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with error converging to 0 at desired exponential rate? 

Model detection:
How much data rate is needed to distinguish between 
several possible system models? 
(Can apply state estimation scheme if trajectories
of different models are sufficiently different)

Desired data rate is described by estimation entropy [L–Mitra ’18]
(variant of previous entropy notions for control and estimation
[Nair et al.; Colonius, Kawan; Leonov, Boichenko, Matveev, Savkin, Pogromsky]) 
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For a general nonlinear system

where 
and the sup is taken over all     reachable from 

Note: we can instead take     to be the Lipschitz constant of   , 
which is more conservative but works if             does not exist
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ẋ1 = σx2 − σx1
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ẋ2 = θx1 − x2 − x1x3
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ẋ1 = σx2 − σx1
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ẋ1 = σx2 − σx1
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ẋ3 = −βx3 + x1x2

For                                we have 

Alternative viewpoint: interconnection of 3 scalar subsystems

Jacobian is 

Can take this matrix to be 

As in [Arcak–Maidens ’18], take matrix      s.t. :                    
,



EXAMPLE:  LORENZ  SYSTEM

10 of 18
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As in [Arcak–Maidens ’18], take matrix      s.t. :                    
,
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Properties: and ξ(x, iTp) ∈ Si ∀i kξ(x, t)−v(t)k∞ ≤ δ0e
−αt ∀t
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Procedure in [Savkin] operates at arbitrary bit rate >       , but does block 
coding using sequences from suitable spanning set – not constructive



Want to distinguish between two competing models 

𝑥ሶ ൌ 𝑓௜ 𝑥 , 𝑖 ∈ 1,2 , 𝑥 ∈ ℝ௡, 𝑥 0 ∈ 𝐾
using finite-data-rate state measurements (as above)

Need solutions of two models to be “sufficiently different”

௜ – solution of model from after time

௜ – Lipschitz constant of ௜ (can use matrix measure instead)

Call models -separated if ∃𝜀୫୧୬ ൐ 0 s.t. ∀𝜀 ൑ 𝜀୫୧୬:

𝑥ଵ െ 𝑥ଶ ൑ 𝜀 ⇒  𝜉ଵ 𝑥ଵ,𝑇 െ 𝜉ଶ 𝑥ଶ,𝑇 ൐ 𝜀𝑒௅்

Sufficient condition: exponential separation holds over a compact   
set of states 𝐷 if 𝑓ଵ 𝑥 ് 𝑓ଶ 𝑥   ∀𝑥 ∈ 𝐷 (“generically true”)

MODEL  DETECTION  PROBLEM

13 of 18



Theorem: Under ሺ𝐿ଵ,𝑇௣ሻ‐separation, output “2” iff true model is 𝑓ଶ
If the true model is 𝑓ଵ: by correctness of estimation, actual state always 
stays in 𝑆௜, no output.

If the true model is 𝑓ଶ: since 𝛿௜ decays geometrically, it will eventually 
become smaller than 𝜀୫୧୬. By exponential separation, at next iteration 
the actual state will exit 𝑆௜.

If 𝜉 𝑥଴, 𝑡 ∉ 𝑆௜ିଵ output “2”; break
Else  𝑞௜:= Quantized measurement of 𝜉 𝑥଴, 𝑖𝑇௣ w.r.t 𝐶௜ିଵ

𝑣 𝑡 := 𝜉ଵ 𝑞௜ , 𝑡 െ 𝑖 െ 1 𝑇௣ for 𝑡 ∈ ሾ 𝑖 െ 1 𝑇௣, 𝑖𝑇௣ሿ
𝛿௜ ≔ 𝑒ିఈ ೛்𝛿௜ିଵ
𝑆௜ ≔ hypercube with center 𝑣ሺ𝑖𝑇௣ሻ and radius 𝛿௜
𝐶௜ ≔ grid 𝑆௜ with size  𝑒ିሺ௅భାఈሻ ೛்𝛿௜

MODEL  DETECTION ALGORITHMPROBLEM
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For switched system , define entropy as before 
for each fixed switching signal

For switched linear system                 , entropy satisfies

Looser upper bounds depend only on asymptotic active rates
or don’t depend on        at all, e.g.:  

For each mode    , define active time
and active rate

Switched nonlinear systems: [Yang–L–Hespanha ’21]

Sharper bounds if commutation structure on      : [Yang–L–Hespanha ’19] 

Connections with Lyapunov exponents: [Vicinansa–L ’19]
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• In finite-data-rate scenario, exact switching times are not known

• This increases entropy, making it hard to bound or even infinite

• Finite-data-rate stabilizing controllers for switched systems exist 
[L ’14, Wakaiki–Yamamoto ’16, Yang–L ’18, Berger–Jungers ’21] but 
we need to bridge the gap between their data rate and entropy

• Unknown switching signal can be treated as disturbance input

• What is a proper definition of entropy for systems with inputs?
Preliminary results in [Sibai–Mitra ’18].

• How does entropy behave under input/output interconnections?
[Kawan–Delvenne ’16, Matveev et al. ’19, Tomar–Zamani ’20, L ’21].

• When entropy is infinite, stabilization is in a weaker sense


