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with error converging to 0 at desired exponential rate? 

Model detection:
How much data rate is needed to distinguish between 
several possible system models? 
(Can apply state estimation scheme if trajectories
of different models are sufficiently different)

Desired data rate is described by estimation entropy [L–Mitra ’18]
(variant of previous entropy notions for control and estimation
[Nair et al.; Colonius, Kawan; Leonov, Boichenko, Matveev, Savkin, Pogromsky]) 
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ẋ = f(x), (known compact set)x ∈ Rn, x(0) ∈ K ⊂ Rn

25 of 18

Equivalent definition via           -separated sets: (T, ε)

A set of points                              is           -separated if               :x1, . . . , xM ∈ K (T, ε) ∀x1, x2
|ξ(x1, t)− ξ(x2, t)| ≥ εe−αt t ∈ [0, T ]for some

cardinality      of largest -separated setM (T, ε)

Can show (using standard techniques):

Divide by    , take             , then        – all become equalT lim sup
T→∞

lim
ε→0

ALTERNATIVE ENTROPY  DEFINITION

Can define entropy by



TOY  EXAMPLE

26 of 18



TOY  EXAMPLE

27 of 18

– known compact interval



TOY  EXAMPLE

28 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values



TOY  EXAMPLE

29 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers



TOY  EXAMPLE

30 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers
• send the index of the interval containing



TOY  EXAMPLE

31 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers
sampling 
period • send the index of the interval containing



TOY  EXAMPLE

32 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

sampling 
period • send the index of the interval containing



TOY  EXAMPLE

33 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

sampling 
period • send the index of the interval containing

• repeat



TOY  EXAMPLE

34 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

This coding scheme uses data rate              per time unit 

sampling 
period • send the index of the interval containing

• repeat



TOY  EXAMPLE

35 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

At            , we know        is in an interval of length
This coding scheme uses data rate              per time unit 

sampling 
period • send the index of the interval containing

• repeat



TOY  EXAMPLE

36 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

At            , we know        is in an interval of length
This coding scheme uses data rate              per time unit 

sampling 
period • send the index of the interval containing

Hence to estimate        with error converging to 0 as
we need data rate of            bits  (or nats)

• repeat



TOY  EXAMPLE

37 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

At            , we know        is in an interval of length
This coding scheme uses data rate              per time unit 

Entropy: the set                             is         -spanning if

sampling 
period • send the index of the interval containing

Hence to estimate        with error converging to 0 as
we need data rate of            bits  (or nats)

• repeat



TOY  EXAMPLE

38 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

At            , we know        is in an interval of length
This coding scheme uses data rate              per time unit 

Entropy: the set                             is         -spanning if

sampling 
period • send the index of the interval containing

Hence to estimate        with error converging to 0 as
we need data rate of            bits  (or nats)

• repeat



TOY  EXAMPLE

39 of 18

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

At            , we know        is in an interval of length
This coding scheme uses data rate              per time unit 

Entropy: the set                             is         -spanning if

sampling 
period • send the index of the interval containing

Hence to estimate        with error converging to 0 as
we need data rate of            bits  (or nats)

• repeat



TOY  EXAMPLE

40 of 18

Take                               of this to get 

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide     into     (equal) subintervals with centers

• divide reachable set again into     (equal) subintervals

At            , we know        is in an interval of length
This coding scheme uses data rate              per time unit 

Entropy: the set                             is         -spanning if

sampling 
period • send the index of the interval containing

Hence to estimate        with error converging to 0 as
we need data rate of            bits  (or nats)

• repeat



BOUNDS  on  ENTROPY:  PRELIMINARIES

41 of 18



BOUNDS  on  ENTROPY:  PRELIMINARIES

42 of 18

For LTV system                    it is well known that



BOUNDS  on  ENTROPY:  PRELIMINARIES

43 of 18

For LTV system                    it is well known that



BOUNDS  on  ENTROPY:  PRELIMINARIES

44 of 18

For LTV system                    it is well known that

where                                           is matrix measure



BOUNDS  on  ENTROPY:  PRELIMINARIES

45 of 18

For LTV system                    it is well known that

where                                           is matrix measure

; e.g., for     -norm,



BOUNDS  on  ENTROPY:  PRELIMINARIES

46 of 18

For LTV system                    it is well known that

where                                           is matrix measure

; e.g., for     -norm,

Can have                 but in all bounds          means 



BOUNDS  on  ENTROPY:  PRELIMINARIES

47 of 18

For LTV system                    it is well known that

where                                           is matrix measure

; e.g., for     -norm,

For a general nonlinear system

Can have                 but in all bounds          means 



BOUNDS  on  ENTROPY:  PRELIMINARIES

48 of 18

For LTV system                    it is well known that

where                                           is matrix measure

; e.g., for     -norm,

For a general nonlinear system
the above LTV bound applied to its variational equation gives 

Can have                 but in all bounds          means 



BOUNDS  on  ENTROPY:  PRELIMINARIES

49 of 18

For LTV system                    it is well known that

where                                           is matrix measure

; e.g., for     -norm,

For a general nonlinear system

where 
the above LTV bound applied to its variational equation gives 

Can have                 but in all bounds          means 



BOUNDS  on  ENTROPY:  PRELIMINARIES

50 of 18

For LTV system                    it is well known that

where                                           is matrix measure

; e.g., for     -norm,

For a general nonlinear system

where 
and the sup is taken over all     reachable from 

the above LTV bound applied to its variational equation gives 

Can have                 but in all bounds          means 



BOUNDS  on  ENTROPY:  PRELIMINARIES

51 of 18

For LTV system                    it is well known that

where                                           is matrix measure

; e.g., for     -norm,

For a general nonlinear system

where 
and the sup is taken over all     reachable from 

This provides a basis for constructing spanning sets (grids)

the above LTV bound applied to its variational equation gives 

Can have                 but in all bounds          means 



BOUNDS  on  ENTROPY:  PRELIMINARIES

52 of 18

For LTV system                    it is well known that
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For a general nonlinear system

where 
and the sup is taken over all     reachable from 

Note: we can instead take     to be the Lipschitz constant of   , 
which is more conservative but works if             does not exist
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ẋ = f(x), x(0) ∈ K ⊂ Rn,



For linear system                  this result can be refined toẋ = Ax
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ẋ2 = θx1 − x2 − x1x3
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ẋ1 = σx2 − σx1
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ẋ1 = σx2 − σx1
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As in [Arcak–Maidens ’18], take matrix      s.t. :                    
,
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Properties: and ξ(x, iTp) ∈ Si ∀i kξ(x, t)−v(t)k∞ ≤ δ0e
−αt ∀t
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Procedure in [Savkin] operates at arbitrary bit rate >       , but does block 
coding using sequences from suitable spanning set – not constructive



Want to distinguish between two competing models 

𝑥ሶ ൌ 𝑓 𝑥 , 𝑖 ∈ 1,2 , 𝑥 ∈ ℝ, 𝑥 0 ∈ 𝐾
using finite-data-rate state measurements (as above)

Need solutions of two models to be “sufficiently different”

 – solution of model from after time

 – Lipschitz constant of  (can use matrix measure instead)

Call models -separated if ∃𝜀୫୧୬  0 s.t. ∀𝜀  𝜀୫୧୬:

𝑥ଵ െ 𝑥ଶ  𝜀 ⇒  𝜉ଵ 𝑥ଵ,𝑇 െ 𝜉ଶ 𝑥ଶ,𝑇  𝜀𝑒்

Sufficient condition: exponential separation holds over a compact   
set of states 𝐷 if 𝑓ଵ 𝑥 ് 𝑓ଶ 𝑥   ∀𝑥 ∈ 𝐷 (“generically true”)

MODEL  DETECTION  PROBLEM

13 of 18



Theorem: Under ሺ𝐿ଵ,𝑇ሻ‐separation, output “2” iff true model is 𝑓ଶ
If the true model is 𝑓ଵ: by correctness of estimation, actual state always 
stays in 𝑆, no output.

If the true model is 𝑓ଶ: since 𝛿 decays geometrically, it will eventually 
become smaller than 𝜀୫୧୬. By exponential separation, at next iteration 
the actual state will exit 𝑆.

If 𝜉 𝑥, 𝑡 ∉ 𝑆ିଵ output “2”; break
Else  𝑞:= Quantized measurement of 𝜉 𝑥, 𝑖𝑇 w.r.t 𝐶ିଵ

𝑣 𝑡 := 𝜉ଵ 𝑞 , 𝑡 െ 𝑖 െ 1 𝑇 for 𝑡 ∈ ሾ 𝑖 െ 1 𝑇, 𝑖𝑇ሿ
𝛿 ≔ 𝑒ିఈ ்𝛿ିଵ
𝑆 ≔ hypercube with center 𝑣ሺ𝑖𝑇ሻ and radius 𝛿
𝐶 ≔ grid 𝑆 with size  𝑒ିሺభାఈሻ ்𝛿

MODEL  DETECTION ALGORITHMPROBLEM
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For switched system , define entropy as before 
for each fixed switching signal

For switched linear system                 , entropy satisfies

Looser upper bounds depend only on asymptotic active rates
or don’t depend on        at all, e.g.:  

For each mode    , define active time
and active rate

Switched nonlinear systems: [Yang–L–Hespanha ’21]

Sharper bounds if commutation structure on      : [Yang–L–Hespanha ’19] 

Connections with Lyapunov exponents: [Vicinansa–L ’19]
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• In finite-data-rate scenario, exact switching times are not known

• This increases entropy, making it hard to bound or even infinite

• Finite-data-rate stabilizing controllers for switched systems exist 
[L ’14, Wakaiki–Yamamoto ’16, Yang–L ’18, Berger–Jungers ’21] but 
we need to bridge the gap between their data rate and entropy

• Unknown switching signal can be treated as disturbance input

• What is a proper definition of entropy for systems with inputs?
Preliminary results in [Sibai–Mitra ’18].

• How does entropy behave under input/output interconnections?
[Kawan–Delvenne ’16, Matveev et al. ’19, Tomar–Zamani ’20, L ’21].

• When entropy is infinite, stabilization is in a weaker sense


