,j

σi(t, x)σj(t, x)
∂2V

∂xi∂xj
(t, x)

applying the mean-value theorem, assuming it would hold for now, we arrive at

min
u

(
c(s, x, u) + LusV (s, x) +

∂V

∂s
(s, x)

)
= 0 (11.17)

Thus, if a policy is optimal, it needs to satisfy the above property provided that V satisfies the necessary regularity
conditions under the considered set of policies to validate the operations above and indeed the above would also be
sufficient for optimality by the analysis to follow. However, as in the deterministic case, the analysis above is informal
and we have not presented precise conditions under which the above would hold. As we have seen before in the earlier
chapters, verification theorems show that a policy that satisfies the verification is optimal over all admissible policies:

Theorem 11.3.2 (Verification Theorem) Consider: dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt. Suppose that V is C2 in
x and C1 in t is so that:

∂V

∂t
(t, x) + min

u∈U

(
Lut V (t, x) + c(t, x, u)

)
= 0, V (T, x) = cT (x), (11.18)

Then, an admissible control policy which achieves the minimum for every (t, x) is optimal.

Proof.

The equation ∂V
∂t (t, x) + minu{Lut V (t, x) + c(t, x, u)} = 0 implies that for any admissible control realization:

∂

∂t
V (t, x) + Lut V (t, x) + c(t, x, u) ≥ 0, (11.19)

and as in the deterministic case (in Theorem 11.3.1), for any admissible control policy γ

Eγ [

∫ T

0

−∂
∂s

V (s,Xu
s )− LusV (s,Xu

s )] ≤ Eγ [

∫ T

0

c(s,Xu
s , us)].

Using Itô’s rule,

E[V (0, X0)] = E[

∫ T

0

(
−∂V
∂s

(s,Xγ
s )− LγsV (s,Xγ

s ))ds] + E[V (T,Xγ
T )],

and thus, we obtain that for any admissible control

E[V (0, X0)] ≤ E[

∫ T

0

(c(s,Xγ
s , us)ds+ cT (X

γ
T )].

On the other hand, a policy γ∗ which satisfies the equality in (11.18), leads to an equality in the above and optimality. ⋄

Example 11.14. [Optimal portfolio selection] We consider a continuous-time version of a problem considered in Exer-
cise 2.9.2: A common example in finance applications is the portfolio selection problem where a controller (investor)
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would like to optimally allocate his wealth between a stochastic stock market and a market with a guaranteed income
(see [298]): Consider a stock with an average return µ > 0 and volatility σ > 0 and a bank account with interest rate
r > 0. These are modeled by:

dSt = µStdt+ σStdBt, S0 = 1

dRt = rRtdt, R0 = 1

Suppose that the investor can only use his own money to invest and let ut ∈ [0, 1] denote the proportion of the money
that he invests in the stock. This implies that at any given time, his wealth dynamics is given by:

dXt = µuXtdt+ σuXtdWt + r(1− ut)Xtdt,

or dXt =

(
µu + r(1 − u)

)
Xtdt + σuXtdBt. Suppose that the goal is to maximize E[log(XT )] for a fixed time T

(or minimize −E[log(XT )]). In this case, the Bellman equation writes as:

0 =
∂V (t, x)

∂t
+min

u

(
σ2u2x2

2

∂2V (t, x)

∂x2
+ (µu+ r(1− u))x

∂V (t, x)

∂x

)
,

with V (T, x) = − log(x). With a guess of the value function of the form V (t, x) = − log(x) + bt, one obtains an
ordinary differential equation for bt with terminal condition bT = 0. It follows that, if µ−rσ2 ∈ [0, 1] the optimal control
is ut(x) = µ−r

σ2 , leading to V (t, x) = − log(xt)− C(T − t)), for some constant C.

11.3.3 Discounted Infinite Horizon Cost Criterion

Suppose that given a control policy, the goal is to minimize

E[

∫
0

e−λsc(Xs, us)ds].

In this section, we will consider a time-homogenous setup

dXt = b(Xt, ut)dt+ σ(Xt, ut)dBt, (11.20)

and let us define

Lug(x) =
∑
i

bi(x, u)
∂g

∂xi
(x) +

1

2

∑
i,j

σi(x, u)σj(x, u)
∂2g

∂xi∂xj
(x) (11.21)

In this case, we have the following result:

Theorem 11.3.3 (Verification Theorem) Suppose that V is C2(x) and limt→∞ e−λtEγx [V (Xu
t )] = 0 under any ad-

missible policy γ and x. Let

min
u∈U

(
LuV (x)− λV (x) + c(x, u)

)
= 0. (11.22)

Then, an admissible control policy which achieves the minimum above for every x is optimal.

Proof. For any admissible control policy, using Itô’s rule for V (Xt)e
−λt one obtains:

E[V (X0)]− e−λtE[V (Xu
t )] = E[

∫ t

0

e−λs(−LuV (Xs) + λV (Xs))ds]

Noting that for any control realization
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−LuV (x) + λV (x) ≤ c(x, u),

and proceeding as before in the proof of Theorem 11.3.2 leads to the desired result. ⋄

The above is a sufficiency analysis. One could say more with regard to necessity as well [13, Theorem 3.5.6] via an
analysis based on the theory of partial differential equations: In addition to mild growth conditions [13, Section 2.2],
if (i) c : Rd × U → R+ is continuous and locally Lipschitz in x uniform in u, and (ii) if σ(x), not depending on
u, is locally uniformly elliptic, i.e., σ(x)σT (x) has its eigenvalues locally bounded from below, then (11.22) admits
a unique solution, which is bounded, and which serves as the solution to the optimal cost. Thus, one has a complete
characterization of optimality under additional regularity conditions. These also carry over to the average-cost setup
presented in the following.

11.3.4 Average-Cost Infinite Horizon Cost Criterion

Suppose that given a control policy, the goal is to minimize

lim sup
T→∞

1

T
E[

∫ T

0

c(Xs, us)ds].

Once again here we consider a time-homogenous setup with the controlled equation (11.20) and generator (11.21).

Theorem 11.3.4 (Verification Theorem) Suppose that V is C2(x) and η ∈ R so that

min
u∈U

(
LuV (x)− η + c(x, u)

)
= 0, (11.23)

and

lim sup
T→∞

E[V (X0)− V (Xu
T )]

T
= 0,

under every admissible policy. Then, an admissible control policy which achieves the minimum for every x is optimal.

Proof. For any admissible control policy, using Itô’s rule for V (Xt) one obtains:

E[V (X0)− V (Xu
T )]

T
+ η = E[

1

T

∫ T

0

(η − LusV (Xu
S))ds]

Proceeding as before in Theorem 11.3.2 through the use of the Bellman equation leads to the desired result. ⋄

The convex analytic method

The analysis we made in Chapter 5 and 7 applies to the diffusion setting as well. In particular, a discounted HJB
equation plays the role of the discounted cost optimality equation. For the average cost problems, one can apply either
a vanishing discount approach or an convex-analytic approach. We refer the reader to [13], [59, 64] and [281].

11.3.5 Control up to an Exit Time

In some applications, one studies cost criteria of the type:

E[

∫ τ

0

c(Xs, us)ds+ h(Xτ )],
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where τ = inf{t ≥ 0 : Xt /∈ S} for some S ∈ Rn which is a set with a smooth boundary ∂(S) and h is a terminal cost
function.

We again consider the time-homogenous setup with controlled equation (11.20) and generator (11.21).

Theorem 11.3.5 (Verification Theorem) Suppose that V is C2(x) and η ∈ R so that

min
u∈U

(
LuV (x) + c(x, u)

)
= 0, x ∈ S; V (x) = h(x) on ∂(S). (11.24)

Then, an admissible control policy which achieves the minimum for every x is optimal.

Remark 11.15. All the equations stated in the verification theorems noted above demonstrate the strict connections with
the theory of partial differential equations. Indeed, existence and optimality results can be utilized to obtain direct and
very strong results, see [13, Chapter 3]. The regularity conditions on the value function can also be relaxed.

11.4 Partially Observed Case, Girsanov’s Theorem and Separated Policies

Consider a partially observed setup with

Yt =

∫
h(Xs)ds+Bt (11.25)

for some independent Brownian process Bt.

Such a setup leads to a number of technical difficulties. The analysis (especially for the case with measurements that
are not linear and Gaussian) can be quite subtle due to the fact that the control policy (only restricted to be measurable
in general) may lead to issues on the existence of strong solutions for a given stochastic differential equation since
the control policy may couple the state dynamics with the past in an arbitrarily complicated, though measurable, way
and hence violating the existence conditions for strong solutions to stochastic differential equations. Even for linear
models, the analysis requires some careful reflection: Lindquist [206] provides a detailed account on this aspect and
provides a general separation theorem provided that the control laws are among those which lead to the existence of a
solution to the controlled stochastic differential system, generalizing e.g. the analysis in Kushner where only control
laws of the Lipschitz type were considered by Kushner [193] (Lipschitz in the conditional estimate) and Wonham [320]
(viewed as a map from the normed linear space of continuous functions y[0,t] to controls) to ensure the existence of
strong solutions.

To avoid such technical issues on strong solutions, relaxed solution concepts were introduced and studied in the liter-
ature based on measure transformation due to Girsanov [31, 91, 92] (see Exercise 11.10.2 for a heuristic derivation).
Now, consider the measurement model given in (11.25).

For a moment, suppose that h ≡ 0, that is Yt is just an independent process. Suppose also that there is no control in
the diffusion process dXt = b(Xt)dt + σ(Xt)dB

′
t. In this case, it is evident that the measurement process and the

noise process are independent and let us call this probability measure on the processes as Q := PX ×QY . In this case,
consider for any measurable bounded f on the paths of X[0,t] and Y[0,t] as:

EQ[f(X[0,t], Y[0,t])|Y[0,t]] =
∫
f(x[0,t], Y[0,t])PX(dx[0,t]),

since the measurement processes Yt gives no information on the state processXt. Thus, the computation is quite simple
in this case.

Now, consider our original process given by (11.25) where h is non-zero. Let P be the joint probability measure on the
state and the measurement processes. Since P ≪ Q, we have that
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f(x[0,t], y[0,t])P(dx[0,t], dy[0,t]) =

∫
G(x[0,t], y[0,t])f(x[0,t], y[0,t])Q(dx[0,t], dy[0,t])

for some Q-integrable function G, which is the Radon-Nikodym derivative of P with respect to Q. It turns out that
under mild conditions, we have that

Gt := G(x[0,t], y[0,t]) =
dP

dQ
= e

∫ t

0
h(xs)dys− 1

2

∫ t

0
|h(xs)|2ds

with
∫ t
0
h(xs)dys being a stochastic integral, this time with respect to the random measure/process Ys. This relation

allows us to view the partially observed problem as one with independent measurements, with the dependence pushed
to the Radon-Nikodym derivative, not unlike what was done in Section 10.4.2 (see also Exercise 11.10.2).

Therefore,

EP[f(X[0,t], Y[0,t])|y[0,t]] =

∫
x[0,t],y[0,t]

f(x[0,t], y[0,t])G(x[0,t], y[0,t])Q(dx[0,t], y[0,t])∫
x[0,t]

G(x[0,t], y[0,t])Q(dx[0,t], y[0,t])
(11.26)

This equation is known as the (Kushner-)Kallianpur-Striebel formula. If we focus on the numerator and focus on Xt

only, this is known as the unnormalized filter [191].

11.4.1 Non-linear filtering in continuous time and Zakai’s equation

We will now study the evolution of the numerator above where we restrict f to be a function of the current state only. In
particular, we will study the evolution of

∫
µ
y[0,t]
t (dx)f(x) = EP[f(Xt), y[0,t]], where the notation [·, y[0,t]] means that

we restrict the measurements y[0,t] to be fixed (but we are not computing the conditional measure), as measurements
are also collected. Compare this with the Fokker-Planck equation (11.11) in which case measurements do not exist.

Now, under Q, we have that the X and the Y process are independent. Note now that we can write

EP[f(Xt), y[0,t]] = EQ[f(Xt)Gt],

whereGt is as defined earlier in this section. This relation will make the analysis below relatively immediate, following
the analysis of the Fokker-Planck equation (11.11). We will follow a similar reasoning, except now we will also consider
the realizations of the measurements by considering Gt as a variable which adds a time dependence. We have then:

d

dt

∫
µ
y[0,t]
t (dx)f(x) =

d

dt
EP[f(Xt), y[0,t]] =

d

dt
EQ[f(Xt)Gt]

and thus,
d

dt

∫
µ
y[0,t]
t (dx)f(x) =

∫
µQ
t (dx)

(
df

dx
b(x)Gt +

1

2

∂2f(x)

∂x2
σ2(x)Gt +

dGt
dt

f

)
As before, applying integration by parts (twice for the term in the middle), and then computing via Itô’s formula the
derivative of dGt

dt = Gt(hdY ) (this can be obtained by writing Gt = eZt where Zt solves dZt = − 1
2 |h(xt)|

2dt +
h(xt)dBt), and then writing

µ
y[0,t]
t (dx) = µQ

t (dx)Gt

we obtain that for a process of the form

dXt = b(Xt)dt+ σ(Xt)dBt (11.27)

with measurements given in 11.25), the non-normalized filter density (provided a smooth one exists) py(x, t) evolves
as:
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dpy(x, t) =

(
− ∂

∂x
(b(x)py(x, t)) +

1

2

∂2

∂x2
(σ2(x)py(x, t))

)
dt+ py(x, t)hdy (11.28)

If one normalizes the above, this time by conditioning on y (that is, by dividing the above with the expectation over
the random measurements by integrating over all state values under the measure P), one arrives at another important
equation, known as the Kushner-Stratonovich equation. In particular, for a given function f

E[f(Xt)|Y[0,t] = y[0,t]] =

∫
py(x, t)f(x)dx∫
py(x, t)dx

E PP

11.5 Existence of Optimal Policies under Full, Partial and Decentralized Information

11.5.1 Relaxed and Wide-Sense Admissible Policies in Fully and Partially Observed Models

A related existence discussion in deterministic continuous-time

We first revisit a version of the deterministic optimal control problem considered in Section 11.3.1. It is instructive to
discuss here various control topologies that are already well-known in classical control theory (when there is a single
controller who has access to the state variable).

In the following, we build on [257]. In deterministic nonlinear, geometric, and continuous-time control, properties on
stabilizability, controllability, and reachability are drastically impacted by the restrictions on the classes of allowed con-
trols (e.g., continuous, Lipschitz, finitely differentiable, or smooth control functions in the state or time when control
is open-loop [69, 170, 253, 277]) and naturally the control topology induced is dictated by the class of admissible con-
trols. For optimal control, to allow for continuity/compactness arguments, apriori imposing compactness over spaces
of measurable functions would be an artificial restriction, and the use of powerful theorems such as the Arzela-Ascoli
theorem which necessarily entail (usually very restrictive and suboptimal) conditions on continuity properties of the
considered policies.

In deterministic optimal control theory, relaxed controls [308, 326] allow for the mathematical analysis on continuity-
compactness to be applied with no artificial restrictions on the classes of control policies considered. A particularly
consequential approach is via the study of topologies on Young measures defined by randomized/relaxed controls
[215,326], [72, Section 2.1], [308, p. 254], [211] where one views the topology on control policies to be identified with
the weak convergence topology of a measure defined on a product space with a fixed marginal at an input/state space
(typically the Lebesgue measure in optimal deterministic control).

Let us consider an open-loop controller, where the control is only a function of the time variable. We let ν(dt, du) be
a measure on [0, T ] × U where the first marginal λ(dt) is the normalized Lebesge measure on time interval [0, T ] and
let ν(du|t) = 1{γ(t)∈du} be the conditional measure induced by deterministic open loop control. So, any deterministic
open-loop control is embedded via:

ν(dt, du) = λ(dt) 1{γ(t)∈du}.

If allow for randomized policies, we obtain the set Pλ([0, T ] × U) of all probability measures with fixed marginal
on [0, T ]. This set is weakly closed, whose extreme points are those induced by deterministic policies. Thus, any
deterministic optimal control problem, which can be written in an integral form and have lower semi-continuous cost
functions in actions, will have an optimal solution, which will then be deterministic as these form the extreme points
of randomized controls. It can also in fact be shown that such policies are dense in the space of randomized policies,
in addition to these policies forming the extreme points in the set of randomized policies (see e.g., [30, Proposition
2.2] [197], [225, 19, Theorem 3], but also many texts in optimal stochastic control where denseness of deterministic
controls have been established inside the set of relaxed controls [52]). We refer the reader to [211] for further discussion.
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The following example builds on these, with somewhat different arguments. Let X = R,U = [0, 1], and let f : X×U →
[0, 1] and c : X×U → [0, 1] be measurable functions continuous in the control action variable. Consider the following
optimal control problem:

inf
γ:X→U
ut=γ(xt)

∫ 1

0

c(xt, ut)λ(dt) (11.29)

subject to

dx

dt
= f(xt, ut) (11.30)

The natural space to consider is the set of all control functions which depends on the current state, where the only
restriction is measurability. However, allowing for measurability only does not facilitate continuity/compactness argu-
ments since, as noted above, imposing compactness on a space of functions is an unnecessarily restrictive condition.
Accordingly, one often cites appropriate but tedious measurable selection theorems building on optimality equations
through dynamic programming.

On the other hand, every deterministic function of state can be expressed as a deterministic function of time, and so, be
considered open-loop. Accordingly, we consider open loop controls and those which are relaxed. Let Pλ([0, T ]×U) be
the set of relaxed open loop policies (known as Young measures). Now consider the space C([0, 1];X) × Pλ([0, T ] ×
U), where C([0, 1];X) is the space of continuous functions from [0, 1] to X. We endow this space with the product
topology with the first component being under the supremum norm and the second under Prohorov metric (or any weak
convergence inducing metric). Note now that the cost (11.38) is continuous on C([0, 1];X) × Pλ([0, T ] × U). Note
that since f is uniformly bounded, we have that the set S of all admissible sample paths of the state x : [0, 1] → X is
equicontinuous, and so, by the Arzela-Ascoli theorem, S is relatively compact in C([0, 1];X). Accordingly, our space
of interest S × Pλ([0, T ]× U) is a relatively compact subset of C([0, 1];X)× Pλ([0, T ]× U).

Define now

H =

{
(x,m) ∈ C([0, 1];X)× Pλ([0, T ]× U) : xt −

∫ t

0

f(xs, u)ms(du)λ(ds) = 0

}
, (11.31)

where ms(du) = m(du|s). This set is closed under the topology defined on C([0, 1];X) × Pλ([0, T ] × U) and is a
subset of C([0, 1];X)×Pλ([0, T ]×U). Hence, H is compact. Now, the problem then is to find an optimal (x,m) ∈ H
which minimizes (11.38), reformulated as:

inf
(x,m)∈H

∫ 1

0

c(xt, u)m(dt, du)

This is continuous in (x,m) by an application of the generalized weak convergence theorem under continuous conver-
gence [273, Theorem 3.5] or [199, Theorem 3.5]. Therefore, there exists an optimal solution to the problem.

The stochastic case

In this section, we will revisit the concept of relaxed control policies for classical stochastic control problems, and
arrive at existence results. See [244] for a comprehensive review.

Let us review the wide sense admissible policies introduced by Fleming and Pardoux [126] and prominently used to
establish the existence of optimal solutions for partially observed stochastic control problems. Borkar [56, 58, 60] (see
also [61]) has utilized these policies for a coupling/simulation method to arrive at optimality results for average cost
partially observed stochastic control problems.

Consider a continuous-time Markov decision process {xt} on an Euclidean space RN , controlled by a control process
{ut} taking values in a convex and compact Borel action space U ⊂ RL, and with an associated observation process
{yt} taking values in RM , where 0 ≤ t ≤ T . The evolution of {xt, yt} is given by stochastic differential equations
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dxt = b(xt, yt, ut)dt+ σ(xt, yt)dWt, (11.32)
dyt = h(xt)dt+ dBt. (11.33)

Here, W and B are independent standard Wiener processes with values in RD and RM , respectively (hence, σ is a
N ×D-matrix). The objective is to minimize the following cost function

E

[ ∫ T

0

F (xt, ut)dt+G(xT )

]
,

where F : RN × U → [0,∞) and G : RN → [0,∞). In the literature, it is customary to require that control
process {ut} be adapted to the filtration generated by the observation process {yt}; that is, for each t ∈ [0, T ], ut is
σ (ys, 0 ≤ s ≤ t)-measurable. We will call such policies (strict-sense or precise) admissible policies. In [126], Fleming
and Pardoux introduced another class of policies which they named to be wide-sense admissible policies. Using this
relaxed class of policies, they study the existence of optimal policies to the above problem.

The idea is to first apply Girsanov’s transformation so that the measurements form an independent Wiener process and
{us, 0 ≤ s ≤ t} is independent of the increment yr − yt for all t ≤ r ≤ T and {Wt, t ∈ [0, T ]} as well as x0. The
latter condition states that actions up to time t is independent of the observations after time t given past observations
and actions. In other words, instead of saying that actions should be dependent on current and past observations, this
condition states that actions should be independent of future observations given past observations and actions. Note
that this policy is well-defined also for the original problem (and contains feedback policies as a special case.)

Given the above, (11.31) is now replaced with (for all sufficiently regular f )

H =

{
(η, ζ) ∈ P(C([0, 1];X))× P(Pλ([0, T ]× U)) :

Ex

[
f(Xt)− f(X0)−

∫ t

0

Auf(Xs)ms(du)λ(ds)

]
= 0

}
, (11.34)

where ms(du) = m(du|s). One can show that this set is closed under the topology defined on P(C([0, 1];X)) ×
P(Pλ([0, T ]×U)). One can also establish conditions (see e.g., [190, Theorem 4.4]) for compactness for this set under
the weak topology. Then, the problem is to find an optimal (η,m) ∈ H which minimizes (11.38), reformulated as:

E[ inf
(x,m)∈H

∫ 1

0

c(xt, u) η(dx[0,1])m(dt, du)]

From this, one can, as in the deterministic case, arrive at general conditions for the existence of an optimal solution.

Remark 11.16. The utility of this approach was already observed in Section 10.8 (see Remark 10.17). In particular, if
one makes the measurements independent, so that the information structure is first static, and then makes the infor-
mation structure classical by considering the actions at time t measurable on the filtration generated by the past noise
processes and actions up to time t; Theorem 10.16, building on [332, Theorem 5.6], can be adapted to show that such a
set of measurement-action measures (with fixed marginal on the measurements) that satisfy conditional independence
u[0,t] ↔ y[0,t] ↔ ys − yt; (x0,W[0, T ]) is weakly closed. Furthermore, the value is continuous in the joint measure
on {xs; (u, y)s, s ∈ [0, T ]} and this set of measures is tight. These lead to the compactness-continuity conditions and
accordingly an existence result for optimal policies follows. Furthermore, by showing that the set of {(u, y)s, s ≥ 0}
measures which have quantized support in the measurement variable are dense, one can show also that piece-wise
constant control policies are nearly optimal. This allows one to approximate a continuous-time process with a (sam-
pled) discrete-time process and the machinery developed earlier in the lecture notes are applicable. This approach is
the essence of Kushner’s method [192, p. 278] [190], though stated somewhat differently. This approximation result by
discrete-time models also applies for fully-observed models with a similar argument (see Exercise 11.10.2(b)).

Remark 11.17. It may be important to note that Bismut [44] arrived at further existence results, through an approach
which avoids separation (and the construction of a belief-MDP), in discrete-time a similar approach is given in Section
10.8.1.
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Revisiting the Discrete-time Case

Inspired by the work of Fleming and Pardoux [126], Borkar introduced wide-sense control policies to study discrete-
time partially-observed finite state-observation Markov decision processes with average cost criterion (see [56, 58, 60,
61]). We recognize also that Borkar achieves what is in essence equivalent to Witsenhausen’s static reduction reviewed
earlier in Section 10.4.2. For simplicity, we only consider here the case where state and observation spaces are finite.
We consider a discrete-time Markov decision process {xn} on a finite state space X, controlled by a control process
{un} taking values in a compact Borel action space U, and with an associated observation process {yn} taking values
in a finite observation space Y, where n = 0, 1, 2, . . .. The evolution of {xn, yn} is given by

P
(
xn+1, yn+1 ∈ ·

∣∣xm, xm, um,m ≤ n
)
= ρ(xn+1, yn+1 ∈ ·|xn, un),

where ρ : X×U → P(X)×P(Y) is some transition kernel. To ease the exposition, we assume that ρ is of the following
form:

ρ(xn+1, yn+1|xn, un) = r(yn+1|xn+1)⊗ p(xn+1|xn, un),

where p is the state transition kernel and r is the observation kernel. The initial distribution of x0 is µ.

A control process {un} is admissible in classical sense if it is adapted to the filtration {σ(ym,m ≤ n)} generated by
observations {yn}. In this case, one can write

un = πn(y0, . . . , yn), n ≥ 0, (11.35)

for some πn :
∏n
k=0 Y → U. Let us denote π = {πn}.

Note that one can always write the evolution of the state process {xn} as a noise-driven dynamical system

xn+1 = F (xn, un, wn), (11.36)

where F : X × U × [0, 1] → X is measurable and {wn} are independently and identically distributed uniformly on
[0, 1]. Using this dynamical system, we now reproduce the above process on a more convenient probability space. This
will then enable us to define wide-sense admissible policies.

In the following, we reduce the problem to an independent static one via Witsenhausen/Girsanov/Borkar, see Borkar’s
[56, 60] explicit analysis or Witsenhausen’s method presented in Section 10.4.2.

Under this reduction, we obtain a new probability space Pπ0 under which:

(a) {yn} is i.i.d. uniform on Y and independent of x0 and {wn},

(b) {u0, . . . , un, y0, . . . , yn} is independent of {wn}, x0, and {ym,m > n}, for all n.

Using these properties, Borkar defines P0 to be wide sense admissible if P0 satisfies (a) and (b). Such a notion allows
for closedness of conditional independence properties under weak convergence of joint probability measures, and thus
leads to very general existence results. See [257] for a subtle clarification.

11.5.2 Existence of Optimal Policies for Fully Observed Models

We start the discussion with the fully observed model. We note again that such a setup has already been studied
extensively (see e.g., [190], [192]). We follow the analysis in [244]

Consider a continuous-time process Xt taking values in a Euclidean space RN , controlled by a control process {Ut}
taking values in a compact metric space U. In the context of a diffusion process,

dXt = b(Xt, Ut)dt+ σ(Xt)dWt, (11.37)
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driven by standard Brownian motion {Wt}, under the control policy U and the initial condition x ∈ Rd . We also allow
the control policy to be randomized, that is P(U)-valued, where P(U) denotes the space of probability measures on U
under the weak convergence topology. An admissible control is a P(U) valued non-anticipative process {Ut} .

To ensure existence and uniqueness of weak solutions of (11.37), we impose the following assumptions on the drift b
and the diffusion matrix σ .

(A1)Continuity & Boundedness condition: The function b is jointly continuous in (x, u) and σ is locally Lipschitz
continuous, i.e., for some constant CR > 0 depending on R > 0, we have

∥σ(x1)− σ(x2)∥2 ≤ CR |x1 − x2|2

for all x1, x2 ∈ BR, where ∥σ∥ :=
√
(σσT ) . Also, we assume that b, σ are uniformly bounded, i.e.,

sup
u∈U

|b(x, u)|+ ∥σ(x)∥ ≤ C ∀x ∈ RN ,

for some constant C > 0.

(A2)Nondegeneracy: For some Ĉ1 > 0, it holds that

d∑
i,j=1

aij(x)zizj ≥ Ĉ1|z|2 ∀x ∈ RN ,

and for all z = (z1, . . . , zd) ∈ RN , where a := 1
2σσ.

In view of (A2), one sees that σ−1 exists and it is bounded . For similar existence/approximation results in the fully
observable setup, the authors in [190, 192, 195], assumed that b, σ are bounded and uniformly Lipschitz.

In the following, first we will trace some of the ideas presented by Kushner (see e.g. [195]), though with some presen-
tational differences and then present an alternative approach. Suppose that one wishes to minimize the cost

J(U) := EUx

[ ∫ T

0

c(Xs, Us)ds+ cT (XT )

]
, (11.38)

over all admissible control policies. Here, c, cT are continuous and bounded functions. We define a relaxed wide-sense
admissible control policy in the following. We first place the Young topology on the control action space, by viewing
the progressively measurable random control process m(dt, du)(ω) to be a random probability measure on [0, T ]× U
with its fixed marginal on [0, T ] to be the Lebesgue measure; here Pλ([0, T ] × U) (the space of such probability
measures) is endowed with the weak convergence topology. We require that m[0,t] be independent of Bs − Bt, s > t
for every t ∈ [0, T ]. We let m ∈ P(Pλ([0, T ]×U)). We then consider the C([0, T ];RN )-valued (under sup-norm) Xt

process (solution to the diffusion equation (11.37)) induced bym(dt, du)(ω) and then consider the space of probability
measures on these random variables.

From [13, Theorem 2.2.11], it is easy to see that under any choice of control process m(dt, du)(ω), (11.37) admits a
unique weak solution .

Toward an existence and approximation analysis, we adopt the following two approaches.

Weak convergence approach without measure transformation

In one approach, presented extensively by several seminal studies by Kushner and collaborators [190,192,195] as well
as others such as Borkar [53], one considers the following. Given the above, we consider

H =

{
(η,m) ∈ P(C([0, T ];RN ))× P(Pλ([0, T ]× U)) :
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Ex

[
f(Xt)− f(X0)−

∫ t

0

Auf(Xs)ms(du)λ(ds)

]
= 0,

m[0,t] is independent of Ws −Wt, s > t, s, t ∈ [0, T ]

}
, (11.39)

for all twice continuously differentiable function f with compact support and where ms(du) = m(du|s) and

Auf(x) :=
(
a(x)∇2f(x)

)
+ b(x, u) · ∇f(x) .

In the following theorem we show that the space H is closed, we follow Kushner’s weak convergence approach (see
e.g., [190, 192, 195]) but under weaker conditions. For detailed proof see [244, Theorem 2.1] .

Theorem 11.5.1 [244] Suppose that Assumptions (A1)–(A2) hold. Then, ifmn → m, with (ηn,mn) ∈ H , the measure
on the state process ηn → η which is the measure on the state process underm (that is, (η,m) ∈ H). Thus,H is closed.

Now, the problem is to find an optimal (η,m) ∈ H which minimizes (11.38). From this, one can, as in the deterministic
case summarized in [257, Section 7.1], arrive at general conditions for the existence of an optimal solution. One can
also establish conditions (see e.g., [190, Theorem 4.4]) for compactness for this set under the weak topology. We can
write the cost as

J(m) = E

[(∫ T

0

∫
U
c(Xs, u)ms(ω)(du)

)
+ cT (XT )

]
. (11.40)

Theorem 11.5.2 [244] Suppose that Assumptions (A1)–(A2) hold. Then,

J : P(Pλ([0, T ]× U)) → R

is a continuous map.

Next, using the above continuity result we want to prove the near optimality of piece-wise constant policies .

Theorem 11.5.3 [244] Suppose that Assumptions (A1)–(A2) hold. Then, for every ϵ > 0, there exists a piece-wise
constant control policy in ΓRC (thus also non-anticipative) which is ϵ-optimal.

Proof. From [13, Theorem 2.3.1], we know that the set of non-anticipative measures with quantized support (in both
time and control) is dense in Pλ([0, T ]× U) . Thus, by the continuity of the cost as a function of policies (as we have
established in Theorem 11.5.2), we obtain our result .

An approach with measure transformation

In an alternative approach, we consider the state process to be exogenous and the control only impacting the cost
function. For the analysis of this subsection, we are assuming that the running cost c(x, u) is bounded measurable
and continuous in its second argument (i.e., only in u) and cT is bounded measurable. differently from the previous
subsection, we define relaxed wide-sense admissible control policy in the following. As in the above, we first place the
Young topology on the control action space, by viewing the control to be a probability measure on C([0, T ];RN ) ×
Pλ([0, T ] × U) with its fixed marginal on C([0, T ];RN ) to be the Wiener measure, moreover we require that, under
the measure-transformed model, m[0,s] be independent of Wt −Ws for any t > s . Let ΓWRC denotes the space of all
wide-sense admissible control policies . A typical element of ΓWRC is denoted by m (without loss of generality) .

study this, we adopt Girsanov’s measure transformation. Define

dX ′
t = σ(X ′

t)dWt,

which, in fact, is policy independent (under new probability measure P0), where
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dP

dP0
=: ZT =exp

[∫ T

0

σ−1(Xs)b(Xs, Us)dWs

− 1

2

∫ T

0

|σ−1(Xs)b(Xs, Us)|2ds
]
.

provided that b is integrable (uniform over control policies) and σ−1(x) exists and is bounded (which is a consequence
of (A2)) . In this case, the marginal on the state process is fixed, but the cost function is now represented as:

J(m) := EUP0

[
dP

dP0

(∫ T

0

c(Xs, Us)ds+ cT (XT )

)]
Here, one wishes to minimize (where the measure on the path process is fixed)

inf
m∈ΓWRC

J(m) . (11.41)

In the following, we adopt the latter approach, as it will be much simpler to be generalized to information structures
beyond the fully observed model, including decentralized information structures. This analysis is based on the support-
ing result in Lemma 11.5.2. Which shows that the Radon-Nikodym derivative is continuous as a function of policies
(under a suitable topology over the policy space) .

Lemma 11.5.1 The space ΓWRC under the weak convergence topology is compact.

Proof. Note that ΓWRC ⊂ P
(
C([0, T ];RN )× Pλ([0, T ]× U)

)
. Since (in ΓWRC) the marginal on C([0, T ];RN ) is

fixed and Pλ([0, T ] × U) is compact (via Prohorov’s theorem), it follows that ΓWRC is tight. Thus relatively compact
by Prohorov’s theorem. Since independence is preserved under weak convergence of probability measures (see e.g. the
proof of [126, Lemma 2.3] or [332, Theorem 5.6]), thus ΓWRC is also closed, hence compact .

Next lemma shows that the Radon-Nikodym derivative is continuous as a function of policies over ΓWRC (under the
topology of weak convergence) .

Lemma 11.5.2 Suppose that Assumptions (A1)–(A2) hold. Then, on ΓWRC, the map

U 7→ exp

[ ∫ T

0

σ−1(Xs)b(Xs, Us)dWs

− 1

2

∫ T

0

|σ−1(Xs)b(Xs, Us)|2ds
]

is continuous in L1 norm.

Using this continuity property of the Radon-Nikodym derivative as a function of policy, we arrive at the following
continuity result. The proof of the following lemma follows from [244, Lemma 2.6] .

Lemma 11.5.3 Suppose that Assumptions (A1)–(A2) hold. Then, J is continuous in m ∈ ΓWRC under the weak con-
vergence topology.

Next theorem proves the existence of an optimal policy in ΓWRC. Also, it shows that the piece-wise constant policies in
ΓWRC are near optimal .

Theorem 11.5.4 [244] Suppose that Assumptions (A1)–(A2) hold. Then, we have

(i) There exists an optimal control policy in ΓWRC.

(ii) For every ϵ > 0, there exists a piece-wise constant control policy in ΓWRC (thus also non-anticipative) which is
ϵ-optimal.
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11.5.3 Existence of Optimal Policies for Partially Observed Models

Consider now a partially observed continuous-time process {Xt} on RN , controlled by a control process {Ut} taking
values in a compact action space U ⊂ RL, and with an associated observation process {Yt} taking values in RM , where
0 ≤ t ≤ T . The evolution of {Xt, Yt} is given by the stochastic differential equations

dXt = b(Xt, Ut)dt+ σ(Xt)dWt,

dYt = g(Xt)dt+ dBt , (11.42)

where, g : RN → RM is a continuous and bounded function and W and B are independent standard Wiener processes
with values in RN and RM , respectively (hence, σ is a N ×N -matrix). The objective is to minimize the following cost
function

E

[ ∫ T

0

c(Xt, Ut)dt+ cT (XT )

]
, (11.43)

where c : RN × U → [0,∞) and cT : RN → [0,∞) are bounded and continuous functions.

The idea is again to first apply Girsanov’s transformation so that the measurements Yt form an independent Wiener
process under new probability measure Q . Following Fleming and Pardoux [126, p. 264], we define an admissible
control as a probability measure on C([0, T ] × RM ) × Pλ([0, T ] × U) with its fixed marginal on C([0, T ] × RM ) be
the Wiener measure. In addition, under the new measure Q, Yr−Yt is independent of {X0,W·, Ys,ms; s ≤ t}, for any
0 ≤ t ≤ r ≤ T . Let ΓWS denote the space of such policies, where we endow this space with the weak convergence
topology. As inc Lemma 11.5.1, we have ΓWS is compact under weak convergence topology . Without loss of generality,
a typical element of ΓWS is denoted by m.

Suppose that g ≡ 0, that is Yt is just an independent process. Let us call this probability measure on the processes as
Q := PX ×QY .

Now, consider our original process where g is non-zero. Let P be the joint probability measure on the state and the
measurement processes. Since P ≪ Q, we have that∫

f(X[0,t], Y[0,t])P(dX[0,t], dY[0,t])

=

∫
G(X[0,t], Y[0,t])f(X[0,t], Y[0,t])Q(dX[0,t], dY[0,t])

for some Q-integrable function G, which is the Radon-Nikodym derivative of P with respect to Q. Under mild condi-
tions, we have that

Gt := G(X[0,t], Y[0,t]) =
dP

dQ
(X[0,t], Y[0,t])

= e

∫ t

0
g(Xs)dYs− 1

2

∫ t

0
|g(Xs)|2ds ,

with
∫ t
0
g(Xs)dYs being a stochastic integral, this time with respect to the random measure/process Ys. This relation

allows us to view the partially observed problem as one with independent measurements, with the dependence pushed
to the Radon-Nikodym derivative. In particular, we get an equivalent model

dXt = b(Xt, Ut)dt+ σ(Xt)dWt,

dYt = dBt . (11.44)

Theorem 11.5.5 [244] Suppose that the drift term b and the diffusion matrix σ satisfy Assumptions (A1)–(A2), uni-
formly with respect to y ∈ RM . Then,

(i)
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J(m) = E

[
dP

dQ
(X[0,T ], Y[0,T ])(

∫ T

0

c(Xt, Ut)dt+ cT (XT ))

]
, (11.45)

is continuous over the space of wide-sense admissible policies ΓWS .

(ii) There exists an optimal control policy in ΓWS .

(iii)For every ϵ > 0, there exists a piece-wise constant control policy in ΓWS which is ϵ-optimal.

Accordingly, we can again establish both existence and discrete approximation results. Once again, the above will allow
us to approximate a continuous-time process with a (sampled) discrete-time process and the machinery developed for
discrete-time optimal control will be applicable.

11.5.4 Existence for Models with Decentralized Information

Decentralized Model with Local Measurements

Consider now a continuous-time process {Xt} on a Euclidean space RN , controlled by a collection of control process
Ut := {Ukt , k = 1, · · · , N} with each Ukt taking values in a compact Borel action space Uk ⊂ RL, and with an
associated observation process {Y kt } taking values in RM , where 0 ≤ t ≤ T . Let Y = {Y 1, · · · , Y N}. The evolution
of {Xt, Y

k
t , k = 1, · · · , N} is given by the stochastic differential equations

dXt = b(Xt, U
1
t , · · · , UNt )dt+ σ(Xt)dWt,

dY it = gi(Xt)dt+ dBit, i = 1, · · · , N. (11.46)

Where, W and Bi, i = 1, · · · , N are independent standard Wiener processes with values in RN and RM , respectively
and gi : RN → RM is a continuous and bounded function . In this section, we assume that the drift term b and the
diffusion matrix σ satisfies similar conditions as in (A1) and (A2). In particular, they satisfy the following:

(D1)Local Lipschitz continuity: The function b : RN × (RM )N ×
∏N
k=1 Uk → RN is jointly continuous and σ =[

σij
]
: RN × (RM )N → RN×N is locally Lipschitz continuous in x (uniformly with respect to the y ∈ (RM )N ).

In particular, for some constant CR > 0 depending on R > 0, we have

∥σ(x1, y)− σ(x2, y)∥2 ≤ CR |x1 − x2|2

for all x1, x2 ∈ BR, y ∈ (RM )N , where ∥σ∥ :=
√
(σσT ) .

(D2)Boundedness: The functions b and σ are uniformly bounded, i.e., for some constant C > 0,

sup
u∈
∏N

k=1
Uk

|b(x, y, u)|+ ∥σ(x, y)∥2 ≤ C ∀x ∈ Rd, y ∈ (RM )N .

(D3)Nondegeneracy: For some Ĉ1 > 0, it holds that

d∑
i,j=1

aij(x, y)zizj ≥ Ĉ1|z|2 ∀x ∈ RN , y ∈ (RM )N ,

and for all z = (z1, . . . , zd) ∈ RN , where a := 1
2σσ

T .

The objective here is to minimize the following cost function

E

[ ∫ T

0

c(Xt, U
1
t , · · · , UNt )dt+ cT (XT )

]
, (11.47)
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where c : RN ×
∏N
k=1 Uk → [0,∞) and cT : RN → [0,∞) are bounded continuous functions. For similar existence

analysis the authors in [?, 76–78] assumed that the b, σ are uniformly Lipschitz continuous .

We define the following decoupled measurement model.

dXt = b(Xt, Yt, U
1
t , · · · , UN )dt+ σ(Xt,Yt)dWt,

dY it = dBit, i = 1, · · · , N. (11.48)

Let Y = {Y 1, · · · , Y N} and U = {U1, · · · , UN}

We let this decoupled measurement model have measure Q := PX ×
∏N
k=1Q

k. Let P be the joint probability measure
on the state and the measurement processes under a given policy. Since P ≪ Q, we have that∫

f(X[0,t],Y[0,t])P(dX[0,t], dY[0,t])

=

∫
G(X[0,t],Y[0,t])f(X[0,t],Y[0,t])Q(dX[0,t], dY[0,t]) ,

for some Q-integrable function G, which is the Radon-Nikodym derivative of P with respect to Q. Under mild condi-
tions, we have that

Gt :=
dP

dQ
(X[0,t],Y[0,t]) =

N∏
i=1

e

∫ t

0
gi(Xs)dY

i
s − 1

2

∫ t

0
|gi(Xs)|2ds

with
∫ t
0
gi(Xs)dY

i
s being a stochastic integral, with respect to the random measure/process Y is . This relation allows

us to view the decentralized stochastic control problem as one with independent measurements, with the dependence
pushed to the Radon-Nikodym derivative.

We define an admissible control as a probability measure on C([0, T ] × RM ) × Pλ([0, T ] × Ui) with its fixed
marginal on C([0, T ] × RM ) be the Wiener measure. In addition, under the new measure, Y ir − Y it is independent
of {X0,W·, Y

i
s ,m

i
s; s ≤ t}, for any 0 ≤ t ≤ r ≤ T and independent from all (mk

· , Y
k
· ), k ̸= i . Let ΓDWS denote

the space of such decentralized wide sense admissible policies, where we endow this space with the weak convergence
topology . Without loss of generality, a typical element of ΓDWS is denoted by m = (m1, · · · ,mN ) .

Theorem 11.5.6 [244] Let Assumptions (D1)– (D3) hold. Then,

(i) Over ΓDWS (wide-sense admissible policies) the function

J(m) =Em

[ N∏
i=1

(e

∫ t

0
gi(Xs)dY

i
s − 1

2

∫ t

0
|gi(Xs)|2ds)

(∫ T

0

c(Xt, U
1
t , · · · , UNt )dt+ cT (XT )

)]
, (11.49)

is continuous.

(ii) There exists an optimal control policy in ΓDWS.

(iii)For every ϵ > 0, there exists a piece-wise constant control policy in ΓDWS which is ϵ-optimal.

Decentralized Model with Coupled Dynamics and Local State

Instead of (11.46) we now consider a collection of N agents with coupled dynamics given as

dXi
t = bi(Xi

t , U
i
t )dt+ bi0(Xt,Ut)dt+ σi(Xi

t)dB
i
t, (11.50)
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for i = 1, · · · , N . Here, bi : RN × Ui → RN , bi0 : (RN )N ×
∏N
k=1 Uk → RN and σi : RN → RN×N are

given functions and Bi are independent standard Wiener processes with values in RN , i = 1, · · · , N . We assume that
bi, bi0, σ

i for i = 1, · · · , N , satisfies the following:

ˆ(D1)Local Lipschitz continuity: For i = 1, · · · , N , we have bi : RN × Ui → RN and bi0 : (RN )N ×
∏N
k=1 Uk → RN

are jointly continuous and for some constant CR > 0 depending on R > 0, we have∥∥σi(x1)− σi(x2)
∥∥2 ≤ CR |x1 − x2|2

for all x1, x2 ∈ BR .

ˆ(D2)Boundedness: The functions bi, bi0 and σi, i = 1, · · · , N , are uniformly bounded, i.e., for some constant C > 0

sup
u∈Ui

|bi(x, u)|+
∥∥σi(x)∥∥2 ≤ C ∀x ∈ RN ,

and sup
u∈
∏N

k=1
Uk |bi0(x, u)| ≤ C for all x ∈ (RN )N .

ˆ(D3)Nondegeneracy: For some Ĉ1 > 0, it holds that

d∑
i,j=1

ak,ij(x)zizj ≥ Ĉ1|z|2 ∀x ∈ RN , k = 1, · · · , N ,

and for all z = (z1, . . . , zd) ∈ RN , where ak := 1
2σ

k(σk) .

In view of ˆ(D3), it is easy to see that (σi)−1 exists and is bounded for all i = 1, · · · , N .

The objective here is to minimize the following cost function

E

[ ∫ T

0

c(Xt, U
1
t , · · · , UN )dt+ cT (XT )

]
, (11.51)

where c : (RN )N ×
∏N
k=1 Uk → [0,∞) and cT : (RN )N → [0,∞) are bounded continuous functions . We assume

that the control policies are only locally measurable, that is U it is measurable with respect to σ(Xi
[0,t]) for all t ∈ [0, T ].

We define the following decoupled (non-interacting) agent model.

dXi
t = σi(Xi

t)dW
i
t , i = 1, · · · , N ; (11.52)

Since σi is invertible (follows from ˆ(D3)), let us have the driving noise process
(
W 1
t +
∫ t
0
(σi)−1(X1

s )
(
b1(X1

s , U
1
s ) + b10(Xs,Us)

)
ds, · · · ,WN

t +∫ t
0
(σN )−1(XN

s )
(
bN (XN

s , U
N
s ) + bN0 (Xs,Us)

)
ds

)
have measure µ and the independent process (W 1

t , · · · ,WN
t )

have measure µ0. Let b̂i(Xs,Us) =
(
b1(X1

s , U
1
s ) + b10(Xs,Us)

)
. Then, by Girsanov, we know that the density for µ0

with respect to µ is
dµ0

dµ
=

N∏
k=1

e
(
∫ T

0
(σi)−1(Xt)b̂

i(Xt,Ut)dW
i
s− 1

2

∫ T

0
(σi)−1(Xt)b̂

i(Xt,Ut)
2ds)

.

As in Section 11.5.2, we define a relaxed wide-sense admissible control policy by first placing the Young topology on
the control action space, by viewing the control process to be a probability measure on C([0, T ];Rd) × Pλ([0, T ] ×
Ui) with its fixed marginal on C([0, T ];Rd) to be the Wiener measure . We require also that mi

[0,t] be independent
of W i

s − W i
t , s > t for every t ∈ [0, T ] and independent from mj ,W j

s , j ̸= i, s ∈ [0, T ]. We call again such
policies decentralized locally wide sense admissible policies, and denote with ΓDWS. Without loss of generality, a
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typical element of ΓDWS is denoted by m = (m1, · · · ,mN ) . Also, it is easy to see that in the trasformed model, the
measure on the path space is fixed .

Now, following the analysis in Theorem 11.5.4, 11.5.6, we have the following theorem.

Theorem 11.5.7 [244] Suppose that Assumptions ˆ(D1)– ˆ(D3) hold. Then,

(i) Over the space of wide-sense admissible policies ΓDWS the function

J(m) = Em

[(∫ T

0

c(Xt, U
1
t , · · · , UN )dt+ cT (XT )

)
N∏
i=1

e

∫ T

0
(σi)−1(Xt)b̂

i(Xt,Ut)dW
i
s− 1

2

∫ T

0
(σi)−1(Xt)b̂

i(Xt,Ut)
2ds
]

(11.53)

is continuous.

(ii) There exists an optimal control policy in ΓDWS.

(iii)For every ϵ > 0, there exists a piece-wise constant control policy in ΓDWS which is ϵ-optimal.

11.6 Near Optimality of Control Policies Designed for Discrete-time Models via Sampling

In view of the results presented in the previous section, we have that piece-wise constant policies are near optimal.
These then lead to discrete-time models whose solutions will be near optimal, and applicable to the original problems.
For each of the information structures below, we will consider the following arguments: (i) We obtain a sequence of
discrete-time models Tn arrived from piece-wise constant control policies applied to the true model T . (ii) We show
that the solution to the optimal discrete-time model J(Tn) leads to a solution which is near optimal. The direction,
limn→∞ J(Tn) ≤ J(T ) + ϵ follows from the analysis above and the direction limn→∞ J(Tn) ≥ J(T ) follows from
the fact that restricting to piece-wise constant policies cannot lead to a better policy when compared with arbitrary
admissible policies. (iii) We then show that the policy obtained to solve J(Tn) can be applied to T (and thus the
approach is constructive) and is near optimal for large n.

11.6.1 Fully Observed Setup

Consider the fully observed setup discussed in Section 11.5.2 with model (11.37) and cost criterion (11.38). That is,
with dynamics

dXt = b(Xt, Ut) + σ(Xt)dBt,

and cost criterion J(U) = E[
∫ T
0
c(Xs, Us)ds+ cT (XT )].

Discrete-Time Model to be Solved for Near Optimal Solutions. Let Xh, Uh be the solution of the sampled process
corresponding to (11.37) with piece-wise constant policies: Uh,s = Ukh for kh ≤ s < (k + 1)h . We have that

X(k+1)h = Xkh +

∫ (k+1)h

kh

b(Xs, Ukh)ds+

∫ (k+1)h

kh

σ(Xs)dWs (11.54)

The cost can be written as, with Nh = T
h ,

E[

Nh−1∑
k=0

ĉ(Xkh, Ukh) + cT (XNhh)] (11.55)

where ĉ(x, u) = E[
∫ h
0
c(Xs, U0)ds|X0 = x, U0 = u] . With n = 1

h , the above define a discrete-time MDP with
transition kernel Tn, cost function ĉn and total cost Jn(U).
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Thus, one defines a discrete-time model in which Xk := Xkh and Uk := Ukh for k ∈ Z+.

The information structure at time t contains the continuous-time measurements. However, since for such fully observed
model, Markov policies are optimal, it suffices to the controller to only use the discrete-time measurements.

Theorem 11.6.1 [244] Suppose that Assumptions (A1)–(A2) hold. Then, the value of the discrete-time model conver-
gences to the value of the original continuous-time model. Moreover, for every ϵ > 0, there exists h > 0 so that the
solution of the discrete-time approximation gives a policy which is near optimal for the original continuous-time model.

The above apply also to the partially observed and decentralized models.

Partially Observed Setup

Consider the setup in Section 11.5.3 with dynamics (11.42) and criterion 11.43.

Discrete-Time Model to be Solved for Near Optimal Solutions. Let us have a piece-wise constant control policy
with Uh,s = Ukh for kh ≤ s < (k + 1)h . Let Xh, Yh, Uh be the solution of the sampled process corresponding to
(11.37) with piece-wise constant policies. We have that

X(k+1)h = Xkh +

∫ (k+1)h

kh

b(Xs, Ukh)ds+

∫ (k+1)h

kh

σ(Xs)dBs

Yt = Ykh +

∫ t

kh

g(Xs)ds+

∫ t

kh

dBs, t ∈ [kh, (k + 1)h) (11.56)

Thus, one defines a discrete-time model in which Xk := Xkh and Uk := Ukh for k ∈ Z+, and the path-valued
discrete-time measurement Ȳk = Y[kh,(k+1)h), for k ∈ Z+.

The cost can be written as, with Nh = T
h ,

E[

Nh−1∑
k=0

ĉ(Xkh, Ukh) + cT (XNhh)] (11.57)

with ĉ(x, u) = E[
∫ h
0
c(Xs, U0)ds|X0 = x, U0 = u] . With n = 1

h , the above define a discrete-time POMDP with
transition kernel Tn and cost function ĉn. Following the proof technique as in Theorem 11.6.1 (and Theorem 11.5.4),
we obtain the following near- optimality result for partially observable model .

Theorem 11.6.2 [244] Suppose that the drift term b and the diffusion matrix σ satisfy Assumptions (A1)–(A2), uni-
formly with respect to y ∈ RM . Then, the optimal value of the discrete-time model convergences to the optimal value
of the original continuous-time model. Moreover, for every ϵ > 0, there exists h > 0 so that the solution of the
discrete-time approximation gives a policy which is near optimal for the original continuous-time model.

The result above, however, while involves discrete-time control and state, requires having access to the path-valued
measurements. It would be desirable to obtain a discrete-time model with discrete-time measurements Ykh in the
original measurement space. That is, at time kh, we would like to have Ukh = γ(Yih, i ∈ {0, 1, · · · , k}) under an
admissible policy γ. The following result (refinement to Theorem 11.6.2), building on Lusin’s theorem, achieves this
(for more details see [244, Section 5.2]).

Theorem 11.6.3 [244] Suppose that the drift term b and the diffusion matrix σ satisfy Assumptions (A1)–(A2), uni-
formly with respect to y ∈ RM . Then, the optimal value of the discrete-time model (11.56) convergences to the optimal
value of the original continuous-time model. Moreover, for every ϵ > 0, there exists h > 0 so that the solution of the
discrete-time approximation gives a policy (i.e., a policy U ϵkh = γϵ(Yih, i ∈ {0, 1, · · · , k}) obtained in the deiscretized
molde of (11.44) as in (11.59)) which is near optimal for the original continuous-time model.
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Decentralized Setup

Decentralized Model with Local Measurements. Consider Section 11.5.4 with dynamics (11.46) and cost criterion
(11.47). In particular the model is

dXt = b(Xt, U
1
t , · · · , UN )dt+ σ(Xt)dWt,

dY it = gi(Xt)dt+ dBit, i = 1, · · · , N. (11.58)

Discrete-Time Model to be Solved for Near Optimal Solutions. Let us have a piece-wise constant control policy
with U ih,s = U ikh for kh ≤ s < (k + 1)h, i = 1, · · · , N . Let Xh, Y

i
h , U

i
h be the solution of the sampled process

corresponding to (11.58) with piece-wise constant policies. We have that

X(k+1)h =Xkh +

∫ (k+1)h

kh

b(Xs, U
1
kh, · · · , UNkh)ds

+

∫ (k+1)h

kh

σ(Xs)dBs

Y it =Y ikh +

∫ t

kh

gi(Xs)ds+

∫ t

kh

dBis, t ∈ [kh, (k + 1)h). (11.59)

By the similar argument as in the partially observable case, applying Girsanov’s change of measure argument to the
discretized model (11.59), we can define a new probability measure space in which the measurements of the each
individual are independent of the state process. In particular, we obtain the following equivalent discretized model

X(k+1)h =Xkh +

∫ (k+1)h

kh

b(Xs, U
1
kh, · · · , UNkh)ds

+

∫ (k+1)h

kh

σ(Xs)dWs

Y it =Y ikh +

∫ t

kh

dBis, t ∈ [kh, (k + 1)h) , (11.60)

with policy U ikh = γi(Y is , s ≤ kh), by Lusin’s theorem, for some continuous function γic we have γi = γic on a
set of measure (1 − ϵi) . Moreover, we have that the process Y i[0,kh] can be approximated by its piece-wise constant
interpolations. Since both running/terminal costs are continuous, the cost (11.61) under a policy γ = (γ1, . . . , γN )
(under continuous-time measurements) and its continuous approximation γc = (γ1c , . . . , γ

N
c ) (with discrete-time mea-

surements) are close to each other . This enables us to obtain a discrete-time model with discrete-time measurements .

Thus, one defines a discrete-time model in which Xk := Xkh and U ik := U ikh for k ∈ Z+, and the path-valued
discrete-time measurement Ȳ ik = Y i[kh,(k+1)h), for k ∈ Z+.

The cost can be written as, with Nh = T
h ,

E[

Nh−1∑
k=0

ĉ(Xkh, U
1
kh, · · · , UNkh) + cT (XNhh)] (11.61)

with ĉ(x,u) = E[
∫ h
0
c(Xs, U

1
0 , · · · , UN0 )ds|X0 = x,U0 = u] . With n = 1

h , the above define a discrete-time
decentralized POMDP with transition kernel Tn and cost function c̃n. Again, for the decentralized model, similar proof
technique as in Theorem 11.6.1, gives us the following near- optimality result .

Theorem 11.6.4 [244] Suppose that Assumptions (D1)–(D3) hold. Then, the optimal value of the discrete-time model
(11.59) convergences to the optimal value of the original continuous-time model. Moreover, for every ϵ > 0, there
exists h > 0 so that the solution of the discrete-time approximation gives a policy (i.e., a policy U i,ϵkh = γi,ϵ(Yrh, r ∈
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{0, 1, · · · , k}), i = 1, · · · , N an optimal solution of (11.60)) which is near optimal for the original continuous-time
model.

Coupled Dynamics and Local State. An analogous result is applicable for the model in Section 11.5.4.

11.6.2 Borkar’s Control Topology and a Partial Differential Equations Approach

Another approach to arrive at near optimality of discretized time and space models is via showing that the cost is
continuous on the space of control policies (stationary or Markov, depending on the cost criterion) under an appropriate
topology due to Borkar [53], and then to show that time and space quantized policies are dense in the space of all such
policies [243].

11.6.3 Infinite Horizon Criteria

For fully observable models, the discrete-time approximation results also apply for infinite horizon discounted cost and
average cost criteria under the same conditions.

11.7 Stochastic Stability of Diffusions

Recall that an Itô diffusion is a stochastic process Xt(ω) satisfying a stochastic differential equation of the form:

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s,Xs = x

where Bt is m-dimensional Brownian motion. Often b, σ satisfy regularity conditions of the form

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|,

for some finite D (if one wishes to impose the existence of strong solutions), though this is not a requirement for the
analysis to follow. Note that here b, σ only depend on x and not on t. Thus, the process here is time-homogenous.

Continuous-time counterparts of Foster-Lyapunov criteria considered in Chapters 3 and 4 exist and are well-developed.
We refer the reader to [193], [210], [223] [222] as well as [183]. Dynkin’s formula plays a key role in obtaining the
continuous-time counterparts of the Foster-Lyapunov criteria developed in Chapter 4.

For functions V : X → R+ that are properly defined, as in the Foster-Lyapunov criteria studied in Chapter 4, conditions
of the form

AV (x) ≤ b1x∈S

AV (x) ≤ −ϵ+ b1x∈S

AV (x) ≤ −f(x) + b1x∈S ,

will lead to recurrence, positive Harris recurrence and finite expectations, respectively. However, the conditions needed
on both V and the Markov process need to be carefully addressed. For example, one needs to ensure that the processes
are non-explosive, that is, they do not become unbounded in finite time; and one needs to establish conditions for the
strong Markov property. Furthermore, they must lead to a well-defined AV (x) (see Definition 11.2.7).

In the following, we review related results from Meyn and Tweedie [222, 223]. We consider processes taking values
from a locally compact Polish space X.

Let P t(x,B) := Px(Xt ∈ B) for B ∈ B(X). Let for any Borel A,

ηA =

∫ ∞

0

1{Xt∈A}dt,
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denote the occupation time. We say that the process Xt is ψ-irreducible if

ψ(B) > 0 =⇒ Ex[ηB ] > 0, x ∈ X,

and the process is Harris recurrent if

ψ(B) > 0 =⇒ Px(ηB = ∞) = 1, x ∈ X.

Definition 11.18. A probability measure π on B(X) is invariant if for every B ∈ B(X)

π(B) =

∫
π(dx)P t(x,B), ∀t > 0.

A Harris recurrent chain which admits an invariant probability measure is called positive Harris recurrent.

Denote byD(A) the set of all functions V : X×R+ → R for which there exists a measurable functionU : X×R+ → R
such that for each x ∈ X, t > 0,

Ex[V (Xt, t)] = V (x, 0) + Ex[

∫
U(xs, s)ds]

and ∫ t

0

Ex[|U(xs, s)|]ds <∞ (11.62)

In this case, we have AV (x) = U(x) and we call A the extended infinitesimal generator of the process Xt and we say
that V is in the domain of A.

In general, it is not easy to know when a function is in the domain of A. One method to enhance the set of functions that
are relevant is to consider truncated processes. Let {Om,m ∈ N} be a sequence of open bounded sets (with compact
closure) for which for every m ∈ N, Om ⊂ Om+1 ⊂ Om+2 with ∪∞

m=1Om = X. Define:

Tm = τOc
m
:= inf{t ≥ 0 : Xt ∈ Ocm}

and let
ζ = lim

m→∞
Tm.

We call Xt non-explosive if Px(ζ = ∞) = 1 for all x ∈ X.

Let for m ∈ Z+, ∆m denote a fixed state in Ocm and define with xm:

xmt = xt1{t<Tm} +∆m1{t≥Tm}

Thus, for a non-explosive process, we can define xmt = xmin{t,Tm}.

For Itô processes, let Am denote the extended infinitesimal generator for xmt . In this case, Am contains C2 (class of
functions on X× R with continuous first and second partial derivatives).

It is important to note that in general, the domain of A may be smaller than the domain of Am, in view of the integra-
bility condition stated in (11.62).

Theorem 11.7.1 [223, Theorem 4.5] LetXt be non-explosive weak Feller process: that is P tg(x) = E[g(Xt)|x0 = x]
is continuous in x for every continuous and bounded g, for all t ≥ 0. Then,

(i) If

AmV (x) ≤ −ϵ+ b1x∈S , x ∈ Om,m ∈ N (11.63)
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holds for some compact S, then an invariant probability exists.

(ii)

AmV (x) ≤ −f(x) + b1x∈S , x ∈ Om,m ∈ N (11.64)

holds for compact S and f : X → [1,∞), then under any invariant probability measure π, Eπ[f(X)] ≤ b.

Proof. Building on [127] [280, Theorem 2] (see Theorem 3.3.2 for an argument in discrete-time), for a weak Feller
process there are two possibilities: either an invariant probability exists or

lim
T→∞

sup
ν

1

T

∫ T

0

νP s(C)ds = 0,

for all compact C, where the supremum is over all initial probability measures on x0. Condition (i) then implies that
the latter cannot take place. The second result follows from the discussion for Theorem 4.2.5 together with (i). ⋄

A useful technique in arriving at stochastic stability is to sample the process to obtain a discrete-time Markov chain,
whose stability will imply the stability of the original process through a careful construction of invariant probability
measures, similar to the discussion on sampled chains in Chapter 3: Any invariant measure for the continuous-time
process is also invariant for a sampled discrete-time process, and thus the uniqueness of an invariant measure for the
sampled process would imply the uniqueness of an invariant measure for the continuous-time process, provided one
exists.

Let a be a probability measure on R+. Define

Ka(x,B) =

∫
P t(x,B)a(dt)

Thus,Ka represents a sampled chain. A Borel set S is called νa-petite if νa is a non-trivial measure and a is a probability
measure on (0,∞) that satisfies:

Ka(x,B) ≥ νa(B), x ∈ S,

for all B ∈ B(X). Furthermore, we have the following if S is a petite set. Meyn and Tweedie define a process to be a
T -process if for some distribution a, the kernel Ka(x,A) ≥ T (x,A) where (·, A) is lower semi-continuous for each
Borel A and T (x,X) ̸= 0 for each x ∈ X. Note that strong Feller processes are T -processes as T can be taken to be
Ka itself. Recall from Theorem 3.2.8 that for an irreducible T -process, every compact set is petite [223].

Theorem 11.7.2 [223, Theorem 4.2] Let {xt} be an irreducible non-explosive process and (11.63) hold for S closed
and petite, and with V bounded on S. Then, the process is positive Harris recurrent.

We also refer the reader to [86, Theorem 4.1] and emphasize that, as in Chapter 4, irreducibility is not required for the
existence of an invariant probability measure. Theorem 11.7.2 then implies the importance of the petiteness condition
on S. As we observed earlier in Chapter 3, such sets allow for regeneration and hence lead to Harris recurrence and
uniqueness of an invariant probability measure.

Let the notation {limt→∞ |xt| = ∞} denote the event that for any compact C, for all t sufficiently large xt /∈ C. If

Px( lim
t→∞

|xt| = ∞) = 0,

xt is said to be non-evanescent.

Theorem 11.7.3 [223, Theorem 3.1] Let {xt} satisfy

AmV (x) ≤ b1x∈S , x ∈ Om,m ∈ N

for a compact S, b <∞ and where V is a norm-like function (i.e., limx→∞ V (x) = ∞). Then,
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Px( lim
t→∞

|xt| = ∞) = 0

for each x ∈ X.

Further stochastic stability results, beyond the existence of invariant probability measures, have found applications; for
these, we refer the reader to [193] and [298]. We state one next.

Theorem 11.7.4 [193] [298, Prop. 5.5.1] Suppose that there exists a function V : Rn → R+ which is in the domain
of Am for every m, and satisfies

AV (x) ≤ −αV (x) + b, x ∈ Om,m ∈ N (11.65)

for some α, b > 0. Then,

E[V (Xt)] ≤ e−αtE[V (X0)] +
b

α
,

provided that E[V (X0)] <∞.

Exercise 11.7.1 Prove Theorem 11.7.4. Hint. Apply Dynkin’s formula to V (xt)e
αt; note A(V (xt)e

αt) = αV (xt)e
αt+

eαtAV (xt) and use (11.65).

11.8 The Wong-Zakai Theorem and Robustness of the Stratonovich Integral

The Brownian noise is an idealization and is not practically achievable. However, it is approximated arbitrarily well by
signals which are sufficiently regular, so that with these regular approximations one can define a Riemann integration.
This then raises a question of robustness and convergence of approximate integrations. The following establishes such
an approximation result.

Let {wn(t), n ∈ N} be a sequence of continuous and piece-wise differentiable in t with bounded variation approx-
imations which converge almost surely to a Brownian process, such that there exist random variables n0, k so that
wn(t, ω) ≤ k(ω) almost surely and all t ∈ [a, b] when n > n0(ω), and that wn(t) converges to Bt almost surely. In
particular, we ask that {wn(t), n ∈ N} be a sequence of continuous and piece-wise differentiable in t approximations
which converges uniformly almost surely to a Brownian process.

Theorem 11.8.1 [319] Let σ(t, x) be continuously differentiable in x, t, and let {wn(t), n ∈ N} be a sequence of
approximations as discussed above of a Brownian process. Then, we have that, almost surely

lim
n→∞

∫ b

a

σ(t, wn(t))dwn(t) =
1

2

∫ b

a

∂

∂t
σ(t, Bt)dt+

∫
σ(t, Bt)dBt

where the first two integrations are in the Riemann sense.

Theorem 11.8.2 (Wong-Zakai Theorem) [319] Let µ(t, x), σ(t, x) be continuously differentiable in x, t and µ, σ, ∂∂xσ
be Lipschitz continuous with constant k > 0, and |σ(x, t)| ≥ β > 0 with ∂

∂tσ(x, t) ≤ kσ2(x, t). Let {wn(t), n ∈ N}
be a sequence of approximations as discussed above of a Brownian process.

If for each n ∈ N, xn is the solution to the ODE:

dxn
dt

= µ(t, xn)−
1

2
σ(t, xn)

∂

∂x
σ(t, xn) + σ(t, xn)

dwn
dt

, xn(a) = xa,

almost everywhere on [a, b], then xn(t) converges almost surely uniformly in t ∈ [a, b] to a stochastic process Xt

solving the equation
dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, Xa = xa,
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as n→ ∞.

Note that here, unlike the discrete-time approximations, we are approximating the noise as well. One way to approxi-
mate the noise is via a piece-wise linear interpolation of discrete updates:

wn((k + 1)h) = wn(kh) +
√
hZk,

where Zk is an independent Gaussian with mean zero and variance 1. In this case, notice that dwn

dt = Z√
h

in between
the sampling instants.

Note also that in the above, we have the correction term − 1
2σ(t, xn)

∂
∂xσ(t, xn), which disappears when one considers

instead of Itô, the Stratonovich integral [165, Theorem 1.2] (see Exercise 11.10.14). With the above, we have the
following. Consider

dxn = f(xn)dwn

where the integration is in the Riemann sense. If wn(t) → B(t) as above, then the solution converges to

dx = f(x) ◦ dB,

where the integration is in the Stratonovich sense.

This last observation is yet another motivation for using the Stratonovich integral for certain applications. For related
results with control, see [191] and [242].

11.9 Bibliographic Notes

For discounted and average cost problems, analysis based on the theory of partial differential equations can be utilized
to obtain more general results [13, Chapter 3]. The regularity conditions on the value function can also be relaxed. For
stochastic integration, one can also relax conditions on the functions via Krylov’s generalization [185].

For filtering theory, the reader is referred to [191] as well as [23, 226].

11.10 Exercises

Exercise 11.10.1 a) Solve
dXt = µXt + σdBt

Hint: Multiply both sides with the integrating factor e−µt and work with d(e−µtXt).

b) Solve
dXt = µdt+ σXtdBt

Hint: Multiply both sides with the integrating factor e−σBt+
1
2σ

2t. Finally, verify by direct computation (via Itô’s for-
mula) that

Xt = X(0)eσBt+(µ−σ2

2 )t

is the solution. The equation in b) above is often used as a model for mathematical finance where µ is called the drift
and σ is called the volatility (of the financial environment).

Exercise 11.10.2 (Girsanov’s measure transformation / static reduction) a) Consider

Sn =

n∑
k=1

Xk
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where Xk ∼ N (0, 1) is i.i.d. Since a sum of Gaussians is Gaussian, (S1, · · · , Sn) is a Gaussian random vector with
measure, say with measure Q0, and density

Cne
− 1

2

(
s21+(s2−s1)2+···+(sn−sn−1)

2

)

for some constant Cn. Now, instead, assume that S′
n =

∑n
k=1(Xk + µk) where µk is a sequence of constants. In this

case, (S′
1, · · · , S′

n) is a Gaussian random vector with measure Q and density, for some constant C ′
n,

C ′
ne

− 1
2

(
(s1−µ1)

2+(s2−s1−µ2)
2+···+(sn−sn−1−µn)

2

)
= C ′

ne
− 1

2 (s
2
1+(s2−s1)2+···+(sn−sn−1)

2)e(
∑

k
µk(Sk−Sk−1)− 1

2

∑
k
µ2
k)

Thus, the Radon-Nikodym derivative

dQ

dQ0
= e(

∑
k
µk(Sk−Sk−1)− 1

2

∑
k
µ2
k)

dQ0

dQ
= e(−

∑
k
µk(Sk−Sk−1)+

1
2

∑
k
µ2
k) (11.66)

This is the same derivation we studied in Section 10.4.2.

With this interpretation, consider the measurement process given in (11.32-11.33) with dyt = h(xt)dt + dBt and let
P be the measure on this process. Let P0 denote the measure on an independent Brownian motion dy′t = dBt. Now, by
viewing µk as the drift term h(xt)dt, compare (11.66) with

ZT = exp

[∫ T

0

h(xs)dys −
1

2

∫ T

0

|h(xs)|2ds
]
.

where

dP

dP0
= ZT .

b) Repeat the above with
Sn = Sn−1 + σ(Sn)Xn ∼ Q0

where σ(·) is invertible and S′
n = Sn−1 + µk + σ(S′

n)Xn ∼ Q and show that in this case, we have

dQ

dQ0
= e(

∑
k
σ−1(Sk−1)µk(Xk)− 1

2

∑
k
(σ−1(Sk−1))

2µ2
k) (11.67)

In the context of a diffusion process, dxt = h(xt)dt+ σ(xt)dBt ∼ P and dx′t = σ(x′t)dBt ∼ P0 compare the above
with

dP

dP0
=: ZT = exp

[∫ T

0

σ−1(xs)h(xs)dBs −
1

2

∫ T

0

|σ−1(xs)h(xs)|2ds
]
.

c) In part a) if xt is a controlled process and in part b) if h takes in control as an input, the above measure transfor-
mations then lead to stochastic analysis where one can study the problem in a new probability space where the control
does not impact the flow of the process x′t or Bt, as in static reduction, but it is dependent on them. This approach
facilitates various continuity, compactness and approximation results, leading to very general optimality results.

Exercise 11.10.3 (Feynman-Kac Formula: Expected hitting time to a boundary) Let S ⊂ Rn be a bounded open
set with smooth boundary ∂S. The following partial differential equation (see also (11.8) for the notation of the Lapla-
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cian of a function f given with ∆f :=
∑
i

∂2f
∂(xi)2 f(x))

−1

2
∆u = 1, u ∈ S

u = 0 u ∈ ∂S

is known to admit a solution u(x). Now, for any initial point x ∈ S, consider the Brownian motion Bt with B0 = x.
Define

τxS = inf{t ≥ 0 : Bt ∈ ∂S}

Show that
u(x) = E[τxS ]

Hint. By (11.8) we know that for the equation Xt = Bt, the generator satisfies the relation A(f) = 1
2∆f . Then, with

min(N, τxS ) = τN via Dynkin’s formula

E[u(XτN )] = E[u(X0)] + E[

∫ τN

0

1

2
∆u(Xs)ds]

Since − 1
2∆u = 1 until the stopping time and u is bounded, we have that limN→∞E[τN ] is bounded and τxS has finite

expectation. As a result,

u(x) = E[u(X0)|X0 = x] = −Ex[
∫ τN

0

1

2
∆u(Xs)ds] + Ex[u(XτN )] →N→∞ Ex[τ

x
S ]

Finally, conclude with observing that for x ∈ ∂S u(x) = 0 (and by the above for x inside S, ∆u(x) = −1).

Exercise 11.10.4 (White Noise Property of the Brownian Noise) Let us view/define the Fourier transform of dBt to
be3 defined sample path wise:

ak(ω) =

∫ 1

0

dBt(ω)e
−i2πktdt.

Show that ak, k ∈ Z is Gaussian, and i.i.d.

Exercise 11.10.5 Prove the Itô isometry property.

Exercise 11.10.6 Complete the details for the solution to the optimal portfolio selection problem given in Example
11.14.

Exercise 11.10.7 Solve an average-cost version of the linear quadratic regulator problem and identify conditions on
the cost function that leads to a cost that is independent of the initial condition.

Exercise 11.10.8 Consider a Brownian process in Rd. Show that this process is recurrent for d = 1, 2 but transient for
d ≥ 3.

Exercise 11.10.9 Construct an example of a control-free stochastic differential equation with additive Brownian noise
such that, while in the absence of the noise term the (deterministic) process is unstable, the presence of the noise makes
the system stochastically stable.

3This integral is a well-defined Riemann-Stieltjes integral via the Young integral [325]. Note that this is not a contradiction with
Theorem 11.2.1 since what Theorem 11.2.1 implies is that the Riemann-Stieltjes integral may not be well-defined for an arbitrary
function, but if the function is sufficiently regular one can still define a Riemann-Stieltjes integration with respect to the Brownian for a
given sample path, as is the case here. See [325].
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Exercise 11.10.10 (Finite state continuous-time Markov processes and discrete-time representation via uniformization)
Let Xt be a time-homogenous continuous-time Markov process with a finite state space X. Let for any a, b ∈ X and
t ≥ 0:

P (Xt = b|X0 = x) =: Pt(x, b),

denote the continuous-time transition kernel. Define

lim
t↓0

Pt − P0

h
=: Λ

to be a transition rate intensity matrix. Define P (Xt ∈ ·) = µt(·) = (µ0Pt)(·). Then, it follows (show this as an
exercise) that

dµt
dt

= lim
h↓0

Pt+h − Pt
h

= µtΛ

and thus
µt = µ0e

Λt

Now, define
λ = max

i∈X

∑
j∈X,̸=i

λi,j

and define

R = I +
Λ

λ

It can be shown that R is a (discrete-time) stochastic matrix since the row-sum of Λ is zero.

Show that, if Zt is a discrete-time time-homogenous Markov chain with (discrete-time) transition kernel R, then

P (Zt = ·) = P (XNt
= ·),

where Nt is an independent Poisson process with rate λ.

Hint. Show that

µt = µ0e
Λt = µ0e

λRte−λt =
∑
k≥0

Rktk

k!
e−λt =

∑
k≥0

(
tk

k!
e−λt

)
Rk

Then, observe that P (Nt = k) =

(
λktk

k! e
−λt
)

and thatNt is independent fromXt, to conclude that µt = P (XNt ∈ ·).

Exercise 11.10.11 For a system with (11.10), arrive at (11.11) for the case where p is invariant. This relation is impor-
tant for the study of stochastic learning/simulated annealing problems [80].

Exercise 11.10.12 Read [205, Chapters 4 and 5] to study the maximum principle and viscosity solutions for the
deterministic-setup.

Exercise 11.10.13 Consider the diffusion process

dXt = ∇f(Xt)dt+
√
2dBt.

Show, via the Fokker-Planck equation, that p(x) = Kef(x) is an invariant probability measure where K is a normal-
izing constant.

Exercise 11.10.14 [Itô vs. Stratonovich Equivalence] Consider

dXt = b(Xt, Ut)dt+ σ(Xt) ◦ dBt

By considering the construction of the Stratonovich integral, study that [165, Theorem 1.2]
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σ(Xt) ◦ dBt = σ(X(t))dBt +
1

2
dσ(X(t))dBt

= σ(X(t))dBt +
1

2
(
d

dx
σ(X(t)))dX(t)dBt = σ(X(t))dBt +

1

2
(
d

dx
σ(X(t)))σ(Xt)dt (11.68)

Thus, arrive at an equivalence relation between the two integrals, so that we have

dXt = b̃(Xt, Ut)dt+ σ(Xt)dBt,

where the integral is now in the Itô sense with

b̃(Xt, Ut) = b(Xt, Ut) +
1

2
(
d

dx
σ(X(t)))σ(Xt)
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Robustness to Incorrect Models and Learning

In many applications, typically only an ideal model (controlled transition kernel) is assumed and the control design is
based on the given model, raising the problem of performance loss due to the mismatch between the assumed model
and the actual model. In this chapter, we study continuity properties of discrete-time stochastic control problems with
respect to system models (i.e., controlled transition kernels) and robustness of optimal control policies designed for
incorrect models applied to the true system.

The chapter studies both fully observed and partially observed setups under an infinite horizon discounted expected
cost criterion as well as the average cost criterion. The results for the discounted cost criterion will also imply the
identical results for finite horizon criteria.

We will show that continuity can be established under total variation convergence of the transition kernels under mild
assumptions and with further restrictions on the dynamics and observation model under weak and setwise convergence
of the transition kernels. Using these continuity properties, we establish convergence results and error bounds due to
mismatch that occurs by the application of a control policy which is designed for an incorrectly estimated system
model to a true model, thus establishing positive and negative results on robustness. These findings entail positive
implications on empirical learning in (data-driven) stochastic control since often system models are learned through
empirical training data where typically a weak convergence criterion applies but stronger convergence criteria do not.

The chapter can also be viewed as a generalization of the approximations framework presented in Section 8.2. This
connection will be made explicit later in the chapter.

12.1 Introduction

We will discuss both the partially and fully observed setups. Let X ⊂ Rm denote a Borel set which is the state space
of a partially observed controlled Markov process. Let Y ⊂ Rn be a Borel set denoting the observation space of the
model, and let the state be observed through an observation channel Q. As before in the notes, the observation channel,
Q, is defined as a stochastic kernel (regular conditional probability) from X to Y, such that Q( · |x) is a probability
measure on the (Borel) σ-algebra B(Y) of Y for every x ∈ X, and Q(A| · ) : X → [0, 1] is a Borel measurable function
for every A ∈ B(Y). A decision maker (DM) is located at the output of the channel Q, and hence it only sees the
observations {Yt, t ∈ Z+} and chooses its actions from U, the action space which is a Borel subset of some Euclidean
space. As discussed earlier, an admissible policy γ is a sequence of control functions {γt, t ∈ Z+} such that γt is
measurable with respect to the σ-algebra generated by the information variables

It = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0},

where
Ut = γt(It), t ∈ Z+, (12.1)

are the U-valued control actions and
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Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t− 1}.

We define Γ to be the set of all such admissible policies. The update rules of the system are determined by (12.1) and
the following:

Pr
(
(X0, Y0) ∈ B

)
=

∫
B

P (dx0)Q(dy0|x0), B ∈ B(X× Y),

where P is the (prior) distribution of the initial state X0, and

Pr

(
(Xt, Yt) ∈ B

∣∣∣∣ (X,Y, U)[0,t−1] = (x, y, u)[0,t−1]

)
=

∫
B

T (dxt|xt−1, ut−1)Q(dyt|xt), B ∈ B(X× Y), t ∈ N,

where T is the transition kernel of the model. The objective of the agent (decision maker) is the minimization of the
infinite horizon discounted cost,

Jβ(c, T , γ) = ET ,γ
P

[ ∞∑
t=0

βtc(Xt, Ut)

]

for some discount factor β ∈ (0, 1), over the set of admissible policies γ ∈ Γ , where c : X × U → R is a Borel-
measurable stage-wise cost function and ET ,γ

P denotes the expectation with initial state probability measure P and
transition kernel T under policy γ. Note that we write the infinite horizon discounted cost as a function of the transition
kernels and the stage-wise cost function since we will analyze the cost under the changes on those variables.

We define the optimal cost for the discounted infinite horizon setup as a function of the stage-wise cost function and
the transition kernels as

J∗
β(c, T ) = inf

γ∈Γ
Jβ(c, T , γ).

Problem P1: Continuity of J∗
β(c, T ) under the Convergence of the Models. Let {Tn, n ∈ N} be a sequence of

transition kernels which converges in some sense to another transition kernel T and {cn, n ∈ N} be a sequence of
stage-wise cost functions corresponding to Tn which converge in some sense to another cost function c. Does that
imply that

J∗
β(cn, Tn) → J∗

β(c, T )?

Problem P2: Robustness to Incorrect Models. A problem of major practical importance is robustness of an optimal
controller to modeling errors. Suppose that an optimal policy is constructed according to a model which is incorrect:
how does the application of the control to the true model affect the system performance and does the error decrease to
zero as the models become closer to each other? In particular, suppose that γ∗n is an optimal policy designed for Tn and
cn, an incorrect model for a true model T and c. Is it the case that if Tn → T and cn → c, then

Jβ(c, T , γ∗n) → J∗
β(c, T )?

Problem P3: Empirical Consistency of Learned Probabilistic Models and Data-Driven Stochastic Control. Let
T (·|x, u) be a transition kernel given previous state and action variables x ∈ X, u ∈ U, which is unknown to the
decision maker (DM). Suppose the DM builds a model for the transition kernels, Tn(·|x, u), for all possible x ∈ X, u ∈
U by collecting training data (e.g. from the evolving system). Do we have that the cost calculated under Tn converges to
the true cost (i.e., do we have that the cost obtained from applying the optimal policy for the empirical model converges
to the true cost as the training length increases)?
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Problem P4: Approximation by Finite MDPs as an Instance of Robustness to Incorrect Models. Can we view the
approximation problem of a continuous space MDP model with a finite model, as studied in Section 8.2, as an instance
of the robustness problem?

We will study the above for the average cost criterion as well. For the average cost criterion, we have

J∞(c, T , γ) = lim sup
N→∞

1

N
ET ,γ
x0

[
N−1∑
t=0

c(Xt, Ut)

]

To denote the explicit dependence of the optimal cost in the transition kernel, we use the notation

J∗
∞(c, T ) = inf

γ∈Γ
J∞(c, T , γ).

12.1.1 Some Examples and Convergence Criteria for Transition Kernels

Convergence Criteria for Transition Kernels.

Before introducing the convergence criteria to be presented in the chapter, we refer the reader to Appendix D.

Definition 12.1.1 For a sequence of transition kernels {Tn, n ∈ N}, we say that

– Tn → T weakly if Tn(·|x, u) → T (·|x, u) weakly, for all x ∈ X and u ∈ U,

– Tn → T setwise if Tn(·|x, u) → T (·|x, u) setwise, for all x ∈ X and u ∈ U,

– Tn → T under the total variation distance if Tn(·|x, u) → T (·|x, u) under total variation for all x ∈ X and u ∈ U.

Examples [177].

Let a controlled model be given as xt+1 = F (xt, ut, wt), where {wt} is an i.i.d. noise process. The uncertainty on the
transition kernel for such a system may arise from lack of information on F or the i.i.d. noise process wt or both:

(i) Let {Fn} denote an approximating sequence for F , so that Fn(x, u, w) → F (x, u, w) pointwise. Assume that the
probability measure of the noise is known. Then, corresponding kernels Tn converge weakly to T : If we denote the
probability measure ofw with µ, for any g ∈ Cb(X) and for any (x0, u0) ∈ X×U using the dominated convergence
theorem we have

lim
n→∞

∫
g(x1)Tn(dx1|x0, u0) = lim

n→∞

∫
g(Fn(x0, u0, w))µ(dw)

=

∫
g(F (x0, u0, w))µ(dw) =

∫
g(x1)T (dx1|x0, u0).

(ii) Much of the robust control literature deals with deterministic systems where the nominal model is a determinis-
tic perturbation of the actual model (see e.g. [267]). The considered model is in the following form: F̃ (xt, ut) =
F (xt, ut)
+∆F (xt, ut), where F represents the nominal model and ∆F is the model uncertainty satisfying some norm
bounds. For such deterministic systems, pointwise convergence of F̃ to the nominal model F , i.e.∆F (xt, ut) → 0,
can be viewed as weak convergence for deterministic systems by the discussion in (i). It is evident, however, that to-
tal variation convergence would be too strong for such a convergence criterion, since δF̃ (xt,ut)

→ δF (xt,ut) weakly
but ∥δF̃ (xt,ut)

− δF (xt,ut)∥TV = 2 for all ∆F (xt, ut) ̸= 0 where δ denotes the Dirac measure.

(iii)Let F (xt, ut, wt) = f(xt, ut) +wt be such that the function f is known and wt ∼ µ is not known correctly and an
incorrect model µn is assumed. If µn → µ weakly, setwise, or in total variation, then the corresponding transition
kernels Tn converge in the same sense to T . Observe the following:
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g(x1)Tn(dx1|x0, u0)−

∫
g(x1)T (dx1|x0, u0)

=

∫
g(w0 + f(x0, u0))µn(dw0)−

∫
g(w0 + f(x0, u0))µ(dw0). (12.2)

(a) Suppose µn → µ weakly. If g is a continuous and bounded function, then g(·+ f(x0, u0)) is a continuous and
bounded function for all (x0, u0) ∈ X × U. Thus, (12.2) goes to 0. Note that f does not need to be continuous.
(b) Suppose µn → µ setwise. If g is a measurable and bounded function, then g(· + f(x0, u0)) measurable and
bounded for all (x0, u0) ∈ X × U. Thus, (12.2) goes to 0. (c) Finally, assume µn → µ in total variation. If g is
bounded, (12.2) converges to 0, as in item (b). As a special case, assume that µn and µ admit densities hn and h,
respectively; then the pointwise convergence of hn to h implies the convergence of µn to µ in total variation by
Scheffé’s theorem.

(iv)Suppose now neither F nor the probability model of wt is known perfectly. It is assumed that wt admits a measure
µn and µn → µ weakly. For the function F we again have an approximating sequence {Fn}. If Fn(x, u, wn) →
F (x, u, w) for all (x, u) ∈ X × U and for any wn → w, then the transition kernel Tn corresponding to the model
Fn converges weakly to the one of F , T : For any g ∈ Cb(X),

lim
n→∞

∫
g(x1)Tn(dx1|x0, u0) = lim

n→∞

∫
g(Fn(x0, u0, w))µn(dw)

=

∫
g(F (x0, u0, w))µ(dw) =

∫
g(x1)T (dx1|x0, u0).

(v) Let again {Fn} denote an approximating sequence for F and suppose now Fx0,u0,n(·) := Fn(x0, u0, ·) : W →
X is invertible for all x0, u0 ∈ X × U and F−1

(x0,u0),n
(·) denotes the inverse for fixed (x0, u0). It is assumed

that F−1
(x0,u0),n

(x1) → F−1
x0,u0

(x1) pointwise for all (x0, u0). Suppose further that the noise process wt admits a

continuous density fW (w). The Jacobian matrix, ∂x1

∂w , is the matrix whose components are the partial derivatives
of x1, i.e. with x1 ∈ X ⊂ Rm and w ∈ W ⊂ Rm, it is an m ×m matrix with components ∂(x1)i

∂wj
, 1 ≤ i, j ≤ m

. If the Jacobian matrix of derivatives ∂x1

∂w (w) is continuous in w and nonsingular for all w, then we have that the
density of the state variables can be written as

fX1,n,(x0,u0)(x1) = fW (F−1
x0,u0,n(x1))

∣∣∂x1
∂w

(F−1
x0,u0,n(x1))

∣∣−1
,

fX1,(x0,u0)(x1) = fW (F−1
x0,u0

(x1))
∣∣∂x1
∂w

(F−1
x0,u0

(x1))
∣∣−1

.

With the above, fX1,n,(x0,u0)(x1) → fX1,(x0,u0)(x1) pointwise for all fixed (x0, u0). Therefore, by Scheffé’s
theorem, the corresponding kernels Tn(·|x0, u0) → T (·|x0, u0) in total variation for all (x0, u0).

(vi)These examples will be utilized in Section 12.5.1, where data-driven stochastic control problems will be considered
where estimated models are obtained through empirical measurements of the state action variables.

12.1.2 Summary

We now introduce the main assumptions that will be occasionally used for the technical results in the chapter.

Assumption 12.1.1 The following hold.

(a) The sequence of transition kernels Tn satisfies the following: {Tn(·|xn, un), n ∈ N} converges weakly to T (·|x, u)
for any sequence {xn, un} ⊂ X× U and x, u ∈ X× U such that (xn, un) → (x, u).

(b) The stochastic kernel T (·|x, u) is weakly continuous in (x, u).

(c) The sequence of stage-wise cost functions cn satisfies the following: cn(xn, un)
→ c(x, u) for any sequence {xn, un} ⊂ X× U and x, u ∈ X× U such that (xn, un) → (x, u).



12.1 Introduction 285

(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continuous on X× U.

(e) U is compact.

The following is Assumption 6.3.1(ii).

Assumption 12.1.2 The observation channel Q(·|x) is continuous in total variation i.e., if xn → x, then Q( · |xn) →
Q( · |x) in total variation (only for partially observed models).

Assumption 12.1.3 The following hold.

(a) The sequence of transition kernels Tn satisfies the following: {Tn(·|x, un), n ∈ N} converges setwise to T (·|x, u)
for any sequence {un} ⊂ U and x, u ∈ X× U such that un → u.

(b) The stochastic kernel T (·|x, u) is setwise continuous in u.

(c) The sequence of stage-wise cost functions cn satisfies the following: cn(x, un)
→ c(x, u) for any sequence {un} ⊂ U and x, u ∈ X× U such that un → u.

(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continuous on U.

(e) U is compact.

Assumption 12.1.4 The following hold.

(a) The sequence of transition kernels Tn satisfies the following: ∥Tn(·|x, un) − T (·|x, u)∥TV → 0 for any sequence
{un} ⊂ U and x, u ∈ X× U such that un → u.

(b) The stochastic kernel T (·|x, u) is continuous in total variation in u.

(c) The sequence of stage-wise cost functions cn satisfies the following: cn(x, un)
→ c(x, u) for any sequence {un} ⊂ U and x, u ∈ X× U such that un → u.

(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continuous on U.

(e) U is compact.

In Sections 12.2.1 and 12.2.2 we study continuity (Problem P1) and robustness (Problem P2) for partially observed
models. In particular we show the following:

(a) Continuity and robustness do not hold in general under weak convergence of kernels (Theorem 12.2.1).

(b) Under Assumptions 12.1.1 and 12.1.2, continuity and robustness hold (Theorem 12.2.4, Theorem 12.2.8).

(c) Continuity and robustness do not hold in general under setwise convergence of the kernels (Theorem 12.2.5).

(d) Continuity and robustness do not hold in general under total variation convergence of the kernels (Example 12.1).

(e) Under Assumption 12.1.4, continuity and robustness hold (Theorem 12.2.6, Theorem 12.2.7).

In Section 12.3, we study continuity (Problem P1) and robustness (Problem P2) for fully observed models. In particular
we show the following

(a) Continuity and robustness do not hold in general under weak convergence of kernels (Theorem 12.3.1, Example
12.1).

(b) Under Assumption 12.1.1, continuity holds (Theorem 12.3.2), under Assumption 12.1.1, robustness holds if the
optimal policies for every initial point are identical (Theorem 12.3.3).

(c) Continuity and robustness do not hold in general under setwise convergence of the kernels (Theorem 12.3.4, Theo-
rem 12.3.6).
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(d) Under Assumption 12.1.3, continuity holds (Theorem 12.3.5), and under Assumption 12.1.3, robustness holds if
the optimal policies for every initial point are identical (Theorem 12.3.7).

(e) Continuity and robustness do not hold in general under total variation convergence of the kernels (Example 12.1).

(f) Under Assumption 12.1.4, continuity and robustness hold (subsection 12.3.3).

In Section 12.5, we study applications to empirical learning (in Section 12.5.1) where we establish the positive relevance
of Theorem 12.3.2, and then applications to finite model approximations under the perspective of robustness in in
Section 12.5.2. Here, we restrict the analysis to the case with weakly continuous kernels.

12.2 Continuity and Robustness of Optimal Cost in Convergence of Models (POMDP Case)

12.2.1 Continuity of Optimal Cost in Convergence of Models (POMDP Case)

We now study continuity of the optimal discounted cost under the convergence of transition kernels and cost functions.

Weak Convergence

Absence of Continuity under Weak Convergence. The following shows that the optimal cost may not be continuous
under weak convergence of transition kernels.

Theorem 12.2.1 [177]. Let Tn → T weakly, then it is not necessarily true that J∗
β(c, Tn) → J∗

β(c, T ) even when the
prior distributions are the same, the measurement channel Q is continuous in total variation, and c(x, u) is continuous
and bounded on X× U.

We prove the result with a counterexample [177]. Letting X = U = Y = [−1, 1] and c(x, u) = (x−u)2, the observation
channel is chosen to be uniformly distributed over [-1,1], Q ∼ U([−1, 1]), the initial distributions of the state variable
are chosen to be same as P ∼ δ1, where δx(A) := 1{x∈A} for Borel A, and the transition kernels are:

T (·|x, u) = δ−1(x)[
1

2
δ1(·) +

1

2
δ−1(·)] + δ1(x)[

1

2
δ1(·) +

1

2
δ−1(·)]

+ (1− δ−1(x))(1− δ1(x))δ0(·)

Tn(·|x, u) = δ−1(x)[
1

2
δ(1−1/n)(·) +

1

2
δ(−1+1/n)(·)] + δ1(x)[

1

2
δ(1−1/n)(·)

+
1

2
δ(−1+1/n)(·)] + (1− δ−1(x))(1− δ1(x))δ0(·).

It can be seen that Tn → T weakly according to Definition 12.1.1(i). Note that the cost function is continuous, and the
measurement channel is continuous in total variation. The optimal discounted costs can be found as

J∗
β(c, T ) =

∞∑
k=1

ET
P [β

kX2
k ] =

∞∑
k=1

βk =
β

1− β

J∗
β(c, Tn) =

∞∑
k=1

ETn

P [βkX2
k ] = β[

1

2
(1− 1

n
)2 +

1

2
(−1 +

1

n
)2].

Then we have J∗
β(c, Tn) → β ̸= β

1−β .
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A Sufficient Condition for Continuity under Weak Convergence

In the following, we will establish and utilize some regularity properties for the optimal cost with respect to the con-
vergence of transition kernels.

Assumption 12.2.1 (a) The stochastic kernel T (·|x, u) is weakly continuous in (x, u), i.e. if (xn, un) → (x, u), then
T (·|xn, un) → T (·|x, u) weakly.

(b) The observation channel Q(·|x) is continuous in total variation, i.e., if xn → x, then Q( · |xn) → Q( · |x) in total
variation.

(c) The stage-wise cost function c(x, u) is non-negative, bounded and continuous on X× U

(d) U is compact.

As we have see in Chapter 6, any POMDP can be reduced to a (completely observable) MDP, whose states are the pos-
terior state distributions or beliefs of the observer; that is, the state at time t is Zt( · ) := Pr{Xt ∈ · |Y0, . . . , Yt, U0, . . . ,
Ut−1} ∈ P(X). We call this equivalent MDP the belief-MDP . The belief-MDP has state space Z = P(X) and action
space U. Under the topology of weak convergence, since X is a Borel space, Z is metrizable with the Prokhorov met-
ric which makes Z a Borel space [236]. The transition probability η (6.3) of the belief-MDP was earlier constructed
through non-linear filtering equations.

The one-stage cost function c of the belief-MDP is given by c̃(z, u)
:=
∫
X c(x, u)z(dx). Under the regularity of the belief-MDP, we have shown that the discounted cost optimality op-

erator T : Cb(Z) → Cb(Z)

(T (f))(z) = min
u

(c̃(z, u) + βE[f(z1)|z0 = z, u0 = u]) (12.3)

is a contraction fromCb(Z) to itself under the supremum norm. As a result, there exists a fixed point, the value function,
and an optimal control policy exists. In view of this existence result, in the following we will consider optimal policies.

The following result is key to proving the main result of this section whose detailed analysis can be found in [177].

Theorem 12.2.2 Suppose we have a uniformly bounded family of functions {fγn : X → R, γ ∈ Γ, n > 0} such that
∥fγn∥∞ < C for all γ ∈ Γ and for all n > 0 for some C <∞.

Further suppose we have another uniformly bounded family of functions {fγ : X → R, γ ∈ Γ} such that ∥fγ∥∞ < C
for all γ ∈ Γ for some C <∞. Under the following assumptions,

(i) For any xn → x

sup
γ∈Γ

∣∣fγn (xn)− fγ(x)
∣∣→ 0, sup

γ∈Γ

∣∣fγ(xn)− fγ(x)
∣∣→ 0,

(ii) supγ ρ(µ
γ
n, µ

γ) → 0 where ρ is some metric for the weak convergence topology,

we have

sup
γ∈Γ

∣∣∣∣ ∫ fγn (x)µ
γ
n(dx)−

∫
fγ(x)µγ(dx)

∣∣∣∣→ 0.

Theorem 12.2.3 Under Assumptions 12.1.1 and 12.1.2,

sup
γ∈Γ

|Jβ(cn, Tn, γ)− Jβ(c, T , γ)| → 0.

Proof sketch.
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sup
γ∈Γ

|Jβ(cn, Tn, γ)− Jβ(c, T , γ)|

= sup
γ∈Γ

∣∣∣∣ ∞∑
t=0

βt
(
ETn

P

[
cn
(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)])∣∣∣∣
≤

∞∑
t=0

βt sup
γ∈Γ

∣∣∣∣ETn

P

[
cn
(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣.
Recall that an admissible policy γ is a sequence of control functions {γt, t ∈ Z+}. In the last step above, we make a
slight abuse of notation; the sup at the first step is over all sequence of control functions {γt, t ∈ Z+} whereas the sup
at the last step is over all sequence of control functions {γt′ , t′ ≤ t}, but we will use the same notation, γ, in the rest
of the proof.

For any ϵ > 0, we choose a K < ∞ such that
∑∞
t=K+1 β

k2∥c∥∞ ≤ ϵ/2. For the chosen K, we choose an N < ∞
such that

sup
γ∈Γ

∣∣∣∣ETn

P

[
cn
(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣ ≤ ϵ/2K

for all t ≤ K and for all n > N . We note that in [177] a fixed c function was considered, but by considering the
additional term

sup
γ∈Γ

∣∣∣ETn

P

[
cn
(
Xt, γ(Y[0,t])

)]
− ET

P

[
cn
(
Xt, γ(Y[0,t])

)]∣∣∣
and noting that supγ |

∫
Q(dy|xn)cn(xn, γ(y)) −

∫
Q(dy|x)c(x, γ(y))| → 0, for every xn → x, by a generalized

dominated convergence theorem as Q is continuous in total variation, a triangle inequality argument shows that the
same result applies. This follows from a generalized dominated convergence theorem as stated in Theorem 12.2.2
whose detailed analysis can be found in [177]. Thus, supγ∈Γ

∣∣Jβ(cn, Tn, γ)− Jβ(c, T , γ) → 0 as n→ ∞. ⋄

Theorem 12.2.4 [173, 177] Suppose the conditions of Theorem 12.2.3 hold. Then

lim
n→∞

|J∗
β(cn, Tn)− J∗

β(c, T )| = 0.

Proof sketch. We start with the following bound:

|J∗
β(cn, Tn)− J∗

β(c, T )| (12.4)

≤max

(
Jβ(cn, Tn, γ∗)− Jβ(c, T , γ∗), Jβ(c, T , γ∗n)− Jβ(cn, Tn, γ∗n)

)
,

where γ∗ and γ∗n are the optimal policies, respectively, for T and Tn. Both terms go to 0 by Theorem 12.2.3. ⋄

Absence of Continuity under Setwise Convergence

We now show that continuity of optimal costs may fail under the setwise convergence of transition kernels. Theorem
12.3.4 in the next section establishes this result for fully observed models, which serves as a proof for this setup also.

Theorem 12.2.5 [173, 177] Let Tn → T setwise. Then, it is not true in general that

J∗
β(c, Tn)

→ J∗
β(c, T ), even when X,Y, and U are compact and c(x, u) is continuous and bounded in X× U.
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Continuity under Total Variation

Theorem 12.2.6 [173, 177] Under Assumption 12.1.4, J∗
β(cn, Tn) → J∗

β(c, T ).

Proof sketch. We start with the following bound:

|J∗
β(cn, Tn)− J∗

β(c, T )| ≤max

(
Jβ(cn, Tn, γ∗)− Jβ(c, T , γ∗), Jβ(cn, Tn, γ∗n)

− Jβ(c, T , γ∗n)
)
,

where γ∗ and γ∗n are the optimal policies, respectively, for T and Tn.

We now study the following:

sup
γ∈Γ

|Jβ(cn, Tn, γ)− Jβ(c, T , γ)|

= sup
γ∈Γ

∣∣∣∣ ∞∑
t=0

βt
(
ETn

P

[
cn
(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)])∣∣∣∣
≤

∞∑
t=0

βt sup
γ∈Γ

∣∣∣∣ETn

P

[
cn
(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣.
It can be shown that ( [177])

sup
γ∈Γ

∣∣∣∣ETn

P

[
cn
(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣→ 0. (12.5)

This was shown in [177] for fixed c. The extension to varying cn follows from a triangle inequality step with the
assumption that Tn(·|x, un) → T (·|x, u) setwise, and cn(x, un) → c(x, u) for any un → u. Therefore, using identical
steps as in the proof of Theorem 12.2.3 we have supγ∈Γ

∣∣Jβ(cn, Tn, γ)− Jβ(c, T , γ)
∣∣→ 0. ⋄

12.2.2 Robustness to Incorrect Models (POMDP Case)

Here, we consider the robustness problem P2: Suppose we design an optimal policy, γ∗n, for a transition kernel, Tn and
a cost function cn, assuming they are the correct model and apply the policy to the true model whose transition kernel
is T and whose cost function is c. We study the robustness of the sub-optimal policy γ∗n.

Total Variation

The next theorem gives an asymptotic robustness result.

Theorem 12.2.7 Under Assumption 12.1.4

|Jβ(cn, T , γ∗n)− J∗
β(c, T )| → 0,

where γ∗n is the optimal policy designed for the kernel Tn.

Proof sketch. We write the following:

|Jβ(c, T , γ∗n)− J∗
β(c, T )| ≤ |Jβ(c, T , γ∗n)− J∗

β(cn, Tn)|+ |J∗
β(cn, Tn)− J∗

β(c, T )|.

Both terms can be shown to go to 0 using (12.5). ⋄
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Setwise Convergence

Theorem 12.3.6 in the next section establishes the lack of robustness under the setwise convergence of kernels. As we
note later, a fully observed system can be viewed as a partially observed system with the measurement being the state
itself, (see (12.6)).

Weak Convergence

Theorem 12.2.8 [173, 177] Under Assumptions 12.1.1 and 12.1.2, |Jβ(c, T , γ∗n) − J∗
β(c, T )| → 0, where γ∗n is the

optimal policy designed for the transition kernel Tn.

Proof sketch. We write

|Jβ(c, T , γ∗n)− J∗
β(c, T )| ≤|Jβ(c, T , γ∗n)− Jβ(cn, Tn, γ∗n)|+ |Jβ(cn, Tn, γ∗n)

− Jβ(T , γ∗)|.

The first term goes to 0 by Theorem 12.2.3. For the second term we use Theorem 12.2.4. ⋄

12.3 Continuity and Robustness in the Fully Observed Case

In this section, we consider the fully observed case where the controller has direct access to the state variables. We
present the results for this case separately, since here we cannot utilize the regularity properties of measurement chan-
nels which allows for stronger continuity and robustness results. Under measurable selection conditions due to weak or
strong (setwise) continuity of transition kernels [155, Section 3.3], for infinite horizon discounted cost problems opti-
mal policies can be selected from those which are stationary and deterministic. Therefore we will restrict the policies
to be stationary and deterministic so that Ut = γ(Xt) for some measurable function γ. Notice also that fully observed
models can be viewed as partially observed with the measurement channel thought to be

Q(·|x) = δx(·), (12.6)

which is only weakly continuous, thus it does not satisfy Assumption 12.1.2.

12.3.1 Weak Convergence

Absence of Continuity under Weak Convergence.

We start with a negative result.

Theorem 12.3.1 [173, 177] For Tn → T weakly, it is not necessarily true that J∗
β(c, Tn) → J∗

β(c, T ) even when the
prior distributions are the same and c(x, u) is continuous and bounded in X× U.

Proof. We prove the result with a counterexample, similar to the model used in the proof of Theorem 12.2.1 Letting
X = [−1, 1], U = {−1, 1} and c(x, u) = (x − u)2, the initial distributions are given by P ∼ δ1, that is, X0 = 1, and
the transition kernels are

T (·|x, u) =δ−1(x)[
1

2
δ1(·) +

1

2
δ−1(·)] + δ1(x)[

1

2
δ1(·) +

1

2
δ−1(·)]

+ (1− δ−1(x))(1− δ1(x))δ0(·),
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Tn(·|x, u) =δ−1(x)[
1

2
δ(1−1/n)(·) +

1

2
δ(−1+1/n)(·)] + δ1(x)[

1

2
δ(1−1/n)(·)

+
1

2
δ(−1+1/n)(·)] + (1− δ−1(x))(1− δ1(x))δ0(·).

It can be seen that Tn → T weakly according to Definition 12.1.1(i). Under this setup we can calculate the optimal
costs as follows:

J∗
β(c, Tn) =

1

n2
+

∞∑
k=2

βk =
1

n2
+

β2

1− β
,

and J∗
β(c, T ) = 0. Thus, continuity does not hold. ⋄

We now present another counter example emphasizing the importance of continuous convergence in the actions. The
following counter example shows that without the continuous convergence and regularity assumptions on the kernel T ,
continuity fails even when Tn(·|x, u) → T (·|x, u) pointwise (for x, u) in total variation (also setwise and weakly) and
even when the cost function c(x, u) is continuous and bounded. Notice that this example also holds for both setwise
and weak convergence.

Example 12.1. Assume that the kernels are given by

Tn(·|x, u) ∼ U([un, 1 + un]),

T (·|x, u) ∼

{
U([0, 1]) if u ̸= 1,

U([1, 2]) if u = 1,

where U = [0, 1] and X = R. We note first that Tn(·|x, u) → T (·|x, u) in total variation for every fixed x and u.

The cost function is in the following form:

c(x, u) =



2 if x ≤ 1
e ,

2− x− 1
e

0.1 if 1
e < x ≤ 0.1 + 1

e ,

1 if 0.1 + 1
e < x ≤ 1 + 1

e − 0.1,

2− 1+ 1
e−x
0.1 if 1 + 1

e − 0.1 < x ≤ 1 + 1
e ,

2 if 1 + 1
e < x.

Notice that c(x, u) is a continuous function.

With this setup, γ∗(x) = 0 is an optimal policy for T since on the [0, 1] interval the induced cost is less than the cost
induced on the [1, 2] interval. The cost under this policy is

J∗
β(c, T ) =

∞∑
t=0

βt
(
2× 1

e
+

0.3

2
+ 0.9− 1

e

)
=

1

1− β

(
1.05 +

1

e

)
.

For Tn, γ∗n(x) = e−
1
n is an optimal policy for every n as e−

1
n×n = 1

e and thus the state is distributed between
1
e < x ≤ 1 + 1

e in which interval the cost is the least. Hence, we can write

lim
n→∞

Jβ(c, Tn, γ∗n) =
∞∑
t=0

βt
(
0.3 + 1− 0.2

)
=

1.1

1− β
̸= 1

1− β

(
1.05 +

1

e

)
= J∗

β(c, T ).

⋄
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A Sufficient Condition for Continuity under Weak Convergence.

We will now establish that if the kernels and the model components have some further regularity, continuity does hold.
The assumptions of the following result are the same as the assumptions for the partially observed case (Theorem
12.2.4) except for the assumption on the measurement channel Q.

Theorem 12.3.2 [173, 177] Under Assumption 12.1.1, Jβ(cn, Tn, γ∗n) → Jβ(c, T , γ∗) for any initial state x0, as
n→ ∞.

Proof. We will use the successive approximations for an inductive argument.

Recall the discounted cost optimality operator T : Cb(Z) → Cb(Z) from (12.3)

(T (v))(x) = inf
u∈U

(
c(x, u) + βE[v(x1)|x0 = x, u0 = u]

)
,

which is a contraction from Cb(X) to itself under the supremum norm and has a fixed point, the value function. For the
kernel T , we will denote the approximation functions by

vk(x) = T (vk−1)(x),

and for the kernel Tn we will use vkn(x) to denote the approximation functions, notice that the operator T also depends
on n for the model Tn, but we will continue using it as T in what follows.

We wish to show that the approximation functions for Tn continuously converge to the ones for T . Then, for the first
step of the induction we have

v1(x) = c(x, u∗), v1n(xn) = cn(xn, u
∗
n),

and thus we can write,

|v1(x)− v1n(xn)| ≤ sup
u∈U

∣∣c(x, u)− cn(xn, u)
∣∣

since cn(xn, un) → c(x, u) for all (xn, un) → (x, u) and the action space, U, is compact, the first step of the induction
holds, i.e. limn→∞ |v1(x)− v1n(xn)| = 0.

For the kth step we have

vk(x) = T (vk−1)(x) = inf
u

[
c(x, u) + β

∫
X
vk−1(x1)T (dx1|x, u)

]
,

vkn(xn) = T (vk−1
n )(xn) = inf

u

[
cn(xn, u) + β

∫
X
vk−1
n (x1)Tn(dx1|xn, u)

]
.

Note that the assumptions of the theorem satisfy the measurable selection criteria and hence we can choose minimizing
selectors ( [155, Section 3.3]). If we denote the selectors by u∗ and u∗n, we can write

|vk(x)− vkn(xn)|

≤max
([

|c(x, u∗)− cn(xn, u
∗)|

+ β|
∫
X
vk−1(x1)T (dx1|x, u∗)−

∫
X
vk−1
n (x1)Tn(dx1|xn, u∗)|

]
,[

|c(x, u∗n)− cn(xn, u
∗
n)|

+ β|
∫
X
vk−1(x1)T (dx1|x, u∗n)−

∫
X
vk−1
n (x1)Tn(dx1|xn, u∗n)|

])
.
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Hence, we can write

|vk(x)− vkn(xn)| (12.7)

≤ sup
u∈U

[
|c(x, u)− cn(xn, u)|

+ β|
∫
X
vk−1(x1)T (dx1|x, u)−

∫
X
vk−1
n (x1)Tn(dx1|xn, u)|

]
,

above, the first term goes to 0 as cn(xn, un) → c(x, u) for all (xn, un) → (x, u) and the action space, U, is compact.
For the second term we write,

sup
u∈U

|
∫
X
vk−1(x1)T (dx1|x, u)−

∫
X
vk−1
n (x1)Tn(dx1|xn, u)|

≤ sup
u∈U

|
∫
X

(
vk−1(x1)− vk−1

n (x1)
)
Tn(dx1|xn, u)|

+ sup
u∈U

|
∫
X
vk−1(x1)T (dx1|x, u)−

∫
X
vk−1(x1)Tn(dx1|xn, u)|

above, for the first term, by the induction argument for any x1n → x1,
∣∣vk−1(x1) − vk−1

n (x1n)
∣∣ → 0 (i.e., we have

continuous convergence).

We also have that Tn(·|xn, u) → T (·|x, u) weakly uniformly over u ∈ U as U is compact. Therefore, using Theorem
12.2.2 the first term goes to 0. For the second term we again use that Tn(·|xn, u) converges weakly to T (·|x, u)
uniformly over u ∈ U. With an almost identical induction argument it can also be shown that vk−1(x1) is continuous
in x1, thus the second term also goes to 0.

So far, we have showed that for any k ∈ N, limn→∞
∣∣vkn(xn)− vk(x)

∣∣ = 0 for any xn → x, in particular it is also true
that limn→∞

∣∣vkn(x)− vk(x)
∣∣ = 0 for any x.

As we have stated earlier, it can be shown that the approximation operator, T is a contractive operator under supremum
norm with modulus β and it converges to a fixed point which is the value function. Thus, we have

∣∣Jβ(c, T , γ∗)− vk(x)
∣∣ ≤ ∥c∥∞

βk

1− β
,
∣∣J∗
β(cn, Tn, γ∗n)− vkn(x)

∣∣ ≤ ∥c∥∞
βk

1− β
. (12.8)

Combining the results,

|Jβ(cn, Tn, γ∗n)− |Jβ(c, T , γ∗)| ≤|Jβ(cn, Tn, γ∗n)− vkn(x)|+ |vkn(x)− vk(x)|
+ |Jβ(c, T , γ∗)− vk(x)|.

Note that the first and the last term can be made arbitrarily small since (12.8) holds for all k ∈ N; the second term goes
to 0 with an inductive argument for all k ∈ N. ⋄

A Sufficient Condition for Robustness under Weak Convergence.

We now present a result that establishes robustness if the optimal policies for every initial point are identical. That is,
for every n, γ∗n is optimal for every x0 ∈ X (under the model Tn). A sufficient condition for this property is that γ∗n
solves the discounted cost optimality equation (DCOE) for every initial point.

A policy γ∗ ∈ Γ solves the discounted cost optimality equation and is optimal if it satisfies

J∗
β(c, T , x) = c(x, γ∗(x)) + β

∫
J∗
β(c, T , x1)T (dx1|x, γ∗(x)).



294 12 Robustness to Incorrect Models and Learning

Thus, a policy is optimal for every initial point if it satisfies the DCOE for all initial points x ∈ X. The following
generalizes [177].

Theorem 12.3.3 Under Assumption 12.1.1, Jβ(cn, T , γ∗n) → Jβ(c, T , γ∗) for any initial point x0 if γ∗n is optimal for
any initial point for the kernel Tn and for the stage-wise cost function cn.

Remark 12.2. For the partially observed case, the proof approach we use makes use of policy exchange (e.g. (12.4))
and for this approach the total variation continuity of channel Q(·|x) is a key step to deal with the uniform convergence
over policies. As we stated before, the channel for fully observed models can be considered in the form of (12.6) which
is only weakly continuous and not continuous in total variation. Thus, obtaining a result uniformly over all policies
may not be possible. However, for the fully observed models we can reach continuity and robustness (Theorem 12.3.2,
Theorem 12.3.3) using a value iteration approach. With this approach, instead of exchanging policies and analyzing
uniform convergence over all policies, we can exchange control actions (e.g. (12.7)) and analyze uniform convergence
over the action space U by using the discounted optimality operator (12.3). Hence, we are only able to show convergence
over optimal policies for the fully observed case, i.e. Jβ(cn, Tn, γ∗n) → Jβ(c, T , γ∗) or Jβ(c, T , γ∗n) → Jβ(c, T , γ∗)
where γ∗n and γ∗ are optimal policies, whereas, for partially observed models, regularity of the channel allows us to
show convergence over any sequence of policies, i.e. supγ∈Γ |Jβ(cn, Tn, γ)− Jβ(c, T , γ)| → 0.

Remark 12.3. As we have discussed in subsection 12.2.1, a partially observed model can be reduced to a fully observed
process where the state process (beliefs) becomes probability measure valued. Consider the partially observed models
with transition kernels Tn and T (with a channel Q) and their corresponding fully observed transition kernels ηn and
η: following the discussions and techniques in [122] and [174], one can show that ηn and η satisfy the conditions of
Theorem 12.3.3 and Theorem 12.3.2 that is ηn(·|zn, un) → η(·|z, u) for any (zn, un) → (z, u) under the following set
of assumptions

– Tn(·|xn, un) → T (·|x, u) for any (xn, un) → (x, u),

– Q(·|x) is continuous on total variation in x.

We remark that these conditions also agree with the conditions presented for continuity and robustness of the partially
observed models (Theorem 12.2.4 and Theorem 12.2.8).

12.3.2 Setwise Convergence

Absence of Continuity under Setwise Convergence.

We give a negative result similar to Theorem 12.2.5, via Example 12.1:

Theorem 12.3.4 Letting Tn → T setwise, then it is not necessarily true that J∗
β(c, Tn) → J∗

β(c, T ) even when c(x, u)
is continuous and bounded in X× U.

A Sufficient Condition for Continuity under Setwise Convergence.

Theorem 12.3.5 Under Assumption 12.1.3 Jβ(cn, Tn, γ∗n) → Jβ(c, T , γ∗), for any initial state x0, as n→ ∞.

Proof. We use the same value iteration technique that we used to prove Theorem 12.3.2. See [177]. ⋄

Absence of Robustness under Setwise Convergence.

Now, we give a result showing that even if the continuity holds under the setwise convergence of the kernels, the
robustness may not be satisfied (see [177, Theorem 4.7]).
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Theorem 12.3.6 Supposing Tn(·|xn, un) → T (·|x, u) setwise for every x ∈ X and u ∈ U and (xn, un) → (x, u), then
it is not true in general that Jβ(c, T , γ∗n) → Jβ(c, T , γ∗), even when X and U are compact and c(x, u) is continuous
and bounded in X× U.

A Sufficient Condition for Robustness under Setwise Convergence.

We now present a similar result to Theorem 12.3.3 that is we show that under the conditions of Theorem 12.3.5,
if further for every n, γ∗n is optimal for every x0 ∈ X (under the model Tn) then robustness holds under setwise
convergence.

Theorem 12.3.7 Supposing Assumption 12.1.3 holds, if further we have that for every n, γ∗n is optimal for every x0 ∈ X
(under the model Tn) then Jβ(c, T , γ∗n) → Jβ(c, T , γ∗).

12.3.3 Total Variation

The continuity result in Theorem 12.2.6 and the robustness result in Theorem 12.2.7 apply to this case since the fully
observed model may be viewed as a partially observed model with the measurement channel Q given in (12.6).

12.4 The Average Cost Case

The results above also apply to the average cost setup by adding an ergodicity condition, as we have seen in Chapter 7.

In the following we will denote the set of all stationary policies by Γs . For the transitions under some stationary policy
γ, we will use the following notation: T (·|x, γ) := T (·|x, γ(x)).

We also define the t-step transition kernel T t(·|x, γ) in an iterative fashion as follows:

T t(·|x, γ) :=
∫

T (·|xt−1, γ)T t−1(dxt−1|x, γ),

where T 1(·|x, γ) = T (·|x, γ).

We will use the following ergodicity condition for some of the results.

Assumption 12.4.1 For every stationary policy γ, the transition kernels T and Tn lead to positive Harris recurrent
chains and in particular admit invariant measures πγ and πnγ , and for these invariant measures uniformly for every
initial point x ∈ X we have:

lim
t→∞

sup
γ∈Γs

∥T t(·|x, γ)− πγ(·)∥TV = 0

lim
t→∞

sup
n

sup
γ∈Γs

∥T t
n(·|x, γ)− πnγ (·)∥TV = 0.

We have seen the following earlier in Chapter 7, repeated in a concise form for reader’s convenience:

For our continuity and robustness results, it will be instrumental to work with stationary policies. This will be without
any loss under mild conditions to be presented in this subsection. An approach for average cost problems is to make
use of average cost optimality equation (ACOE). To work with ACOE one usually needs contraction properties of the
transition kernel. The following result provides further alternative sufficient conditions on existence of optimal policies
(which turn out to be stationary) for infinite horizon average cost problems.
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Assumption 12.4.2 The following hold.

(A) Assumption 7.2.1 holds,

(B) The action space U is compact,

(C) c(x, u) is bounded and continuous in (x, u),

(C’)c(x, u) is bounded and continuous in u for every fixed x,

(D)T (·|x, u) is weakly continuous in (x, u),

(D’)T (·|x, u) is setwise continuous in u for every x.

Proposition 12.4. Suppose Assumption 12.4.2 A, B, and, either C and D, or C’ and D’, hold. Then J∞(T , γ) admits
an optimal stationary policy. ⋄

12.4.1 Approximation by finite horizon cost

We denote the t-step finite horizon cost function under a stationary policy γ and a transition model T by Jt(T , γ) and
the corresponding optimal cost is denoted by J∗

t (T ):

Jt(T , γ) =
t−1∑
i=0

ET
γ [c(Xi, Ui)]

J∗
t (T ) = inf

γ∈Γ
Jt(T , γ).

The following result shows that the infinite horizon average cost induced by a stationary policy can be approximated
by a finite cost under the same stationary policies with proper ergodicity conditions.

Lemma 12.5. [172] Under Assumption 12.4.1, if the cost function c is bounded then for every initial state we have

sup
γ∈Γ

∣∣∣∣Jt(T , γ)t
− J∞(T , γ)

∣∣∣∣→ 0,

sup
γ∈Γ

sup
n

∣∣∣∣Jt(Tn, γ)t
− J∞(Tn, γ)

∣∣∣∣→ 0.

Proof. We have that J∞(T , γ) =
∫
c(x, γ(x))πγ(dx). Thus, we can write∣∣∣∣Jt(T , γ)t
− J∞(T , γ)

∣∣∣∣
=

∣∣∣∣1t
t−1∑
i=0

ET
γ [c(Xi, Ui)]−

∫
c(x, γ(x))πγ(dx)

∣∣∣∣
≤ 1

t

t−1∑
i=0

∣∣∣∣ ∫ c(xi, γ(xi))T i(dxi|x0, γ)−
∫
c(x, γ(x))πγ(dx)

∣∣∣∣
≤ 1

t

t−1∑
i=0

∥c∥∞∥T i(·|x0, γ)− πγ∥TV .

We now fix an ϵ > 0 and choose a tϵ <∞ such that ∥T i(·|x0, γ)− πγ∥TV < ϵ for all i > tϵ. We also choose another
Tϵ with 2tϵ

t < ϵ for all t > Tϵ. With this setup, we have
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1

t

t−1∑
i=0

∥T i(·|x0, γ)− πγ∥TV

≤ 1

t

tϵ−1∑
i=0

∥T i
γ (·|x0)− πγ∥TV +

1

t

t∑
i=tϵ

∥T i
γ (·|x0)− πγ∥TV

≤ 2tϵ
t

+ ϵ ≤ 2ϵ, ∀t > Tϵ.

We have shown that for any fixed ϵ > 0, we can choose a Tϵ <∞, independent of γ, such that∣∣∣∣Jt(T , γ)t
− J∞(T , γ)

∣∣∣∣ < ϵ, ∀t > Tϵ.

Hence the result is complete for T .

For Tn the result follows from the same steps since we can again choose such tϵ and Tϵ due to the uniformity over n
and γ in Assumption 12.4.1. ⋄

The next result from [150, Corollary 4.11] shows that the optimal infinite horizon cost can be approximated by an
optimal finite horizon cost induced by the same transition kernel.

Lemma 12.6. Suppose the cost function c is bounded and either Assumption 12.4.2 A, B, C, D or Assumption 12.4.2 A,
B, C’, D’ hold (for T and Tn). Then, we have

lim
t→∞

∣∣∣∣J∗
∞(T )− J∗

t (T )

t

∣∣∣∣→ 0,

lim
t→∞

sup
n

∣∣∣∣J∗
∞(Tn)−

J∗
t (Tn)
t

∣∣∣∣→ 0.

12.4.2 Continuity under the convergence of transition kernels

Theorem 12.7. [172] We have that |J∗
∞(Tn)− J∗

∞(T )| → 0, under

c1. Assumption 12.4.2 A, B, C and D if Tn(·|xn, un) → T (·|x, u) weakly for any (xn, un) → (x, u).

c2. Assumption 12.4.2 A, B, C ′ and D′ if Tn(·|x, un) → T (·|x, u) setwise for any un → u for every fixed x.

Proof. We use the following bound:

|J∗
∞(Tn)− J∗

∞(T )|

≤
∣∣∣∣J∗

∞(Tn)−
J∗
t (Tn)
t

∣∣∣∣
+

∣∣∣∣J∗
t (Tn)
t

− J∗
t (T )

t

∣∣∣∣+ ∣∣∣∣J∗
t (T )

t
− J∗

∞(T )

∣∣∣∣ .
The first and the last terms above can be made arbitrarily small by choosing t large enough uniformly over n using
Lemma 12.6 under suitable assumptions. For the second term, we can use continuity results for finite time problems
for the fixed t as the assumptions cover the requirements studied earlier: see the proofs of Theorem 12.3.2 (for weak
convergence) and Theorem 12.3.5 (for setwise convergence). ⋄

12.4.3 Robustness to Incorrect Controlled Transition Kernel Models

In this section, we investigate robustness for infinite horizon average cost problems. We first restate the problem:
Consider an MDP with transition kernel Tn, and assume that an optimal control policy for this MDP under the average
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cost criterion is γ∗n, that is

inf
γ∈Γ

J∞(Tn, γ) = J∞(Tn, γ∗n).

Now, consider another MDP with transition kernel T whose optimal cost is denoted by J∗
∞(T ). If the controller does

not know the true transition kernel T and calculates an optimal policy assuming the transition kernel is Tn, then the
incurred cost by this policy is J∞(T , γ∗n). The focus of this section is to find sufficient conditions such that as Tn → T ,

J∞(T , γ∗n) → J∞(T , γ∗).

Suppose that the MDP with kernel Tn admits two different optimal policies γ1n and γ2n. Although, the cost incurred by
these policies under the kernel Tn are the same, under the kernel T they may have different cost values. That is, even
though we have that

J∞(Tn, γ1n) = J∞(Tn, γ2n) = J∗
∞(Tn),

we may have J∞(T , γ1n) ̸= J∞(T , γ2n). An example is as follows: Consider a system with state space X = [−1, 1],
control action space U = {−1, 0, 1}, the cost function c(x, u) = (x− u)2 and the transition models are given as

Tn(·|x, u) =
1

2
δ1(·) +

1

2
δ−1(·)

T (·|x, u) = δ0(·).

Notice that two optimal policies for Tn are

γ1n(x) =


1 if x = 1,

−1 if x = −1,

0 else.
γ2n(x) =

{
1 if x ≥ 0,

−1 if x < 0.

However, if the initial point is x0 = 0, we have that J∞(T , γ1n) = 0 ̸= 1 = J∞(T , γ2n).

In what follows, we show that under total variation convergence of Tn → T , this issue does not cause a problem
so that we have J∞(T , γ∗n) → J∞(T , γ∗) for any stationary optimal policy γ∗n. However, under weak or setwise
convergence of the transition models, we establish the same result under some particularly constructed optimal polices
γ∗n, namely we focus on the policies that solve the average cost optimality equation (ACOE) (in analogy with the
corresponding results under the discounted cost criterion: Theorem 12.3.3 under weak continuity, Theorem 12.3.7 for
setwise continuity).

The following summarize some of the relevant findings in Section 7.2.

Proposition 12.8. [150] Suppose the cost function c is bounded. Under Assumption 12.4.1, there exists a β < 1 such
that the following holds:

(i) sp
(
Tv − Tw

)
≤ β sp(u− w), for any v, w ∈ B(X) where T is the operator defined in (7.20).

(ii) Since T is a contraction under the span norm, it admits a fixed point v∗ ∈ B(X) such that

j∗ + v∗(x) = inf
u∈U

(
c(x, u) +

∫
X

v∗(y)T (dy|x, u)
)
,

for some constant j∗.

(iii)For any initial point x0 ∈ X , the constant j∗ defined in (ii) is the optimal infinite horizon average cost for the
kernel T , that is

j∗ = J∗
∞(T , x0) = inf

γ∈Γ
J∞(T , γ, x0)
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for every x0 ∈ X .

(iv) If there exists a policy γ∗ ∈ Γ satisfying the ACOE, then this stationary policy is an optimal policy for the average
infinite horizon cost problem; that is, if γ∗ satisfies

j∗ + v∗(x) = c(x, γ∗(x)) +

∫
X

v∗(y)T (dy|x, γ∗(x)),

then J∞(T , γ∗, x0) = J∗
∞(T , x0).

Theorem 12.9. [172] We have that
J∞(T , γ∗n, x) → J∗

∞(T , x)

for any x ∈ X , where γ∗n is the optimal policy for the transition kernel Tn that satisfies the ACOE, under Assumption
12.4.2 A, B, C and D if Tn(·|xn, un) → T (·|x, u) weakly for any (xn, un) → (x, u).

Proof. Consider the following two ACOEs for the kernels Tn and T with their fixed points v∗n and v∗:

j∗n + v∗n(x) = inf
u∈U

[
c(x, u) +

∫
v∗n(y)Tn(dy|x, u)

]
(12.9)

j∗ + v∗(x) = inf
u∈U

[
c(x, u) +

∫
v∗(y)T (dy|x, u)

]
(12.10)

We now show that, for all xn → x,

v∗n(xn)− v∗(x) → c (12.11)

for some constant c with |c| <∞. To show this, we first write

v∗n(xn)− v∗(x)

=
(
v∗n(xn)− vtn(xn)

)
+
(
vtn(xn)− vt(x)

)
+
(
vt(x)− v∗(x)

)
where vtn and vt are the results of operator (7.20) applied to the 0-function, t times for kernels the Tn and T . Notice
that vtn and vt are the value functions for t-step cost problem and by the assumptions ( [177, Theorem 4.4]) we have
that |vtn(xn) − vt(x)| → 0 for every fixed t. For the first and the last terms, we use the fact that the operator (7.20) is
a contraction under Assumption 7.2.1 for the span semi-norm and hence both terms go to some constants as t → ∞
uniformly for all n, that is v∗n(xn) − vtn(xn) → c1 and vt(x) − v∗(x) → c2 for some |c1|, |c2| < ∞. Thus, we have
that (12.11) holds for some c <∞.

Since U is compact, for every xn → x, γn(xn) has a convergent subsequence which converges to say some u∗ ∈ U . If
we take the limit along this subsequence for (12.9), using the assumptions that Tn(·|xn, un) → T (·|x, u) weakly, the
fact that limn→∞

(
v∗n(xn)− v∗(x)

)
= c, and that j∗n → j∗ (continuity results from Theorem 12.7) we get

lim
k

(
j∗nk

+ v∗nk
(xnk

)

)
= lim

k
c(x, γ∗nk

(xnk
)) +

∫
v∗nk

(y)Tnk
(dy|xnk

, γ∗nk
(xnk

))

= j∗ + v∗(x) + c = c(x, u∗) +

∫
v∗(y)T (dy|x, u∗) + c.

Therefore, u∗ satisfies the ACOE for the kernel T and thus, any convergent subsequence of γ∗n(xn) is an optimal action
for x for the kernel T .

Now consider the following operator T̂n, for the kernel T and the policy γ∗n which is optimal for Tn
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T̂nv̂n(x) = c(x, γ∗n(x)) +

∫
v̂n(y)T (dy|x, γ∗n(x)). (12.12)

One can show that this operator is also a contraction under span semi-norm and admits a fixed point v̂∗n, such that

ĵn + v̂∗n(x) = c(x, γ∗n(x)) +

∫
v̂∗n(y)T (dy|x, γ∗n(x))

where ĵn = J∞(T , γ∗n, x) for all x. Hence, we need to show that ĵn → j∗ to complete the proof. To show this, in [172],
it has been proven that

lim
n→∞

v̂∗n(xn)− v∗(x) = ĉ, (12.13)

for any xn → x for some constant ĉ <∞.

Now, assume that limn ĵn ̸= j∗ and that there exists a subsequence ĵnk
and an ϵ > 0 such that |ĵnk

− j∗| > ϵ for every
k. We will show that this cannot hold, by establishing the existence of a further subsequence ĵnkl

which converges to
j∗ in the following.

We first note that limn→∞ v̂∗n(xn) − v∗(x) = ĉ. Hence, Theorem D.3.1 yields that
∫
v̂∗nkl

(y)T (dy|x, γ∗nkl
(x)) →∫

v∗(y)T (dy|x, u∗) + ĉ where ĉ also satisfies
(
v̂∗nkl

(x)− v∗(x)
)
→ ĉ.

Therefore, taking the limit along this subsequence,

lim
l→∞

ĵnkl

= lim
l→∞

c(x, γ∗nkl
(x)) +

∫
v̂∗nkl

(y)T (dy|x, γ∗nkl
(x))− v̂∗nkl

(x)

= c(x, u∗) +

∫
v∗(y)T (dy|x, u∗)− v∗(x) = j∗.

This contradicts to |ĵnk
− j∗| > ϵ, hence we conclude that ĵn → j∗. ⋄

We now obtain the same under setwise convergence, without proof.

Theorem 12.10. [172] We have that J∞(T , γ∗n, x) → J∗
∞(T , x) for any x ∈ X , where γ∗n is the optimal policy for

the transition kernel Tn that satisfies the ACOE, under Assumption 12.4.2 A, B, C and D if Tn(·|x, un) → T (·|x, u)
setwise for any un → u.

For total variation, a more direct result follows.

Theorem 12.11. [172] We have that |J∞(T , γ∗n) − J∗
∞(T )| → 0 for any stationary optimal policy γ∗n for Tn, under

Assumption 12.4.2 A, B, C ′ and D′ if Tn(·|x, un) → T (·|x, u) in total variation for any un → u for every fixed x.

Proof. We write:

|J∞(T , γ∗n)− J∗
∞(T )|

≤ |J∗
∞(Tn)− J∗

∞(T )|+ |J∞(T , γ∗n)− J∗
∞(Tn)|

the first term goes to by Theorem 12.7. For the second term we write

|J∞(T , γ∗n)− J∗
∞(Tn)|

≤
∣∣∣∣J∞(T , γ∗n)−

Jt(Tn, γ∗n)
t

∣∣∣∣
+

∣∣∣∣Jt(Tn, γ∗n)t
− Jt(T , γ∗n)

t

∣∣∣∣+ ∣∣∣∣Jt(T , γ∗n)t
− J∞(T , γ∗n)

∣∣∣∣
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The first and the last terms above again can be made arbitrarily small by choosing t large enough uniformly over n
using Lemma 12.5. For the second term we use [177, Section A.2] where it is shown that under the stated assumptions
supγ∈Γ |Jt(Tn, γ)− Jt(T , γ)| → 0. Hence the proof is complete. ⋄

12.5 Applications to Data-Driven Learning and Finite Model Approximations

12.5.1 Application of Robustness Results to Data-Driven Learning

In practice, one may estimate the kernel of a controlled Markov chain using empirical data.

Let us briefly review the basic case where an i.i.d. sequence of random variables is repeatedly observed, but its prob-
ability measure is not known apriori. Let {(Xi), i ∈ N} be an X-valued i.i.d. random variable sequence generated
according to some distribution µ. Defining for every (fixed) Borel B ⊂ X, and n ∈ N, the empirical occupation
measures µn(B) = 1

n

∑n
i=1 1{Xi∈B}, one has µn(B) → µ(B) almost surely by the strong law of large numbers. It

then follows that µn → µ weakly with probability one ( [105], Theorem 11.4.1). However, µn does not converge to
µ in total variation or setwise, in general. On the other hand, if we know that µ admits a density, we can find esti-
mators to estimate µ under total variation [99, Chapter 3]. In the previous sections, we established robustness results
under the convergence of transition kernels in the topology of weak convergence and total variation. We build on these
observations.

Corollary 12.12 (to Theorem 12.2.6 and Theorem 12.2.7 ). Suppose we are given the following dynamics for finite
state space, X, and finite action space, U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt)

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown. Suppose that there is an initial train-
ing period so that under some policy, every x, u pair is visited infinitely often if training were to continue indefinitely,
but that the training ends at some finite time. Let us assume that, through this training, we empirically learn the transi-
tion dynamics such that for every (fixed) Borel B ⊂ X, for every x ∈ X, u ∈ U and n ∈ N, the empirical occupation
measures are

Tn(B|x0 = x, u0 = u) =

∑n
i=1 1{Xi∈B,Xi−1=x,Ui−1=u}∑n

i=1 1{Xi−1=x,Ui−1=u}
.

Then we have that J∗
β(Tn) → J∗

β(T ) and Jβ(T , γ∗n) → J∗
β(T ), where γ∗n is the optimal policy designed for Tn.

Since the channel model g has no restrictions, this result also applies to the fully observed model setup by taking
g(xt, vt) = xt.

Proof. We have that Tn(·|x, u) → T (·|x, u) weakly for every x ∈ X, u ∈ U almost surely by law of large numbers.
Since the spaces are finite, we also have Tn(·|x, u) → T (·|x, u) under total variation. By Theorem 12.2.6 and Theorem
12.2.7, the results follow. ⋄

The following holds for more general spaces.

Corollary 12.13 (to Theorems 12.2.8, 12.2.4, 12.3.2 and 12.3.3). Suppose we are given the following dynamics with
state space X and action space U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown. Suppose that f(x, u, ·) : W → X
is invertible for all fixed (x, u) and f(x, u, w) is continuous and bounded on X × U ×W. We construct the empirical
measures for the noise process wt such that for every (fixed) Borel B ⊂ W, and for every n ∈ N, the empirical
occupation measures are
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µn(B) =
1

n

n∑
i=1

1{f−1
xi−1,ui−1

(xi)∈B} (12.14)

where f−1
xi−1,ui−1

(xi) denotes the inverse of f(xi−1, ui−1, w) : W → X for given (xi−1, ui−1). Using the noise
measurements, we construct the empirical transition kernel estimates for any (x0, u0) and Borel B as

Tn(B|x0, u0) = µn(f
−1
x0,u0

(B)).

(i) If the measurement channel (represented by the function g) is continuous in total variation then J∗
β(Tn) → J∗

β(T )
and Jβ(T , γ∗n) → J∗

β(T ), where γ∗n is the optimal policy designed for Tn for all initial points.

(ii) If the measurement channel is in the form g(xt, vt) = xt (i.e. fully observed) then J∗
β(Tn) → J∗

β(T ) and if further
for every n, γ∗n is optimal for every x0 ∈ X (under the model Tn) then Jβ(T , γ∗n) → J∗

β(T ).

Proof. We have µn → µ weakly with probability one where µ is the model. We claim that the transition kernels are
such that Tn(·|xn, un) → T (·|x, u) weakly for any (xn, un) → (x, u). To see that observe the following for h ∈ Cb(X)∫

h(x1)Tn(dx1|xn, un)−
∫
h(x1)T (dx1|x, u)

=

∫
h(f(xn, un, w))µn(dw)−

∫
h(f(x, u, w))µ(dw) → 0,

where µn is the empirical measure for wt and µ is the true measure again. For the last step, we used that µn → µ
weakly and h(f(xn, un, w)) continuously converge to h(f(x, u, w)) i.e. h(f(xn, un, wn)) → h(f(x, u, w) for some
wn → w since f and g are continuous functions. Similarly, it can be also shown that Tn(·|x, u) and T (·|x, u) are
weakly continuous on (x, u). Thus, for the case where the channel is continuous in total variation by Theorem 12.2.8
and Theorem 12.2.4 if c(x, u) is bounded and U is compact the result follows.

For the fully observed case, J∗
β(Tn) → J∗

β(T ) by Theorem 12.3.2 and Jβ(T , γ∗n) → J∗
β(T ) by Theorem 12.3.3. ⋄

Remark 12.14. We note here that the moment estimation method can also lead to consistency. Suppose that the
distribution of W is determined by its moments, such that estimate models Wn have moments of all orders and
limn = E[W r

n ] = E[W r] for all r ∈ Z+. Then, we have that [41, Thm 30.2] Wn → W weakly and thus
Tn(·|xn, un) → T (·|x, u) weakly for any (xn, un) → (x, u) under the assumptions of above corollary. Hence, we
reach continuity and robustness using the same arguments as in the previous result (Corollary 12.13).

Now, we give a similar result with the assumption that the noise process of the dynamics admits a continuous probability
density function.

Corollary 12.15 (to Theorem 12.2.6 and Theorem 12.2.7). Suppose we are given the following dynamics for real
vector state space X and action space U

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown but it is known that the noisewt admits
a continuous probability density function. Suppose that f(x, u, ·) : W → X is invertible for all (x, u). We collect i.i.d.
samples of {wt} as in (12.14) and use them to construct an estimator, µ̃n , as described in [99] which consistently
estimates µ in total variation. Using these empirical estimates, we construct the empirical transition kernel estimates
for any (x0, u0) and Borel B as

Tn(B|x0, u0) = µ̃n(f
−1
x0,u0

(B)).

Then independent of the channel, J∗
β(Tn) → J∗

β(T ) and Jβ(T , γ∗n) → J∗
β(T ), where γ∗n is the optimal policy designed

for Tn. Since the channel model g has no restrictions, this result also applies to the fully observed model setup by taking
g(xt, vt) = xt.
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Proof. By [99] we can estimate µ in total variation so that almost surely
limn→∞ ∥µ̃n − µ∥TV = 0. We claim that the convergence of µ̃n to µ under total variation metric implies the
convergence of Tn to T in total variation uniformly over all x ∈ X and u ∈ U i.e. limn→∞ supx,u ∥Tn(·|x, u) −
T (·|x, u)∥TV = 0. Observe the following:

sup
x,u

∥Tn(·|x, u)− T (·|x, u)∥TV

=sup
x,u

sup
||h||∞≤1

∣∣ ∫ h(x1)Tn(dx1|x, u)−
∫
h(x1)T (dx1|x, u)

∣∣
=sup

x,u
sup

||h||∞≤1

∣∣ ∫ h(f(x, u, w))µ̃n(dw)−
∫
h(f(x, u, w))µ(dw)

∣∣
≤∥µ̃n − µ∥TV → 0.

Thus, by Theorem 12.2.6 and Theorem 12.2.7, the result follows. ⋄

The following example presents some system and channel models which satisfy the requirements of the above corol-
laries.

Example 12.16. Let X,Y, U be real vector spaces with

xt+1 = f(xt, ut) + wt, yt = h(xt, vt)

for unknown i.i.d. noise processes {wt} and {vt}.

1. Suppose the channel is in the following form; yt = h(xt, vt) = xt + vt where vt admits a density (e.g. Gaussian
density). It can be shown by an application of Scheffé’s theorem that the channels in this form are continuous in
total variation. If further f(xt, ut) is continuous and bounded then the requirements of Corollary 12.13 hold for
partially observed models.

2. If the channel is in the following form; xt = h(xt, vt) then the system is fully observed. If further f(xt, ut) is
continuous and bounded then the requirements of Corollary 12.13 holds for fully observed models.

3. Suppose the function f(xt, ut) is known, if the noise process wt admits a continuous density, then one can estimate
the noise model in total variation in a consistent way (see [99]). Hence, the conditions of Corollary 12.15 holds
independent of the channel model.

⋄

12.5.2 Application to Approximations of MDPs and POMDPs with Weakly Continuous Kernels

We now discuss Problem P4, that is whether approximation of an MDP model with a standard Borel space with a finite
MDPs can be viewed an instance of robustness problem to incorrect models and whether our results can be applied.

In Section 8.2, we presented conditions under which finite state/action models are asymptotically optimal. Here, we
view those approximation results as an instance of robustness. We will focus on the weakly continuous model setup.

By Section 8.2.1 we know that finite quantization policies are nearly optimal under mild weak continuity conditions
(see Assumption 8.2.1). Thus, to make the presentation shorter, we will either assume that the action set is finite, or it
has been approximated by a finite action space through the construction above. Assuming finite action sets will help us
avoid measurability issues ( [261, p. 6-7]) as well as issues with existence of optimal policies.

One can write the following fixed point equation for the finite MDP

Jnβ (x) = min
a∈U

{
cn(x, a) + β

∑
x1∈Xn

Jnβ (x1)Tn(x1|x, a)

}
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where Tn is the transition model for the finite MDP and cn is the cost function defined on the finite model. Since the
acton space is finite, we can find an optimal policy, say f∗n for this fixed point equation. One can also simply extend Jnβ
and f∗n, which are defined on Xn to the entire state space X by taking them constant over the quantization bins Sn,i. If
we call the extended versions Ĵnβ and f̂n, the following result holds, which is a re-statement of Theorem 8.2.5:

Theorem 12.5.1 [261, Theorem 2.2 and 4.1] Suppose Assumption 8.2.1 holds. Then, for any β ∈ (0, 1) the discounted
cost of the deterministic stationary policy f̂n, obtained by extending the discounted optimal policy f∗n of f-MDPm to X
(i.e., f̂n = f∗n ◦Qn), converges to the discounted value function J∗ of the compact-state MDP:

lim
n→∞

∥Ĵnβ (· )− J∗
β(· )∥ = 0 and lim

n→∞
∥Jβ(f̂n, · )− J∗

β∥ = 0. (12.15)

Theorem 12.5.1 shows that under Assumption 8.2.1, an optimal solution can be approximated via the solutions of finite
models. We now show that the above approximation scheme can be viewed in relation to our robustness results.

Proof sketch of Theorem 12.5.1 via results from Section 12.3. With the introduced setup, one can see that the extended
value function and optimal policy for the finite model satisfy the following:

Ĵnβ (x) = min
a∈U

{
ĉn(x, u) + β

∫
Ĵnβ (x1)T̂n(dx1|x, u)

}
where ĉn is the extended version of cn to the state space X by making it constant over the quantization bins {Sn,i}i
and T̂n is such that for any function f∫

f(x1)T̂n(dx1|x, u) :=
∫
x1∈X

∫
z∈Sn,i

f(x1)T (dx1|z, u)ψn,i(dz)

where Sn,i is the quantization bin that x belongs to.

With this setup, one can see that for any xn → x we have ĉn(xn, u) → c(x, u) and for any continuous and bounded f∫
f(x1)T̂n(dx1|xn, u) :=

∫
x1∈X

∫
z∈Sn,i

f(x1)T (dx1|z, u)ψn,i(dz)

→
∫
f(x1)T (dx1|x, u).

Hence, Assumption 12.1.1 holds under Assumption 8.2.1, and we can conclude the proof using Theorem 12.3.3 and
Theorem 12.3.2. ⋄

12.6 Bibliographic Notes

In this chapter, we studied regularity properties of optimal stochastic control on the space of transition kernels, and
applications to robustness of optimal control policies designed for an incorrect model applied to an actual system. We
also presented applications to data-driven learning and related the robustness problem to finite MDP approximation
techniques. For the problems presented in this chapter, our focus was on infinite horizon discounted cost setup. How-
ever, we note that the results can be extended to the infinite horizon average cost setup under various forms of ergodicity
properties on the state process.

Robustness is a desired property for the optimal control of stochastic or deterministic systems when a given model does
not reflect the actual system perfectly, as is usually the case in practice. This is a classical problem, and there is a very
large literature on robust stochastic control and its application to learning-theoretic methods; see e.g. [22, 29, 50, 112,
140,160,323], [4,16,109,113,169,176,177,198,227,237,241,284,297]. Studies on robustness via minimax methods
include [167, 232]. A comprehensive literature review is presented in [173, 177]. For empirical learning methods and
their stability properties, see [107, 141]
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This chapter primarily builds on [172, 173, 177, 181].

12.7 Exercises

Exercise 12.7.1





A

Basics of Function Spaces

A.1 Normed Linear (Vector) Spaces and Metric Spaces

Definition A.1.1 A linear (vector) space X is a space which is closed under addition and scalar multiplication: In
particular, we define an addition operation, + and a scalar multiplication operation · such that

+ : X× X → X

· : C× X → X

with the following properties (we note that we may take the scalars to be either real or complex numbers). The following
are satisfied for x, y ∈ X and α, β scalars:

(i) x+ y = y + x

(ii) (x+ y) + z = x+ (y + z).

(iii)α · (x+ y) = α · x+ α · y.

(iv)(α+ β) · x = α · x+ β · x.

(v) There is a null vector 0 such that x+ 0 = x.

(vi)α · (β · x) = (αβ) · x

(vii)For every x ∈ X, 1 · x = x

(viii)For every x ∈ X, there exists an element, called the (additive) inverse of xm and denoted with −x with the property
x+ (−x) = 0.

Example A.1. (i) The space Rn is a linear space. The null vector is 0 = (0, 0, · · · , 0) ∈ Rn.
(ii) Consider the interval [a, b]. The collection of real-valued continuous functions on [a, b] is a linear space. The null
element 0 is the function which is identically 0. This space is called the space of real-valued continuous functions on
[a, b]
(iii) The set of all infinite sequences of real numbers having only a finite number of terms not equal to zero is a vector
space. If one adds two such sequences, the sum also belongs to this space. This space is called the space of finitely
many non-zero sequences.
(iv) The collection of all polynomial functions defined on an interval [a, b] with complex coefficients forms a complex
linear space. Note that the sum of polynomials is another polynomial.

Definition A.1.2 A non-empty subset M of a (real) linear vector space X is called a subspace of X if

αx+ βy ∈M, ∀x, y ∈M and α, β ∈ R.
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In particular, the null element 0 is an element of every subspace. For M,N two subspaces of a vector space X, M ∩N
is also a subspace of X.

Definition A.1.3 A normed linear space X is a linear vector space on which a map from X to R, that is a member of
Γ (X;R)) called norm is defined such that:

– ||x|| ≥ 0 ∀x ∈ X, ||x|| = 0 if and only if x is the null element (under addition and multiplication) of X.

– ||x+ y|| ≤ ||x||+ ||y||

– ||αx|| = |α|||x||, ∀α ∈ R, ∀x ∈ X

Definition A.1.4 In a normed linear space X, an infinite sequence of elements {xn} converges to an element x if the
sequence {||xn − x||} converges to zero.

Example A.2. a) The normed linear space C([a, b]) consists of continuous functions on [a, b] together with the norm
||x|| = max{a≤t≤b} |x(t)|.

b) lp(Z+;R) := {x ∈ Γ (Z+;R) : ||x||p =

(∑
i∈Z+

|x(i)|p
) 1

p

< ∞} is a normed linear space for all 1 ≤ p < ∞.

c) Recall that if S is a set of real numbers bounded above, then there is a smallest real number y such that x ≤ y for
all x ∈ S. The number y is called the least upper bound or supremum of S. If S is not bounded from above, then the
supremum is ∞. In view of this, for p = ∞, we define

l∞(Z+;R) := {x ∈ Γ (Z+;R) : ||x||∞ = sup
i∈Z+

|x(i)| <∞}

d) Lp([a, b];R) = {{x ∈ Γ ([a, b];R) : ||x||p =

(∫ b
a
|x(i)|p

) 1
p

< ∞} is a normed linear space. For p = ∞, we

typically write: L∞([a, b];R) := {x ∈ Γ ([a, b];R) : ||x||∞ = supt∈[a,b] |x(t)| < ∞}. However, for 1 ≤ p < ∞,
to satisfy the condition that ||x||p = 0 implies that x(t) = 0, we need to assume that functions which are equal to
zero almost everywhere are equivalent; for p = ∞ the definition is often revised with essential supremum instead of
supremum so that

||x||∞ = inf
y(t)=x(t)a.e.

sup
t∈[a,b]

|y(t)|

To show that lp defined above is a normed linear space, we need to show that ||x+ y||p ≤ ||x||p + ||y||p.

Theorem A.1.1 (Minkowski’s Inequality) For 1 ≤ p ≤ ∞

||x+ y||p ≤ ||x||p + ||y||p

The proof of this result uses a very important inequality, known as Hölder’s inequality.

Theorem A.1.2 (Hölder’s Inequality) ∑
x(k)y(k) ≤ ||x||p||y||q,

with 1/p+ 1/q = 1 and 1 ≤ p, q ≤ ∞.

Definition A.1.5 A metric defined on a set X , is a function d : X ×X → R such that:

– d(x, y) ≥ 0, ∀x, y ∈ X and d(x, y) = 0 if and only if x = y.

– d(x, y) = d(y, x), ∀x, y ∈ X .

– d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X .
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Definition A.1.6 A metric space (X, d) is a set equipped with a metric d.

A normed linear space is also a metric space, with metric

d(x, y) = ||x− y||.

An important class of normed spaces that are widely used in optimization and engineering problems are Banach spaces:

A.1.1 Banach Spaces

Definition A.1.7 A sequence {xn} in a normed space X is Cauchy if for every ϵ, there exists an N such that ||xn −
xm|| ≤ ϵ, for all n,m ≥ N .

The important observation on Cauchy sequences is that, every converging sequence is Cauchy, however, not all Cauchy
sequences are convergent: This is because the limit might not live in the original space where the sequence elements
take values in. This brings the issue of completeness:

Definition A.1.8 A normed linear space X is complete, if every Cauchy sequence in X has a limit in X. A complete
normed linear space is called Banach.

Banach spaces are important for many reasons including the following one: In optimization problems, sometimes we
would like to see if a sequence converges, for example if a solution to a minimization problem exists, without knowing
what the limit of the sequence could be. Banach spaces allow us to use Cauchy sequence arguments to claim the
existence of optimal solutions. If time allows, we will discuss how this is used by using contraction and fixed point
arguments for transformations.

In applications, we will also discuss completeness of a subset. A subset of a Banach space X is complete if and only
if it is closed. If it is not closed, one can provide a counterexample sequence which does not converge. If the set is
closed, every Cauchy sequence in this set has a limit in X and this limit should be a member of this set, hence the set is
complete.

Exercise A.1.1 The space of bounded functions {x : [0, 1] → R, supt∈[0,1]|x(t)| <∞} is a Banach space.

The above space is also denoted by L∞([0, 1];R) or L∞([0, 1]).

Theorem A.1.3 lp(Z+;R) := {x ∈ f(Z+;R) : ||x||p =

(∑
i∈N+

|x(i)|p
) 1

p

< ∞} is a Banach space for all

1 ≤ p ≤ ∞.

Sketch of Proof: The proof is completed in three steps.

(i) Let {xn} be Cauchy. This implies that for every ϵ > 0, ∃N such that for all n,m ≥ N ||xn − xm|| ≤ ϵ. This also
implies that for all n > N , ||xn|| ≤ ||xN || + ϵ. Now let us denote xn by the vector {xn1 , xn2 , xn3 . . . , }. It follows that
for every k the sequence {xnk} is also Cauchy. Since xnk ∈ R, and R is complete, xnk → xk for some xk. Thus, the
sequence xn pointwise converges to some vector x∗.

(ii) Is x ∈ lp(Z+;R)? Define xn,K = {xn1 , xn2 , . . . , xnK−1, x
n
K , 0, 0, . . . }, that is vector which truncates after the Kth

coordinate. Now, it follows that
||xn,K || ≤ ||xN ||+ ϵ,

for every n ≥ N and K and
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lim
n→∞

||xn,K ||p = lim
n→∞

K∑
i=1

|xni |p =
K∑
i=1

|xi|p,

since there are only finitely many elements in the summation. The question now is whether ||x∞|| ∈ p(Z+;R). Now,

||xn,K || ≤ ||xN ||+ ϵ,

and thus
lim
n→∞

||xn,K || = ||xK || ≤ ||xN ||+ ϵ,

Let us take another limit, by the monotone convergence theorem (Recall that this theorem says that a monotonically
increasing sequence which is bounded has a limit).

lim
K→∞

||x∗,K ||p = lim
K→∞

K∑
i=1

|xi|p = ||x∞||pp ≤ ||xN ||+ ϵ.

(iii) The final question is: Does ||xn − x∗|| → 0? Since the sequence is Cauchy, it follows that for n,m ≥ N

||xn − xm|| ≤ ϵ

Thus,
||xn,K − xm,K || ≤ ϵ

and since K is finite
lim
m→∞

||xn,K − xm,K || = ||xn,K − x∗,K || ≤ ϵ

Now, we take another limit
lim
K→∞

||xn,K − x∗,K || ≤ ϵ

By the monotone convergence theorem again,

lim
K→∞

||xn,K − x∗,K || = ||xn − x|| ≤ ϵ

Hence, ||xn − x|| → 0. ⋄

The above spaces are also denoted lp(Z+), when the range space is clear from context.

The following is a useful result.

Theorem A.1.4 (Hölder’s Inequality) ∑
x(t)y(t) ≤ ||x||p||y||q,

with 1/p+ 1/q = 1 and 1 ≤ p, q ≤ ∞.

Remark: A brief remark for notations: When the range space is R, the notation lp(Ω) denotes lp(Ω;R) for a discrete-
time index set Ω and likewise for a continuous-time index set Ω, Lp(Ω) denotes Lp(Ω;R). ⋄

A.1.2 Hilbert Spaces

We first define pre-Hilbert spaces.

Definition A.1.9 A pre-Hilbert space X is a linear vector space where an inner product is defined on X ×X . Corre-
sponding to each pair x, y ∈ X the inner product ⟨x, y⟩ is a scalar (that is real-valued or complex-valued). The inner
product satisfies the following axioms:
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1. ⟨x, y⟩ = ⟨y, x⟩∗ (the superscript denotes the complex conjugate) (we will also use ⟨y, x⟩ to denote the complex
conjugate)

2. ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

3. ⟨αx, y⟩ = α⟨x, y⟩

4. ⟨x, x⟩ ≥ 0, equals 0 iff x is the null element.

The following is a crucial result in such a space, known as the Cauchy-Schwarz inequality, the proof of which was
presented in class:

Theorem A.1.5 For x, y ∈ X ,
⟨x, y⟩ ≤

√
⟨x, x⟩

√
⟨y, y⟩,

where equality occurs if and only if x = αy for some scalar α.

Exercise A.1.2 In a pre-Hilbert space ⟨x, x⟩ defines a norm: ||x|| =
√
⟨x, x⟩

The proof for the result requires one to show that
√

⟨x, x⟩ satisfies the triangle inequality, that is

||x+ y|| ≤ ||x||+ ||y||,

which can be proven by an application of the Cauchy-Schwarz inequality.

Not all spaces admit an inner product. In particular, however, l2(N+;R) admits an inner product with ⟨x, y⟩ =∑
t∈N+

x(n)y(n) for x, y ∈ l2(N+;R). Furthermore, ||x|| =
√

⟨x, x⟩ defines a norm in l2(N+;R).

The inner product, in the special case of RN , is the usual inner vector product; hence RN is a pre-Hilbert space with
the usual inner-product.

Definition A.1.10 A complete pre-Hilbert space, is called a Hilbert space.

Hence, a Hilbert space is a Banach space, endowed with an inner product, which induces its norm.

Proposition A.1.1 The inner product is continuous: if xn → x, and yn → y, then ⟨xn, yn⟩ → ⟨x, y⟩ for xn, yn in a
Hilbert space.

Proposition A.1.2 In a Hilbert space X , two vectors x, y ∈ X are orthogonal if ⟨x, y⟩ = 0. A vector x is orthogonal
to a set S ⊂ X if ⟨x, y⟩ = 0 ∀y ∈ S.

Theorem A.1.6 (Projection Theorem:) Let H be a Hilbert space and B a closed subspace of H. For any vector x ∈ H ,
there is a unique vector m ∈ B such that

||x−m|| ≤ ||x− y||,∀y ∈ B.

A necessary and sufficient condition for m ∈ B to be the minimizing element in B is that, x−m is orthogonal to B.

A.1.3 Separability

Definition A.1.11 Given a normed linear space X , a subset D ⊂ X is dense in X , if for every x ∈ X , and each ϵ > 0,
there exists a member d ∈ D such that ||x− d|| ≤ ϵ.
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Definition A.1.12 A set is countable if every element of the set can be associated with an integer via an ordered
mapping.

Examples of countables spaces are finite sets and the set Q of rational numbers. An example of uncountable sets is the
set R of real numbers.

Theorem A.1.7 a) A countable union of countable sets is countable. b) Finite Cartesian products of countable sets is
countable. c) Infinite Cartesian products of countable sets may not be countable. d) [0, 1] is not countable.

Cantor’s diagonal argument and the triangular enumeration are important steps in proving the theorem above.

Since rational numbers are the ratios of two integers, one may view rational numbers as a subset of the product space
of countable spaces; thus, rational numbers are countable.

Definition A.1.13 A space X is separable, if it contains a countable dense set.

Separability basically informs us that it suffices to work with a countable set, when the set is uncountable. Examples
of separable sets are R, and the set of continuous and bounded functions on a compact set metrised with the maximum
distance between the functions.

Complete, separable and metric spaces form a very broad class of signal spaces. Such spaces are called Polish metric
spaces. Borel subsets of such spaces are called standard Borel spaces.
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On the Convergence of Random Variables

B.1 Limit Events and Continuity of Probability Measures

Given A1, A2, . . . , An ∈ F , define:
lim sup

n
An = ∩∞

n=1 ∪∞
k=n Ak

lim inf
n

An = ∪∞
n=1 ∩∞

k=n Ak

For the superior limit, an element is in this set, if it is in infinitely many Ans. For the inferior case, an element is in the
limit, if it is in almost except for a finite number of Ans. The limit of a sequence of sets exists if the above limits are
equal. We have the following result:

Theorem B.1.1 For a sequence of events An:

P (lim inf
n

An) ≤ lim inf
n

P (An) ≤ lim sup
n

P (An) ≤ P (lim sup
n

An)

We have the following regarding continuity of probability measures:

Theorem B.1.2 (i)For a sequence of events An with An ⊂ An+1 for all n,

lim
n→∞

P (An) = P (∪∞
n=1An)

(ii) For a sequence of events An with An+1 ⊂ An for all n,

lim
n→∞

P (An) = P (∩∞
n=1An)

B.2 Borel-Cantelli Lemma

Theorem B.2.1 (i) If
∑
n P (An) converges, thenP (lim supnAn) = 0. (ii) If {An} are independent and if

∑
P (An) =

∞, then P (lim supnAn) = 1.

Exercise B.2.1 Let {An} be a sequence of independent events whereAn is the event that the nth coin flip is head. What
is the probability that there are infinitely many heads if P (An) = 1/n2?

An important application of the above is the following:
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Theorem B.2.2 Let Zn, n ∈ N and Z be random variables and for every ϵ > 0,∑
n

P (|Zn − Z| ≥ ϵ) <∞.

Then,
P ({ω : Zn(ω) = Z(ω)}) = 1.

That is Zn converges to Z with probability 1.

B.3 Convergence of Random Variables

B.3.1 Convergence almost surely (with probability 1)

Definition B.3.1 A sequence of random variables Xn converges almost surely to a random variable X if P ({ω :
limn→∞Xn(ω) = X(ω)}) = 1.

B.3.2 Convergence in Probability

Definition B.3.2 A sequence of random variablesXn converges in probability to a random variableX if limn→∞ P (|Xn−
X| ≥ ϵ}) = 0 for every ϵ > 0.

B.3.3 Convergence in Mean-square

Definition B.3.3 A sequence of random variables Xn converges in the mean-square sense to a random variable X if
limn→∞E[|Xn −X|2] = 0.

B.3.4 Convergence in Distribution

Definition B.3.4 Let Xn be a random variable with cumulative distribution function Fn, and X be a random variable
with cumulative distribution function F . A sequence of random variables Xn converges in distribution (or weakly) to
a random variable X if limn→∞ Fn(x) = F (x) for all points of continuity of F .

Theorem B.3.1 a) Convergence in almost sure sense implies in probability. b) Convergence in mean-square sense
implies convergence in probability. c) If Xn → X in probability, then Xn → X in distribution.

We also have partial converses for the above results:

Theorem B.3.2 a) If P (|Xn| ≤ Y ) = 1 for some random variable Y with E[Y 2] <∞, and if Xn → X in probability,
then Xn → X in mean-square. b) If Xn → X in probability, there exists a subsequence Xnk

which converges to X
almost surely. c) If Xn → X and Xn → Y in probability, mean-square or almost surely. Then P (X = Y ) = 1.

A sequence of random variables is uniformly integrable if:

lim
K→∞

sup
n
E[|Xn|1|Xn|≥K ] = 0.

A sufficient condition for a sequence of random variables to be uniformly integrable is that there exists a function
g : R → R with the property as t → ∞, g(t)t ↑ ∞, so that supnE[g(Xn)] < ∞: (to see this, note that g(|Xn|) =
|Xn|g(|Xn|)

|Xn| ≥ g(K)
K |Xn|, for |Xn| ≥ K. Thus,
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lim
K→∞

sup
n
E[|Xn|1|Xn|≥K ] ≤ lim

K→∞
sup
n

E[g(Xn)1|Xn|≥K ]

g(K)/K
≤ lim
K→∞

sup
n

E[g(Xn)]

g(K)/K
→ 0.

Note also that, if {Xn} is uniformly integrable, then, supnE[|Xn|] <∞.

Theorem B.3.3 Under uniform integrability, convergence in almost sure sense implies convergence in mean-square.

Theorem B.3.4 If Xn → X in probability, there exists some subsequence Xnk
which converges to X almost surely.

A further useful result is the following.

Theorem B.3.5 [Skorohod’s representation theorem] Let Xn → X in distribution. Then, there exists a sequence of
random variables Yn and Y such that, Xn and Yn have the same cumulative distribution functions; X and Y have the
same cumulative distribution functions and Yn → Y almost surely.

With the above, we can prove the following result.

Theorem B.3.6 The following are equivalent: i) Xn converges to X in distribution. ii) E[f(Xn)] → E[f(X)] for all
continuous and bounded functions f . iii) The characteristic functions Φn(u) := E[eiuXn ] converge pointwise for every
u ∈ R.





C

Some Remarks on Measurable Selections

As we observe in Chapter 5, in stochastic control measurability issues arise extensively both for the measurability of
control policies as well as that of value functions/optimal costs. Theorem 5.1.1 and 5.2.1, and Lemma 5.2.4 are some
examples where these were crucially utilized. In addition, we observed that the theory of martingales and filtration, the
measurability properties are essential.

One particular aspect is to ensure that maps of the form:

J(x) := inf
u∈U

c(x, u) (C.1)

are measurable or at least Lebesgue-integrable.

Theorem C.0.1 [Kuratowski Ryll-Nardzewski Measurable Selection Theorem] [189] [269] and [159, Theorem 2] Let
X,U be Polish spaces and Γ = {(x, ψ(x)), x ∈ X} where ψ(x) ⊂ U be such that, ψ(x) is closed for each x ∈ X
and Γ be a Borel measurable set in X × U. Then, there exists at least one measurable function f : X → U such that
{(x, f(x)), x ∈ X} ⊂ Γ .

A proof sketch is as follows for the case with U = R+ and ψ(x) is compact valued. With n ∈ N, consider the infinite
sequence of rationals {k/n; k ∈ Z+}. Consider ψ−1([ kn ,

k+1
n )). Define the Borel set

X(k,n) = ψ−1([
k

n
,
k + 1

n
)) \ ∪k−1

m=1ψ
−1([

k

n
,
k + 1

n
)).

Then, define a multi-function:

ψn(x) = ψ(x) ∩ [
k

n
,
k + 1

n
),

whenever x ∈ X(k,n). Now, each ψn is a multi-function. Take n → ∞, in this case, since ψ(x) is closed, each
converging subsequence unk

∈ X(k,n) is so that limnk→∞ unk
∈ ψ(x) (by the closed property). Therefore, for each x,

the limit limn→∞ ψn(x) is well-defined and single-valued, and is placed in ψ(x). This approach can be generalized.

This result was utilized in Chapter 5 (see Lemma 5.2.4). Recall also the relationship of the argument with that in the
proof of Theorem 5.1.1.

In the following, we assume that the spaces considered are Polish. A function f is µ-measurable if there exists a Borel
measurable function g which agrees with f µ-a.e. A function that is µ-measurable for every probability measure is
called universally measurable.

A measurable image of a Borel set is called an analytic set [111].

Fact C.0.1 The image of a Borel set under a measurable function, and hence an analytic set, is universally measurable.
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Remark C.1. We note that in some texts, an analytic set is defined as the continuous image of a Borel set. However,
as [111] notes, one could always express the image of a Borel set A under a measurable function f : X → Y as a
projection (which is a continuous map) of (A, f(A)) onto Y.

The integral of a universally measurable function is well-defined and is equal to the integral of a Borel measurable
function which is µ-almost equal to that function. While applying dynamic programming, we often seek to establish
the existence of measurable functions through the operation:

Jt(xt) = inf
u∈U(xt)

(
c(x, u) +

∫
Jt+1(xt+1)Q(dxt+1|xt, u)

)
However, we need a stronger condition that universal measurability for the recursions to be well-defined. A function f
is called lower semi-analytic if {x : f(x) < c} is analytic for each scalar c.

Theorem C.0.2 [111] Let i : X → 2S (that is, i maps X to subsets of S) be such that i−1 is Borel measurable, and
f : S → R be measurable. Then:

v(x) = inf
z:z∈i(x)

f(z)

is lower semi-analytic.

Observe that (see p. 85 of [111])
{x : v(x) < c} = i−1({z : f(z) < c})

The set {z : f(z) < c} is Borel, and thus if i−1 is also Borel, it follows that v is lower semi-analytic. We require then
that i−1 : S → X to be Borel. Consider now the following application.

Theorem C.0.3 Consider G = {(x, u) : u ∈ U(x)} which is a Borel measurable set. The map,

v(x) = inf
(x,z)∈G

v(x, z),

is lower semi-analytic.

Proof. The graph G is measurable. It follows that{x : v(x) < c} = i−1({(x, z) : v(x, z) < c}), where i−1 is the
projection ofG onto X, which is a continuous operation; the image may not be measurable but as a measurable mapping
of a Borel set, it is analytic. As a result v is lower semi-analytic. ⋄

Theorem C.0.4 Lower semi-analytic functions are universally measurable.

Implication: Dynamic programming can be carried out for such expressions. In particular, the following is due to
Bertsekas and Shreve [35, Chapter 7]:

Theorem C.0.5 The following hold:

(i) Let E1, E2 be Borel and g : E1 × E2 → R be lower semi-analytic. Then,

h(e1) = inf
e2∈E2

g(e1, e2)

is lower semi-analytic.

(ii) Let E1, E2 be Borel and g : E1 × E2 → R be lower semi-analytic. Let Q(de2|e1) be a stochastic kernel. Then,

f(e1) :=

∫
g(e2)Q(de2|e1)

is lower semi-analytic.
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We note that the second result would not be correct if g is only taken to be universally measurable. The result above
ensures that we can follow the dynamic programming arguments in an inductive manner under conditions that are less
restrictive than the conditions stated in the measurable selection conditions. These then imply the existence of ϵ-optimal
solutions (possibly universally measurable) [274].

Building on this discussion, and the material in Chapter 5, we summarize three useful results in the following.

Fact C.0.2 Consider (C.1).

(i) If c is continuous on X× U and U is compact, then J is continuous and there exists an optimal measurable policy.

(ii) If the measurable c is continuous on U for every x, and U is compact, then J is measurable (Prop D.5 in [155] and
Himmelberg and Schäl [269]); see Theorem 5.2.4. Furthermore, there exists an optimal measurable policy.

(iii) [35, Prop. 7.47 and 7.50] If c is measurable on X×U and U is Borel, then J is lower semi-analytic. Furthermore,
there exists a near optimal universally measurable function.

Compactness of U is a crucial component for some of these results. However, as discussed in Section 5.2, U(x) may
be allowed to depend on x, for item (ii) under the assumption that the graph G = {(x, u) : u ∈ U(x)} defined above
is Borel, and U(x) is compact for every x; see p. 182 in [155] (and also [159], [269], [119] and [189], among others).
For (i), this relaxation also requires that the set valued map U(x) is upper semi-continuous: let xn → x, then for
every sequence un ∈ U(xn), there exists a subsequence which converges to some u where every such limit u satisfies
u ∈ U(x).





D

On Spaces of Probability Measures

In this section we present various topologies, and when applicable, several metrics on the sets of probability measures.

D.1 Convergence of Sequences of Probability Measures

Let X be a Polish space and let P(X) denote the family of all probability measures on (X,B(X)). Let {µn, n ∈ N} be
a sequence in P(X).

The sequence {µn} is said to converge to µ ∈ P(X) weakly if∫
X
c(x)µn(dx) →

∫
X
c(x)µ(dx) (D.1)

for every continuous and bounded c : X → R. 1

On the other hand, {µn} is said to converge to µ ∈ P(X) setwise if∫
X
c(x)µn(dx) →

∫
X
c(x)µ(dx)

for every measurable and bounded c : X → R. Setwise convergence can also be defined through pointwise convergence
on Borel subsets of X (see, e.g., [158]), that is

µn(A) → µ(A), for all A ∈ B(X)

since the space of simple functions are dense in the space of bounded and measurable functions under the supremum
norm.

For two probability measures µ, ν ∈ P(X), the total variation metric is given by

∥µ− ν∥TV := 2 sup
B∈B(X)

|µ(B)− ν(B)|

= sup
f : ∥f∥∞≤1

∣∣∣∣ ∫ f(x)µ(dx)−
∫
f(x)ν(dx)

∣∣∣∣, (D.2)

1It is important to emphasize that what is typically studied in probability as weak convergence is not the exact weak convergence
notion used in functional analysis: The topological dual space of the set of probability measures does not only consist of expectations of
continuous and bounded functions. However, the dual space of the space of continuous and bounded functions with the supremum norm
does admit a representation in terms of expectations [207]; hence, the weak convergence here is in actuality the weak∗ convergence in
analysis and distribution theory.
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where the supremum is over all measurable real f such that ∥f∥∞ = supx∈X |f(x)| ≤ 1. A sequence {µn} is said to
converge to µ ∈ P(X) in total variation if ∥µn − µ∥TV → 0.

Setwise convergence is equivalent to pointwise convergence on Borel sets whereas total variation requires uniform
convergence on Borel sets. Thus these three convergence notions are in increasing order of strength: convergence in
total variation implies setwise convergence, which in turn implies weak convergence.

On the other hand, total variation is a stringent notion for convergence. For example a sequence of discrete probability
measures never converges in total variation to a probability measure which admits a density function with respect to
the Lebesgue measure and such a space is not separable. Setwise convergence also induces a topology on the space
of probability measures and channels which is not easy to work with since the space under this convergence is not
metrizable [136, p. 59].

However, the space of probability measures on a complete, separable, metric (Polish) space endowed with the topology
of weak convergence is itself a complete, separable, metric space [40].

There are various ways to metrize weak convergence. One immediate metric builds on the following reasoning: One
can construct (since the space of continuous functions on a compact set is separable under the supremum norm) a
countable collection of continuous functions {ck, k ∈ N} such that it suffices to only consider these functions in (D.1)
to establish weak-convergence. We can thus use these weak-convergence determining functions (see e.g. [114, Theorem
3.4.5]) to define a countable collection of semi-norms dk(µ, ν) := |

∫
ck(x)µ(dx)−

∫
ck(x)ν(dx|, and from these we

can construct a locally convex space which is metrizable. Thus, we have the following metric which metrizes the weak
topology:

ρ(µ, ν) =

∞∑
m=1

2−(m+1)

∣∣∣∣ ∫
S

fm(x)µ(dx)−
∫
S

fm(x)ν(dx)

∣∣∣∣, (D.3)

where {fm}m≥1 is an appropriate sequence of continuous and bounded functions such that ∥fm∥∞ ≤ 1 for all m ≥ 1
(see [236, Theorem 6.6, p. 47]).

The Prohorov metric [40] also can be used to metrize this convergence topology.

As a more practical metric, the Wasserstein metric can also be used (for compact X) to metrize the weak convergence
space topology.

Definition D.1.1 (Wasserstein metric) The Wasserstein metric of order p, 1 ≤ p < ∞, for two distributions µ, ν ∈
P(X) with finite pth moments (thus defined only on such a subset of P(X)) is defined as

Wp(µ, ν) = inf
η∈H(µ,ν)

(∫
X×X

η(dx, dy)∥x− y∥p
) 1

p

,

where H(µ, ν) denotes the set of probability measures on X × X with first marginal µ and second marginal ν, and
∥ · · · ∥ is a norm.

For compact X, the Wasserstein distance of order p metrizes the weak topology on the set of probability measures on X
(see [306, Theorem 6.9]; one can also see the connection via Theorem B.3.5). For non-compact X, weak convergence
combined with convergence of moments up to order p (that is of

∫
µn(dx)∥x∥p →

∫
µ(dx)∥x∥p) is equivalent to con-

vergence inWp. Finally, the bounded-Lipschitz metric ρBL [306, p.109] can also be used to metrize weak convergence:

ρBL(µ, ν) = sup
∥f∥BL≤1

∣∣∣∣∫
X
f(e)µ(de)−

∫
X
f(e)ν(de)

∣∣∣∣, (D.4)

where

∥f∥BL := ∥f∥∞ + sup
e ̸=e′

f(e)− f(e′)

dX(e, e′)
,
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and dX is the metric on X.

We note that W1 can equivalently be written as [306, Remark 6.5]:

W1(µ, ν) := sup
∥f∥Lip≤1

∣∣∣∣∫
X
f(e)µ(de)−

∫
X
f(e)ν(de)

∣∣∣∣,
where

∥f∥Lip := sup
e ̸=e′

f(e)− f(e′)

dX(e, e′)
.

Comparing this with (D.4), it follows that

ρBL ≤W1. (D.5)

Another important distance measure (though not a metric) that is commonly used is relative entropy:

Definition D.1.2 For two probability measures P and Q, relative entropy is defined as D(P∥Q) =
∫
log dP

dQdP =∫
dP
dQ log dP

dQdQ where P ≪ Q and dP
dQ denotes the Radon-Nikodym derivative of P with respect to Q.

Total variation is related to relative entropy via Pinsker’s inequality [90]: ∥P − Q∥TV ≤
√

2
log(e)D(P∥Q). This also

shows that convergence in relative entropy implies that under total variation.

Weak convergence is very important in applications of stochastic control and probability in general. Prohorov’s theorem
[105] provides a way to characterize compactness properties under weak convergence.

D.2 Some Measurability Results on Spaces of Probability Measures

Weak convergence topology leads to important measurability properties, as we discuss in the following two theorems.
The first one appears in [2] (see Theorem 15.13 in [2] or p. 215 in [51]).

Theorem D.2.1 Let S be a Polish space and M be the set of all measurable and bounded functions f : S → R. Then,
for any f ∈M , the integral ∫

π(dx)f(x)

defines a measurable function on P(S) under the topology of weak convergence.

This is a useful result since it allows us to define measurable functions in integral forms on the space of probability
measures when we work with the topology of weak convergence. The second useful result follows from Theorem
D.2.1, [104, Theorem 2.1] and [35, Proposition 7.25].

Theorem D.2.2 Let S be a Polish space. A function F : P(S) → P(S) is measurable on B(P(S)) (under weak
convergence), if for all B ∈ B(S) (F (·))(B) : P(S) → R is measurable under weak convergence on P(S), that is for
every B ∈ B(S), (F (π))(B) is a measurable function when viewed as a function from P(S) to R.

D.3 A Generalized Dominated Convergence Theorem

Under weak and setwise convergences, we can arrive at generalized forms of the dominated convergence theorem. In
particular, from [199, Theorem 3.5] and [273, Theorem 3.5], we have the following:
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Theorem D.3.1 The following hold:

(i) Suppose that {µn}n ⊂ P(X) converges weakly to some µ. For a bounded real valued sequence of functions {fn}n
such that ∥fn∥∞ < C for all n > 0 with C < ∞, if limn→∞ fn(xn) = f(x) for all xn → x, i.e. fn continuously
converges to f , then

lim
n→∞

∫
X
fn(x)µn(dx) =

∫
X
f(x)µ(dx).

(ii) Suppose that {µn}n ⊂ P(X) converges setwise to some µ. For a bounded real valued sequence of functions {fn}n
such that ∥fn∥∞ < C for all n > 0 with C < ∞, if limn→∞ fn(x) = f(x) for all x, i.e. fn pointwise converges
to f , then

lim
n→∞

∫
X
fn(x)µn(dx) =

∫
X
f(x)µ(dx).

D.4 The w-s Topology

Let, as before, X and Y be Polish spaces.

Definition D.4.1 The w-s topology on the set of probability measures P(X× Y) is the coarsest topology under which∫
f(x, y)µ(dx, dy) : P(X× Y) → R is continuous for every measurable and bounded f(x, y) which is continuous in

y for every x (but unlike the weak topology, f does not need to be continuous in x).

Theorem D.4.1 [270, Theorem 3.10] [25, Theorem 2.5] Let µn ∈ P(X× Y). If µn → µ weakly where the marginals
µn(dx× Y) →µ(dx× Y) setwise, then the convergence µn → µ is also in the w-s sense.

D.5 Lusin’s Theorem

Lusin’s theorem is a very consequential result in mathematical analysis.

Theorem D.5.1 [105, Theorem 7.5.2] Let (X, T ) be any topological space and µ a finite, closed regular Borel measure
on X. Let (S, d) be a separable metric space and let f be a Borel-measurable function from X into S. Then for any
ϵ > 0 there is a closed set F ⊂ X such that µ(X \ F ) < ϵ and the restriction of f to F is continuous.

We also recall Tietze’s extension theorem, which is often used in conjunction with Lusin’s theorem to construct a
continuous extension of the continuous function defined on F in Theorem D.5.1 to X.

Theorem D.5.2 [108, Theorem 4.1][Tietze’s extension theorem] Let X be an arbitrary metric space, A a closed subset
of X, L a locally convex linear space, and f : A → L a continuous map. Then there exists a continuous function
fC : X → L such that fC(a) = f(a) ∀a ∈ A. Furthermore, the image of fC satisfies fC(X) ⊂ [convex hull of f(A)].



E

Relaxed Control Topologies

In deterministic as well as stochastic control theory, relaxed or randomized control policies allow for versatility in
mathematical analysis, leading to continuity, compactness, convexity and approximation properties, in a variety of
system models, cost criteria, and information structures.

Within the relaxed/randomized control framework, with X a state space, U a control space and with an X-valued random
variable X ∼ µ, instead of considering the set of deterministic admissible policies:

Γ =

{
γ : γ is a measurable function from X to U

}
, (E.1)

one considers

ΓR =

{
γ : γ is a measurable function from X to P(U)

}
, (E.2)

where P(U) is endowed with the Borel σ-algebra generated by the weak convergence topology.

On ΓR, two commonly studied topologies are the following.

E.1 Young Topology on Control Policies

A prominent approach since Young’s seminal paper [326] has been via the study of topologies on Young measures
defined by randomized/relaxed controls, where one views policies to be identified with probability measures defined
on a product space with a fixed marginal at an input/state space (typically taken to be the Lebesgue measure in optimal
deterministic control) [215, 326], [72, Section 2.1], [308, p. 254], [211], [26, Theorem 2.2]. Thus, under the Young
topology, one associates with ΓR in (E.2) the probability measure induced on the product space X × U with a fixed
marginal µ on X.

The generalization to stochastic control problems by considering more general input measures has been commonplace,
with applications also to partially observed stochastic control and decentralized stochastic control.

To appreciate the Young topology on control policies, we first present a relevant representation result (see Borkar [54]).
Let X,M be Borel spaces. Let P(X) denote the set of probability measures on X. Consider the set of probability
measures

Θ :=

{
ζ ∈ P(X×M) :

ζ(dx, dm) = P (dx)Qf (dm|x), Qf (·|x) = 1{f(x)∈·}, f : X → M
}

(E.3)
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on X × M with fixed input marginal P on X and with the stochastic kernel from X to M realized by any measurable
function f : X → M. We equip this set with the weak convergence topology. This set is the (Borel measurable) set
of the extreme points of the set of probability measures on X × M with a fixed marginal P on X. For compact M,
the Borel measurability of Θ follows [238] since the set of probability measures on X × M with a fixed marginal P
on X is a convex and compact set in a complete separable metric space, and therefore, the set of its extreme points
is Borel measurable; measurability for the non-compact case follows from [54, Lemma 2.3]. Furthermore, given a
fixed marginal P on X, any stochastic kernel Q from X to M can almost surely be identified by a probability measure
Ξ ∈ P(Θ) such that

Q(·|x) =
∫
Θ

Ξ(dQf )Qf (·|x). (E.4)

In particular, a randomized policy can thus be viewed as a mixture of deterministic policies.

Definition E.1.1 Convergence of Policies in ΓS under Young topology at reference (input) measure µ. Let µ be a
σ-finite measure. A sequence of stationary policies γn → γ ∈ ΓS at input µ if the joint measure (µγn) → (µγ) weakly
at input P , i.e., for every continuous and bounded g : X× U → R with∫

µ(dx) sup
u∈U

|g(x, u)| <∞,

∫
µ(dx)

(
γn(du|x)g(x, u)

)
→
∫
µ(dx)

(
γ(du|x)g(x, u)

)
(E.5)

With the above, we observe that the Young topology allows for a convex and compact formulation.

We also note that in the above, the reference measure does not need to be a probability measure (and we view weak
convergence to be one on signed measures that defines a locally convex space with (E.5) defining the semi-norms).

We finally note that since the marginal of the joint measure (µγn) on X is fixed, the convergence in (E.5) is also in the
setwise-weak sense (with g(x, u) bounded but only continuous in u for every fixed x ∈ X, see Section D.4), following
Lemma D.4.1.

E.2 Borkar (Weak∗) Topology on Control Policies

In the stochastic setup, another topology is the one introduced by Borkar on relaxed controls [53] (see also [13, Section
2.4], and [43] which [53] notes to be building on), formulated as a weak∗ topology on randomized policies viewed as
maps from states/measurements to the space of signed measures with bounded variation M(U) of which probability
measures P(U) is a subset. We also refer the reader to [100, 116] for further references on such a weak∗ formulation
on relaxed controls, in particular when instead of countably additive signed measures, finitely additive such measures
are also considered.

Under the Borkar topology one studies ΓR in (E.2), with a weak∗ topology formulation, as a bounded subset of the
set of maps from X to the space of signed measures with finite variation viewed as the topological dual of continuous
functions vanishing at infinity, leading to a compact metric space by the Banach-Alaoglu theorem [128, Theorem 5.18]
(and thus, as the unit ball of L∞(X,M(U)) = (L1(X, C0(U)))∗ is compact under the weak∗ topology, this leads to a
compact metric topology on relaxed control policies). We note that the presentations in [53, Section 3] and [13, Section
2.4] are slightly different, though the induced topologies are identical. An equivalent representation of this topology is
given in [13, Lemma 2.4.1] (see also [53, Lemma 3.1]).

See [10, 53, 243] for a detailed analysis on some implications in stochastic control theory in continuous time (such
as continuity of expected cost in control policies [53], approximation results [243] under various cost criteria, and
continuity of invariant measures of diffusions in control policies [10]).
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Definition E.2.1 [53] [13, Lemma 2.4.1] Convergence of Policies in ΓS under Borkar topology. With X = Rd, a
sequence of stationary policies γn → γ ∈ ΓS in the Borkar topology if for every continuous and bounded g : X×U →
R and every f ∈ L1(X) ∩ L2(X)∫

f(x)

∫
γn(du|x)g(x, u)dx→

∫
f(x)

∫
γn(du|x)γ(du|x)g(x, u)dx (E.6)

Building on Lemma D.4.1, the functions g in Definition E.2.1 may be relaxed to be continuous only in u for every
x ∈ X.

While X was taken to be Rn in [53], Saldi [254] generalized this to setups where X is a general standard Borel space
with a fixed input (probability) measure. The generalization by Saldi [254] is the following, where the input space X
is arbitrary standard Borel, though with a fixed input measure µ: Let C0(U) be the Banach space of all continuous real
functions on U vanishing at infinity, endowed with the norm ∥g∥∞ = supu∈U |g(u)|. [254] formulated this topology
via noting that with L1

(
µ,C0(U)

)
denoting the set of all Bochner-integrable functions from X to C0(U) endowed with

the norm

∥f∥1 :=

∫
X
∥f(x)∥∞ µ(dx),

using the fact that C0(U)∗ = M(U), and that the topological dual of
(
L1

(
µ,C0(U

)
, ∥ · ∥1

)
can be identified with(

L∞
(
µ,M(U)

)
, ∥ · ∥∞

)
[73, Theorem 1.5.5, p. 27] (see also [100, 116] for further context on such duality results, in

particular when instead of countably additive signed measures, finitely additive such measures are considered); that is,

L1

(
µ,C0(U)

)∗
= L∞

(
µ,M(U)

)
.

E.3 Some Properties of Young and Borkar topologies

Lemma E.3.1 [334] Let η ≪ κ, where κ is a σ-finite and η is a finite measure. Then, γn → γ under Young topology
at input κ implies γn → γ (under Young topology) at input η.

Theorem E.3.1 [334] Let X = Rn and λ be the Lebesgue measure. Consider convergence in Young topology at some
input probability measure ψ.

(i) If ψ ≪ λ with h(x) = dψ
dλ (x) is positive everywhere, then convergence in Young topology at input measure ψ implies

convergence in Borkar topology.

(ii) If ψ ≪ λ, then convergence in Borkar topology implies convergence in Young topology at input ψ.

In [334], several results on the significance of these topologies on existence of optimal policies and approximations (on
near optimality of continuous policies or quantized policies in both measurement and action) have been presented.
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256. N. Saldi, T. Linder, and S. Yüksel. Finite Approximations in Discrete-Time Stochastic Control: Quantized Models and Asymp-
totic Optimality. Springer, Cham, 2018.
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