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Abstract— This tutorial paper provides a comprehensive
characterization of information structures in team decision
problems and their impact on the tractability of team optimiza-
tion. Solution methods for team decision problems are presented
in various settings where the discussion is structured in two
foci: The first is centered on solution methods for stochastic
teams admitting state-space formulations. The second focus is
on norm-optimal control for linear plants under information
constraints.

I. INTRODUCTION

A decentralized control system has structural properties
that may restrict the storage, processing and the dissemina-
tion of information in the feedback loop. An example would
be a large-scale power-grid with multiple coupled generators
and consumers. Here, the decision center at each generator
has access to only local measurements and based on these it
must regulate variables that may impact the entire grid.

Decentralization may be imposed as a way to achieve
scalability, by constraining the connectivity of the underlying
communication network and the computational complexity
of the control algorithms. New methods for the analysis of
decentralized systems have also been proposed that focus
on the detrimental effects that real communication networks
may introduce, such as bit-rate limits [1] and packet losses
[2].

As illustrated in [3], [4], the information structure may
determine the tractability of optimal decentralized control
problems, and research on this topic remains quite active ever
since Witsenhausen [5] and Ho [6] considered a considerable
investigation of information structures in the context of team
decision theory.

A. Paper organization

This paper focuses on the impact of information structures
on the tractability of computing optimal decentralized con-
trollers. It is centered on two subclasses of problems. The
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first pertains to the design of optimal team decision systems
specified using the state-space formalism, while the second
discusses the design of optimal policies when the system
and controller are represented in linear operatorial form and
decentralization is specified via sparsity constraints.

The paper has the following three main Sections:
• Section II: Introduces the main concepts and definitions

that allow the classification of information structures.
• Section III: Focuses on optimal team decision problems

in state-space form.
• Section IV: Discusses the design of optimal controllers

when the decentralization constraint is imposed via
subspace constraints.

II. BASIC CONCEPTS AND DEFINITIONS

A decentralized control system may either be sequential or
non-sequential. In a sequential system, the decision makers
(DMs) act according to an order that is specified before the
system starts running; while in a non-sequential system the
DMs act in an order that depends on the realization of the
system uncertainty and the control actions of other DMs. It
is much more difficult to analyze and formulate a well-posed
optimal control problem for non-sequential systems because
we need to ensure that it is causal and deadlock free. Here,
we restrict attention to sequential systems. We start with an
abstract model of decentralized control systems, called the
intrinsic model, that was proposed by Witsenhausen [7]. We
present a version of the intrinsic model that is restricted to
sequential systems. Later we define state-space and input-
output models that are also restricted to sequential systems.
We refer the reader to [7]–[11] for more details on non-
sequential systems.

According to the instrinsic model, any (finite horizon)
sequentail team problem can be characterized by a tuple(
(Ω,F), N , {(Ui,U i), i = 1, . . . , N}, {J i, i = 1, . . . , N}

)
or equivalently by a tuple

(
(Ω,F), N , {(Ui,U i), i =

1, . . . , N}, {(Ii, Ii), i = 1, . . . , N}
)

where
• (Ω,F) is a measurable space representing all the uncer-

tainty in the system. The realization of this uncertainty
is called the primitive variable of the system. Ω denotes
all possible realizations of the primitive random variable
and F is a sigma-algebra over Ω.

• N denotes the number of decision makers (DMs) in the
system. Each DM takes only one action. If the system
has a control station that takes multiple actions over
time, it is modeled as a collection of DMs, one for
each time instant.

• {(Ui,U i), i = 1, . . . , N} is a collection of measurable
spaces representing the action space for each DM. The
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control action ui of DM i takes value in Ui and U i is
a sigma-algebra over Ui.

• {J i, i = 1, . . . , N} is a collection of sets in F and
represents the information available to a DM to take an
action. Sometimes it is useful to assume that the infor-
mation is available in terms of an explicit observation
that takes values in a measurable space (Ii, Ii). Such
an observation is generated by a measurable observation
function from Ω×U1×· · ·×Ui−1 to Ii. The collection
{J i, i = 1, . . . , N} or {(Ii, Ii), i = 1, . . . , N} is called
the information structure of the system.

• A control strategy (also called a control policy or
design) of a decentralized control system is given by
a collection {γi, i = 1, . . . , N} of functions where γi :
(Ii, Ii) → (Ui,U i) (or equivalently, γi : (Ω,J i) →
(Ui,U i).

Although, there are different ways to define a control
objective of a decentralized system, we focus on minimizing
a loss function. Other performance measures include mini-
mizing regret, minimizing risk, ensuring safety, and ensuring
stability. We will assume that we are given a probability
measure P on (Ω,F) and a real-valued loss function ` on
(Ω×U1×· · ·×UN ,F⊗U1⊗· · ·⊗UN ) =: (H,H). Any choice
γ = (γ1, . . . , γn) of the control strategy induces a probabil-
ity measure P γ on (H,H). We define the performance J(γ)
of a strategy as the expected loss (under probability measure
P γ), i.e.,

J(γ) = Eγ [`(ω, u1, . . . , un)]

where ω is the primitive variable (or the primitive random
variable, since a measure is specified) and ui is the control
action of DM i.

As an example, consider the following model of a system
with two decision makers which is taken from [12]. Let Ω =
{ω1, ω2, ω3}, F be the power set of Ω. Let the action space
be U1 = {U(up), D(down)}, U2 = {L(left), R(right)},
and U1 and U2 be the power sets of U1 and U2 respectively.
Let the information fields J 1 = {∅, {ω1}, {ω2, ω3},Ω} and
J 2 = {∅, {ω1, ω2}, {ω3},Ω}. (This information corresponds
to the non-identical imperfect (quantized) measurement set-
ting considered in [12]).

Suppose the probability measure P is given by P (ωi) =
pi, i = 1, 2, 3 and p1 = p2 = 0.3, p3 = 0.4, and the loss
function `(ω, u1, u2) is given by

u2

L R
u1 U 1 0

D 3 1
ω : ω1 ↔ 0.3

u2

L R
U 2 3
D 2 1
ω2 ↔ 0.3

u2

L R
U 1 2
D 0 2
ω3 ↔ 0.4

For the above model, the unique optimal control strategy
is given by

γ1,∗(y1) =

{
U, y1 ∈ {ω1}
D, else

γ2,∗(y2) =

{
R, y2 ∈ {ω1, ω2}
L, else

A solution to the generalized sequential decentralized
stochastic control problem is very difficult. Most of the work
in the literature has concentrated on identifying solution
techniques for specific subclasses. Typically, these subclasses
are characterized on the basis of the information structure
of the system. We describe the most common classification
below.

A. Static and dynamic information structures

The simplest, and at first glance, the most critical, distinc-
tion is between static and dynamic information structures. An
information structure is called static if J i is F measurable
for all i, i.e., the observation of all DMs depends only
on the primitive random variable (and not on the control
actions of others). Systems that don’t have static information
structure are said to have dynamic information structure. In
such systems, some DMs influence the observations of others
through their actions. The authors of [13], [14] studied the
general properties of static information structures. One of
their strongest results is that when the primitive random
variable is Gaussian, observation functions are linear, and
the loss function is quadratic—i.e., the static LQG case—
affine control strategies are optimal. The result relies on
the convexity of the problem, and is explained later in
Section III.

Witsenhausen [15] showed that any dynamic decentralized
control system can be converted to a static decentralized
control system by an appropriate change of measures. How-
ever, very little is known regarding the solution of a non-
LQG static system; hence, the above transformation is not
practically useful.

B. Classical, quasiclassical and nonclassical information
structures

Centralized control systems are a special case of decentral-
ized control systems; their characterizing feature is central-
ization of information, i.e., any DM knows the information
available to all the DMs that acted before it, or formally,
J i ⊆ J i+1 for all i. Such information structures are called
classical.

A decentralized system is called quasiclassical or partially
nested if the following condition holds: whenever DM i can
influence DM j, then DM j must know the observations
of DM i, or more formally, J i ⊆ J j . Ho and Chu [16]
showed that when the primitive random variable is Gaussian,
observation functions are linear, and the loss function is
quadratic—i.e., the partially nested LQG case—affine control
laws are optimal. The result relies on showing that an invert-
ible linear transformation can convert the partially nested
LQG system into a static LQG system and then use the
results of the static LQG case. Not much is known regarding
other subclasses (non-LQG systems) of quasiclassical or
partially nested teams.

Any information structure that is not classical or quasi-
classical is called nonclassical.

Since classical information structures are effectively equiv-
alent to centralized control systems, they can be solved using
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techniques from centralized stochastic control. For example,
for state space models, we can use dynamic programming
to find optimal strategies (see Sec. III.D); for input-output
models, we can use convex parametrizations to find optimal
control strategies (see Sec. IV). In general, these techniques
do not work for nonclassical information structures. Many
researchers have investigated specific sub-classes of nonclas-
sical information structures, both for the state-space models
and for the input-output models. We present some of these
results for these models in the Sec. IV. Further results and
examples on information structures are available in [12].

III. STOCHASTIC TEAM PROBLEMS IN STATE-SPACE
FORM

In a state space model, we assume that the decentralized
control system has a state xt that is evolving with time.
The evolution of the state is controlled by the actions of the
control stations. We assume that the system has N control
stations where each control station i chooses a control action
uit at time t. The system runs in discrete time, either for finite
or infinite horizon.

Let X denote the space of realizations of the state xt, and
Ui denote the space of realization of control actions uit. Let
T denote the set of time for which the system runs.

The initial state x1 is a random variable and the state of
the system evolves as

xt+1 = ft(xt, u
1
t , . . . , u

N
t ;w0

t ) , t ∈ T , (1)

where {w0
t , t ∈ T } is an independent noise process that is

also independent of x1.
We assume that each control station i observes the follow-

ing at time t
yit = git(xt, w

i
t), (2)

where {wit, t ∈ T } are measurement noise processes that
are independent across time, independent of each other, and
independent of {w0

t , t ∈ T } and x1.
The above evolution does not completely describe the

dynamic control system, because we have not specified the
data available at each control station. In general, the data Iit
available at control station i at time t will be a function of all
the past system variables {x[1,t],y[1,t],u[1,t−1],w[1,t]}, i.e.,

Iit = ηit(x[1,t],y[1,t],u[1,t−1],w[1,t]), (3)

where we use the notation u = {u1, . . . , uN} and x[1,t] =
{x1, . . . , xt}. The collection {Iit , i = 1, . . . , N , t ∈ T }
comprises the observation variables which generate the in-
formation structure in the system.

When T is finite, say equal to {1, . . . , T}, the above model
is a special case of the sequential intrinsic model presented
above. The set {x1, w0

t , w
1
t , . . . , w

N
t , t ∈ T } denotes the

primitive random variable with probability measure given
by the product measure of the marginal probabilities; the
system has N ×T DMs, one for each control station at each
time. DM (i, t) observes Iit and chooses uit. The information
sub-fields J k are determined by {ηit, i = 1, . . . , N , t ∈ T }.

Some important information structures are

1) Complete information sharing: In complete information
sharing, each DM has access to present and past mea-
surements and past actions of all DMs. Such a system
is equivalent to a centralized system.

Iit = {y[1,t],u[1,t−1]}, t ∈ T .

2) Complete measurement sharing: In complete measure-
ment sharing, each DM has access to the present and
past measurements of all DMs. Note that past control
actions are not shared.

Iit = {y[1,t]}, t ∈ T .

3) Delayed information sharing: In delayed information
sharing, each DM has access to n-step delayed mea-
surements and control actions of all DMs.

Iit =

{
{yi[t−n+1,t], u

i
[t−n+1,t−1]y[1,t−n],u[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

(4)
4) Delayed measurement sharing: In delayed measurement

sharing, each DM has access to n-step delayed mea-
surements of all DMs. Note that control actions are not
shared.

Iit =

{
{yi[t−n+1,t], u

i
[1,t−1],y[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

5) Delayed control sharing: In delayed control sharing,
each DM has access to n-step delayed control actions
of all DMs. Note that measurements are not shared.

Iit =

{
{yi[1,t], u

i
[t−n+1,t−1],u[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

6) Periodic information sharing: In periodic information
sharing, the DMs share their measurements and control
periodically after every k time steps. No information is
shared at other time instants.

Iit =


{yi[bt/kck,t], u

i
[bt/kck,t],y[1,bt/kck],u[1,bt/kck]},

t ≥ k
{yi[1,t], u

i
[1,t−1]}, t < k

7) Completely decentralized information: In a completely
decentralized system, no data is shared between the
DMs.

Iit = {yi[1,t], u
i
[1,t−1]}, t ∈ T .

In all the information structures given above, each DM
has perfect recall (PR), that is, each DM has full memory of
its past information. In general, a DM need not have perfect
recall. For example, a DM may only have access to its current
observation, in which case the information structure is

Iit = {yit}, t ∈ T . (5)

To complete the description of the team problem, we have
to specify the loss function. We will assume that the loss
function is of an additive form:

`(x[1,T ],u[1,T ]) =
∑
t∈T

c(xt,ut) (6)
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where each term in the summation is known as the incre-
mental (or stagewise) loss.

The objective is to choose control laws γit such that uit =
γit(I

i
t) so as to minimize the expected loss (6). In the sequel,

we will denote the set of all measurable control laws γit under
the given information structure by Γit.

A. Solutions to Static Teams

Let J(γ) := E [c(ω, γ1(η1(ω)), . . . , γN (ηN (ω)))]. We say
that a policy γ∗ is person by person optimal if

J(γ∗) ≤ J(γ∗1, . . . , γ∗(k−1), β, γ∗(k+1), . . . ),

β ∈ Γk, k = 1, 2, . . . , N. (7)

A policy γ∗ is optimal if

J(γ∗) ≤ J(γ), for all γ ∈ Γ.

It has been observed by Radner [13] and Krainak et
al [17] that a static team problem with a loss (or cost)
function c(x, ·) which is (i) continuously differentiable in
the actions and (ii) strictly convex in the actions, admits an
optimal policy that satisfies local stationarity conditions. An
important application of the above result is the following
static Linear Quadratic Gaussian Problem: Consider a two-
controller system evolving in Rn with the following descrip-
tion: Let x1 be Gaussian and x2 = Ax1+B1u11+B2u21+w1

y11 = C1x1 + v11 ,

y21 = C2x1 + v21 ,

with w, v1, v2 zero-mean, i.i.d. disturbances. For ρ1, ρ2 > 0,
let the goal be the minimization of

J(γ1, γ2) = E
[
||x1||22 + ρ1||u11||22 + ρ2||u21||22 + ||x2||22

]
(8)

over the control policies of the form:

uit = µit(y
i
1), i = 1, 2.

For this problem, the cost function is convex in the actions
of the decision makers, and moreover, it is continuously
differentiable. Furthermore, linear policies are person by
person optimal since linear policies adopted by the other
decision makers reduce the problem to a standard Linear
Quadratic Gaussian cost optimization problem with partial,
Gaussian observations. Hence, the solution to this problem is
affine. This remarkable observation allows one to show that
optimal team policies are affine.

The above analysis is not applicable to stochastic dynamic
team problems with nonclassical information as we will see
in the next subsection. As discussed above, nonclassical
information structure (IS) arises if a Decision Maker (DM) i’s
action affects the information available to another DM j, who
however does not have access to the information available to
DM i based on which her action was constructed. Another
way, perhaps mathematically more precise way of stating
this is that the information sigma field of agent DM j is
dependent explicitly on the policy (decision rule, or control
law) of DM i.

In team problems with partially nested information, one
talks about precedence relationships among agents: an agent
Ai preceeds another agent Aj (or Ai communicates to Aj),
if the former agent’s actions affect the information of the
latter, in which case (to be partially nested) Aj has to have
the information based on which the action-generating policy
of Ai was constructed. Under quasi-classical information,
LQG stochastic team problems are tractable by conversion
into an equivalent static team problem, of the type discussed.
The team-optimal solution under this new (static) IS can then
be expressed in terms of the original IS. Examples of such
an indirect derivation for dynamic teams with quasi-classical
information are given in several papers, such as [16], [18],
[19]), see also [12].

B. Signaling and its effect on lack of convexity

What makes a large number of problems possessing the
nonclassical information structure difficult is the fact that
signaling is present: Signaling is the policy of communica-
tion through control actions. Under signaling, the decision
makers apply their actions to affect the information avail-
able at the other decision makers. In this case, the control
policies induce a probabilistic map (hence, a channel or a
stochastic kernel) from the exogenous random variable space
to the observation space of the signaled decision makers.
For the nonclassical case, the problem thus also features an
information transmission aspect, and the signaling decision
maker’s objective also includes the design of an optimal
measurement channel. In [20], it has been established that,
an optimal control problem is concave on the space of
information structures, viewed as stochastic kernels (see
also [12]). Hence, convexity hardly holds when there is a
signaling incentive.

To make this important issue more explicit, let us consider
the following example from [21]. Consider a two-controller
system evolving in Rn:

xt+1 = Axt +B1u1t +B2u2t + wt,

y1t = C1xt + v1t ,

y2t = C2xt + v2t ,

where w, v1, v2 are zero-mean, i.i.d. disturbances, and
A,B1, B2, C1, C2 matrices of appropriate dimensions. For
ρ1, ρ2 > 0, let the objective be the minimization of the cost
functional be a generalization of (8)

J = E
[( T∑

t=1

|xt|2 + ρ1|u1t |2 + ρ2|u2t |2
)

+ ‖xT ‖2
]

over control policies of the form:

uit = µit(y
i
[0,t], u

i
[0,t−1]), i = 1, 2; t = 0, 1, . . . , T − 1.

For a multi-stage problem (say with T = 2), unlike T = 1
in (8), the cost is in general no-longer convex in the action
variables of the controllers acting in the first stage t = 0. This
is because these actions might affect the estimation quality of
the other controller in the future stages, if one DM can signal
information to the other DM in one stage. We note that this
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condition is equivalent to C1AlB2 6= 0 or C2AlB1 6= 0 with
l+1 denoting the delay in signaling with l = 0 in the problem
considered. In particular, if the controller is allowed to apply
a randomized policy (for example by possibly using private
random information that it has from the past realizations),
this induces a conditional probability measure (channel) from
the external variables and the initial state of the system to
the observation variables at the other decision maker. The
optimization problem, as such, is not jointly convex in such
policies, and as such finding a fixed point to the stationarity
conditions in the optimal policies does not necessarily lead
to the conclusion that such policies are optimal. Even when
restricted to linear policies, the problem is not convex in
general.

C. LQG Problems Exhibiting Non-Classical Information
Structure

In the following, we discuss two important LQG type
problems with nonclassical information.

1) Transmission of Gaussian Source over a Gaussian
Channel under Various Information Structures: Consider the
transmission of a Gaussian source over a Gaussian relay
channel, as depicted in Figure 1.

Fig. 1. Gaussian relay channel.

We wish to minimize E [(x− x̂)2] over encoder and relay
encoder policies. We assume that x is Gaussian with zero
mean and variance σ2

x. The encoder mapping satisfies, se =
γ1(x) such that,

E [s2e] ≤ PS . (9)

The transmitted signal se is then observed in noise by the
relay node as y = se + ve, where ve is a zero-mean
independent Gaussian noise of variance Ne. The relay node
applies a measurable mapping γ2 on the received signal
to produce sr under the following average relay power
constraint,

E [s2r] ≤ PR. (10)

The signal sr is then transmitted over a Gaussian channel.
Accordingly the destination node receives z = sr+vr, where
{vr} is zero mean white Gaussian noise with variance Nr.
The decoder generates x̂ = g(z).

Some facts for this problem are as follows.
• If the relay is restricted to be linear, the optimal encoder

is linear from information theoretic arguments see [12]
• If the encoder is restricted to be linear, the best relay is

linear [22].
• The problem is non-convex when the encoders are

viewed as stochastic kernels [20]. Hence, person by

person-optimality above does not imply optimality of
linear policies. For further discussion, see [23] and [12].
This implies that the person-by-person optimal encoding
policies do not guarantee team optimality. Even under
linear policies, the problem is not convex (see [24]).

• Linear policies are not globally optimal [23]. If there
are more that two relays, linear policies are not optimal
[25]. Both references mentioned have obtained coun-
terexamples.

2) Witsenhausen’s Counterexample and the Generalized
Gaussian test channel: Consider the following two-stage
stochastic control problem with non-classical information
structure:

x1 = x0 + u1, x2 = x1 − u2
and with the measurement equations

y1 = x0, y2 = x1 + v

and control policies

u1 = γ1(y1), u2 = γ2(y2),

with cost function now written as

Q(γ1, γ2) = E [k2u21 + x22].

where k is a positive real parameter, while x0 and v are zero
mean independent Gaussian random variables with variance
σ2 and 1, respectively. This is Witsenhausen’s counterex-
ample [4]. For this problem, Witsenhausen established that
a solution exists (we note that Wu and Verdu provided
an alternative proof using tools from Transportation theory
[26]), and established that an optimal policy is non-linear.

Under a different cost selection, the formulation above can
also be used to cast the well known Gaussian test channel,
which admits an optimal affine solution. An interesting study
on the optimality of affine policies for different quadratic
costs is provided in [27], and a concrete example is solved
in [12].

Remark 3.1: As mentioned earlier, [15] showed that it is
possible to transform any dynamic team problem into a static
team problem. The static reduction of the Witsenhausen’s
counterexample is a two controller static team where the
observations y1 and y2 of the two controllers are indepen-
dent zero-mean Gaussian random variables with variance σ2

and 1, respectively. See [15] for the exact correspondence
between the static formulation and the original example.

Remark 3.2: In a class of quadratic cost minimization
problems, one poses the problem not as an expectation min-
imization but as a min-max optimization where nature acts
as the maximizer and the controllers act as the minimizers
for cost functions of the form

inf
{γi}

sup
ω
J(γ, ω),

with J being a quadratic function, γi denoting controller
policies and ω a disturbance with norm constraints. Linear
policies are optimal for a large class of such settings in
both encoder-decoder design as well as controller design (see
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different setups in for example [28], [29], [30], [31], [32]).
The proof of such results typically use the fact that, such min-
max problems can be converted to a quadratic optimization
problem by a re-parametrization of the cost function. More
on this connection will be presented in the next section.

Remark 3.3: There is a large class of problems where
signaling is performance-irrelevant, see [21], [33], [12] for
a class of problems where partial nestedness does not hold,
yet, optimal solutions are linear. Hence, one can look beyond
partial nestedness and exploit the measure dependency of
information structures to look for settings where optimal
policies may be linear and more importantly, the optimization
problem may be convex.

D. Dynamic Programming Approach to Team Problems and
Limited Information Sharing

For centralized stochastic control, dynamic programming
(and its specialization for LQG systems—Ricatti equations)
provide a systematic methodology to synthesize optimal
controllers. Thus, a natural queston is whether the dynamic
programming principle extends to decentralized stochastic
control as well.

In order to attempt to answer the above question, let us
first briefly describe how dynamic programming works in
centralized systems. Consider the model of Section III for
N = 1 control stations and It = (y[1,t], u[1,t−1]). Notice
that this system has classical information structure. The main
conceptual difficulties in the optimal design of such a system
are:
D1) The domain It of the control law γt is increasing with

time; consequently, optimal control laws are harder to
search for and harder to implement as time increases.

D2) The optimal control problem is a functional optimiza-
tion problem where we need to find a control policy
(γt, t ∈ T ) to minimize the expected total loss.

The theory of centralized stochastic control overcomes
these difficulties by identifying an information state πt at
each time with the following properties:
P1) πt is a function of the information It;
P2) πt+1 is a function of πt and new information (ut, yt+1);
P3) πt is a sufficient statistic for predicting the future

observations, i.e., P(yt+1|It) = P(yt+1|πt).
P4) πt is a sufficient statistic for performance evaluation,

i.e., E [c(xt, ut)|It] = E [c(xt, ut)|πt].
For any information state satisfying the above properties,

the centralized stochastic control theory provides the follow-
ing results:

1) Structure of optimal controllers. Restricting attention
to control laws of the form ut = γt(πt) does not entail
any loss of optimality.

2) Dynamic programming decomposition. Recursively
define:1

Vt(πt) = inf
ut∈Ut

E [c(xt, ut)+Vt+1(πt+1) | πt, ut]. (11)

1When T is finite, initialize V|T |+1(·) = 0; otherwise Vt(·) = Vt+1(·)
and (11) reduces to a fixed-point equation.

Then, if the infimum above is achieved, the arg min
at time t gives the optimal control action when the
information state is πt.

The above results hold for any choice of information state.
In general, a system may have more than one information
state, and the “best” choice of information state is model
dependent. Some examples for the choice of information
state are:

1) Markov decision process (MDP). When the controller
observes the state xt of the system perfectly, i.e., when
yt = xt, then πt = xt is an information state.

2) Partially observable Markov decision process
(POMDP). For the general centralized control system
described above, the belief state πt(·) = P(xt = ·|It)
is an information state.

An appropriate information state overcomes the conceptual
difficulties (D1) and (D2) described above. Let Bt denote
the space of all possible values of πt. If Bt is time-invariant,
then difficulty (D1) is resolved. If Bt is finite, we need to
solve

∑
t∈T |Bt| parameteric optimization equations to solve

the dynamic program of (11), thereby resolving difficulty
(D2). Even if Bt is infinite, the dynamic program of (11)
can be solved efficiently either exactly (e.g., LQG systems)
or approximately (e.g., POMDPs).

Now lets come back to the question of extending the
dynamic programming principle to decentralized stochastic
control systems. Decentralized stochastic problems belong
to NEXP complexity class [34]. So, in general, no efficient
solution algorithm is possible. Nonetheless, it is possible to
develop a dynamic programming decomposition for specific
information structures. We present three such generic ap-
proaches.

1) The person-by-person approach: The person-by-
person approach is motivated by techniques for computing
the Nash equilibrium of a game in policy space and works
when some controllers have perfect recall.

The approach proceeds as follows. Pick a controller, say i,
that has perfect recall and arbitrarily fix the control policies
γ−i of all other controllers. Now consider the sub-problem
of optimally choosing the best policy at controller i. Since
the policies of all other controllers are fixed and controller i
has perfect recall, this optimal control sub-problem at con-
troller i is a centralized stochastic control problem. Let πit
be any information state for controller i at time t. Then, the
structural results of centralized stochastic control described
above show that a policy of the form uit = γit(π

i
t) performs

as well as (or, in other words, dominates) any other control
policy at controller i. If the form of πit does not depend
on the policies γ−i for other controllers, then the policy
uit = γit(π

i
t) is optimal for every choice of γ−i; and hence

is globally optimal. Thus, the person-by-person approach is
used to identify the structure of globally optimal policies.

As an example, consider the decentralized sequential hy-
pothesis testing problem described in [35]. Let H ∈ {0, 1} be
a binary hypothesis and two sensors observe noisy versions
of H . At each time, a sensor can either stop and declare an
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estimate Ĥi, or continue to take additional measurements.
Each measurement costs c and when both sensors have
declared an estimate, a cost `(H,H1, H2) is incurred.

Following a person-by-person approach, we get that π1
t =

P(H = 0|yi[1,t]) is an information state for controller i. Since
the form of π1

t does not depend on the control policies of
the other sensor, restricting attention to control policies of
the form uit = γit(π

i
t) does not entail any loss of optimality.

Furthermore, by following a procedure similar to the Wald
sequential hypothesis testing, we can show that the optimal
control policy γit is of the threshold type, i.e., there exists
numbers τ it, τ̄

i
t ∈ [0, 1] with τ it ≤ τ̄ it such that if πit ∈ [0, τ it),

then it is optimal to stop and declare 1; if πit ∈ (τ̄ it , 1], then
it is optimal to stop and declare 0; otherwise, it is optimal
to take another measurement. (See [35] for details). Thus,
the person-by-person approach identifies the structure of the
optimal controller.

When all controllers have perfect recall and the infor-
mation state at each controller belongs to a time-invariant
space, then the person-by-person approach also gives coupled
dynamic programs. If these coupled dynamic programs have
a fixed point solution, then the resulting policies are person-
by-person optimal.

The main idea for finding such coupled dynamic programs
is the following. Pick a controller, say i, and arbitrarily fix
the controller policy γ−i of all other controllers. Write the
dynamic program to find the optimal policy at controller i.
This dynamic program determines the best response of con-
troller i to the policies γ−i. Write similar dynamic programs
for all controllers. Thus, we end up with N coupled dynamic
programs, one for each controller. These coupled dynamic
programs have a fixed point if for every i, γi is the best
response to γ−i.

We can use an orthogonal search to find the fixed point
of such coupled dynamic programs. Arbitrarily initialize the
control policies γ(0) for all controllers. Pick a controller i,
and use the dynamic program for controller i to find the best
response γ∗,i to γ(0),−i. Set γ(1) such that γ(1),i = γ∗,i and
the rest of the components are same as in γ(0). Repeat the
above process by picking some other controller j. Continue
until a fixed-point is reached. By construction, such a fixed
point determines a person-by-person optimal policy. Such an
approach was used in [35] to find person-by-person optimal
strategies for the decentralized sequential hypothesis testing
problem described above.

In summary, the person-by-person approach identifies
structural properties of globally optimal control policies and
provides a search method to find person-by-person optimal
control policies. This method has been used to identify
globally optimal strategies for specific information struc-
tures (e.g., stochastically nested information structures [21]
and broadcast information structures [36]) and for various
applications (e.g., real-time communication [37]–[42], de-
centralized hypothesis testing and quickest change detec-
tion [35], [43]–[49], and networked control systems [50],
[51]). The person-by-person approach has also been used
to identify person-by-person optimal control strategies for

specific information structures (e.g., control sharing infor-
mation structure [52]). As discussed earlier, a decentralized
control problem need not be convex. Thus, a person-by-
person optimal policy found using the above approach need
not be globally optimal. However, if the problem is convex
(e.g., an LQG system that is partially nested), then the
approach gives a globally optimal solution.

2) The designer’s approach: The designer’s approach was
proposed in [53] (where it was called the standard form) and
refined in [54], [55]. The main idea behind the designer’s
approach is that although the dynamic team problem is
informationally decentralized, it is a centralized planning
problem that may be solved from the viewpoint of a system
designer that (centrally) chooses the control laws of all
the controllers before the system starts running. Since the
control laws are picked before the system starts running,
no data is observed by the system designer. We can obtain
a dynamic programming decomposition of this centralized
planning problem by identifying an appropriate information
state for the designer.

For the system described in Section III, the planning prob-
lem is a POMDP. Thus, based on the results for POMDPs, the
information state is given by P(xt, I

1
t , . . . , I

n
t ). In general, a

dynamic program based on such an information state is not
useful because the space of realizations of Iit is increasing
with time. Nonetheless, the designer’s approach gives useful
results for specific information structures, as is illustrated by
the following example.

Decentralized control with finite memory controllers:
Consider the model of Section III in which no controller
has perfect recall. A simple example of this case is Iit =
{yit, yit−1}. Based on the designer’s approach, the infor-
mation state for this system is P(xt,yt,yt−1), which is
computable from πt = P(xt,yt−1). Based on this infor-
mation state, we get a dynamic program characterized by
the following recursion:

Vt(πt) = inf
γt

E [c(xt,ut) + Vt+1(πt+1) | πt,γt].

The minimizer at time t, if it exists, gives the optimal control
laws γt when the information state is πt. Such an approach
was used for one controller with finite memory in [56] and
for two controllers with finite memory in [54].

Notice that the information state defined above just de-
pends on the past choices of control laws γ[1,t−1]. Hence,
the evolution of the information state is deterministic and
the optimal control policies are obtained using a two step
approach. In the first step, proceed backwards in time and
determine the value function Vt(·) and the corresponding
minimizer. In the second step, start from the initial value
of the information state π1 and proceeds forward in time as
follows. From the result of the first step, find the optimal
control law γ1 corresponding to π1. Based on π1 and γ1,
determining π2 and continue the above process until all
control laws γt, t ∈ T are determined.

The designer’s approach can also be used in tandem
with the person-by-person approach as is illustrated by the
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following example. Such a tandem approach has been used in
various applications including real-time communication [38],
[55], [57], decentralized hypothesis testing [47], and net-
worked control systems [50], [51].

Two agent team with one finite-memory controller:
Consider a two agent (N = 2), where one controller has
perfect recall with I1t = (y1[1,t], u

1
[1,t−1]) and the second

controller has finite memory, say I2t = (y2t , y
2
t−1). (A more

general form of this system was investigated in [54]). Di-
rectly using the designer’s approach on this system will give
an information state P(xt, y

1
[1,t], u

1
[1,t−1], y

2
[t−1,t]) which does

not take values in a time invariant space. We can find a more
useful information state if we first use the person-by-person
approach on controller 1, which shows that P(xt, y

2
[t−1,t] |

I1t ), which is computable from θt = P(xt, y
2
t−1 | I1t ), is an

information state for controller 1. Therefore, based on the
structural results, restricting attention to controller 1 of the
form u1t = γ1t (θt) does not entail any loss of optimality.

Now, restrict attention to controller 1 of the form u1t =
γ1t (θt) and use the designer’s approach. Based on the de-
signer’s approach, we get that P(xt, θt, y

2
[t−1,t]), which is

computable from πt = P(xt, θt, y
2
t−1), is an information

state. Notice that πt takes value in a time invariant space.
Based on this information state, we get the following dy-
namic program. Define

Vt(πt) = inf
γt

E [c(xt,ut) + Vt+1(πt+1) | πt,γt].

The minimizer at time t, if it exists, gives the optimal control
laws γt when the information state is πt. Although the
above information state looks formidable (it is a probability
measure on a probability measure), the above dynamic
program provides a means of synthesizing approximately
optimal control laws.

3) The common information approach: The common in-
formation approach was proposed in [58]–[60] and works
for decentralized control problems in which the controllers
sequentially share information with each other e.g., the de-
layed information/measurement/control sharing information
structure and the periodic sharing information structures de-
fined earlier. The general class of such information structures
is called partial history sharing information structure [60].

The main idea behind the common information approach
is the following. Given any information structure, we can
split the information available at the controllers into common
information Ct =

⋂
s≥t
⋂n
i=1 I

i
s and local information Lit =

Iit \ Ct, i = 1, . . . , N . If all controllers have perfect recall,
then we can simply define common information as Ct =⋂n
i=1 I

i
t . By construction, common information is increasing

with time, i.e., Ct ⊆ Ct+1.
The common information approach consists of the fol-

lowing five steps. The first step is to formulate a centralized
coordinated system from the viewpoint of a coordinator that
observes the common information Ct and chooses prescrip-
tions ϕt = (ϕ1

t , . . . , ϕ
N
t ), where ϕit maps the local informa-

tion Lit to control action uit, i = 1, . . . , N . In this coordinated
systems, the controllers simply take the prescription ϕit given

to them by the coordinator, and use it to generate control
action uit = ϕit(L

i
t). The second step is to show that the

coordinated system is a centralized POMDP. The third step
is to identify an information state for the coordinator and use
it to identify the structure of optimal control laws and write
a dynamic programming decomposition. The fourth step is
to show that the coordinated system is equivalent to the
original system, i.e., any policy of the coordinated system
is implementable in the original system, and vice versa, in
such a manner that both policies result in identical realization
of all system variables. The fifth and the final step is to use
the result of the fourth step to translate the structural result
and the dynamic programming decomposition of the third
step to the original system.

For the general system defined above, the information state
is given by P(xt, L

1
t , . . . , L

N
t | Ct). In general, the dynamic

programming decomposition based on this information state
is not useful because the local information Lit is increasing
with time. Nonetheless, the common information approach
gives useful results for specific information structures, as is
illustrated by the following example.

The delayed sharing information structure: Consider
the model of Section III with a n-step delayed sharing
information structure, i.e., It is given by (4). This model was
proposed in [61], the structural result and dynamic program-
ming decomposition for n = 1 was given in [62], and two
structural results and dynamic programming decomposition
for the general n was given in [63]. We show how this model
can be solved using the common information approach.

In this model, the common information is Ct =
(y[1,t−n],u[1,t−n]), while the local information is Lit =
(yi[t−n+1,t], u

i
[t−n+1,t]). Based on the common information

approach, we get that πt = P(xt,y[t−n+1,t],u[t−n+1,t]) is
an information state for the coordinator. In addition, we get
the following:

1) Structure of optimal controller. In the coordinated sys-
tem, restricting attention to coordination strategies of
the form ϕt = dt(πt) does not entail any loss of
optimality. Since uit = ϕit(L

i
t), the structural result

for the coordinator implies that in the original system,
restricting attention to control strategies of the form
uit = γit(L

i
t, πt) does not entail any loss of optimality.

2) Dynamic programming decomposition. In the coordi-
nated system, define

Vt(πt) = inf
ϕt

E [c(xt,ut) + Vt+1(πt+1) | πt,ϕt].

The minimizer at time t, if it exists, gives the optimal
prescription ϕt when the information state is πt. The
corresponding optimal control policy in the original
system is given by γit(·, πt) = ϕit(πt)(·).

The above result is similar to the first structural result and
dynamic programming derived in [63].

The common information approach helps in deriving struc-
tural results and dynamic programs that cannot be derived
using the person-by-person approach or the designer’s ap-
proach. A case in point is the results for delayed sharing
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information structure derived above. If the common infor-
mation is Ct = ∅, then the common information approach
collapses to the designer’s approach.

Variations of this approach have been used for various
information structures, including delayed state sharing [64],
partially nested systems with common past [65], teams with
sequential partitions [66], coupled subsystems with control
sharing [67], periodic sharing information structure [68], and
belief sharing information structure [21].

IV. NORM-OPTIMAL DESIGN

In this section, we discuss methods for incorporating most
types of information structure into a modern control frame-
work. We focus here on problems where both the system to
be controlled and the controllers under consideration are all
linear (and, where applicable, time-invariant), except where
otherwse noted. The number of controllers / decision makers,
as well as the amount of times that each one has to act, may
be finite or infinite, and the systems may be discrete-time or
continuous-time. We mainly focus on problems where there
is an infinite horizon and where stability issues thus need to
be considered as well.

In IV-A, we describe the framework; in particular, in-
troducing the idea of an information constraint, and ex-
plaining how optimal decentralized control problems may
be addressed just like standard (centralized) optimal control
problems, attempting to minimize a closed-loop norm, but
subject to a constraint on the controller to be designed. In
the simplest case, when certain controllers / decision makers
can access some measurements but not others, as discussed
in several examples above, this is captured by enforcing a
sparsity constraint on the controller. In IV-B, we review how
to parametrize all of the stabilizing controllers for centralized
problems, in particular, the Youla-Kucera parametrization.

In IV-C we introduce a condition that allows the infor-
mation constraint on the controller to be incorporated in
such a way that finding the optimal controller subject to the
information constraint can be cast as a convex optimization
problem. This holds regardless of which closed-loop norm
one wishes to minimize. The condition, called quadratic
invariance, is an algebraic condition relating the system
(plant) to the constraint, typically providing a simple test for
convexity, and turns out to be closely related to the partially
nested condition described above, developed for classifying
linear optimality in LQG problems. In IV-D, we discuss a
new result allowing these ideas to be applied more broadly,
and allowing the optimization problem to be handled together
with the problem of stabilization. In IV-E, armed with our
test for convexity, we revisit some of the examples that were
used to motivate the constraint framework, and determine
when those problems are amenable to convex synthesis.

In IV-F, we discuss what happens when this approach is
applied to problems which are not quadratically invariant,
and perfectly decentralized problems in particular. In IV-G,
we briefly discuss a related result for nonlinear systems.

A. Framework and Setup
We introduce a framework for designing optimal con-

trollers for LTI systems, subject to decentralized information
constraints.

a) Standard LTI framework: We first review a standard
framework for centralized control synthesis.

P11 P12

P21 G

K

w

uy

z

Fig. 2. Standard LTI feedback control framework

Figure 2 represents a standard design framework often
used in modern control theory. The signal w represents the
vector of exogenous inputs, those the designer has no control
over, such as wind gusts if one is considering an example in
aerospace, and z represents everything the designer would
like to keep small, which would typically include deviations
from a desired state or trajectory, or a measure of control
effort, for example. The signal y represents the vector of
measurements that the controller K has access to, and u is
the vector of inputs from the controller that is fed back into
the plant. The plant is subdivided into four blocks which
map w and u into z and y. The block which maps the
controller input u to the measurements y is simply referred
to as G, since it corresponds to the plant of classical control
analysis, and so that we can later refer to its subdivisions
without any ambiguity. Note that the four parts of the plant
can, and often are, chosen such that all or parts of the vectors
y and u are repeated in the vector z that we are trying to
keep small, and such that parts of the vector u are repeated
in y, to which the controller has access.

The design objective is to construct a controller K to keep
a measure of the size of the mapping from w to z, known as
the closed-loop map, as small as possible. There are many
ways one can measure the size of a mapping, and thus
this basic setup underpins much of modern (linear) controls
including H2-control and H∞-control. The choice of H2

leads to a stochastic interpretation, as that system norm is
equivalent to the 2-norm of the vector z if w was a standard
normal vector, and so the cost is equivalent to that of an
associated LQG problem. In this framework, a decentralized
information structure may be viewed as a constraint on the
structure of the controller K, as now illustrated by examples.

b) Information constraint: We now illustrate why, in
this framework, decentralization may be simply encapsulated
as a constraint that the controller lies in a particular subspace.
We focus now on the controller K, and on G, the part of
the plant which takes the vector of control inputs u to the
measurements y.

The diagram in Figure 3 represents three different sub-
systems, each of which may effect its neighbors, and each
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G1 G2 G3

K1 K2 K3

Fig. 3. Perfectly decentralized control

of which has its own controller, which only has access to
measurements coming from its own subsystem. In this case,
if we look at the system as a whole, we need to design a
controller K that can be written as

u1

u2

u3

 =


K1 0 0

0 K2 0

0 0 K3


︸ ︷︷ ︸

K


y1

y2

y3



since each controller input may only depend upon the
measurement from its corresponding subsystem. In other
words, we need to design the best possible K which is block
diagonal. The overall problem can be viewed as minimizing
the size of the closed-loop map subject to the additional
constraint that K ∈ S, where S is the set of all block
diagonal controllers. This concept readily extends to any type
of structural constraint we may need to impose in formulating
an optimal control problem for controller synthesis. For
instance, if in the above example, each controller were able
to share information with its neighbors, then we would end
up with a constraint set S which is tri-diagonal. In general,
if the controller that generates ui is unable to see yj then
the ijth entry of the controller must be set to zero.

Fig. 4. Network with delays

If controllers were instead allowed to communicate with
each other, but with some delays, this too could be reflected
in another constraint set S. This situation is represented
in Figure 4, where the controller that generates ui, which
regulates subsystem i, can see the information from another
subsystem j only after a transmission delay of tij . In this
case, if we look at the system as a whole, we need to design

a controller K that can be written as
u1

u2

u3

 =


Dt11K̃11 Dt12K̃12 Dt13K̃13

Dt21K̃21 Dt22K̃22 Dt23K̃23

Dt31K̃31 Dt32K̃32 Dt33K̃33


︸ ︷︷ ︸

K


y1

y2

y3



where each Dtij realizes the corresponding delay tij , and
each K̃ij represents a factor of the controller that we are free
to design. Notice that, according to the representation above,
the controller responsible for ui must wait the prescribed
delay tij until it can access measurements from subsystem j.

The set S above is called the information constraint, as
it captures the information available to various parts of the
controller. This includes the notion of information structures
as defined earlier in Section III, as the constraint can be set to
encapsulate which measurements and/or control inputs (and
from which subsystems and from which times) are available
to the controllers of which subsystems at which times.

The overarching point is that the objective of decentralized
control may be considered to be the minimization of a
closed-loop map subject to an information constraint K ∈ S.
The approach is extremely broad, as it seamlessly incorpo-
rates any type of decentralization, any control objective, and
heterogeneous subsystems.

c) Problem formulation: The mapping from w to z that
we wish to keep small in Figure 2, the closed-loop map,
can be written as f(P,K) = P11 + P12K(I − GK)−1P21.
The problem that we would like to address may then be
formulated as:

minimize ‖f(P,K)‖
subject to K stabilizes P

K ∈ S
(12)

The norm (‖·‖) is any appropriate system norm, chosen
based on the particular performance objectives, which could
be the H2-norm or H∞-norm, as briefly described earlier.
The information constraint S is the subspace of admissible
controllers that encapsulates the decentralized nature of the
system, as exemplified above. Choosing P and S, along with
the H2-norm, to correspond to a given LQG problem with
information structure is discussed in [69]. The stabilization
constraint is needed in the most typical case where the
signals lie in extended spaces and the plant and controller
are rational proper systems whose interconnections may thus
be unstable. It may not be necessary, or another technical
condition may be necessary such as the invertibility of
(I−GK), for other spaces of interest, such as Banach spaces
with bounded linear operators [70], [71].

B. Youla-Kucera Parametrization of Stabilizing Controllers

If the plant to be controlled is stable, we could use the
following change of variables

Q = −K(I −GK)−1 ⇐⇒ K = −Q(I −GQ)−1

(13)
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and then allowing the new parameter Q to be stable is
equivalent to the controller K stabilizing the plant P , and
the set of all achievable closed-loop maps (ignoring the
information constraint) is then given as

{P11 − P12QP21 | Q stable}. (14)

This is generalized by the Youla-Kucera or
YJBK parametrization [72], which uses a doubly
coprime factorization of G over RH∞, that is,
Ml, Nl, Xl, Yl,Mr, Nr, Xr, Yr ∈ RH∞ such that
G = NrM

−1
r = M−1l Nl and[

Xl −Yl
−Nl Ml

] [
Mr Yr
Nr Xr

]
=

[
I 0
0 I

]
. (15)

Then the set of all stabilizing controllers is given by

{K ∈ Rp | K stabilizes G}

=
{

(Yr −MrQ)(Xr −NrQ)−1
∣∣

Xr −NrQ is invertible, Q ∈ RH∞
}

=
{

(Xl −QNl)−1(Yl −QMl)
∣∣

Xl −QNl is invertible, Q ∈ RH∞
}
.

(16)

Thus allowing the new (Youla) parameter Q to vary over all
stable systems is still equivalent to considering all stabilizing
controllers K, and the set of all achievable closed-loop maps
is then given by

{T1 − T2QT3 | Q ∈ RH∞} (17)

where T1, T2, T3 are other stable systems which are functions
of the coprime factors and the generalized plant parameters.

We see that these parametrizations allow the set of achiev-
able closed-loop maps to be expressed as an affine function
of a stable parameter, and thus allow our objective function
in our main problem (12) to be cast as a convex function of
that parameter. However, the information constraint K ∈ S
will typically not be simple to express in the new parameter,
and this will ruin the convexity of the optimization problem.

C. Quadratic Invariance

We have seen that we can employ a change of variables
that will make our objective convex, but that will generally
cause the information constraint to no longer be affine. We
thus seek to characterize problems for which the information
constraint may be written as an affine constraint in the Youla
parameter, such that a convex reformulation of our main
problem will result.

The following property, first introduced in [70], provides
that characterization.

Definition 4.1: The set S is quadratically invariant with
respect to G if

KGK ∈ S for all K ∈ S.
In other words, given any admissible controller K, the

composition KGK has to be admissible as well. For prob-
lems where both are well-defined, this is shown to be

equivalent to the partially nested condition [69] discussed
in previous sections. When this condition holds, it follows
that a controller being admissible is further equivalent to the
linear-fractional transformation we encountered earlier lying
in the constraint set [71], [73]:

K ∈ S ⇐⇒ K(I −GK)−1 ∈ S (18)

Quadratic invariance is not only necessary and sufficient for
the above equivalence, but also for the linear-fractional trans-
formation of the admissible set to be any convex set [74].
We can see immediately from (13) that for the stable case
this results in the equivalence of enforcing the information
constraint on the controller or on the new parameter:

K ∈ S ⇐⇒ Q ∈ S (19)

and it can be shown that when the plant is unstable, as long
as it can be stabilized by a stable controller (known as strong
stabilizability), another change of variables can be made such
that this equivalence still holds [73].

Thus when the information constraint S is quadratically
invariant with respect to the plant G, the optimal decentral-
ized control problem (12) may be recast as the following:

minimize ‖T1 − T2QT3‖
subject to Q stable

Q ∈ S
(20)

which is a convex optimization problem.
This leaves the question of how to find that initial stabi-

lizing controller, itself a longstanding difficult problem, as
well as whether the stabilization and optimization need to
be handled separately, or whether they can be handled si-
multaneously. These questions are answered in the following
subsection.

D. A Parametrization of Information-Constrained Con-
trollers

Recent results show [75] that when quadratic invariance
holds, an arbitrary coprime factorization, which is always
available, can be used to characterize the information con-
straint on the controller as the following constraint on the
Youla parameter:

K ∈ S ⇐⇒ MrQMl −MrYl ∈ S (21)

While the constraint on Q is not identical to the information
constraint, as it was in the previous cases we discussed, it is
still an affine constraint.

The problem of finding a stabilizing controller is then
reduced to finding a Q ∈ RH∞ such that this constraint is
satisfied, and moreover, if this cannot be done, then we know
that the plant is not stabilizable with the given information
constraint. It shown in [75] that the existence of such a Q
is equivalent to the feasibility of an exact model matching
problem [76], with stability restrictions [77], for which there
are tractable solution methods [78]. If the associated exact
model-matching problem is feasible then we can use the
resulting Q to recover the stabilizing controller via (16). If
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this controller is stable then we can use the previous results
to write the optimal decentralized control problem as (20).
When it is not, similar results can be obtained by using a
parametrization discussed in [79], with a different convex
problem resulting in a convex parametrization that is distinct
from Youla’s [80].

Instead of this two-step compensation scheme, finding a
stabilizing controller first, then using this to parametrize all
of the stabilizing controllers and to find the optimal one, we
can also utilize this new equivalence (21) to address both
issues at once.

We can now, after finding any doubly coprime factor-
ization, recast the optimal decentralized control problem as
follows:

minimize ‖T1 − T2QT3‖
subject to Q stable

MrQMl −MrYl ∈ S
(22)

This is still a convex optimization problem in the Youla
parameter Q. The solution allows us to recover the optimal
decentralized controller via (16), and the problem is infeasi-
ble if and only if the plant is not stabilizable with the given
information constraint.

E. Examples

This subsection looks at particular classes of information
constraints to see when this quadratic invariance condition
holds, to identify those decentralized problems which are
amenable to convex synthesis. We see that this algebraic con-
dition often has intuitive interpretations for specific classes
of problems.

1) Structural Constraints: We first look at structural con-
straints, or sparsity constraints, where each sub-controller can
see the measurements from some subsystems but not from
others. This structure can be represented with a binary matrix
Kbin. For instance, Kbin

kl = 1 if the kth control input uk is
allowed to be a function of the lth measurement yl, and
Kbin
kl = 0 if it cannot see that measurement. The information

constraint S is then the set of all controllers which have the
structure prescribed by Kbin; that is, all of the controllers
such that none of the sub-controllers use information which
they cannot see.

A binary matrix Gbin can similarly be used to give the
structure of the plant. For instance, Gbin

ij = 1 if Gij is non-
zero and the ith measurement yi is affected by the jth control
input uj , and Gbin

ij = 0 if it is unaffected by that input.
Given this representation of the structure of the plant and
the controller constraints, we have the following result:
S is quadratically invariant with respect to G if and only

if

Kbin
ki G

bin
ij K

bin
jl (1−Kbin

kl ) = 0 for all i,j,k,l. (23)

Figure 5 illustrates this condition. The condition in (23)
requires that, for arbitrary i, j, k, l, if the three blocks on the
bottom are all non-zero (or allowed to be chosen non-zero),
then the top block must be allowed to be non-zero as well.
In other words, if there is an indirect connection from a

Fig. 5. Structural quadratic invariance

measurement to a control input, then there has to be a direct
connection as well.

One subclass of problems for which this condition holds
is where the plant is lower triangular, and the controller
constraints are such that if a given part of the controller is
allowed to be nonzero, then all of the parts of the controller
below it must be active as well, sometimes called skyline
structure [70]. This can be viewed as the manifestation in
this framework of the aforementioned classical structures.
Other classes of problems previously shown to admit convex
solutions [81] satisfy the condition developed here as well.

When this condition is met, the problem is quadratically
invariant, and we can recast our optimal decentralized control
problem as the convex optimization problem in (20) or (22).

2) Symmetry: We briefly consider the problem of sym-
metric synthesis. Suppose that we need to design the best
symmetric controller; that is, the best controller such that
Kkl = Klk for all k, l, and that the information constraint S
is the set of all such symmetric controllers. If the plant is
also symmetric; that is, if Gij = Gji for all i, j, then KGK
is symmetric for any symmetric K. Thus, KGK ∈ S for
all K ∈ S, the problem is quadratically invariant, and the
optimal symmetric control problem may be recast as (20)
or (22).

3) Delays: We now return to the problem of Figure 4,
where we have multiple nodes/subsystems, each with its own
controller, and each subsystem i can see the information from
another subsystem j after a transmission delay of tij .

We similarly consider that the inputs to a given subsys-
tem j may affect other subsystems after some delay, and
denote the amount of time after which it may affect another
subsystem i by the propagation delay pij .

The overall problem of controlling such a network with
propagation delays, with controllers that may communicate
with transmission delays, is depicted in Figure 6.

When this problem is tested for quadratic invariance, one
first finds that the following condition is necessary and
sufficient:

tki + pij + tjl ≥ tkl for all i, j, k, l (24)

This is reminiscent of condition (23) for structural con-
straints, as it similarly requires that any direct path from
yl to uk must be at least as fast as any indirect path through
the plant. This condition can be further reduced to a very
simple intuitive condition [82], as long as we may assume
that the transmission delays themselves satisfy the triangle
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Fig. 6. Network with delays

inequality; that is

tki + tij ≥ tkj for all k, i, j. (25)

This is typically a very reasonable assumption, as it states
that information is transmitted between nodes in the quickest
manner available through the network. If the inequality failed
for some k, j, one would want to reroute the transmissions
from j to k along the faster route such that the inequality
would then hold.

If the triangle inequality among transmissions does hold,
then condition (24), and thus quadratic invariance, is reduced
to simply:

pij ≥ tij for all i, j. (26)

In other words, for any pair of nodes, information needs
to be transmitted faster than the dynamics propagate. When
this simple condition holds, the problem is quadratically
invariant, and the optimal decentralized control problem may
be recast as the convex problem (20) or (22).

This very intuitive result has a counterintuitive comple-
ment when one considers computational delays as well. Sup-
pose now that the ith controller cannot use a measurement
from the jth subsystem until a ’pure’ transmission delay
of t̃ij , representing the time it takes to send the information
from one subsystem to the other, as well as a computational
delay of ci, representing the time it takes to process the
information once it is received.

While intuition might suggest that these two quantities
would end up being added and then replacing the right-
hand side of equation (26), if we now assume that the
pure transmission delays satisfy the triangle inequality, the
condition for quadratic invariance becomes:

pij + cj ≥ t̃ij for all i, j (27)

with the computational delay on the other side of the
inequality.

This shows that, regardless of computational delay, if in-
formation can be transmitted faster than dynamics propagate,
then the optimal decentralized control problem can be refor-
mulated as a convex optimization problem. If we consider
a problem with multiple aerial vehicles, for example, where

dynamics between any pair of subsystems will propagate at
the speed of sound, this tells us that transmissions just have to
be faster than that threshold for the optimal control problem
to be recast as (20) or (22).

The results of this section have also been extended to
spatio-temporal systems [83], where plants and controllers
can act across a continuum, and results very similar to the
above still hold. When applied to the special case of spatially
invariant systems, the controller still needs to be able to
receive information faster than the plant can propagate its
inputs over any given distance, analogous to (26), and the
triangle inequality (25) discussed above becomes a condition
that the support function imposed on the controller needs
to be subadditive. This includes funnel causal systems,
developed in the study of convexity for these problems [84].

F. Perfectly Decentralized Control
We now revisit the problem of Figure 3, where each

controller can only use the measurements from its own
subsystem, and thus the information constraint is block
diagonal. This problem is never quadratically invariant, and
will never satisfy condition (23), except for the case where
the subsystems do not affect one another; that is, except for
the case where G is block diagonal as well.

In all other cases where subsystems may have some affect
on others, we thus cannot parametrize all of the admissi-
ble stabilizing controllers in a convex fashion, and cannot
cast the optimal decentralized control problem as a convex
problem such as in (20). However, a Youla parametrization
can similarly be used, and while (19) does not hold, as the
information constraint on the controller is not equivalent to
enforcing it on the Youla parameter, it is instead equivalent
to a quadratic equality constraint on the parameter [85]:

K ∈ S ⇐⇒ W2 +QW4 −W1Q−QW3Q = 0
(28)

for stable operators W1,W2,W3,W4. When returning to
the optimal decentralized control problem, this equality
constraint replaces the final Q ∈ S constraint of (20) or
MrQMl − MrYl ∈ S constraint of (22). The problem is
no longer convex due to the quadratic term, but the overall
difficulty is transformed to one well-understood type of
constraint, for which many methods exist to approximate
optimal solutions. Another approach inspired on Youla’s is
given in [86] for the fully decentralized case, where the lack
of convexity is readily recognizable from certain nonlinear
constraints imposed on the parameters.

Other structural constraints, which are neither block diago-
nal nor quadratically invariant, can be similarly parametrized
by first converting them to a perfectly decentralized prob-
lem [87]. One can also find the closest constraint set which
is quadratically invariant to get approximate solutions, or the
closest quadratically invariant subset or superset to obtain
bounds on the solution [88].

G. Nonlinear Decentralized Controller Parametrization
The parametrization and optimization results discussed

thus far assume that the operators, both the plant to be
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controlled and the possible controllers that we may design
for it, are all linear, and when applicable, time-invariant
as well. A similar convex parametrization of stabilizing
decentralized controllers exists even when the systems are
possibly nonlinear and possibly time-varying (NLTV) [89].
The condition allowing for the parametrization then becomes

K1(I ±GK2) ∈ S for all K1,K2 ∈ S.

When the plant is stable, the (finite gain) stabilizing
controllers may be parametrized similarly to (14) [90], and
when the plant is unstable, the stabilizing controllers may
typically be parametrized similarly to (17) [91]. Similar
to quadratic invariance, the above condition then yields
the equivalence of the controller and the feedback map
satisfying the information constraint (18), which then gives
the equivalence of the controller and the parameter satisfying
the constraint as in (19). The convex parametrization of
all causal stabilizing decentralized controllers then results,
analogous to the linear case with quadratic invariance.

While this condition may appear quite different from
quadratic invariance, they actually both reduce to the same
conditions when one considers the classes of sparsity con-
straints or delay constraints, and so these results extend to
all of the cases covered in Sections IV-E.1 and IV-E.3.
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[12] S. Yüksel and T. Başar, Stochastic Networked Control Systems:
Stabilization and Optimization under Information Constraints. (under
review, Springer-Birkhäuser), Sep. 2012.
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