
Chapter 6
Design of Information Channels
for Optimization and Stabilization
in Networked Control

Serdar Yüksel

6.1 Introduction and the Information Structure Design Problem

In stochastic control, typically a partial observation model/channel is given and one
looks for a control policy for optimization or stabilization. Consider a single-agent
dynamical system described by the discrete-time equations

xt+1 = f (xt , ut ,wt ), (6.1)

yt = g(xt , vt ), t ≥ 0, (6.2)

for (Borel measurable) functions f,g, with {wt } being an independent and identi-
cally distributed (i.i.d.) system noise process and {vt } an i.i.d. measurement distur-
bance process, which are independent of x0 and each other. Here, xt ∈ X, yt ∈ Y,
ut ∈ U, where we assume that these spaces are Borel subsets of finite dimensional
Euclidean spaces.

In (6.2), we can view g as inducing a measurement channel Q, which is a stochas-
tic kernel or a regular conditional probability measure from X to Y in the sense that
Q(·|x) is a probability measure on the (Borel) σ -algebra B(Y) on Y for every x ∈X,
and Q(A|·) :X → [0,1] is a Borel measurable function for every A ∈ B(Y).

In networked control systems, the observation channel described above itself is
also subject to design. In a more general setting, we can shape the channel input
by coding and decoding. This chapter is concerned with design and optimization of
such channels.

We will consider a controlled Markov model given by (6.1). The observation
channel model is described as follows: This system is connected over a noisy chan-
nel with a finite capacity to a controller, as shown in Fig. 6.1. The controller has
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Fig. 6.1 Control over a noisy channel with feedback. The quantizer and the channel encoder form
the coder in the figure

access to the information it has received through the channel. A quantizer maps the
source symbols, state values, to corresponding channel inputs. The quantizer out-
puts are transmitted through a channel, after passing through a channel encoder. We
assume that the channel is a discrete channel with input alphabet M and output
alphabet M′. Hence, the channel maps q ∈ M to channel outputs q ′ ∈ M′ prob-
abilistically so that P(q ′|q) is a stochastic kernel. Further probabilistic properties
can be imposed on the channels depending on the particular application.

We refer by a Composite Coding Policy Πcomp, a sequence of functions
{Qcomp

t , t ≥ 0} which are causal such that the quantization output (channel input)
at time t , qt ∈ M, under Πcomp is generated by a function of its local information,
that is, a mapping measurable on the sigma-algebra generated by

Ie
t = {

x[0,t], q ′[0,t−1]
}

to a finite set M, the quantization output alphabet given by

M := {1,2, . . . ,M},
for 0 ≤ t ≤ T − 1 and i = 1,2. Here, we have the notation for t ≥ 1:

x[0,t−1] = {xs,0 ≤ s ≤ t − 1}.
The receiver/controller, upon receiving the information from the encoders, gen-

erates its decision at time t , also causally: An admissible causal controller policy is
a sequence of functions γ = {γt } such that

γt :M′t+1 →R
m, t ≥ 0,

so that ut = γt (q
′[0,t]).

We call such encoding and control policies, causal or admissible.
Two problems will be considered.

Problem P1: Value and Design of Information Channels for Optimization
Given a controlled dynamical system (6.1), find solutions to minimization problem

inf
Πcomp,γ

E
Πcomp,γ

P

[
T −1∑

t=0

c(xt , ut )

]

, (6.3)
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over the set of all admissible coding and control policies, given c : X × U → R+,
a cost function.

Problem P2: Value of Information Channels for Stabilization The second
problem concerns stabilization. In this setting, we replace (6.1) with an n-
dimensional linear system of the form

xt+1 = Axt + But + wt, t ≥ 0 (6.4)

where xt is the state at time t , ut is the control input, the initial state x0 is a zero-
mean second order random variable, and {wt } is a sequence of zero-mean i.i.d.
Gaussian random variables, also independent of x0. We assume that the system is
open-loop unstable and controllable, that is, at least one eigenvalue has magnitude
greater than 1.

The stabilization problem is as follows: Given a system of the form (6.4) con-
trolled over a channel, find the set of channels Q for which there exists a policy
(both control and encoding) such that {xt } is stable. Stochastic stability notions will
be ergodicity and existence of finite moments, to be specified later.

The literature on such problems is rather long and references will be cited as
they are particularly relevant. We refer the reader to [56, 63], and [58] for a detailed
literature review.

6.2 Problem P1: Channel Design for Optimization

In this section, we consider the optimization problem. We will first consider a single
state problem and investigate topological properties of measurement channels.

6.2.1 Measurement Channels as Information Structures

6.2.1.1 Topological Characterization of Measurement Channels

Let, as in (6.2), g induce a stochastic kernel Q, P be the probability measure on the
initial state, and PQ denote the joint distribution induced on (X×Y,B(X×Y)) by
channel Q with input distribution P via

PQ(A) =
∫

A

Q(dy|x)P (dx), A ∈ B(X×Y).

We adopt the convention that given a probability measure μ, the notation z ∼ μ

means that z is a random variable with distribution μ.
Consider the following cost function:

J (P,Q,γ ) = E
Q,γ

P

[
T −1∑

t=0

c(xt , ut )

]

, (6.5)
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over the set of all admissible policies γ , where c :X×U→ R is a Borel measurable
stagewise cost (loss) function and E

Q,γ

P denotes the expectation with initial state
probability measure given by P , under policy γ and given channel Q.

Here, we have X = R
n and Y = R

m, and Q denotes the set of all measurement
channels (stochastic kernels) with input space X and output space Y.

Let {μn, n ∈ N} be a sequence in P(Rn), where P(Rn) is the set of probability
measures on R

n. Recall that {μn} is said to converge to μ ∈ P(Rn) weakly [5] if
∫

Rn

c(x)μn(dx) →
∫

Rn

c(x)μ(dx)

for every continuous and bounded c : Rn → R. The sequence {μn} is said to con-
verge to μ ∈P(Rn) setwise if

μn(A) → μ(A), for all A ∈ B
(
R

n
)

For two probability measures μ,ν ∈ P(Rn), the total variation metric is given by

‖μ − ν‖T V := 2 sup
B∈B(Rn)

∣∣μ(B) − ν(B)
∣∣

= sup
f : ‖f ‖∞≤1

∣
∣∣∣

∫
f (x)μ(dx) −

∫
f (x)ν(dx)

∣
∣∣∣,

where the infimum is over all measurable real f such that ‖f ‖∞ = supx∈Rn |f (x)| ≤
1. A sequence {μn} is said to converge to μ ∈ P(Rn) in total variation if
‖μn − μ‖T V → 0.

These three convergence notions are in increasing order of strength: convergence
in total variation implies setwise convergence, which in turn implies weak conver-
gence.

Given these definitions, we have the following.

Definition 6.1 (Convergence of Channels [63])

(i) A sequence of channels {Qn} converges to a channel Q weakly at input P if
PQn → PQ weakly.

(ii) A sequence of channels {Qn} converges to a channel Q setwise at input P if
PQn → PQ setwise, i.e., if PQn(A) → PQ(A) for all Borel sets A ⊂ X×Y.

(iii) A sequence of channels {Qn} converges to a channel Q in total variation at
input P if PQn → PQ in total variation, i.e., if ‖PQn − PQ‖T V → 0.

If we introduce the equivalence relation Q ≡ Q′ if and only if PQ = PQ′,
Q,Q′ ∈ Q, then the convergence notions in Definition 6.1 only induce the corre-
sponding topologies on the resulting equivalence classes in Q, instead of Q. Let

J (P,Q) := inf
γ

E
Q,γ

P

[
T −1∑

t=0

c
(
xt , γt (y[0,t])

)
]

.
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In the following, we will discuss the following problems.

Continuity on the space of measurement channels (stochastic kernels): Suppose
that {Qn,n ∈ N} is a sequence of communication channels converging in some
sense to a channel Q. Then the question we ask is when does Qn → Q imply

inf
γ∈Γ

J (P,Qn,γ ) → inf
γ∈Γ

J (P,Q,γ )?

Existence of optimal measurement channels and quantizers: Let Q be a set of com-
munication channels. A second question we ask is when do there exist minimizing
and maximizing channels for the optimization problems

inf
Q∈Q

inf
γ

E
Q,γ

P

[
T −1∑

t=0

c(xt , ut )

]

and sup
Q∈Q

inf
γ

E
Q,γ

P

[
T −1∑

t=0

c(xt , ut )

]

. (6.6)

If solutions to these problems exist, are they unique?

Before proceeding further, however, we will obtain in the next section a structural
result on such optimization problems.

6.2.1.2 Concavity of the Measurement Channel Design Problem and
Blackwell’s Comparison of Information Structures

We first present the following concavity results.

Theorem 6.1 [61] Let T = 1 and let the integral
∫

c(x, γ (y))PQ(dx, dy) exist for
all γ ∈ Γ and Q ∈Q. Then, the function

J (P,Q) = inf
γ∈Γ

E
Q,γ

P

[
c(x,u)

]

is concave in Q.

Proof For α ∈ [0,1] and Q′,Q′′ ∈ Q, let Q = αQ′ + (1 − α)Q′′ ∈Q, i.e.,

Q(A|x) = αQ′(A|x) + (1 − α)Q′′(A|x)

for all A ∈ B(Y) and x ∈X. Noting that PQ = αPQ′ + (1 − α)PQ′′, we have

J (P,Q) = J
(
P,αQ′ + (1 − α)Q′′) = inf

γ∈Γ
E

Q,γ

P

[
c(x,u)

]

= inf
γ∈Γ

∫
c
(
x, γ (y)

)
PQ(dx, dy)

= inf
γ∈Γ

(
α

∫
c
(
x, γ (y)

)
PQ′(dx, dy)
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+ (1 − α)

∫
c
(
x, γ (y)

)
PQ′′(dx, dy)

)

≥ inf
γ∈Γ

(
α

∫
c
(
x, γ (y)

)
PQ′(dx, dy)

)

+ inf
γ∈Γ

(
(1 − α)

∫
c
(
x, γ (y)

)
PQ′′(dx, dy)

)

= αJ
(
P,Q′) + (1 − α)J

(
P,Q′′), (6.7)

proving that J (P,Q) is concave in Q. �

Proposition 6.1 [61] The function

V (P ) := inf
u∈U

∫
c(x,u)P (dx),

is concave in P , under the assumption that c is measurable and bounded.

We will use the preceding observation to revisit a classical result in statistical
decision theory and comparison of experiments, due to David Blackwell [4]. In a
single decision maker setup, we refer to the probability space induced on X×Y as
an information structure.

Definition 6.2 An information structure induced by some channel Q2 is weakly
stochastically degraded with respect to another one, Q1, if there exists a channel Q′
on Y×Y such that

Q2(B|x) =
∫

Y

Q′(B|y)Q1(dy|x), B ∈ B(Y), x ∈X.

We have the following.

Theorem 6.2 (Blackwell [4]) If Q2 is weakly stochastically degraded with respect
to Q1, then the information structure induced by channel Q1 is more informative
with respect to the one induced by channel Q2 in the sense that

inf
γ

E
Q2,γ

P

[
c(x,u)

] ≥ inf
γ

E
Q1,γ

P

[
c(x,u)

]
,

for all measurable and bounded cost functions c.

Proof The proof follows from [61]. Let (x, y1) ∼ PQ1, y2 be such that Pr(y2 ∈
B|x = x, y1 = y) = Q′(B|y) for all B ∈ B(Y), y1 ∈ Y, and x ∈ X. Then x, y1, and
y2 form a Markov chain in this order, and therefore P(dy2|y1, x) = P(dy2|y1) and
P(x|dy2, y1) = P(x|y1). Thus we have

J (P,Q2) =
∫

V
(
P

(·|y2))P
(
dy2)
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=
∫

V

(∫
P

(·|y1)P
(
dy1|y2)

)
P

(
dy2)

≥
∫ (∫

P
(
dy1|y2)V

(
P

(·|y1))
)

P
(
dy2)

=
∫

V
(
P

(·|y1))
(∫

P
(
dy1|y2)P

(
dy2)

)

=
∫

V
(
P

(·|y1))P
(
dy1) = J (P,Q1),

where in arriving at the inequality, we used Proposition 6.1 and Jensen’s inequal-
ity. �

Remark 6.1 When X is finite, Blackwell showed that the above condition also has a
converse theorem if P has positive measure on each element of X: For an informa-
tion structure to be more informative, weak stochastic degradedness is a necessary
condition. For Polish X and Y, the converse result holds under further technical
conditions on the stochastic kernels (information structures), see [6] and [10].

The comparison argument applies also for the case T > 1.

Theorem 6.3 [60] For the multi-stage problem (6.5), if Q2 is weakly stochastically
degraded with respect to Q1, then the information structure induced by channel Q1
is more informative with respect to the one induced by channel Q2 in the sense that
for all measurable and bounded cost functions c in (6.5)

J (P,Q1) ≤ J (P,Q2).

Remark 6.2 Blackwell’s informativeness provides a partial order in the space of
measurement channels; that is, not every pair of channels can be compared. We
will later see that, if the goal is not the minimization of a cost function, but that of
stochastic stabilization in an appropriate sense, then one can obtain a total order on
the space of channels.

6.2.1.3 Single Stage: Continuity of the Optimal Cost in Channels

In this section, we study continuity properties under total variation, setwise conver-
gence, and weak convergence, for the single-stage case. Thus, we investigate the
continuity of the functional

J (P,Q) = inf
γ

E
Q,γ

P

[
c(x0, u0)

]

= inf
γ∈Γ

∫

X×Y

c
(
x, γ (y)

)
Q(dy|x)P (dx) (6.8)
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in the channel Q ∈ Q, where Γ is the collection of all Borel measurable functions
mapping Y into U. Note that γ is an admissible one-stage control policy. As before,
Q denotes the set of all channels with input space X and output space Y.

Our results in this section as well as subsequent sections in this chapter will
utilize one or more of the assumptions on the cost function c and the (Borel) set
U ⊂ R

k :

Assumption 6.1

A1. The function c : X×U → R is non-negative, bounded, and continuous on X×
U.

A2. The function c : X×U → R is non-negative, measurable, and bounded.
A3. The function c : X × U → R is non-negative, measurable, bounded, and con-

tinuous on U for every x ∈X.
A4. U is a compact set.

Before proceeding further, we look for conditions under which an optimal control
policy exists, i.e., when the infimum in infγ E

Q,γ

P [c(x,u)] is a minimum.

Theorem 6.4 [63] Suppose assumptions A3 and A4 hold. Then, there exists an
optimal control policy for any channel Q.

Theorem 6.5 [63]

(a) J defined in (6.8) is not continuous under setwise or weak convergence even for
continuous and bounded cost functions c.

(b) Suppose that c is continuous and bounded on X × U, U is compact, and U is
convex. If {Qn} is a sequence of channels converging weakly at input P to a
channel Q, then J satisfies lim supn→∞ J (P,Qn) ≤ J (P,Q), that is, J (P,Q)

is upper semi-continuous under weak convergence.
(c) If c is bounded, measurable, then J is sequentially upper semi-continuous on

Q under setwise convergence.

We have continuity under the stronger notion of total variation.

Theorem 6.6 [63] Under Assumption A2, the optimal cost J (P,Q) is continuous
on the set of communication channels Q under the topology of total variation.

Thus, total variation, although a strong metric, is useful in establishing continuity.
This will be useful in our analysis to follow for the existence of optimal quantiza-
tion/coding policies.

In [63], (sequential) compactness conditions for a set of communication channels
have been established. Given the continuity conditions, these may be used to identify
conditions for the existence of best and worst channels for (6.6) when T = 1.
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6.2.2 Quantizers as a Class of Channels

In this section, we consider the problem of convergence and optimization of quan-
tizers.

We start with the definition of a quantizer.

Definition 6.3 An M-cell vector quantizer, Q, is a (Borel) measurable mapping
from a subset of X = R

n to the finite set {1,2, . . . ,M}, characterized by a mea-
surable partition {B1,B2, . . . ,BM} such that Bi = {x : Q(x) = i} for i = 1, . . . ,M .
The Bi ’s are called the cells (or bins) of Q.

We allow for the possibility that some of the cells of the quantizer are empty.
Traditionally, in source coding theory, a quantizer is a mapping Q : Rn → R

n with
a finite range. Thus q is defined by a partition and a reconstruction value in R

n for
each cell in the partition. That is, for given cells {B1, . . . ,BM} and reconstruction
values {q1, . . . , qM} ⊂ R

n, we have Q(x) = qi if and only if x ∈ Bi . In the definition
above, we do not include the reconstruction values.

A quantizer Q with cells {B1, . . . ,BM } can also be characterized as a stochastic
kernel Q from X to {1, . . . ,M} defined by

Q(i|x) = 1{x∈Bi }, i = 1, . . . ,M,

so that Q(x) = ∑M
i=1 qiQ(i|x). We denote by QD(M) the space of all M-cell quan-

tizers represented in the channel form. In addition, we let Q(M) denote the set of
(Borel) stochastic kernels from X to {1, . . . ,M}, i.e., Q ∈ Q(M) if and only if
Q(·|x) is probability distribution on {1, . . . ,M} for all x ∈ X, and Q(i|·) is Borel
measurable for all i = 1, . . . ,M . Note that QD(M) ⊂ Q(M). We note also that ele-
ments of Q(M) are sometimes referred to as random quantizers.

Consider the set of probability measures

Θ := {
ζ ∈ P

(
R

n ×M
) : ζ = PQ,Q ∈Q

}
,

on R
n ×M having fixed input marginal P , equipped with weak topology. This set is

the (Borel measurable) set of the extreme points on the set of probability measures
on R

n × M with a fixed input marginal P [9]. Borel measurability of Θ follows
from [40] since set of probability measures on R

n ×M with a fixed input marginal
P is a convex and compact set in a complete separable metric space, and therefore,
the set of its extreme points is Borel measurable.

Lemma 6.1 [63] The set of quantizers QD(M) is setwise sequentially precompact
at any input P .

Proof The proof follows from the interpretation above viewing a quantizer as
a channel. In particular, a majorizing finite measure ν is obtained by defining
ν = P × λ, where λ is the counting measure on {1, . . . ,M} (note that ν(Rn ×
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{1, . . . ,M}) = M). Then for any measurable B ⊂ R
n and i = 1, . . . ,M , we have

ν(B × {i}) = P(B)λ({i}) = P(B) and thus

PQ
(
B × {i}) = P(B ∩ Bi) ≤ P(B) = ν

(
B × {i}).

Since any measurable D ⊂ X × {1, . . . ,M} can be written as the disjoint union of
the sets Di × {i}, i = 1, . . . ,M , with Di = {x ∈ X : (x, i) ∈ D}, the above implies
PQ(D) ≤ ν(D) and this domination leads to precompactness under setwise con-
vergence (see [5, Theorem 4.7.25]). �

The following lemma provides a useful result.

Lemma 6.2 [63] A sequence {Qn} in Q(M) converges to a Q in Q(M) setwise at
input P if and only if

∫

A

Qn(i|x)P (dx) →
∫

A

Q(i|x)P (dx) for all A ∈ B(X) and i = 1, . . . ,M.

Proof The lemma follows by noticing that for any Q ∈ Q(M) and measurable D ⊂
X× {1, . . . ,M},

PQ(D) =
∫

D

Q(dy|x)P (dx) =
M∑

i=1

∫

Di

Q(i|x)P (dx)

where Di = {x ∈ X : (x, i) ∈ D}. �

However, unfortunately, the space of quantizers QD(M) is not closed under set-
wise (and hence, weak) convergence, see [63] for an example. This will lead us to
consider further restrictions in the class of quantizers considered below.

In the following, we show that an optimal channel can be replaced with an opti-
mal quantizer without any loss in performance.

Proposition 6.2 [63] For any Q ∈ Q(M), there exists a Q′ ∈ QD(M) with
J (P,Q′) ≤ J (P,Q). If there exists an optimal channel in Q(M), then there is
a quantizer in QD(M) that is optimal.

Proof For a policy γ : {1, . . . ,M} → U = X (with finite cost) define for all i,

B̄i = {
x : c

(
x, γ (i)

) ≤ c
(
x, γ (j)

)
, j = 1, . . . ,M

}
.

Letting B1 = B̄1 and Bi = B̄i \ ⋃i−1
j=1 Bj , i = 2, . . . ,M , we obtain a partition

{B1, . . . ,BM } and a corresponding quantizer Q′ ∈ QD(M). Then E
Q′,γ
P [c(x,u)] ≤

E
Q,γ

P [c(x,u)] for any Q ∈Q(M). �

The following shows that setwise convergence of quantizers implies convergence
under total variation.
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Theorem 6.7 [63] Let {Qn} be a sequence of quantizers in QD(M) which con-
verges to a quantizer Q ∈ QD(M) setwise at P . Then, the convergence is also under
total variation at P .

Combined with Lemma 6.2, this theorem will be used to establish existence of
optimal quantizers.

Now, assume Q ∈ QD(M) with cells B1, . . . ,BM , each of which is a convex
subset of Rn. By the separating hyperplane theorem [24], there exist pairs of com-
plementary closed half spaces {(Hi,j ,Hj,i) : 1 ≤ i, j ≤ M,i = j} such that for all
i = 1, . . . ,M ,

Bi ⊂
⋂

j =i

Hi,j .

Each B̄i := ⋂
j =i Hi,j is a closed convex polytope and by the absolute continuity

of P one has P(B̄i \ Bi) = 0 for all i = 1, . . . ,M . One can thus obtain a (P -a.s.)
representation of Q by the M(M − 1)/2 hyperplanes hi,j = Hi,j ∩ Hj,i .

Let QC(M) denote the collection of M-cell quantizers with convex cells and
consider a sequence {Qn} in QC(M). It can be shown (see the proof of Theorem 1
in [20]) that using an appropriate parametrization of the separating hyperplanes, a
subsequence Qnk

can be found which converges to a Q ∈ QC(M) in the sense that
P(B

nk

i � Bi) → 0 for all i = 1, . . . ,M , where the B
nk

i and the Bi are the cells of
Qnk

and Q, respectively.
In the following, we consider quantizers with convex codecells and an input dis-

tribution that is absolutely continuous with respect to the Lebesgue measure on R
n

[20]. We note that such quantizers are commonly used in practice; for cost functions
of the form c(x,u) = ‖x −u‖2 for x,u ∈R

n, the cells of optimal quantizers, if they
exist, will be convex by Lloyd–Max conditions of optimality; see [20] for further
results on convexity of bins for entropy constrained quantization problems.

Theorem 6.8 [63] The set QC(M) is compact under total variation at any in-
put measure P that is absolutely continuous with respect to the Lebesgue measure
on R

n.

We can now state an existence result for optimal quantization.

Theorem 6.9 [63] Let P admit a density function and suppose the goal is to find
the best quantizer Q with M cells minimizing J (P,Q) = infγ E

Q,γ

P c(x,u) under
Assumption A2, where Q is restricted to QC(M). Then an optimal quantizer exists.

Remark 6.3 Regarding existence results, there have been few studies in the litera-
ture in addition to [63]. The authors of [1] and [41] have considered nearest neighbor
encoding/decoding rules for norm based distortion measures. The L2-norm leads to
convex codecells for optimal design. We also note that the convexity assumption as
well as the atomlessness property of the input measure can be relaxed in a class of
settings, see [1] and Remark 4.9 in [60].
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6.2.3 The Multi-stage Case

6.2.3.1 Static Channel/Coding

We now consider the general stochastic control problem in (6.5) with T stages. It
should be noted that the effect of a control policy applied at any given time-stage
presents itself in two ways, in the cost incurred at the given time-stage and the effect
on the process distribution (and the evolution of the controller’s uncertainty on the
state) at future time-stages. This is known as the dual effect of control [3]. The next
theorem shows the continuity of the optimal cost in the measurement channel under
some regularity conditions.

Definition 6.4 A sequence of channels {Qn} converges to a channel Q uniformly
in total variation if

lim
n→∞ sup

x∈X

∥∥Qn(·|x) − Q(·|x)
∥∥

T V
= 0.

Note that in the special but important case of additive measurement channels,
uniform convergence in total variation is equivalent to the weaker condition that
Qn(·|x) → Q(·|x) in total variation for each x. When the additive noise is abso-
lutely continuous with respect to the Lebesgue measure, uniform convergence in
total variation is equivalent to requiring that the noise density corresponding to Qn

converges in the L1-sense to the density corresponding to Q. For example, if the
noise density is estimated from n independent observations using any of the L1-
consistent density estimates described in, e.g., [15], then the resulting Qn will con-
verge (with probability one) uniformly in total variation [63].

Theorem 6.10 [63] Consider the cost function (6.5) with arbitrary T ∈N. Suppose
Assumption A2 holds. Then, the optimization problem is continuous in the observa-
tion channel in the sense that if {Qn} is a sequence of channels converging to Q

uniformly in total variation, then

lim
n→∞J (P,Qn) = J (P,Q).

We obtained the continuity of the optimal cost on the space of channels equipped
with a more stringent notion for convergence in total variation. This result and its
proof indicate that further technical complications arise in multi-stage problems.
Likewise, upper semi-continuity under weak convergence and setwise convergence
require more stringent uniformity assumptions. On the other hand, the concavity
property applies directly to the multi-stage case. That is, J (P,Q) is concave in the
space of channels; the proof of this result follows that of Theorem 6.1.

One further interesting problem regarding the multi-stage case is to consider
adaptive observation channels. For example, one may aim to design optimal adap-
tive quantizers for a control problem. We consider this next.
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6.2.3.2 Dynamic Channel and Optimal Vector Quantization

We consider a causal encoding problem where a sensor encodes an observed source
to a receiver with zero-delay. Consider the source in (6.1). The source {xt } to be
encoded is an R

n-valued Markov process. The encoder encodes (quantizes) its in-
formation {xt } and transmits it to a receiver over a discrete noiseless channel with
common input and output alphabet M := {1,2, . . . ,M}, where M is a positive in-
teger, i.e., the encoder quantizes its information.

As in (6.5), for a finite horizon setting the goal is to minimize the cost

Jπ0

(
Πcomp, γ, T

) := EΠcomp,γ
π0

[
1

T

T −1∑

t=0

c0(xt , ut )

]

, (6.9)

for some T ≥ 1, where c0 : Rn ×U → R+ is a (measurable) cost function and EΠ
π0

[·]
denotes the expectation with initial state distribution π0 and under the composite
quantization policy Πcomp and receiver policy γ .

There are various structural results for such problems, primarily for control-free
sources; see [25, 27, 49, 52, 53, 58] among others. In the following, we consider
the case with control, which have been considered for finite-alphabet source and
control action spaces in [51] and [27]. The result essentially follows from Witsen-
hausen [53].

Theorem 6.11 [57] For the finite horizon problem, any causal composite quanti-
zation policy can be replaced without any loss in performance by one which, at
time t = 1, . . . , T − 1, only uses, xt and q[0,t−1], with the original control policy
unaltered.

Hereafter, let P(X) denote the space of probability measures on X endowed with
weak convergence. Given a composite quantization policy Πcomp, let πt ∈ P(Rn)

be the conditional probability measure defined by

πt (A) := P(xt ∈ A|q[0,t−1])

for any Borel set A. Walrand and Varaiya [52] considered sources taking values in a
finite set, and obtained the essence of the following result. For control-free sources,
the result appears in [58] for Rn-valued sources.

Theorem 6.12 [57] For a finite horizon problem, any causal composite quantiza-
tion policy can be replaced, without any loss in performance, by one which at any
time t = 1, . . . , T − 1 only uses the conditional probability P(dxt−1|q[0,t−1]) and
the state xt . This can be expressed as a quantization policy which only uses (πt , t)

to generate a quantizer Qt : Rn → M, where the quantizer Qt uses xt to generate
the quantization output as qt = Qt(xt ) at time t .
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For any quantization policy in ΠW and any T ≥ 1 we have

inf
γ

Jπ0

(
Πcomp, γ, T

) = EΠcomp

π0

[
1

T

T −1∑

t=0

c(πt ,Qt )

]

,

where

c(πt ,Qt ) =
M∑

i=1

inf
u∈U

∫

Q−1
t (i)

πt (dx)c0(x,u).

In the following, we consider the existence problem. However, to facilitate the
analysis we will take the source to be control-free, and assume further structure on
the source process. We have the following assumptions in the source {xt } and the
cost function.

Assumption 6.2

(i) The evolution of the Markov source {xt } is given by

xt+1 = f (xt ) + wt, t ≥ 0 (6.10)

where {wt } is an independent and identically distributed zero-mean Gaussian
vector noise sequence and f :Rn → R

n is measurable.
(ii) U is compact and c0 : Rn ×U →R+ is bounded and continuous.

(iii) The initial condition x0 is zero-mean Gaussian.

We note that the class of quantization policies which admit the structure sug-
gested in Theorem 6.12 is an important one. We henceforth define:

ΠW := {
Πcomp = {

Q
comp
t , t ≥ 0

} : ∃Υt :P(X) →Q

Q
comp
t

(
Ie

t

) = (
Υt(πt )

)
(xt ),∀Ie

t

}
, (6.11)

to represent this class of policies. For a policy in this class, properties of conditional
probability lead to the following expression for πt (dx):

∫
πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (xt ∈ dx|xt−1)∫ ∫
πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (xt ∈ dx|xt−1)

.

Here, P(qt−1|πt−1, xt−1) is determined by the quantizer policy. The following fol-
lows from the proof of Theorem 2.5 of [58].

Theorem 6.13 The sequence of conditional measures and quantizers {(πt ,Qt )}
form a controlled Markov process in P(Rn) ×Q.

Theorem 6.14 Under Assumption 6.2, an optimal receiver policy exists.
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Proof At any given time an optimal receiver will minimize
∫

P(dxt |q[0,t])c(xt , ut ).
The existence of a minimizer then follows from Theorem 3.1 in [63]. �

Let ΠC
W be the set of coding policies in ΠW with quantizers having convex code-

cells (that is, Qt ∈ QC(M)). We have the following result on the existence of opti-
mal quantization policies.

Theorem 6.15 [62] For any T ≥ 1, under Assumption 6.2, there exists a policy in
ΠC

W such that

inf
Πcomp∈ΠC

W

inf
γ

Jπ0

(
Πcomp, γ, T

)
(6.12)

is achieved. Letting J T
T (·) = 0 and

J T
0 (π0) := min

Πcomp∈ΠC
W ,γ

Jπ0

(
Πcomp, γ, T

)
,

the dynamic programming recursion

T JT
t (πt ) = min

Q∈QC(M)

(
c(πt ,Qt ) + T E

[
J T

t+1(πt+1)|πt ,Qt

])

holds for all t = 0,1, . . . , T − 1.

We note that also for optimal multi-stage vector quantization, [8] has obtained
existence results for an infinite horizon setup with discounted costs under a uniform
boundedness assumption on the reconstruction levels.

6.2.3.3 The Linear Quadratic Gaussian (LQG) Case

There is a large literature on jointly optimal quantization for the LQG problem dat-
ing back to early 1960s (see, for example, [23] and [13]). References [2, 7, 17,
18, 31, 38, 48], and [57] considered the optimal LQG quantization and control, with
various results on the optimality or the lack of optimality of the separation principle.

For controlled Markov sources, in the context of Linear Quadratic Gaussian
(LQG) systems, existence of optimal policies has been established in [57] and [60],
where it has been shown that without any loss, the control actions can be decoupled
from the performance of the quantization policies, and a result similar to Theo-
rem 6.15 for linear systems driven by Gaussian noise leads to the existence of an
optimal quantization policy.

Structural results with control have also been studied by Walrand and Varaiya
[51] in the context of finite control and action spaces and by Mahajan and Teneketzis
[27] for control over noisy channels, also for finite state-action space settings.
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6.2.3.4 Case with Noisy Channels with Noiseless Feedback

The results presented in this section apply also to coding over discrete memoryless
(noisy) channels (DMCs) with feedback. The equivalent results of Theorems 6.11
and 6.12 apply with q ′

t terms replacing qt , if q ′
t is the output of a DMC at time t , as

we state in the following.
In this context, let πt ∈ P(X) to be the regular conditional probability measure

given by πt (·) = P(xt ∈ ·|q ′[0,t−1]), where q ′
t is the channel output when the input

is qt . That is, πt (A) = P(xt ∈ A|q ′[0,t−1]),A ∈ B(X).

Theorem 6.16 [60] Any composite encoding policy can be replaced, without any
loss in performance, by one which only uses xt and q ′[0,t−1] at time t ≥ 1 to generate
the channel input qt .

Theorem 6.17 [60] Any composite quantization policy can be replaced, without
any loss in performance, by one which only uses the conditional probability measure
πt (·) = P(xt ∈ ·|q ′[0,t−1]), the state xt , and the time information t , at time t ≥ 1 to
generate the channel input qt .

Remark 6.4 When there is no feedback from the controller, or when there is noisy
feedback, the analysis requires a Markov chain construction in a larger state space
under certain conditions on the memory update rules at the decoder. We refer the
reader to [26, 49], and [25] for a class of such settings.

6.3 Problem P2: Characterization of Information Channels
for Stabilization

In this section, we consider the stabilization problem over communication channels.
The goal will be to identify conditions so that the controlled state is stochastically
stable in the sense that

• {xt } is asymptotically mean stationary (AMS) and satisfies the requirements of
Birkhoff’s sample path ergodic theorem. This may also include the condition that
the controlled (and possibly sampled) state and encoder parameters have a unique
invariant probability measure.

• limT →∞ 1
T

∑T −1
t=0 |xt |2 exists and is finite almost surely (this will be referred to

as quadratic stability).

There is a very large literature on this problem. Particularly related references
include [11, 28–30, 32, 37, 42, 43, 45, 46, 54, 55, 59]. In the context of discrete
channels, many of these papers considered a bounded noise assumption, except no-
tably [30, 36, 37, 55, 64], and [56]. We refer the reader to [32] and [60] for a detailed
literature review.

In this section, we will present a proof program developed in [55] and [64] for
stochastic stabilization of Markov chains with event-driven samplings applied to
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networked control. Toward this end, we will first review few results from the theory
of Markov chains. However, we first will establish fundamental bounds on informa-
tion requirements for stabilization.

6.3.1 Fundamental Lower Bounds for Stabilization

We consider a scalar LTI discrete-time system and then later in Sect. 6.3.6 the multi-
dimensional case. Here, the scalar system is described by

xt+1 = axt + but + wt, t ≥ 0 (6.13)

where xt is the state at time t , ut is the control input, the initial state x0 is a zero-
mean second order random variable, and {wt } is a sequence of zero-mean i.i.d.
Gaussian random variables, also independent of x0. We assume that the system
is open-loop unstable and controllable, that is, |a| ≥ 1 and b = 0. This system is
connected over a noisy channel with a finite capacity to a controller, as shown in
Fig. 6.1, with the information structures described in Sect. 6.1.

We consider first memoryless noisy channels (in the following definitions, we
assume feedback is not present; minor adjustments can be made to capture the case
with feedback).

Definition 6.5 A Discrete Memoryless Channel (DMC) is characterized by a dis-
crete input alphabet M, a discrete output alphabet M′, and a conditional probabil-
ity mass function P(q ′|q), from M × M′ to R which satisfies the following. Let
q[0,n] ∈ Mn+1 be a sequence of input symbols, let q ′[0,n] ∈ M′n+1 be a sequence

of output symbols, where qk ∈ M and q ′
k ∈ M′ for all k and let P n+1

DMC denote the
joint mass function on the (n + 1)-tuple input and output spaces. It follows that
P n+1

DMC(q ′[0,n]|q[0,n]) = ∏n
k=0 PDMC(q ′

k|qk), ∀q[0,n] ∈ Mn+1, q ′[0,n] ∈ M′n+1, where
qk, q

′
k denote the kth component of the vectors q[0,n], q ′[0,n], respectively.

Channels can also have memory. We state the following for both discrete and
continuous-alphabet channels.

Definition 6.6 A discrete channel (continuous channel) with memory is character-
ized by a sequence of discrete (continuous) input alphabets Mn+1, discrete (con-
tinuous) output alphabets Mn+1, and a sequence of regular conditional probability
measures Pn(dq ′[0,n]|q[0,n]), from Mn+1 to M′n+1.

In this chapter, while considering discrete channels, we will assume channels
with finite alphabets.

Remark 6.5 Another setting involves continuous-alphabet channels. Such channels
can be regarded as limits of discrete-channels: Note that the mutual information for
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real valued random variables x, y is defined as

I (x;y) := sup
Q1,Q2

I
(
Q1(x);Q2(y)

)
,

where Q1 and Q2 are quantizers with finitely many bins (see Chap. 5 in [19]). As
a consequence, the discussion for discrete channels applies for continuous alphabet
channels. On the other hand, the Gaussian channel is a very special channel which
needs to be considered in its own right, especially in the context of linear quadratic
Gaussian (LQG) systems and problems. A companion chapter deals with such chan-
nels, see [65], as well as [60].

Theorem 6.18 [56] Suppose that a linear plant given as in (6.13) controlled over a
DMC, under some admissible coding and controller policies, satisfies the condition

lim inf
T →∞

1

T
h(xT ) ≤ 0, (6.14)

where h denotes the entropy function. Then, the channel capacity C must satisfy

C ≥ log2

(|a|).

Remark 6.6 Condition (6.14) is a weak one. For example, a stochastic process
whose second moment grows subexponentially in time, namely,

lim inf
T →∞

log(E[x2
T ])

T
≤ 0,

satisfies this condition.

We now present a supporting result due to Matveev.

Proposition 6.3 [30] Suppose that a linear plant given as in (6.13) is controlled
over a DMC. If

C < log2
(|a|),

then

lim sup
T →∞

P
(|xT | ≤ b(T )

) ≤ C

log2(|a|) ,

for all b(T ) > 0 such that limT →∞ 1
T

log2(b(T )) = 0

We note that similar characterizations have also been considered in [29, 43], and
[32], for systems driven by bounded noise.
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Theorem 6.19 [60] Suppose that a linear plant given as in (6.13) is controlled over
a DMC. If, under some causal encoding and controller policy, the state process is
AMS, then the channel capacity C must satisfy

C ≥ log2
(|a|).

In the following, we will observe that the condition C ≥ log2(|a|) in Theo-
rems 6.18 and 6.19 is almost sufficient as well for stability in the AMS sense. Fur-
thermore, the result applies to multi-dimensional systems. Toward this goal, we first
discuss the erasure channel with feedback (which includes the noiseless channel
as a special case), and then consider more general DMCs, followed by a class of
channels with memory. We will also investigate quadratic stability. We discuss an
essential ingredient in the proof program next.

6.3.2 Stochastic Stability and Random-Time State-Dependent Drift
Approach

Let X = {xt , t ≥ 0} denote a Markov chain with state space X. Assume that the
state space is a complete, separable, metric space, whose Borel σ -field is denoted
B(X). Let the transition probability be denoted by P , so that for any x ∈ X, A ∈
B(X), the probability of moving from x to A in one step is given by P(xt+1 ∈ A |
xt = x) = P(x,A). The n-step transitions are obtained via composition in the usual
way, P(Xt+n ∈ A | Xt = x) = P n(x,A), for any n ≥ 1. The transition law acts on
measurable functions f : X →R and measures μ on B(X) via

Pf (x) :=
∫

X

P(x, dy)f (y), x ∈X,

μP (A) :=
∫

X

μ(dx)P (x,A), A ∈ B(X).

A probability measure π on B(X) is called invariant if πP = π . That is,
∫

π(dx)P (x,A) = π(A), A ∈ B(X).

For any initial probability measure ν on B(X) we can construct a stochastic pro-
cess with transition law P , and satisfying x0 ∼ ν. We let Pν denote the resulting
probability measure on the sample space, with the usual convention ν = δx when the
initial state is x ∈ X. When ν = π , then the resulting process is stationary. A com-
prehensive treatment of Markov chains can be found in [35].

Throughout this subsection, the sequence of stopping times {Ti : i ∈ N+} is as-
sumed to be non-decreasing, with T0 = 0, measurable on the filtration generated by
the state process. Additional assumptions are made in the results that follow.
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Before proceeding further, we note that a set A ⊂ X is μ-small on (X,B(X))

if for some n, and some positive measure μ, P n(x,B) ≥ μ(B),∀x ∈ A, and
B ∈ B(X). A small set leads to the construction of an accessible atom and to an in-
variant probability measure [35]. In many practical settings, compact sets are small;
sufficient conditions on when a compact set is small has been presented in [60]
and [35].

Theorem 6.20 [64] Suppose that X is a ϕ-irreducible and aperiodic Markov
chain. Suppose moreover that there are functions V : X → (0,∞), δ : X → [1,∞),
f : X → [1,∞), a small set C and a constant b ∈ R, such that the following hold:

E
[
V (φTz+1)

∣∣ FTz

] ≤ V (φTz
) − δ(φTz

) + b1{φTz∈C},

E

[Tz+1−1∑

k=Tz

f (φk) | FTz

]

≤ δ(φTz
), z ≥ 0.

(6.15)

Then the following hold:

(i) φ is positive Harris recurrent, with unique invariant distribution π

(ii) π(f ) := ∫
f (φ)π(dφ) < ∞

(iii) For any function g that is bounded by f , in the sense that supφ |g(φ)|/f (φ) <

∞, we have convergence of moments in the mean, and the Law of Large Num-
bers holds:

lim
t→∞Eφ

[
g(φt )

] = π(g),

lim
N→∞

1

N

N−1∑

t=0

g(φt ) = π(g) a.s., φ ∈ X.

This theorem will be important for the stability analysis to follow.

6.3.3 Noiseless and Erasure Channels

We begin with erasure channels (which contain discrete noiseless channels as a
special case), before discussing more general noisy channels. Before discussing the
multi-dimensional case in Sect. 6.3.3.2, we first discuss the scalar version described
by (6.13).

The details of the erasure channel are specified as follows: The channel source
consists of state values from R. The source output is, as before, quantized. We con-
sider the following uniform quantizer class. A modified uniform quantizer QΔ

K :
R → R with step size Δ and K + 1 (with K even) number of bins satisfies the
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Fig. 6.2 A modified uniform quantizer. There is a single overflow bin

following for k = 1,2 . . . ,K (see Fig. 6.2):

QΔ
K(x) =

⎧
⎪⎨

⎪⎩

(k − 1
2 (K + 1))Δ if x ∈ [(k − 1 − 1

2K)Δ, (k − 1
2K)Δ),

( 1
2 (K − 1))Δ if x = 1

2KΔ,

0 if x /∈ [− 1
2KΔ, 1

2KΔ].
(6.16)

where we have M = {1,2, . . . ,K + 1}. The quantizer–decoder mapping thus
described corresponds to a uniform quantizer with bin size Δ. The interval
[−K/2,K/2] is termed the granular region of the quantizer, and R \ [−K/2,K/2]
is named the overflow region of the quantizer (see Fig. 6.2). We will refer to this
quantizer as a modified uniform quantizer, since the overflow region is assigned a
single bin.

The quantizer outputs are transmitted through a memoryless erasure channel,
after being subjected to a bijective mapping, which is performed by the channel
encoder. The channel encoder maps the quantizer output symbols to corresponding
channel inputs q ∈ M := {1,2, . . . ,K + 1}. A channel encoder at time t , denoted
by Et , maps the quantizer outputs to M such that Et (Qt (xt )) = qt ∈M.

The controller/decoder has access to noisy versions of the encoder outputs for
each time, which we denote by {q ′} ∈M∪ {e}, with e denoting the erasure symbol,
generated according to a probability distribution for every fixed q ∈ M. The channel
transition probabilities are given by

P
(
q ′ = i|q = i

) = p, P
(
q ′ = e|q = i

) = 1 − p, i ∈ M.

At each time t ≥ 0, the controller/decoder applies a mapping Dt :M∪ {e} →R,
given by

Dt

(
q ′
t

) = E−1
t

(
q ′
t

) × 1{q ′
t =e} + 0 × 1{q ′

t=e}.

Let {Υt } denote a binary sequence of i.i.d. random variables, representing the
erasure process in the channel, where the event Υt = 1 indicates that the signal is
transmitted with no error through the channel at time t . Let p = E[Υt ] denote the
probability of success in transmission.

The following key assumptions are imposed throughout this section: Given
K ≥ 2 introduced in the definition of the quantizer, define the rate variables

R := log2(K + 1), R′ = log2(K). (6.17)
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We fix positive scalars δ,α satisfying

|a|2−R′
< α < 1 (6.18)

and

α
(|a| + δ

)p−1−1
< 1. (6.19)

We consider the following update rules. For t ∈ Z+ and with Δ0 ∈ R selected arbi-
trarily, consider

ut = −a

b
x̂t ,

x̂t = Dt

(
q ′
t

) = ΥtQ
Δt

K (xt ),

Δt+1 = ΔtQ̄

(
Δt,

∣∣∣∣
xt

Δt2R′−1

∣∣∣∣,Υt

)
.

(6.20)

Here, Q̄ : R×R× {0,1} →R is defined below, where L > 0 is a constant;

Q̄(Δ,h,p) = |a| + δ if |h| > 1, or p = 0,

Q̄(Δ,h,p) = α if 0 ≤ |h| ≤ 1, p = 1, Δ > L,

Q̄(Δ,h,p) = 1 if 0 ≤ |h| ≤ 1, p = 1, Δ ≤ L.

The update equations above imply that

Δt ≥ Lα =: L′. (6.21)

Without any loss of generality, we assume that L′ ≥ 1.
We note that given the channel output q ′

t = e, the controller can simultaneously
deduce the realization of Υt and the event {|ht | > 1}, where ht := xt

Δt 2R′−1 . This

is due to the fact that if the channel output is not the erasure symbol, the controller
knows that the signal is received with no error. If q ′

t = e, however, then the controller
applies 0 as its control input and enlarges the bin size of the quantizer. As depicted
in Fig. 6.1, the encoder has access to channel outputs, that is, there is noiseless
feedback.

Lemma 6.3 Under (6.20), the process (xt ,Δt ) is a Markov chain.

Proof The system’s state evolution can be expressed

xt+1 = axt − ax̂t + wt,
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where x̂t = ΥtQ
Δt

K (xt ). It follows that the process (xt ,Δt ) evolves as a nonlinear
state space model:

xt+1 = a
(
xt − ΥtQ

Δt

K (xt )
) + wt,

Δt+1 = ΔtQ̄

(
Δt,

∣∣∣∣
xt

2R′−1Δt

∣∣∣∣,Υt

)
.

(6.22)

in which (wt ,Υt ) is i.i.d. Thus, the pair (xt ,Δt ) forms a Markov chain. �

Let for a Borel set S, τS = inf(k > 0 : (xk,Δk) ∈ S) and Ex,Δ,P(x,Δ) denote the
expectation and probabilities conditioned on (x0,Δ0) = (x,Δ).

Proposition 6.4 [64] If (6.18)–(6.19) hold, then there exists a compact set A×B ⊂
R

2 satisfying the recurrence condition

sup
(x,Δ)∈A×B

Ex,Δ[τA×B ] < ∞

and the recurrence condition P(x,Δ)(τA×B < ∞) = 1 for any admissible (x,Δ).

A result on the existence and uniqueness of an invariant probability measure is
the following. It basically establishes irreducibility and aperiodicity, which leads to
positive Harris recurrence, by Proposition 6.4.

Theorem 6.21 [64] For an adaptive quantizer satisfying (6.18)–(6.19), suppose
that the quantizer bin sizes are such that their base-2 logarithms are integer mul-
tiples of some scalar s, and log2(Q̄(·)) takes values in integer multiples of s. Then
the process (xt ,Δt ) forms a positive Harris recurrent Markov chain. If the integers
taken are relatively prime (that is they share no common divisors except for 1), then
the invariant probability measure is independent of the value of the integer multi-
plying s.

We note that the (Shannon) capacity of such an erasure channel is given by
log2(K + 1)p [12]. From (6.18)–(6.19), the following is obtained.

Theorem 6.22 If log2(K)p > log2(|a|), then α, δ exist such that Theorem 6.21 is
satisfied.

Remark 6.7 Thus, the Shannon capacity of the erasure channel is an almost suf-
ficient condition for the positive Harris recurrence of the state and the quantizer
process. We will see that under a more generalized interpretation of stationarity, this
result applies to a large class of memoryless channels and a class of channels with
memory as to be seen later in this chapter (see Theorem 6.27): There is a direct re-
lationship between the existence of a stationary measure and the Shannon capacity
of the channel used in the system.
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Under slightly stronger conditions we obtain a finite second moment:

Theorem 6.23 [64] Suppose that the assumptions of Theorem 6.21 hold, and in
addition the following bound holds:

a2
(

1 − p + p

(2R − 1)2

)
< 1. (6.23)

Then, for each initial condition, limt→∞ E[x2
t ] = Eπ [x2

0 ] < ∞.

Remark 6.8 We note from Minero et al. [36] that a necessary condition for mean
square stability is a2(1 − p + p

(2R)2 ) < 1. Thus, the sufficiency condition in The-
orem 6.23 almost meets this bound except for the additional symbol sent for the
under-zoom events. We note that the average rates can be made arbitrarily close
to zero by sampling the control system with larger periods. Such a relaxation of
the sampling period, however, would lead to a process which is not Markov, yet
n-ergodic, quadratically stable, and asymptotic mean stationary (AMS).

6.3.3.1 Connections with Random-Time Drift Criteria

We point out the connection of the results above with random-time drift criteria in
Theorem 6.20.

By Lemma 6.3, the process (xt ,Δt ) forms a Markov chain. Now, in the model
considered, the controller can receive meaningful information regarding the state
of the system when two events occur concurrently: the channel carries information
with no error, and the source lies in the granular region of the quantizer, that is,
xt ∈ [− 1

2KΔt,
1
2KΔt) and Υt = 1. The times at which both of these events occur

form an increasing sequence of random stopping times, defined as

T0 = 0, Tz+1 = inf
{
k > Tz : |hk| ≤ 1,Υk = 1

}
, z ∈ N.

We can apply Theorem 6.20 for these stopping times. These are the times when
information reaches the controller regarding the value of the state when the state is
in the granular region of the quantizer. The following lemma is key:

Lemma 6.4 The discrete probability measure P(Tz+1 − Tz = k | xTz
,ΔTz

) has the
upper bound

P(Tz+1 − Tz ≥ k | xTz
,ΔTz

) ≤ (1 − p)k−1 + Gk(ΔTz
),

where Gk(ΔTz
) → 0 as ΔTz

→ ∞ uniformly in xTz
.

In view of Lemma 6.20, first without an irreducibility assumption, we can es-
tablish recurrence of the set Cx × Ch by defining a Lyapunov function of the form
V (xt ,Δt ) = 1

2 log2(Δ
2) + B0 for some B0 > 0. One can establish the irreducibility
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of the Markov chain by imposing a countability condition on the set of admissi-
ble bin sizes. A similar discussion, with a quadratic Lyapunov function, applies for
finite moment analysis.

6.3.3.2 The Multi-dimensional Case

The result for the scalar problem has a natural counterpart in the multi-dimensional
setting. Consider the linear system described by

xt+1 = Axt + But + Gwt, (6.24)

where xt ∈ R
N is the state at time t , ut ∈ R

m is the control input, and {wt } is a
sequence of zero-mean i.i.d. Rd -valued Gaussian random vectors. Here A is the
square system matrix with at least one eigenvalue greater than or equal to 1 in mag-
nitude, that is, the system is open-loop unstable. Furthermore, (A,B) and (A,G)

are controllable pairs. We also assume at this point that the eigenvalues are real,
even though the extension to the complex case is primarily technical. Without any
loss of generality, we assume A to be in Jordan form. Because of this, we allow
wt to have correlated components, that is, the correlation matrix E[wtw

T
t ] is not

necessarily diagonal. We also assume that B is invertible (if B is not invertible, a
sampled system can be made to have an invertible control matrix, with a periodic
scheme with period at most n).

We restrict the analysis to noiseless channel in this section. The scheme pro-
posed in the previous section is also applicable to the multi-dimensional setup. Sta-
bilizability for the diagonalizable case immediately follows from the discussion for
scalar systems, since the analysis for the scalar case is applicable to each of the sub-
systems along each of the eigenvectors. The possibly correlated noise components
will lead to the recurrence analysis discussed earlier. For such a setup, the stopping
times can be arranged to be identical for each modes, for the case when the quan-
tizer captures all the state components. Once this is satisfied, the drift conditions
will be obtained. The non-diagonalizable Jordan case, however, is more involved, as
we discuss now.

Consider the following system:

[
x1
t+1

x2
t+1

]

=
[
λ 1

0 λ

][
x1
t

x2
t

]

+ B

[
u1

t

u2
t

]

+
[
w1

t

w2
t

]

. (6.25)

The approach entails quantizing the components in the system according to
the adaptive quantization rule provided earlier for scalar systems: For i = 1,2, let
R′ = R′

i = log2(2
Ri − 1) = log2(Ki) (that is, the same rate is used for quantizing

the components with the same eigenvalue). For t ≥ 0 and with Δ1
0,Δ

2
0 ∈ R, con-
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Fig. 6.3 A uniform vector quantizer. There is a single overflow bin

sider:

ut = −B−1Ax̂t ,

[
x̂1
t

x̂2
t

]

=
⎡

⎣
Q

Δ1
t

K1
(x1

t )

Q
Δ2

t

K2
(x2

t )

⎤

⎦ ,
(6.26)

Δ1
t+1 = Δ1

t Q̄
(∣∣h1

t

∣∣,
∣∣h2

t

∣∣,Δ1
t

)
, Δ2

t+1 = Δ2
t Q̄

(∣∣h1
t

∣∣,
∣∣h2

t

∣∣,Δ2
t

)
, (6.27)

with, for i = 1,2, δi, εi, ηi > 0, ηi < εi and Li > 0 such that

Q̄(x, y,Δ) = |λ| + δi if |x| > 1, or |y| > 1,

Q̄(x, y,Δ) = |λ|
2R′

i − ηi
if 0 ≤ |x| ≤ 1, |y| ≤ 1, Δi > Li,

Q̄(x, y,Δ) = 1 if 0 ≤ |x| ≤ 1, |y| ≤ 1, Δi ≤ Li.

Note that the above imply that Δi
t ≥ Li |λ|

2R′
i −ηi

=: L′i . We also assume that

for some sufficiently large ηΔ, Δ1
0 = ηΔΔ2

0, which leads to the result that
Δ1

t = ηΔΔ2
t for all t ≥ 0. See Fig. 6.3 for a depiction of the quantizer used

at a particular time. The sequence of stopping times is now defined as fol-
lows:

T0 = 0, Tz+1 = inf
{
k > Tz : ∣∣hi

k

∣∣ ≤ 1, i ∈ {1,2, . . . , n}}, z ∈ Z+,
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where hi
k = xi

t

Δi
t 2

R′
i
−1

. Here Δi is the bin size of the quantizer in the direction of the

eigenvector xi , with rate R′
i .

With this approach, the drift criterion applies almost identically as it does for the
scalar case.

Theorem 6.24 [21, 60] Consider the multi-dimensional system (6.24). If the system
is controlled over a discrete-noiseless channel with capacity

C >
∑

|λi |>1

log2
(|λi |

)
,

there exists a stabilizing scheme leading to a Markov chain with a bounded second
moment in the sense that lim supt→∞ E[|xt |22] < ∞.

Extensions of such settings also apply to systems with decentralized multiple
sensors. We refer the reader to [22] and [60].

6.3.4 Stochastic Stabilization over Noisy Channels with Noiseless
Feedback

In this subsection, we consider discrete noisy channels with noiseless feedback. We
first investigate Discrete Memoryless Channels (DMCs).

6.3.4.1 Asymptotic Mean Stationarity and n-Ergodicity

The condition C ≥ log2(|a|) in Theorem 6.18 is almost sufficient for establishing
ergodicity and stability, as captured by the following discussion.

Consider the following update algorithm. Let n be a given block length. Consider
a class of uniform quantizers, defined by two parameters, with bin size Δ > 0, and
an even number K(n) ≥ 2 (see Fig. 6.1). Define the uniform quantizer as follows:
For k = 1,2 . . . ,K(n),

QΔ
K(n)(x) =

⎧
⎪⎨

⎪⎩

(k − 1
2 (K(n) + 1))Δ if x ∈ [(k − 1 − 1

2K(n))Δ, (k − 1
2K(n))Δ),

( 1
2 (K(n) − 1))Δ if x = 1

2K(n)Δ,

Z if x /∈ [− 1
2K(n)Δ, 1

2K(n)Δ],

where Z is the overflow symbol in the quantizer. Let {x : QΔ
K(n)(x) = Z} be the

granular region of the quantizer.
At every sampling instant t = kn, k = 0,1,2, . . . , the source coder E s

t quantizes
output symbols in R∪{Z} to a set M(n) = {1,2, . . . ,K(n)+1}. A channel encoder
Ec

t maps the elements in M(n) to corresponding channel inputs q[kn,(k+1)n−1] ∈
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Mn. For each time t = kn − 1, k = 1,2,3, . . . , the channel decoder applies a map-
ping Dtn :M′n → M(n) such that

c′
(k+1)n−1 = Dkn

(
q ′
[kn,(k+1)n−1]

)
.

Finally, the controller runs an estimator

x̂kn = (
E s

kn

)−1(
c′
(k+1)n−1

) × 1{c′
(k+1)n−1 =Z} + 0 × 1{c′

(k+1)n−1=Z}.

Hence, when the decoder output is the overflow symbol, the estimation output is 0.
As in the previous two chapters, at time kn the bin size Δkn is taken to be a

function of the previous state Δ(k−1)n and the past n channel outputs. Further, the
encoder has access to the previous channel outputs, thus making such a quantizer
implementable at both the encoder and the decoder.

With K(n) > �|a|n�, R = log2(K(n) + 1), let us introduce R′(n) = log2(K(n))

and let

R′(n) > n log2

( |a|
α

)
,

for some α,0 < α < 1 and δ > 0. When clear from the context, we will drop the
index n in R′(n). We will consider the following update rules in the controller ac-
tions and the quantizers. For t ≥ 0 and with Δ0 > L for some L ∈ R+, and x̂0 ∈ R,
consider, for t = kn, k ∈ N,

ut = −1{t=(k+1)n−1}
an

b
x̂kn,

Δ(k+1)n = ΔknQ̄
(
Δkn, c

′
(k+1)n−1

)
,

(6.28)

where c′ denotes the decoder output variable. If we use δ > 0 and L > 0 such that

Q̄
(
Δ,c′) = (|a| + δ)n if c′ = Z,

Q̄
(
Δ,c′) = αn if c′ = Z, Δ ≥ L,

Q̄
(
Δ,c′) = 1 if c′ = Z, Δ < L,

(6.29)

we can show that a recurrent set exists. Note that the above implies that Δt ≥ Lαn =:
L′ for all t ≥ 0.

Thus, we have three main events: When the decoder output is the overflow sym-
bol, the quantizer is zoomed out (with a coefficient of (|a|+ δ)n). When the decoder
output is not the overflow symbol Z , the quantizer is zoomed in (with a coefficient
of αn) if the current bin size is greater than or equal to L, and otherwise the bin size
does not change.

In the following, we make the quantizer bin size process space countable and as
a result establish the irreducibility of the sampled process (xtn,Δtn).

Theorem 6.25 [56] For the existence of a compact coordinate recurrent set, the
following is sufficient: The channel capacity C satisfies: C > log2(|a|).
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Theorem 6.26 For an adaptive quantizer satisfying the conditions of Theo-
rem 6.25, suppose that the quantizer bin sizes are such that their logarithms are
integer multiples of some scalar s, and log2(Q̄(·)) takes values in integer multiples
of s. Suppose the integers taken are relatively prime (that is they share no common
divisors except for 1). Then the sampled process (xtn,Δtn) forms a positive Harris
recurrent Markov chain at sampling times on the space of admissible quantizer bins
and state values.

Theorem 6.27 [56] Under the conditions of Theorems 6.25 and 6.26, the pro-
cess {xt ,Δt } is n-stationary, n-ergodic, and hence asymptotically mean stationary
(AMS).

Proof Sketch The proof follows from the observation that a positive Harris recurrent
Markov chain is recurrent and stationary and that if a sampled process is a positive
Harris recurrent Markov chain, and if the intersampling time is fixed, with a time-
homogeneous update in the inter-sampling times, then the process is mixing, n-
ergodic and n-stationary. �

Remark 6.9 Converse Results for Quadratic Stability For quadratic stability, that
is, the condition that limT →∞ 1

T

∑T −1
t=0 |xt |2, exists and is finite almost surely; more

restrictive conditions are needed and Shannon capacity is not sufficient (see [43]
and [56]). We note that for erasure channels and noiseless channels, one can obtain
tight converse theorems using Theorem 6.18 (see [36] and [64]). For general DMCs,
however, a tight converse result on quadratic stabilizability is not yet available. One
reason for this is that the error exponents of fixed length block codes with noiseless
feedback for general DMCs are not currently known. It is worth noting that the
error exponent of DMCs is typically improved with feedback, unlike the capacity
of DMCs. Some partial results have been reported in [16] (e.g., the sphere packing
upper bound is tight for a class of symmetric channels for rates above a critical rate
even with feedback). Related references addressing partial results include [33] and
[34] which consider lower bounds on estimation error moments for transmission
of a single variable over a noisy channel (in the context of this chapter, this single
variable may correspond to the initial state x0). A further related notion for quadratic
stability is the notion of any-time capacity introduced by Sahai and Mitter (see [42]
and [43]). Further discussion on this topic is available in [60] and [59].

6.3.5 Channels with Memory and Noiseless Feedback

Definition 6.7 Channels are said to be of Class A type, if

• They satisfy the following Markov chain condition:

q ′
t ↔ qt , q[0,t−1], q ′[0,t−1] ↔ {x0,wt , t ≥ 0},

for all t ≥ 0, and
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• Their capacity with feedback is given by

C = lim
T →∞ max

{P(qt |q[0,t−1],q ′[0,t−1]), 0≤t≤T −1}
1

T
I
(
q[0,T −1] → q ′[0,T −1]

)
,

where the directed mutual information is defined by

I
(
q[0,T −1] → q ′[0,T −1]

) =
T −1∑

t=1

I
(
q[0,t];q ′

t |q ′[0,t−1]
) + I

(
q0;q ′

0

)
.

DMCs naturally belong to this class. For DMCs, feedback does not increase the
capacity [12]. Such a class also includes finite state stationary Markov channels
which are indecomposable [39], and non-Markov channels which satisfy certain
symmetry properties [44]. Further examples can be found in [47] and in [14].

Theorem 6.28 [56] Suppose that a linear plant given by (6.13) is controlled over
a Class A type noisy channel with feedback. If the channel capacity (with feedback)
is less than log2(|a|), then (i) the following condition

lim inf
T →∞

1

T
h(xT ) ≤ 0,

cannot be satisfied under any policy, and (ii) the state process cannot be AMS under
any policy.

Remark 6.10 The result above is negative, but one can also obtain a positive result:
If the channel capacity is greater than log2(|a|) and there is a positive error exponent
(uniform over all transmitted messages, as in Theorem 14 of [39]), then there exists
a coding scheme leading to an AMS state process provided that the channel restarts
itself with the transmission of every new block (either independently or as a Markov
process). We also note that if the channel is not information stable, then information
spectrum methods lead to pessimistic realizations of capacity (known as the lim inf
in probability of the normalized information density, see [47, 50]).

6.3.6 Higher-Order Plants

The result for the scalar problem has a natural counterpart in the multi-dimensional
setting. Consider the linear system described by (6.24). In the following, we assume
that all eigenvalues {λi,1 ≤ i ≤ N} of A are unstable, that is, have magnitudes
greater than or equal to 1. There is no loss here since if some eigenvalues are stable,
by a similarity transformation, the unstable modes can be decoupled from the stable
ones and one can instead consider a lower dimensional system; stable modes are
already recurrent.



6 Design of Information Channels 207

Theorem 6.29 [60] For such a system controlled over a Class A type noisy channel
with feedback, if the channel capacity (with feedback) satisfies

C <
∑

i

log2
(|λi |

)
,

there does not exist a stabilizing coding and control scheme with the property

lim inf
T →∞

1

T
h(xT ) ≤ 0.

Proposition 6.5 [60] For such a system controlled over a Class A type noisy chan-
nel with feedback, if

C < log2
(|A|),

then

lim sup
T →∞

P
(|xT | ≤ b(T )

) ≤ C

log2(|A|) > 0,

for all b(T ) > 0 such that limT →∞ 1
T

log2(b(T )) = 0.

With this lemma, we state the following.

Theorem 6.30 [60] Consider such a system controlled over a Class A type noisy
channel with feedback. If there exists some encoding and controller policy so that
the state process is AMS, then the channel capacity (with feedback) C must satisfy

C ≥ log2
(|A|).

For sufficiency, we will assume that A is a diagonalizable matrix (a sufficient con-
dition for which is that its eigenvalues are distinct real).

Theorem 6.31 [56] Consider a multi-dimensional system with a diagonalizable
matrix A. If the Shannon capacity of the DMC used in the controlled system satisfies

C >
∑

|λi |>1

log2
(|λi |

)
,

there exists a stabilizing scheme in the AMS sense.

On achievability of AMS stabilization over channels with memory, the discus-
sions in Remark 6.10 also apply for this setting.

Remark 6.11 Theorem 6.31 can be extended to the case where the matrix A is not
diagonalizable, in the same spirit as in Theorem 6.24, by constructing stopping times
in view of the coupling between modes sharing a common eigenvalue [60].



208 S. Yüksel

6.4 Conclusion

In this chapter, we considered the optimization of information channels in net-
worked control systems. We made the observation that quantizers can be viewed
as a special class of channels and established existence results for optimal quanti-
zation and coding policies. Comparison of information channels for optimization
has been presented. On stabilization, the relation between ergodicity and Shannon
capacity has been discussed.

The value of information channels in optimization and control problems require
further analysis. Particularly, further research from the information theory commu-
nity for optimal non-asymptotic or finite delay coding will lead to useful applica-
tions in networked control. Error exponents with fixed block-length and feedback is
currently an unresolved problem, which may lead to converse theorems for quadratic
stabilization over noisy communication channels.
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60. Yüksel, S., Başar, T.: Stochastic Networked Control Systems: Stabilization and Optimization
Under Information Constraints. Birkhäuser, Boston (2013)

61. Yüksel, S., Linder, T.: Optimization and Convergence of Observation Channels in Stochastic
Control, pp. 637–642. American Control Conference, San Francisco (2011)

62. Yüksel, S., Linder, T.: On optimal zero-delay quantization of vector Markov sources. In: Pro-
ceedings of the IEEE Conference on Decision and Control, Hawaii (2012)



6 Design of Information Channels 211

63. Yüksel, S., Linder, T.: Optimization and convergence of observation channels in stochastic
control. SIAM J. Control Optim. 50, 864–887 (2012)

64. Yüksel, S., Meyn, S.P.: Random-time, state-dependent stochastic drift for Markov chains and
application to stochastic stabilization over erasure channels. IEEE Trans. Autom. Control 58,
47–59 (2013)

65. Zaidi, A.A., Oechtering, T.J., Yüksel, S., Skoglund, M.: Stabilization and control over Gaus-
sian networks. In: Como, G., Bernhardsson, B., Rantzer, A. (eds.) Information and Control in
Networks. Springer, Berlin (2013)


	Chapter 6: Design of Information Channels for Optimization and Stabilization in Networked Control
	6.1 Introduction and the Information Structure Design Problem
	6.2 Problem P1: Channel Design for Optimization
	6.2.1 Measurement Channels as Information Structures
	6.2.1.1 Topological Characterization of Measurement Channels
	6.2.1.2 Concavity of the Measurement Channel Design Problem and Blackwell's Comparison of Information Structures
	6.2.1.3 Single Stage: Continuity of the Optimal Cost in Channels

	6.2.2 Quantizers as a Class of Channels
	6.2.3 The Multi-stage Case
	6.2.3.1 Static Channel/Coding
	6.2.3.2 Dynamic Channel and Optimal Vector Quantization
	6.2.3.3 The Linear Quadratic Gaussian (LQG) Case
	6.2.3.4 Case with Noisy Channels with Noiseless Feedback


	6.3 Problem P2: Characterization of Information Channels for Stabilization
	6.3.1 Fundamental Lower Bounds for Stabilization
	6.3.2 Stochastic Stability and Random-Time State-Dependent Drift Approach
	6.3.3 Noiseless and Erasure Channels
	6.3.3.1 Connections with Random-Time Drift Criteria
	6.3.3.2 The Multi-dimensional Case

	6.3.4 Stochastic Stabilization over Noisy Channels with Noiseless Feedback
	6.3.4.1 Asymptotic Mean Stationarity and n-Ergodicity

	6.3.5 Channels with Memory and Noiseless Feedback
	6.3.6 Higher-Order Plants

	6.4 Conclusion
	References


