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Stochastic Observability and Filter Stability
Under Several Criteria

Curtis McDonald and Serdar Yüksel , Member, IEEE

Abstract—Despite being a foundational concept of
modern systems theory, there have been few studies on
observability of nonlinear stochastic systems under partial
observations. In this article, we introduce a definition of
observability for stochastic nonlinear dynamical systems,
which involves an explicit functional characterization. To
justify its operational use, we establish that this definition
implies filter stability under mild continuity conditions: an
incorrectly initialized nonlinear filter is said to be stable
if the filter eventually corrects itself with the arrival of
new measurement information. Numerous examples are
presented and a detailed comparison with the literature is
reported. We also establish implications for various criteria
for filter stability under several notions of convergence
such as weak convergence, total variation, and relative
entropy. These findings are connected to robustness and
approximations in partially observed stochastic control.

Index Terms—Filter stability, merging, nonlinear filtering,
observability.

I. INTRODUCTION

OBSERVABILITY is one of the most important and foun-
dational concepts of modern systems and control theory

with implications at the heart of its theory and applications [10],
[30], [38], [39]. For deterministic linear systems, observability
is defined as the exact recovery of any initial condition with
measurements available until some finite time, and is character-
ized by an observability rank condition in both continuous time
and discrete time [11]. For linear systems, such an observability
definition is global (as it applies for all initial states) and is also
directly applicable to stochastic counterparts of deterministic
linear systems. For nonlinear systems, however, due to the chal-
lenges in the analysis, which prevent globality, the analysis is
significantly more nuanced both for deterministic and stochastic
setups. See Section II-D for a detailed discussion.

We study the stochastic setup in this article. Let us now intro-
duce the probabilistic setup for a hidden Markov model (HMM)

Manuscript received 27 April 2022; revised 2 May 2022, 27 November
2022, and 10 April 2023; accepted 17 July 2023. Date of publication
4 August 2023; date of current version 26 April 2024. This work was
supported by the Natural Sciences and Engineering Research Coun-
cil of Canada. An earlier version of this paper was presented at the
2018 Annual Allerton Conference [DOI: 10.1109/Allerton44049.2018].
Recommended by Associate Editor P. G. Mehta. (Corresponding author:
Serdar Yüksel.)

Curtis McDonald is with the Department of Statistics and Data Sci-
ence, Yale University, New Haven, CT 06520 USA (e-mail: curtis.
mcdonald@yale.edu).

Serdar Yüksel is with the Department of Mathematics and Statistics,
Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail: yuksel
@queensu.ca).

Digital Object Identifier 10.1109/TAC.2023.3302208

or partially observed Markov process (POMP). Let (X ,Y) be
complete, separable, and metric (Polish) spaces equipped with
their Borel sigma fields B(X ) and B(Y). X will be called the
state space, and Y the measurement space. Let P(X ) and P(Y)
be the set of probability measures on these spaces. Define the
transition kernel T and measurement channelG as the mappings

T : X → P(X ) G : X → P(Y)

x �→ T (dx′|x) x �→ G(dy|x).

The system is initialized with a stateX0 ∈ X drawn from a prior
measureμ on (X ,B(X )). The state is then randomly updated via
the transition kernel T , which makes the state process {Xn}∞n=0
a Markov chain with initial measure μ and transition kernel T .

However, the state is not available at the observer, instead at
time n the observer sees the observation Yn where the condi-
tional distribution of Yn|Xn is determined by the measurement
channel G.

By stochastic realization arguments [23, Lemma 1.2], [9,
Lemma 3.1], we can also view an equivalent construction of the
system dynamics. Let {Zn}∞n=0 and {Wn}∞n=0 be independent
identically distributed (i.i.d.)Z-valued noise processes, whereZ
can be taken to be [0,1] or R (or any other Polish space), without
any loss of generality. Consider a partially observed dynamical
system with the following model:

Xn+1 = b(Xn,Wn) (1)

Yn = h(Xn, Zn) (2)

where Wn and Zn can be assumed to take values from [0,1]
or R. Here, b defines the system dynamics and defines a tran-
sition kernel T for the Markov chain Xn. Assuming that Zn

has measure Q in Z , the measurement function h defines the
measurement channelG, which is the pushforward measure ofQ
under h(x, ·). Throughout this article, we will work with either
the general kernel and measurement channel notation T,G or
with the specific functional form using b, h when convenient.

Thus, the observer needs to compute the conditional proba-
bility on the hidden variable Xn using the information available
up to time n ∈ Z+. We have that {Xn, Yn}∞n=0 is a Markov
chain, and we will denote Pμ as the probability measure on
Ω = X Z+ × YZ+ , endowed with the product topology, (and
thus, ω ∈ Ω is a sequence of states and measurements ω =
{(xi, yi)}∞i=0), where X0 ∼ μ. Such a stochastic system is re-
ferred to as a POMP (also called HMM) throughout this article.

Definition 1.1: We define the one-step predictor as the se-
quence

πμ
n−(·) = Pμ(Xn ∈ ·|Y0, . . ., Yn−1), n ∈ Z+
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and we define the nonlinear filter as the sequence

πμ
n(·) = Pμ(Xn ∈ ·|Y0, . . ., Yn), n ∈ Z+.

Both of the above are regular conditional probability se-
quences defined on X . We will use the notation Y[0,n] =
Y0, . . . , Yn to represent finite sets of random variables, and
Y[0,∞) = Y0, Y1, . . . to represent infinite sequences. The recur-
sive update equations for the filter or the predictor are known
as the nonlinear filtering equations. Let us, for the time being,
assume the existence of a likelihood function g(x, y) for the mea-
surement channel defined as follows. The measurement channel
G is called dominated if there exists a reference measure λ such
that ∀x ∈ X , G(Yn ∈ ·|Xn = x) 	 λ where the notation “	”
denotes absolutely continuity. We can then utilize a likelihood
function g(x, y) = dG(Yn∈·|Xn=x)

dλ
(y) and write the filter πμ

n+1
recursively in terms of πμ

n and Yn+1 = yn+1 explicitly as a
Bayesian update

πμ
n+1(dxn+1) = F (πμ

n, yn+1)(dxn+1)

:=
g(xn+1, yn+1)

∫
X T (dxn+1|Xn = x)πμ

n(dx)∫
X g(xn+1, yn+1)

∫
X T (dxn+1|Xn = x)πμ

n(dx)
. (3)

Suppose that an observer runs a nonlinear filter assuming that
the initial prior is ν, when in reality the prior distribution is
μ. The observer receives the measurements and computes the
filter πν

n for each n, but the measurement process is generated
according to the true measure μ.

The operational question for observability is that of filter
stability, namely, if we have two different initial probability
measures μ and ν, when do we have that the filter processes
πμ
n and πν

n merge in some appropriate sense as n → ∞. In
essence, when will our observationsYn be informative enough to
correct our incorrect prior ν and result in an accurate conditional
measure for the hidden state.

The rest of this article is organized as follows. In Section I-A,
notations and definitions are presented. In Section II, we present
our main results. We present a detailed literature review after
the statement of our main results in Section II-D. Examples of
observable systems are given in Section III. Proofs are provided
in Section IV. Finally, Section V concludes this article.

A. Notation and Preliminaries

Let Cb(X ) represent the set of continuous and bounded func-
tions from X → R.

Definition 1.2: Two sequences of probability measures
Pn and Qn merge weakly if ∀f ∈ Cb(X ) we have
limn→∞ | ∫ fdPn − ∫

fdQn| = 0.
Definition 1.3: For two probability measures P and

Q, the total variation norm is defined as ‖P −Q‖TV =
sup‖f‖∞≤1 |

∫
fdP − ∫

fdQ|, where f is assumed measurable.
Note that merging in total variation implies weak merging

since Cb(X ) is a subset of the set of measurable and bounded
functions. We also utilize the relative entropy (Kullback–Leibler
divergence) between two probability measures, although it is not
a metric (since it is not symmetric).

Definition 1.4:
1) For two probability measures P and Q, we de-

fine the relative entropy as D(P‖Q) =
∫
log dP

dQdP =∫
dP
dQ log dP

dQdQ, where P 	 Q and dP
dQ denotes the

Radon–Nikodym derivative of P with respect to Q.

2) LetX and Y be two random variables, and letP andQ be
two different joint measures for (X,Y ) with P 	 Q. We
define the (conditional) relative entropy betweenP (X|Y )
and Q(X|Y ) as

D(P (X|Y )‖Q(X|Y )) =

∫
log

(
dPX|Y
dQX|Y

(x, y)

)
P (d(x, y))

=

∫ (∫
log

(
dPX|Y
dQX|Y

(x, y)

)
P (dx|Y = y)

)
P (dy).

(4)

Some notational discussion is in order. For some probability
measures, such as Pμ(Y[0,n] ∈ ·) or Pμ(Xn ∈ ·), it will be
convenient to denote the random variable inside the measure and
take out the set argument. When we take the relative entropy of
such measures, to make the notation shorter, we will drop the
“∈ ·” argument and write D(Pμ(Y[0,n])‖P ν(Y[0,n])).

Note that in a conditional relative entropy, we are integrating
the logarithm of the Radon–Nikodym derivative of the con-
ditional measures P (X|Y ) and Q(X|Y ) over the joint mea-
sure of P on (X,Y). The second equality (4) shows that this
can be thought of as the expectation of the relative entropy
D(P (X|Y = y)‖Q(X|Y = y)) at specific realizations of Y =
y, where the expectation is over the marginal measure ofP onY .
When we apply this to the filter, πμ

n and πν
n are realizations of the

filter for specific measurements; therefore, when we discuss their
relative entropy, we take the expectation over the marginal ofPμ

on Y[0,n]. We write this as Eμ[D(πμ
n‖πν

n)], where D(πμ
n‖πν

n)
plays the role of the inner integral in (4).

We now introduce some additional notation that will be useful
when dealing with sigma fields rather than random variables
directly. Strictly speaking, we have two probability measures
Pμ and P ν on (X Z+ × YZ+ ,B(X Z+ × YZ+)). We denote by
FX

a,b the sigma field generated by (Xa, . . . , Xb) and similarly
for Y . We also write FX

n for the sigma field generated by Xn.
We then have FX

0,∞ ∨ FY
0,∞ as the sigma field generated by all

state and measurement sequences. When we write Pμ(X[0,n])
we are discussing the measure Pμ restricted to the sigma field
FX

0,n, which we will denotePμ|FX
0,n

. Similarly, for some setA ∈
FX

0,∞ ∨ FY
0,∞, we write Pμ((X[0,∞), Y[0,∞)) ∈ A|Y[0,n]) as the

conditional measure of Pμ with respect to the sigma field FY
0,n,

which we denote Pμ|FY
0,n. We can also consider restricting and

conditioning simultaneously, this for example is the case with
the nonlinear filter: πμ

n(·) = Pμ(Xn ∈ ·|Y[0,n]) = Pμ|FX
n
|FY

0,n.
The key relationship between relative entropy and total variation
is Pinsker’s inequality (see, e.g., [16]), which states that for two
probability measures P and Q, we have that ‖P −Q‖TV ≤√

2
log(e)D(P‖Q).

Criteria for stability: We note the following definitions for
filters, but they can also be defined for predictors.

Definition 1.5:
1) A filter process is stable in the sense of weak merging in

expectation if for any f ∈ Cb(X ) and any prior ν with
μ 	 ν, we have

lim
n→∞Eμ

[∣∣∣∣
∫

fdπμ
n −

∫
fdπν

n

]
|
]
= 0.
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2) A filter process is stable in the sense of weak merging Pμ

almost surely (a.s.) if there exists a set of measurement
sequences A ⊂ YZ+ with Pμ probability 1 such that for
any sequence in A, for any f ∈ Cb(X ) and any prior ν
with μ 	 ν, we have

lim
n→∞

∣∣∣∣
∫

fdπμ
n −

∫
fdπν

n

∣∣∣∣ = 0.

3) A filter process is stable in the sense of total variation in
expectation if for any measure ν with μ 	 ν, we have

lim
n→∞Eμ[‖πμ

n − πν
n‖TV ] = 0.

4) A filter process is stable in the sense of total variation Pμ

a.s. if for any measure ν with μ 	 ν we have

lim
n→∞‖πμ

n − πν
n‖TV = 0 Pμ a.s.

5) A filter process is stable in relative entropy if for any
measure ν with μ 	 ν

lim
n→∞Eμ[D(πμ

n‖πν
n)] = 0.

6) For f : X → R, define the Lipschitz norm

‖f‖L = sup

{ |f(x)− f(y)|
d(x, y)

∣∣∣∣ d(x, y) �= 0

}
.

With BLip := {f : ‖f‖L ≤ 1, ‖f‖∞ ≤ 1} ⊂ Cb(X ), we
define the bounded Lipschitz (BL) metric as

‖P −Q‖BL = sup
f∈BLip

∣∣∣∣
∫

fdP −
∫

fdQ

∣∣∣∣ .
A system is then stable in the sense of BL-merging Pμ

a.s. if we have ‖πμ
n − πν

n‖BL → 0 Pμ a.s.
We note that merging of probability measures is different from

the convergence of a sequence of probability measures to a limit
measure. In convergence, we have some sequencePn and a static
limit measureP ; in merging, we have two sequencesPn andQn,
which may not individually have limits, but come closer together
for largen in one of the merging notions defined previously [17].

II. STATEMENT OF THE MAIN RESULTS AND LITERATURE

REVIEW

A. Stochastic Nonlinear Observability

We first introduce our notion of an observable system.
Definition 2.1:
1) One-Step Observability: A POMP is said to be one-step

observable if for every f ∈ Cb(X ), ε > 0, ∃ a measurable
and bounded function g : Y → R such that∥∥∥∥f(·)−

∫
Y

g(y)G(dy|·)
∥∥∥∥
∞

< ε.

2) N -Step Observability: A POMP is said to be N -step
observable if for every f ∈ Cb(X ), ε > 0, ∃ a measurable
and bounded function g : YN → R such that∥∥∥∥f(·)−

∫
YN

g(y[1,N ])P (dy[1,N ]|X1 = ·)
∥∥∥∥
∞

< ε (5)

where we note that the conditional probability
P (dy[1,N ]|X1 = x1) is independent of the prior measure.

3) Observability: A POMP is observable if for every f ∈
Cb(X ) and every ε > 0, there exist N ∈ N and a mea-
surable and bounded function g (both possibly dependent
on f and ε) such that (5) applies. Note that if a POMP
is N step observable for some finite N ∈ N, then it is
observable, but the reverse implication is not necessarily
the case.

A number of remarks are in order.
Remark 2.2: In the definition above, we can instead ofCb(X )

consider any dense subset inCb(X ). For example, ifX is a com-
pact subset of Rk, we can consider polynomials as these form
a dense subset, or we can consider smooth functions defined
on X , or functions that are expressed as linear combinations
of harmonics, Haar wavelets, etc. An example is provided in
Section III-B.

Remark 2.3 (One-step observability and universality in the
controlled setup): The definition of one-step observability is a
specific case of N -step observability; however, the distinction
is useful for at least two reasons: 1) one-step observability is
often easier to check since one does not need to consider the
effect of the state transition kernel, as this definition is only
concerned with the measurement channel itself. On the other
hand, there exist many setups where a system is observable,
but not one-step observable; see e.g. Section III-A. 2) Even
though in this article, we consider a control-free setup, in a
controlled context studied in a companion paper [44], it follows
that one-step observability would be independent of any control
policy (that is, observability would be universal over all policies
and associated filter stability results apply under any control pol-
icy), but N > 1 step observability would be handled much more
cautiously as this condition would be dependent on the control
policy adopted. Recently, filter stability results have been shown
to be consequential in showing near-optimality of finite memory
control policies and associated learning theoretic results for
partially observed Markov decision processes (POMDPs) [33],
[34]. Accordingly, one-step observability results are particularly
applicable for such scenarios.

Remark 2.4: If the measurement kernel satisfies an absolute
continuity condition so that G(dy|x) = h(x, y)λ(dy) and if
there exists a finite measure K such that G(dy|x) ≤ K(dy) (so
that the family of kernels {G(dy|x), x ∈ X} is majorized by K
leading to a uniformly countable additive family of measures),
then by Lusin’s theorem [18, Th. 7.5.2] and the extension theo-
rem of Tietze [19, Th. 4.1], we can replace g in the above with
a continuous function gc. The relaxation to such continuous gc
is useful when one would like to approximate the channels with
those that are quantized. This then leads to an easier way to test
observability via a rank condition, e.g., when X is finite; see
Section III-A.

Remark 2.5: One should note that the definition is not one
of invertibility; it only requires that there exists some g and
N such that the error between the conditional expectation of
g(y[1,N ]), given X1 = x, and f(x) is small. In particular, X1

is not necessarily, even approximately, recoverable given the
measurements. Invertibility, however, would be a special case
being a sufficient condition, as we will see in the examples.

Remark 2.6 (Recovery of Initial Probability Measure): By
our definition of observability, for every f ∈ Cb(X), the value
is 〈μ, f〉 := Eμ[f(X)] determinable with arbitrary precision

Authorized licensed use limited to: Queen's University. Downloaded on May 13,2024 at 15:57:41 UTC from IEEE Xplore.  Restrictions apply. 



2934 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 5, MAY 2024

by the measurements (since f is recovered, uniformly over a
given compact set, with arbitrary precision). Since a countable
collection of continuous and bounded functions uniquely distin-
guish probability measures [20, Th. 3.4.5] (that is, such continu-
ous and bounded functions form a separating class, see also [6,
p. 13]), this amounts to the recovery of the initial probability
measure as more and more measurements are collected. This
then leads to the conclusion that our definition implies van
Handel’s definition given in (7), noted further below (note that
this also applies for noncompact setups under Definition 2.14 as
every individual probability measure is tight).

B. Filter Stability Under the Observability Definition

The presented observability definition leads to predictor sta-
bility in the following sense.

Theorem 2.7: Let

Pμ|FY
0,∞

	 P ν |FY
0,∞

. (6)

If the POMP is observable, then πμ
n− and πν

n− merge weakly as
n → ∞, Pμ a.s.

A sufficient condition for (6) is that the priors satisfy μ 	 ν.
The following assumption will allow us to use the recent results
in [31] (see also [21]) and conclude the weak merging of the
filter in expectation from the almost sure convergence of the
predictor.

Assumption 2.8: The measurement channel is continuous in
total variation. That is, for any sequence an with limn→∞ an =
a ∈ X , we have ‖G(·|X0 = an)−G(·|X0 = a)‖TV → 0.

An example of a channel, which is continuous in total vari-
ation, is as follows [31, Sec. 2.2]: Yn = F (Xn) +Wn, where
F is continuous and Wn admits a continuous density function
(such as a Gaussian), where an analysis based on convolution
and Scheffé’s lemma leads to the conclusion.

Theorem 2.9: Let Assumption 2.8 hold, if the predictor
merges weakly Pμ a.s., then the filter merges weakly in ex-
pectation.

1) Localized Observability for Noncompact Signal
Spaces: While the definition of observability that we intro-
duced is valid for both compact and noncompact state spaces, it
may be difficult to satisfy the definition in a noncompact state
space with a uniform bound on the approximation error. This will
be relaxed in the following, where we assumeX to be Euclidean.

Definition 2.10: Given a compact set K, a POMP is called
K locally predictable if there exists a sequence of FY

0,n−1 (with
n ∈ N) measurable mappings (random variables) an : Yn → X
such that

πν
n−(K + an) = 1Pμ a.s.

for every μ 	 ν.
This definition can be interpreted as follows. Regardless of

the prior ν, upon seeing observations Y[0,n−1], we can be sure
Xn lives in a compact set Kn = K + an. We can think of an as
a “centering” value based on the observations Y[0,n−1] and K as
the compact set around this centering value, in which Xn must
live conditioned on observations Y[0,n−1]. This is then paired
with a definition of local observability.

Definition 2.11: Given a compact set K, a POMP is called K
locally observable if for every continuous and bounded function
f , every sequence of numbers an, and every ε > 0, there exists
a sequence of uniformly bounded measurable functions gn such

that

sup
x∈K+an

∣∣∣∣f(x)−
∫
Y
gn(y)G(dy|x)

∣∣∣∣ ≤ ε

for every n ∈ N.
Theorem 2.12: Assumeμ 	 ν and that there exists a compact

setK such that the POMP isK locally predictable andK locally
observable. Then, the predictor merges weakly Pμ a.s.

The result above is intuitive as we can specify the compact
set K, and the shifted sets Kn = K + an, over which we must
approximate the function. However, the definitions can also be
constructed taking a more relaxed approach and appealing to
tightness rather than a probability one statement, but in this case
it is more difficult to satisfy the local definition of observability.

Definition 2.13: A POMP is called locally predictable if there
exists a sequence of FY

0,n−1 (with n ∈ N) measurable mappings
an : Yn → X such that the family of measures

π̃ν
n−(·) := πν

n−(·+ an)

for every μ 	 ν, is a uniformly tight family of measures.
Definition 2.14: A POMP is called locally observable if for

every continuous and bounded function f , every compact set K,
every sequence of numbers an, and every ε > 0, there exists a
sequence of uniformly bounded measurable functions gn such
that

sup
x∈K+an

∣∣∣∣f(x)−
∫
Y
gn(y)G(dy|x)

∣∣∣∣ ≤ ε

sup
x �∈K+an

∣∣∣∣
∫
Y
gn(y)G(dy|x)

∣∣∣∣ ≤ 2‖f‖∞

for every n ∈ N.
Theorem 2.15: Assume μ 	 ν and that the POMP is locally

predictable and locally observable. Then, the predictor merges
weakly Pμ a.s.

An example is given in Section III-D.

C. Relations Between Various Criteria for Filter Stability

It follows from Pinsker’s inequality that relative entropy merg-
ing implies total variation merging, which in turn implies weak
merging (by Definitions 1.2 and 1.3). In this section, we are
interested in conditions for when the converse direction holds,
i.e., weak merging implies total variation or relative entropy
merging. Recall the definition that for the measurement channel
G(Yn ∈ ·|Xn = x) to be dominated in the sense that there exists
a reference measure λ such that ∀x ∈ X , G(dy|xn = x) 	 λ.
Then, we define the Radon–Nikodym derivative

g(x, y) :=
dG(yn ∈ ·|xn = x)

dλ(·) (y)

which serves as a likelihood function (a conditional probability
density function).

Assumption 2.16:
1) T (·|x) is absolutely continuous with respect to a dom-

inating measure φ for every x ∈ X , so that t(x1, x) =
dT (·|x)

dφ (x1) where t is continuous in x for every x1 ∈ X .
2) g(x, y) is bounded and continuous in x for every fixed y.

Furthermore, g(x, y) > 0 for all x ∈ X , y ∈ Y .
Assumption 2.17: T (·|x) is absolutely continuous with re-

spect to a dominating measure φ for every x ∈ X , so that
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t(x1, x) =
dT (·|x)

dφ (x1). The family of (conditional densities)
{t(·, x)}x∈X is uniformly bounded and equicontinuous.

Theorem 2.18: Let μ 	 ν. Let either one of the following
hold.

i) Assumption 2.16.
ii) Assumption 2.17.

Then, if the predictor is stable in the weak sense Pμ a.s., then
it is also stable in total variation Pμ a.s.

Since the total variation of any two probability measures is
uniformly bounded, stability in the almost sure sense implies that
in expectation (with the same also holding for predictors). Thus,
Theorem 2.18 also presents condition for predictor merging in
total variation in expectation.

Theorem 2.19: The filter merges in total variation in expec-
tation if and only if the predictor merges in total variation in
expectation.

Recently, filter stability results under total variation in ex-
pectation (as in [43]) have been shown to be consequential in
showing the optimality of finite memory control policies in
POMDPs (see [34, Sec. 4.3 and Th. 9] and [33, Th. 3.2, 3.3,
and 4.1]).

Theorem 2.20: Assume there exists some finite n
such that Eμ[D(πμ

n‖πν
n)] < ∞ and some m such that

D(Pμ|FY
0,m

‖P ν |FY
0,m

) < ∞. Then, the filter is stable in
relative entropy if and only if it is stable in total variation in
expectation.

We note that both of the conditions on the finiteness of relative
entropies in Theorem 2.20 are minor and hold for example
if D(μ‖ν) < ∞. In the special setup where the measurement
sigma field is the trivial one (with no information), or more gen-
erallyYn is independent ofXn; the above recovers the following
result, which generalizes Barron [3], [4] and Fritz [22], who had
established the relative entropy convergence of sequences of
probability measures for each time stage to the invariant measure
for reversible Markov chains. This result also generalizes Theo-
rem 5 of Harremoës and Holst [26], which considers countable
state space chains with a uniform irreducibility assumption.

Theorem 2.21: Let Xt be a Markov chain with π being its
unique invariant probability measure. Let πt denote the measure
Pπ0(Xt ∈ ·), where X0 ∼ π0. Let πt → π in total variation. If
D(πt0 ||π) < ∞ for some t0 < ∞, then

D(πt||π) ↓ 0.

In particular, for an aperiodic positive Harris recurrent Markov
chain, if D(πt0 ||π) < ∞ for some t0 < ∞, then D(πt||π) ↓ 0.

Proof: The proof follows directly from Theorem 2.20. In the
special case of positive Harris recurrence, the result follows since
for aperiodic positive Harris recurrent Markov chains, πt → π
in total variation (see [45, Th. 13.0.1]).

D. Literature Review and Comparison of Results

For deterministic linear systems, exact recovery of any initial
condition with measurements available until some finite time is
defined as observability and is characterized by an observability
rank condition in both continuous time and discrete time [11].
For linear systems, such an observability definition is global (as it
applies to all initial states) and is universal in the control policies
applied, as the control policy does not affect the estimation
errors (known as the no-dual effect [2] property). For nonlinear
systems, however, due to the challenges in the analysis, which

prevent globality as well as controldependence, more modest
and localized definitions are to be imposed: for deterministic
continuous-time nonlinear systems [28] and [50] present lo-
cal indistinguishability conditions with subtle differences, and
establish relations with Lie-theoretic characterizations, which
generalize observability rank conditions for nonlinear systems
defined locally. For discrete-time deterministic models, observ-
ability has also been defined by invertibility or exact recovery of
an initial state, locally, given measurements with finitely many
observations. Nijmeier [46] developed discrete-time analogues
of the observability notions presented in [28] (see also [50]
for sampled continuous-time systems). The authors in [41] and
[42] introduced a nonlinear stochastic observability definition
through entropy, where the conditional entropy of the hidden
state given measurements not being the same as the uncon-
ditional entropy implies observability. Ugrinoovski [52] also
presented an information theoretic formulation, and defines
observability as an informativeness condition.

In the filtering literature for control systems, the classical
setup involves the linear Gaussian system. The filter in this
case is the celebrated Kalman filter, where the finite-dimensional
Kalman filter is computed recursively using the Riccati equation.
Under linear observability and controllability conditions, the
Riccati equation admits a unique solution [10], [38], [39], which
is the unique limit of the Riccati recursions regardless of the
initialization. Thus, the Kalman filter is stable with respect to
incorrect, though still Gaussian, priors under the aforementioned
conditions (we note that partial convergence and robustness re-
sults on the asymptotic equivalence of conditional expectations
and linear estimates for non-Gaussian priors for linear systems
are reported in [51]). The time-varying linear system setup has
been studied in [1].

In a recent paper, we studied the implications on filter stability
in robust control [44]. Implications of filter stability (such as the
results reported in [43]) on finite memory approximations in
optimal stochastic control have been presented in [33] and [34].
It is worth pointing out that there has been a recurrent theme
on the duality between controllability and observability; for a
recent work in this direction, see [35] and [36]. Filter stability for
deterministic systems under noisy measurements has recently
been studied in [48].

A strict version of our observability definition is captured
in [13, eq. 1.7]. The idea there is to express, exactly, a continuous
function f(x) by integrating a measurable function g(y) over
the conditional distribution for Y given X = x. A fundamental
result that pairs with observability is that of Blackwell and Du-
bins [7], an implication of which [13] independently arrived at.
Blackwell and Dubins [7] used martingale convergence theorem
to show that if P and Q are two measures on a fully observed
stochastic process {Xn}∞n=0 with P 	 Q, then the conditional
distributions on the future based on the past merge in total
variation P a.s., that is, P a.s.

‖P (X[n+1,∞) ∈ ·|X[0,n])−Q(X[n+1,∞) ∈ ·|X[0,n])‖TV → 0.

van Handel [54] introduced a definition of observability for
POMPs. Namely, a system is observable if every prior results in
a unique probability measure on the measurement sequences

Pμ|FY
0,∞

= P ν |FY
0,∞

==⇒ μ = ν. (7)

van Handel [54] showed that the above leads to filter stabil-
ity for continuous-time models with compact state space. van
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Handel [56] extended these results to noncompact state spaces,
where uniform observability is introduced. The result of Black-
well and Dubins [7] is utilized to show that uniform observability
would imply filter stability in BL distance [53]. Nonetheless,
this condition is implicit; van Handel [53] only studied the
measurement channel where h(x, z) = f(x) + z, where f−1 is
uniformly continuous and Z must have an everywhere nonzero
characteristic function (e.g., a Gaussian distribution). For a
compact state space, van Handel [56] established that uniform
observability and observability are equivalent notions. We also
note that for a finite state space with a nondegenerate measure-
ment channel (i.e., likelihood function g(x, y) > 0), stability
can be fully characterized via observability and a detectability
condition [54], [57, Th. V.2], or [12, Ths. 2.7 and 3.1].

As noted in Remark 2.6, our definition implies (7), which is a
statement of invertibility with no clear guidance on how to test
this property; our definition is explicitly given in a test function
formulation, making it more interpretable and easier to apply
to various systems of interest. In addition, in the work studied
here, we consider discrete time processes, and thus, the predictor
and the filter are distinct objects. Our definition of observability
only implies the weak merging of the predictor a.s., not the
filter directly. Conditions are needed to relate the merging of the
predictor to that of the filter. This is also addressed in this article
building also on recent results on the regularity properties of
nonlinear filters from [31] (see also [21]).

In an early work by Kunita [37], the stability of the filter
process is studied in light of the limit sigma fields of the
processes (e.g., FY

0,∞ andFX
0,∞). Kunita’s work unfortunately

made a technical error on the exchange of orders in supremum
and intersection operations on sigma fields: a concise derivation
of the corrected result is presented in [14, eq. 1.10]; here, we
are presented with a sufficient and necessary condition for the
merging of the filter in total variation in expectation based on
comparing the sigma fields FY

0,∞ and
⋂

n≥0 FX
n,∞ ∨ FY

0,∞. That
is, the filter merges in total variation in expectation if and only
if Pμ a.s. :

Eν

[
dμ

dν
(X0)|FY

0,∞

]
= Eν

[
dμ

dν
(X0)|

⋂
n≥0

FX
n,∞ ∨ FY

0,∞

]
.

Relative entropy as a measure of discrepancy between the true
filter and the incorrectly initialized filter is studied by Clark
et al. [15]. Here, the authors considered the filtering problem in
continuous time and with a dominated measurement channel.
The authors established the relative entropy of the true filter and
the incorrect filter as a supermartingale, and its convergence to
a limit. However, the paper did not establish the convergence to
zero. A notable setup where actual convergence (of the relative
entropy) to zero is established is the (rather specific) Beneš filter
studied in [47]. This problem also has relations to the relative
entropy convergence of Markov chains to invariance: in the case
where the measurements are trivial, the convergence problem
reduces to what has been studied in [3], [4], [22], [26], and[27]
on relative entropy convergence of Markov chains to invariant
measures.

Contributions and comparison with the literature: In view of
the review above, our contributions are as follows.

1) Stochastic observability: In Section II-A, we present a
definition of stochastic observability. This definition is

Fig. 1. Flow of ideas and conditions for filter stability.

functionally explicit and testable, and due to its func-
tional approximation characterization, it allows various
analytical methods to be applicable for verification (see
Remarks 2.2–2.5).
Under this definition, we establish predictor stability (in
the weak convergence/merging sense). We note that ob-
servability, for the discrete time case as studied here, only
implies weak merging of the predictor a.s., not the filter
directly. This is addressed in this article building also on
recent results on the regularity properties of nonlinear
filters from [31] (see also [21]). We also note that the
Blackwell and Dubins theory of merging on which our ap-
proach builds (similar to [54] and [56]) applies to infinite
sequences of future events (i.e., Pμ(Y[n+1,∞)|Y[0,n])),
this is utilized in our definition of N step observabil-
ity leading to application examples of broad generality.
Accordingly, our definition is not only a function of the
measurement channel, but also of the system dynamics;
unlike some related results in the literature.
In addition, we provide several examples in Section III.

2) On various convergence and merging criteria: We estab-
lish new results relating various criteria for filter stability
(as depicted in Fig. 1), independent of the mechanism
used to arrive at filter stability: we study filter stability
under weak merging and total variation merging in expec-
tation and a.s., as well as relative entropy. In Section II-C,

a) We place mild assumptions on the transi-
tion/measurement kernels to extend weak merging
of the predictor to total variation merging.

b) We show that total variation merging of the predictor and
filter are equivalent.

c) Under a mild finiteness condition on the relative entropy
sequence, we also establish equivalence of relative en-
tropy merging and total variation merging.

Using the chain rule for relative entropy, the relative entropy
error was shown to be a nonincreasing sequence by Clark
et.al. [15], but its convergence to zero was not established, except
for the specific case of the Beneš filter in [47]. Theorem 2.20
establishes the equivalence between relative entropy merging
and total variation, and thus, convergence of the relative entropy
error to zero is proven here (we note that this is a result that is
hinted at in the literature, see [14, Remark 4.2] or [55, Remark
5.9] but not explicitly proven). This result applies to setups
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beyond filter stability: in the case where the measurements are
trivial, Theorem 2.21 generalizes [3], [4], [22], [26] on relative
entropy convergence of Markov chains to invariant measures,
where the first references due to Barron and Fritz had considered
reversible Markov chains and the latter due to Harremoës and
Holst focused on countable state Markov chains under a uniform
irreducibility assumption. On Theorem 2.19, we note first that
much of the literature focuses on continuous time, where the
predictor is not used in the analysis. In discrete time, [53, Lemma
4.2] proves that the merging of the predictor in total variation in
expectation implies that of the filter. However, this result relies
on a domination assumption in the measurement channel and the
specific structure of the filter recursion equation [14, eq. 1.4].
Theorem 2.19 is, accordingly, a more general result.

3) Implications to near optimality of finite window policies
in POMDPs: Our findings lead to practically relevant and
mathematically consequential implications to robustness
and approximations for controlled partially observable
models; i.e., POMDPs: McDonald and Yüksel [44] had
studied controlled filter stability where it was shown that
one-step observability introduced here leads to stochas-
tic observability universally over all admissible control
policies, which then leads to refined robustness results
when compared with [32]. In this article, we consider
the control-free case, which allows us to consider N -step
observability, withN > 1. In addition, we present numer-
ous explicit examples, which, in the one-step observable
setup, are then directly applicable to such robustness
results. Recently, filter stability results under total vari-
ation (as well as weak convergence under slightly more
restrictive setups) have been shown to be consequential
in showing the optimality of finite memory control poli-
cies in POMDPs; see [34, Sec. 4.3 and Th. 9] and [33,
Ths. 3.2, 3.3, and 4.1], where connections with weak
merging and total variation merging are made explicit
in the approximation error bounds (see [29] for an earlier
study where the dependence on filter stability is implicit;
further related recent studies include [24]). Accordingly,
the results in this article, notably Theorems 2.18 and
2.19, are directly applicable in showing that with merging
under total variation in expectation, one can show that
optimal policies for POMDPs can be approximated by
those which use only finite window of measurements and
control actions.

III. OBSERVABLE SYSTEM AND MEASUREMENT CHANNEL

EXAMPLES

We note that in this section, it will be more convenient to
describe our measurement channels via the equivalent functional
realization [see (1)], with explicit noise variable Zn and a
measurement function Yn = h(Xn, Zn), and thus, this will the
convention we will use to define the measurement channel G for
the examples presented in the following.

A. Finite State and Noise Space

Consider a finite setup X = {a1, . . . , an} and Z =
{b1, . . . , bm}. Now, assume h(x, z) has K distinct outputs,
where 1 ≤ K ≤ (n)(m) and Y = {c1, . . . , cK}. We note that

for such a setup, there is already a sufficient and necessary
condition provided in [57, Th. V.2]. However, we examine this
case to show that our definition is equivalent to the sufficient
direction of this theorem, which is the notion of observability
presented in [54].

For each x, hx(·) := h(x, ·) can be viewed as a partition of
Z , assigning each bi ∈ Z to an output level cj ∈ Y . We can
track this by the matrix Hx(i, j) = 1 if hx(bi) = cj and zero
else. Let Q be the 1×m vector representing the probability
measure of the noise. Let us first consider one-step observabil-

ity. Let g(ci) = αi, with α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

...
αK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and
∫
Z g(h(x, z))Q(dz)

=: QHxα. Therefore, any function f(x) can be expressed as an
n× 1 vector, and hence, the question reduces to finding a vector
α so that f = QHα, and the system is one-step observable if

and only if the matrix A ≡

⎛
⎜⎜⎜⎜⎝

QHa1

...
QHan

⎞
⎟⎟⎟⎟⎠

is rank n. Consider then

N step observability. We wish to solve equations of the form

f(x) =

∫
YN

g(y[1,N ])dP
μ(y[1,N ]|x1 = x). (8)

With knowledge of Q, h(·, ·), and T we can directly compute
the transition kernel for the joint measure Y[1,n]|X1; however,
the size of this matrix is n by Kn, where |X | = n and |Y| = K,
so complexity grows exponentially. We can deduce a sufficient,
but not necessary, condition for n-step observability using the
marginal conditional measures. Consider that Pμ(yk ∈ ·|X1 =
aj) = T (aj | :)T k−2A, k ≥ 2 where T (aj | :) represents the jth
row of the transition matrix. Note that these are all 1×K vectors
and represent the marginal measures of Yk|X1. Consider the
class of functions Gn = {g : Yn → R} and a subclass Gn

LC =
{g(y[1,n]) =

∑n
i=1 αigi(yi)|αi ∈ R, gi ∈ G1}. That is, a linear

combination of functions of the individual yi values. We can
use these functions to deduce a sufficient, but not necessary,
condition for observability.

Lemma 3.1: Assume that |X | = n and define the matrix

M =
(
A TA · · · Tn−1A

)
which isn× nK whereK = |Y|. IfM is rankn, then the system
isn-step observable. Furthermore, ifM is not rankn, appending
more blocks of the form T kA for k ≥ n will not increase the
rank of M .

Proof: Beginning with (8), consider a restriction to Gn
LC, that

is, we require g to be of the form g(y[1,n]) =
∑n

i=1 gi(yi).
Denote the (nK)× 1 vector

α = (g1(c1), . . . , g1(cK), . . . , gn(c1), . . . , gn(cK)). Then

f(x) =
n∑

i=1

Pμ(yi ∈ ·|X1 = x)

⎛
⎜⎝

gi(c1)
...

gi(cK)

⎞
⎟⎠

=
(
QHx T (x| :)A · · · T (x| :)Tn−2A

)
α.
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We can then see that this matrix is the jth row ofM whenx = aj ;

therefore, we have

⎛
⎜⎜⎜⎜⎝

f(a1)
...

f(an)

⎞
⎟⎟⎟⎟⎠

=
(
A TA · · · Tn−1A

)
α. IfM

is rank n, then any function f : X → R can be expressed as a
vector g put through matrix M and the system is observable.

Consider if M is not rank n and if we append another block
TnA to M . By the Cayley–Hamilton theorem, Tn is a linear
combination of lower powers of T , e.g., Tn =

∑n
i=0 αiT

i for
some coefficients αi. Therefore, this additional block is a linear
combination of the previous blocks, and adds no dimension to
matrix M .

If the conditions of this lemma fail, i.e., M is not rank n, that
means integrating g over the marginal measures cannot generate
any f function. Yet, the product of the marginal measures is
not the joint measure since Yi|X1 are not independent. Hence,
working with the marginal measures only is not enough to
determine observability as also noted in [54, Remark 13] in a
slightly different setup.

Consider the following example. Let X = {1, 2, 3, 4} and
Y = 1X≤2. This can be realized as

A =

⎛
⎜⎝
QH1

...
QH4

⎞
⎟⎠ =

⎛
⎜⎜⎝
0 1

0 1

1 0

1 0

⎞
⎟⎟⎠ .

Consider the following transition kernel:

T =

⎛
⎜⎜⎜⎝
0 1

4
1
4

1
2

1
2 0 0 1

2

0 1
4

1
4

1
2

1
2 0 0 1

2

⎞
⎟⎟⎟⎠ .

Notice that the odd and even rows are identical. If we consider
the marginal measures of Y1|X1, . . . , Y4|X1 we have the matrix(

A · · · T 3A
)
=⎛

⎜⎝
0 1 0.75 0.25 0.5625 0.4375 0.609375 0.390625
0 1 0.50 0.50 0.6250 0.3750 0.593750 0.406250
1 0 0.75 0.25 0.5625 0.4375 0.609375 0.390625
1 0 0.50 0.50 0.6250 0.3750 0.593750 0.406250

⎞
⎟⎠

which is only rank 3, not rank 4. Therefore, we cannot use the
marginal measures to determine observability.

However, if we consider the joint measure of (Y1, Y2)|X1, we
have the matrix

A′ =

⎛
⎜⎜⎜⎝
0 0 3

4
1
4

0 0 1
2

1
2

3
4

1
4 0 0

1
2

1
2 0 0

⎞
⎟⎟⎟⎠

where row i is conditioned on x = i and the columns are ordered
in binary y2y1, e.g., P (y1 = 1, y2 = 0|x1 = 2) is row 2 column
3. This matrix is full rank; hence, the system is N -step observ-
able with N = 2, even though the marginal measures failed to
be full rank.

B. Compact State and Noise Spaces With Affine
Observations

Consider X andZ as compact subsets of R and let h(x, z) =
a(z)x+ b(z) for some functions a andb, where the image of Z
under a and b is compact (this ensures that Y is compact). Note
that for a fixed choice of z, this is an affine function of x. We will
arrive at sufficient conditions for one-step observability. SinceX
is compact, the set of polynomials is dense in the set of continu-
ous and bounded functions. Therefore, rather than working with
a function f ∈ Cb(X ) without loss of generality we assume f is
a polynomial. LetMb(R) represent the measurable and bounded
functions on the real line and consider the mapping

S : Mb(R) → Cb(R) S(g)(·) �→
∫
Z

g(h(·, z))Q(dz).

LetR[x]n represent the polynomials on the real line up to degree
n. Then, we have that S(g) is invariant on R[x]n, that is, if g
is polynomial of degree n, then S(g) is a polynomial of degree
n. Furthermore, the coefficients of S(g)(x) =

∑n
i=0 βix

i can
be related to the coefficients of g(x) =

∑n
i=0 αix

i by a linear
transformation. Define N(i, k) =

(
i
k

)
E(a(Z)kb(Z)i−k), then

by recursive application of binomial theorem we have⎛
⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

...
βn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
N(0, 0) N(1, 0) · · · N(n, 0)

0 N(1, 1) · · · N(n, 1)
...

. . .
. . .

...
0 · · · 0 N(n, n)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

α0

α1

α2

...
αn

⎞
⎟⎟⎟⎟⎟⎟⎠

if we want to generate any polynomial, we require this matrix
to be invertible, and since it is upper triangular this amounts
to none of the diagonal entries being zero, that is, E[a(z)n] �=
0∀n ∈ N. Furthermore, we want g to be bounded so we must
have N(n, k) < ∞∀n ∈ N, k ∈ {0, . . . , i}.

B. Example

Consider X = [−10, 10], Z = [−1, 1], Z ∼ Uni([−1, 1]),
and y = z2x+ z. We then have Y = [−11, 11]. For any n ∈ N,
we have

E[a(z)n] =
1

2

∫ 1

−1

z2ndz =
1

2n+ 1
�= 0

additionally, for any n ∈ N, k ∈ {0, . . . , n}, we have

N(n, k) =

(
n

k

)
E(a(z)kb(z)n−k) =

(
n

k

)
E(zn+k)

=

(
n

k

)
1

n+ k + 1
< ∞.

C. Nonlinear Measurement Function

Consider X as a compact subset of R, Z = R. Let h(x, z) =
1x>zx+ 1x≤zz and assume thatQ admits a density with respect
to Lebesgue. We have∫

Z
g(h(x, z))Q(dz) =

∫ x

−∞
g(x)q(z)dz +

∫ ∞

x

g(z)q(z)dz

Authorized licensed use limited to: Queen's University. Downloaded on May 13,2024 at 15:57:41 UTC from IEEE Xplore.  Restrictions apply. 



MCDONALD AND YÜKSEL: STOCHASTIC OBSERVABILITY AND FILTER STABILITY UNDER SEVERAL CRITERIA 2939

again, we can approximate any continuous and bounded function
f on X as polynomial, so we assume that f is differentiable. We
have

f(x) =

∫ x

−∞
g(x)q(z)dz +

∫ ∞

x

g(z)q(z)dz

f ′(x) = g(x)q(x) +

∫ x

−∞
g′(x)q(z)dz − g(x)q(x)

= g′(x)Q(Z ≤ x).

Since X is compact, there exists some xmin ∈ R such that
xmin < x ∀x ∈ X . We require for some ε > 0 that Q(Z <
xmin) > ε. This condition says every x ∈ X has some positive
probability of being observed through h(x, z) and we will not
always get pure noise. Then, we have

g′(x) = 1X (x)
f ′(x)

Q(Z ≤ x)

g(x) = c+

∫ x

−∞
1X (u)

f ′(u)
Q(Z ≤ u)

du

for some constant c. Therefore, we only need to define g over
X . Furthermore, we require g to be bounded, which is implied
if g′ is bounded since g is only defined over a compact space.

D. Local Observability for a Noncompact State Space

We now study a system that does not have a compact state
signal space and satisfies the definitions of local predictability
and local observability, so that we can apply Theorem 2.15. Con-
sider the POMP with the following transition and measurement
kernels:

Xn+1 = Xn +N(1, 1)

Yn =

{
Xn + 1 w.p. 1

2

Xn − 1 w.p. 1
2 .

We will first show that this system is locally predictable. Given
an observation Yn−1, it must be that Xn−1 = Yn−1 − 1 or
Yn−1 + 1; therefore, any filter at time n− 1 will consist of two
point masses at Yn−1 − 1 and Yn−1 + 1 with the probability of
these two points dependent on the prior. Therefore, the predictor
at timenwill be a convex combination of Gaussian random vari-
ables αnN (Yn−1, 1) + (1− αn)N (Yn−1 + 2, 1), where αn is
determined by the prior.

However, regardless of the value of α for any ε > 0 have
some compact set Kε such that πν

n−(Kε + Yn−1) > 1− ε for
any choice of ν. Therefore, the system is locally predictable.

For local observability, assume thatK is an interval [−M,M ]
for some whole numberM > 0 and pick a centering value a. Fix
a continuous and bounded function f . We wish to demonstrate a
function g that approximates f well overK + awhen integrated
over the measurement channel. g must be bounded with a bound
that does not depend on a. If we define g(y) recursively as
follows:

g(y) =⎧⎪⎪⎨
⎪⎪⎩
0 y < −M + a+ 1

2f(y − 1) y ∈ [−M + a+ 1,−M + a+ 3)

2f(y − 1)− g(y − 2) y ∈ [−M + a+ 3,M + a+ 1]

−g(y − 2) y > M + a+ 1

g is akin to a telescoping sum in that it cancels out its own
previous values. We have∫

g(h(x, z))Q(dz) =
1

2
(g(x+ 1) + g(x− 1)).

For x < −M + a, we have x− 1 < x+ 1 < −M + a+ 1;
hence, g(x− 1) = g(x+ 1) = 0. For x ∈ [−M + a,−M +
a+ 2), we have g(x+ 1) = 2f(x+ 1− 1) = 2f(x) while
g(x− 1) = 0. Then, for x ∈ [−M + a+ 2,M + a], we have

g(x+ 1)=2f(x+ 1− 1)−g(x+ 1− 2)=2f(x)−g(x− 1)

which will cancel with the other g(x− 1) term, hence the
telescoping. For x > M + a, we have g(x+ 1) = −g(x+ 1−
2) = −g(x− 1); hence, it will cancel with the previous value.

In each iteration of telescoping, ‖g‖∞ increases by at most
2‖f‖∞, there are 2M iterations of telescoping so the overall
bound on ‖g‖∞ is 4M‖f‖∞. Therefore, we have

‖g‖∞ ≤ 4M‖f‖∞∫
g(h(x, z)Q(dz) = f(x) x ∈ [−M + a,M + a]

∣∣∣∣
∫

g(h(x, z)Q(dz)

∣∣∣∣ = 0 x �∈ [−M + a,M + a]

this proves local observability.

IV. PROOFS

A. Observability: Proof of Theorem 2.7

Lemma 4.1: Let g be a bounded and measurable function on
(Yk+1,B(Yk+1)). For any initial prior μ, we have∫

Yk+1

g(y[n,n+k])P
μ(dy[n,n+k]|Y[0,n−1])

=

∫
X

∫
Yk+1

g(y[n,n+k])P (dy[n,n+k]|Xn = xn)π
μ
n−(dxn).

(9)

Proof:∫
Yk+1

g(y[n,n+k])P
μ(dy[n,n+k]|Y[0,n−1])

=

∫
Yk+1×X

g(y[n,n+k])P
μ(d(y[n,n+k], xn)|Y[0,n−1])

we then apply the chain rule for conditional probability measures
and we have∫

X

∫
Yk+1

g(y[n,n+k])P
μ(dy[n,n+k]|xn, Y[0,n−1])π

μ
n−(dxn).

Since {(Xn, Yn)}∞n=0 is a Markov chain, Y[n,n+k] is condition-
ally independent ofY[0,n−1] givenXn. In addition, the prior does
not determine the conditional measure; therefore, we have∫

X

∫
Yk+1

g(y[n,n+k])P (dy[n,n+k]|xn)π
μ
n−(dxn)
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where we do not include a prior in the superscript of the
conditional measure, since the conditional measure is the same
regardless of the prior.

Corollary 4.2: Let g be a bounded and measurable function
on (Y,B(Y)). For any prior μ, we have∫

Y
g(yn)P

μ(dyn|Xn = x) =

∫
Z
g(hx(z))Q(dz). (10)

Proof: Z is a random variable on the probability space
(Z,B(Z), Q) and Yn exists on the measurable space (Y,B(Y)).
Then, for every fixed choice ofXn = x, we have thatYn is a fixed
function of Z, that is Yn = hx(Z). For any set A ∈ B(Y), we
have Pμ(Yn ∈ A|Xn = x) = Q(h−1

x (A)). Yet this means that
Pμ(Yn ∈ ·|Xn = x) is exactly the pushforward measure of Q
under the mappinghx, call this measurehxQ(A) = Q(h−1

x (A)).
We then have∫

Y
g(y)hxQ(dy)) =

∫
Z
g(hx(z))Q(dz).

Notice that the inner integral in the right-hand side (RHS)
of (9) is a function of x. The left-hand side (LHS) is then the
term considered in the total variation merging of the predictive
measures of the measurement sequences, whereas the RHS is the
term considered in the weak merging of the one-step predictor.
We can then leverage the Blackwell and Dubins theorem to
arrive at a sufficient condition for weak merging of the one-step
predictor. Theorem 2.7 is closely related to [56, Prop. 3.11]
and its proof is in essence a sufficient condition for uniform
observability (of the predictor).

Proof of Theorem 2.7
Fix any f ∈ Cb(X ) and ε > 0. We wish to show that ∃N such

that ∀n > N ∣∣∣∣
∫

fdπμ
n− −

∫
fdπν

n−

∣∣∣∣ < ε.

By observability for the fixed f , (5) holds for some N ′ + 1.
Therefore, we can find some g with ‖g‖∞ < ∞ such that

f̃(x) =

∫
YN ′+1

g(y[1,1+N ′])P (dy[1,1+N ′]|X1 = x)

and ‖f − f̃‖∞ < ε
3 . Conditioned on the value of Xn = x and

since the noise is i.i.d., the conditional channel Y[n,n+N ′]|Xn is
time invariant, so it holds that

f̃(x) =

∫
YN ′+1

g(y[n,n+N ′])P (dy[n,n+N ′]|Xn = x)

is the same regardless of the choice of n. Then, we have∣∣∣∣
∫

fdπμ
n− −

∫
fdπν

n−

∣∣∣∣
≤

∣∣∣∣
∫

f̃dπμ
n− −

∫
f̃dπν

n−

∣∣∣∣+
∣∣∣∣
∫
(f − f̃)dπμ

n−

∣∣∣∣
+

∣∣∣∣
∫
(f − f̃)dπν

n−

∣∣∣∣ . (11)

Now, by assumption, ‖f − f̃‖∞ < ε
3 ; therefore, the last two

terms are less than 2
3ε. We then apply Lemma 4.1 and we have∣∣∣∣

∫
f̃dπμ

n− −
∫

f̃dπν
n−

∣∣∣∣+ 2

3
ε

=

∣∣∣∣
∫
YN ′+1

g(y[n,n+N ′])P
μ(dy[n,n+N ′]

∣∣∣∣Y[0,n−1])

−
∫
YN ′+1

g(y[n,n+N ′])P
ν(dy[n,n+N ′]|Y[0,n−1])|+ 2

3
ε.

By Assumption 6, we have Pμ(Y[0,∞) ∈ ·) 	 P ν(Y[0,∞) ∈ ·).
Then, via a classic result by Blackwell and Dubins [7], we have
that Pμ(Y[n,n+N ′] ∈ ·|Y[0,n−1]) and P ν(Y[n,n+N ′] ∈ ·|Y[0,n−1])
merge in total variation Pμ a.s. as n → ∞. Define g̃ = g

‖g‖∞ .
Then, ∃N ∈ N such that ∀n > N∣∣∣∣
∫
YN ′+1

g̃(y[n,n+N ′])P
μ(dy[n,n+N ′]

∣∣∣∣Y[0,n−1])

−
∫
YN ′+1

g̃(y[n,n+N ′])P
ν(dy[n,n+N ′]|Y[0,n−1])| < ε

3‖g‖∞
we then have∣∣∣∣

∫
YN ′+1

g(y[n,n+N ′])P
μ(dy[n,n+N ′]

∣∣∣∣Y[0,n−1])

−
∫
YN ′+1

g(y[n,n+N ′])P
ν(dy[n,n+N ′]|Y[0,n−1])|+ 2

3
ε

≤ ‖g‖∞ ε

3‖g‖∞ +
2

3
ε = ε

therefore, since f and ε are arbitrary, we have for any f ∈
Cb(S): limn→∞ | ∫ fdπμ

n− − ∫
fdπν

n−| = 0, which means πμ
n−

and πν
n− merge weakly.

B. Weak Filter Stability: Proof of Theorem 2.9

Proof of Theorem 2.9
Begin by assuming that the predictor merges weakly a.s. As

is argued in [31], one can view the filter πμ
n as a function of

πμ
n−1 (the previous filter) and the current observation Yn = yn,

that is,πμ
n = F (πμ

n−1, yn). Picking any continuous and bounded
function f , we have

Eμ

[∣∣∣∣
∫
X
f(x)πμ

n(dx)−
∫
X
f(x)πν

n(dx)

∣∣∣∣
]

= Eμ

[
Eμ

[∣∣∣∣
∫
X
f(x)F (πμ

n−1, yn)(dx)

−
∫
X

f(x)F (πν
n−1, yn)(dx)||Y[0,n−1]

]]
. (12)

Now, define the set I+(y[0,n−1]) ⊂ Y as

I+(y[0,n−1]) =

{
yn ∈ Y

∣∣∣∣
∫
X
f(x)F (πμ

n−1, yn)(dx)

>

∫
X

f(x)F (πν
n−1, yn)(dx)

}

where the argument y[0,n−1] is the sequence on which the previ-
ous filtersπμ

n−1 andπν
n−1 are realized. Define the complement of

this set as I−(y[0,n−1]). Then, for every fixed realization y[0,n−1],
we can break the inner expectation in (12) (which is an integral)
into two parts and follow the analysis in [31, eq. 4] together
with [8, Th. 8.6.2] to arrive at the conclusion.
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C. Local Observability: Proof of Theorems 2.12 and 2.15

The idea of local observability is the shift some of the burden
of approximating the signal f . When we work with a function

f̃(x) =

∫
YN ′+1

g(y[n,n+N ′])P (dy[n,n+N ′]|Xn = x)

the result is the terms seen in (11). The first term is dealt with by
the Blackwell and Dubins theorem, so we must make sure the
second and third term can be made arbitrarily small. For any set
K, we can write∣∣∣∣

∫
(f − f̃)dπν

n−

∣∣∣∣ ≤ sup
x∈K

|f(x)− f̃(x)|πν
n−(K)

+ sup
x �∈K

|f(x)− f̃(x)|πμ
n−(K

C)

in the previous result we bounded this by simply approximating
f well over the whole space. Instead, we can choose a K where
f̃ approximates f well over K and πν

n−(K
C) makes the other

term arbitrarily small. Furthermore, by taking advantage of the
full supremum of total variation, we can work with a series of
uniformly bounded functions f̃n and shifting setsKn that change
with n.

Proof of Theorem 2.12: Pick any continuous and bounded
function f and any ε > 0. Fix any sequence of observations
y[0,∞), where the predictors πμ

n− and πν
n− are well defined and

maintain this sequence for the rest of the proof. Then, consider

lim
n→∞

∣∣∣∣
∫
X
f(x)πμ

n−(dx)−
∫
X
f(x)πν

n−(dx)
∣∣∣∣ .

For any function series of functions f̃n of x, we have an upper
bound

lim
n→∞

∣∣∣∣
∫
X
f̃n(x)π

μ
n−(dx)−

∫
X
f̃n(x)π

ν
n−(dx)

∣∣∣∣
+

∣∣∣∣
∫
X
(f − f̃n)(x)π

μ
n−(dx)

∣∣∣∣+
∣∣∣∣
∫
X
(f − f̃n)(x)π

ν
n−(dx)

∣∣∣∣ .
By assumption of K local predictability, we have a compact sets
Kn = K + an, where πμ

n−(Kn) = 1 for everyμ 	 ν and every
n.

By K local observability, we can find a uniformly bounded
series of functions gn ≤ M , where

f̃n(x) =

∫
Z
gn(h(x, z))Q(dz)

sup
x∈Kn

∣∣∣f(x)− f̃n(x)
∣∣∣ ≤ ε

3

then for the two approximation terms, we have∣∣∣∣
∫
X
(f − f̃n)(x)π

ν
n−(dx)

∣∣∣∣
≤ sup

x∈Kn

|f(x)− f̃n(x)|πν
n−(Kn)

+ sup
x �∈Kn

|f(x)− f̃n(x)|πμ
n−(K

C
n )

≤ ε

3

we then have

lim
n→∞

∣∣∣∣
∫
X
f̃n(x)π

μ
n−(dx)−

∫
X
f̃n(x)π

ν
n−(dx)

∣∣∣∣+ 2

3
ε

= lim
n→∞

∣∣∣∣
∫
Y
gn(yn)P

μ(dyn|y[0,n−1])

−
∫
Y
gn(yn)P

ν(dyn|y0,n−1])

∣∣∣∣+ 2

3
ε

we must appeal to the full uniform bound of the Blackwell and
Dubins theorem, which was not required in the proof of Theorem
2.7. The full statement of the Blackwell and Dubins theorem tells
us that

lim
n→∞ sup

‖g‖≤1∣∣∣∣
∫
Y
g(yn)P

μ(dyn|y[0,n−1])−
∫
Y
g(yn)P

ν(dyn|y0,n−1])

∣∣∣∣ = 0

(13)

where the supremum is taken over measurable functions g. Thus,
for any fixed measurable and bounded function g, we have that∣∣∣∣

∫
Y
g(yn)P

μ(dyn|y[0,n−1])−
∫
Y
g(yn)P

ν(dyn|y0,n−1])

∣∣∣∣
converges to 0 as n → ∞; this was the form of the statement
utilized in the proof of Theorem 2.7. However, if we have a
sequence of measurable functions gn with a uniform bound,
gn ≤ M ∀n ∈ N, then the supremum in (13) allows us to make
a uniform claim about the convergence to zero of the sequence∣∣∣∣

∫
Y
gn(yn)P

μ(dyn|y[0,n−1])−
∫
Y
gn(yn)P

ν(dyn|y0,n−1])

∣∣∣∣
and this completes the proof.

Proof of Theorem 2.15: Fix any f and any ε. We begin from
the upper bound used previously

lim
n→∞

∣∣∣∣
∫
X
f̃n(x)π

μ
n−(dx)−

∫
X
f̃n(x)π

ν
n−(dx)

∣∣∣∣
+

∣∣∣∣
∫
X
(f − f̃n)(x)π

μ
n−(dx)

∣∣∣∣+
∣∣∣∣
∫
X
(f − f̃n)(x)π

ν
n−(dx)

∣∣∣∣
for some series of functions f̃n.

By local predictability, the shifted predictors are a tight family.
Therefore, for any ε′, we have a series of compact sets Kn =
K ′ + an such that πν

n−(Kn) ≥ 1− ε′ for any μ 	 ν and any n.
The proof then proceeds similarly to that of Theorem 2.12.

D. Predictor Merging in Total Variation: Proof of
Theorem 2.18

We now extend our results from weak merging to total varia-
tion. We first state the following supporting results.

Lemma 4.3: The (measurement update) map

(πn− , y) �→ πn : πn(·) := Eπn− [1Xn∈·|Yn = y]

Authorized licensed use limited to: Queen's University. Downloaded on May 13,2024 at 15:57:41 UTC from IEEE Xplore.  Restrictions apply. 



2942 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 5, MAY 2024

which maps from P(X )× Y to P(X ) is weakly continuous
in πn− for almost every y, provided that g(x, y) is positive,
bounded, and continuous in x for every fixed y.

Proof: Consider a continuous and bounded f and let πm
n− →

πn− weakly. Then

Eπm
n−
[f(xn)|Yn = yn] =

∫
f(xn)

g(xn, yn)π
m
n−(dxn)∫

X g(xn, yn)πm
n−(dxn)

=

∫
f(xn)g(xn, yn)π

m
n−(dxn)∫

X g(xn, yn)πm
n−(dxn)

.

Since g(·, yn) is bounded and continuous, both the numerator
and the denominator converge. �

Lemma 4.4: Let T (dx1|x) = t(x1, x)φ(dx1) where t is con-
tinuous in x for every x1. Then, the (time-update) map:

(πn) �→ πn+1− : πn+1−(·) :=
∫

T (·|xn)πn(dxn)

which maps from P(X ) to P(X ) is so that if πν
n → πμ,

n weakly
then πν

n+1− → πμ
n+1− in total variation.

Proof: We will build on Scheffé’s Lemma [5]. For every given
history, we have

πν
n+1−(dxn+1) =

∫
T (dxn+1|xn)π

ν
n(dxn).

Now,
∫
T (dxn+1|xn) is so that∫

t(xn+1, xn)φ(dxn+1)π
m
n (dxn)

→
∫

t(xn+1, xn)φ(dxn+1)πn(dxn)

in total variation since for every fixed z, the Radon–Nikodym
derivative (density) with respect to φ∫

t(xn+1, xn)φ(·)πm
n (dxn)

dφ
(z) =

∫
t(z, xn)π

m
n (dxn)

satisfies pointwise convergence∫
t(z, xn)π

ν
n(dxn) →

∫
t(z, xn)π

μ
n(dxn)

and Scheffé’s lemma implies that convergence is in total varia-
tion. Now, we can apply the result to the sequence πν

n converging
to πμ

n .
Proof: Proof of Theorem 2.18 (i)
Under Assumption 2.16, the proof follows from Lemmas 4.3

and 4.4. While in Lemmas 4.3 and 4.4 we consider convergence
(and not merging), we note that the proof of Lemma 4.3 also
implies weak merging of the posteriors as the priors weakly
merge, and by considering the signed measure πν,γ

n − πμ,γ
n in

the proof of Lemma 4.4, total variation merging is a result of a
generalized Scheffé’s lemma [8, Th. 2.8.9].

Lemma 4.5: Let ∃ some measure μ̄ such that T (·|x) 	 μ̄
for every x ∈ X . Then, we have that πμ

n−, πν
n− 	 μ̄ for every

n ∈ N�

Proof: For all n ≥ 1, we have

πμ
n−(A) =

∫
X
T (A|x)πμ

n−1(dx)

=

∫
X

∫
A

dT (·|x)
dμ̄

(a)μ̄(da)πμ
n−1(dx)

=

∫
A

(∫
X

dT (·|x)
dμ̄

(a)πμ
n−1(dx)

)
μ̄(da)

where we have applied Fubini’s theorem in the final equality.
Therefore, πμ

n− is absolutely continuous with respect to μ̄ for
every n ≥ 1.

Lemma 4.6: Let Assumption 2.17 hold and let fμ
n− denote

the density function of πμ
n−. Fix any sequence of measurements

y[0,∞) and denote the collection of probability density functions
Fμ = {fμ

n−|n ∈ N},F ν = {fν
n−|n ∈ N}. Then, Fμ and F ν

are uniformly bounded equicontinuous families.
Proof: As we see from Lemma 4.5

fμ
n−(xn) =

dπμ
n−

dφ
(xn) =

∫
X
t(xn|xn−1)π

μ
n−1(dxn−1)

where t(·|x) is the Radon–Nikodym derivative of T (·|x) with
respect to our dominating measureφ and d(·, ·)will represent the
metric on X (recall X is a complete, separable, metric space).
We require ∀ε > 0, x∗ ∈ X ∃ δ > 0 such that ∀ d(x, x∗) < δ
∀n ∈ Nwe have |fμ

n−(x)− fμ
n−(x∗)| < ε. By Assumption 2.17,

clearly fμ
n− is uniformly bounded since t is uniformly bounded.

Then, for any ε > 0 ∀x∗ ∈ X , we can find a δ > 0 such that
∀x1 ∈ X , |t(x2|x1)− t(x∗|x1)| < ε when d(x2, x

∗) < δ. Now,
assume d(x2, x

∗) < δ, we have

|fμ
n−(x2)− fμ

n−(x
∗)| =

∣∣∣∣
∫
X
t(x2|x1)− t(x∗|x1)dπ

μ
n−(dx1)

∣∣∣∣
≤
∫
X
|t(x2|x1)−t(x∗|x1)|dπμ

n−(x1)≤ε

which proves that Fμ and F ν are uniformly bounded and
equicontinuous families.

Proof of Theorem 2.18 (ii): By assumption, we have weak sta-
bility of the predictor Pμ a.s. Then, there exists a set of measure
sequences B ⊂ YZ+ with Pμ(B) = 1. For each measurement
sequence y[0,∞] ∈ B, we have that the predictor realizations
πμ
n− and πν

n− merge in the weak sense. We will choose a
general measurement sequence y[0,∞] ∈ B and fix this sequence
for the rest of the proof. Via Lemmas 4.5 and 4.6, Fμ and
F ν are uniformly bounded and equicontinuous families. Let
Fμ−ν = {fn|fn = fμ

n− − fν
n−]}, then the sequence {fn}∞n=1

is a uniformly bounded and equicontinuous class of integrable
functions. As in the proof of [40, Lemma 2], now pick a se-
quence of compact sets Kj ⊂ X such that Kj ⊂ Kj+1. By the
Arzela–Ascoli theorem [49], for any subsequence, we can find
further subsequences fnj

k
such that

lim
k→∞

sup
x∈Kj

|fnj
k
(x)− f j(x)| = 0

for some continuous function f j : Kj → [0,∞). Via the Kj

being nested, we can have {fnj+1
k

} be a subsequence of {fnj
k
},

and therefore f j+1 = f j overKj . Then, define the function f̃ on
X by f̃(x) = f j(x), x ∈ Kj . Using Cantor’s diagonal method,
we can find an increasing sequence of integers {mi}, which is
a subsequence of {nj

k} for every j. Therefore,

lim
i→∞

fmi
(x) = f̃(x) ∀x ∈ X

and the convergence is uniform over each Kj and f̃ is con-
tinuous. Now, fmi

converges weakly to the zero measure by
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assumption, and via uniform convergence for any Borel set B,
we have ∫

B
fmi

(x)dx →
∫
B
f̃(x)dx

i.e., setwise convergence. Yet this implies weak convergence,
so f̃ = 0 almost everywhere, yet f̃ is continuous so it is 0
everywhere. Now, via the Prokhorov theorem (see [8, Th. 8.6.2]),
we have that Fμ−ν is a tight family. Therefore, for every ε > 0,
we can find a compact set Kε such that

|πμ
n− − πν

n−|(X \Kε) < ε ∀n ∈ N.

Then, we have

lim
i→∞

‖πμ
mi− − πν

mi−‖TV ≤ lim
i→∞

|πμ
mi− − πν

mi−|(X \Kε)

+ |πμ
mi− − πν

mi−|(Kε)

≤ lim
i→∞

sup
‖g‖∞≤1

∣∣∣∣
∫
Kε

g(x)fmi
(x)dx

∣∣∣∣+ ε

≤ lim
i→∞

sup
‖g‖∞≤1

∣∣∣∣
∫
Kε

g(x)(f̃ − fmi
)(x)dx

∣∣∣∣
+

∣∣∣∣
∫
Kε

g(x)f̃(x)dx

∣∣∣∣+ ε

≤ lim
i→∞

‖f̃ − fmi
‖∞φ(Kε) + ε

since we have already argued f̃ = 0. Now, over the compact
set Kε, fmi

converges to f̃ uniformly, therefore ∃N such that
∀k > N , ‖f̃ − fnk

‖∞ < ε
φ(Kε)

. We then conclude that

lim
i→∞

‖πμ
mi− − πν

mi−‖TV = 0.

Thus, for every subsequence of {fn}∞n=1, we can find a subse-
quence that converges in total variation, which implies that the
original sequence converges in total variation.

E. Filter Merging in Total Variation: Proof of Theorem
2.19

For completeness, in the Appendix, some supporting results
are presented.

Proof of Theorem 2.19: The sigma fields FX
n,∞ ∨ FY

0,∞ are a
decreasing sequence, that is, FX

n+1,∞ ∨ FY
0,∞ ⊂ FX

n,∞ ∨ FY
0,∞.

Therefore, when we take their intersection, removing the first
or largest sigma field FX

0,∞ ∨ FY
0,∞ from the intersection of

a deceasing set of sigma fields does not change the overall
intersection. From Lemmas A.5 and A.8, it is clear that the
two conditions for merging in total variation in expectation are
equivalent since the sigma fields on the LHS of (16) and (19)
are equal.

We have now established that the filter merges in total vari-
ation in expectation, but we would like to extend this result to
a.s. By a simple application of Fatou’s lemma, we can argue the
liminf of the total variation of the filter is zero Pμ a.s. Hence, if
the limit exists, it must be zero, yet it is not immediate that the
limit will exist. This leads to the following.

Theorem 4.7 (see [53, p. 572]): Assume that the filter is stable
in total variation in expectation. Then, the filter is stable in total
variation Pμ a.s.

F. Relative Entropy Merging: Proof of Theorem 2.20

We will now show that the relative entropy merging of the
filter is essentially equivalent to merging in total variation in
expectation. Via Lemmas A.4 and A.6, it is clear that the filter
and predictor admit Radon–Nikodym derivatives. Therefore,
working with D(πμ

n‖πν
n) and D(πμ

n−‖πν
n−) is well defined. A

well-known result for relative entropy is the chain rule [25, Th.
5.3.1].

Lemma 4.8: For joint measuresP and Q on random variables
X and Y , we have

D(P (X,Y )‖Q(X,Y )) = D(P (X)‖Q(X))

+D(P (Y |X)‖Q(Y |X)).

Note for two sigma fields F and G and two joint measures P
and Q on F ∨ G, one could also express this relationship as

D(P |F∨G‖Q|F∨G) = D(P |F‖Q|F ) +D(P |G|F‖Q|G|F).
(14)

Proof of Theorem 2.20: First assume the filter is stable in
relative entropy. Since the square root function is continuous
and convex, we have

0 = lim
n→∞

√
2

log(e)
Eμ[D(πμ

n‖πν
n)]

≥ lim
n→∞Eμ

[√
2

log(e)
D(πμ

n‖πν
n)

]

where we have applied Jensen’s inequality. We then ap-
ply Pinsker’s inequality, and we have limn→∞ Eμ[‖πμ

n −
πν
n‖TV ] = 0.
For the converse direction, by chain rule (14), it is clear that

Eμ[D(πμ
n‖πν

n)] = D(Pμ|FX
n
|FY

0,n‖P ν |FX
n
|FY

0,n)

= D(Pμ|FX
n∨FY

0,n
‖P ν |FX

n∨FY
0,n

)−D(Pμ|FY
0,n

‖P ν |FY
0,n

)

by the Markov property, we have that X[0,n−1], Y[0,n−1]

and X[n+1,∞), Y[n+1,∞) are conditionally independent given
Xn and Yn; therefore, we have

D(Pμ|FX
n∨FY

0,n
‖P ν |FX

n∨FY
0,n

)

= D(Pμ|FX
n,∞∨FY

0,∞
‖P ν |FX

n,∞∨FY
0,∞

).

Then, FX
n,∞ ∨ FY

0,∞ is a decreasing sequence of sigma fields.
By [4, Th. 2], we have that if the relative entropy is ever finite, the
limit of the relative entropy restricted to these sigma fields is the
relative entropy restricted to the intersection of the decreasing
fields, that is,

lim
n→∞D(Pμ|FX

n,∞∨FY
0,∞

‖P ν |FX
n,∞∨FY

0,∞
)

= D(Pμ|⋂
n≥0 FX

n,∞∨FY
0,∞

‖P ν |⋂
n≥0 FX

n,∞∨FY
0,∞

).

Likewise, FY
0,n is an increasing sequence of sigma fields, there-

fore by [4, Th. 3], we have that if the relative entropy is ever
finite, the relative entropy restricted to these sigma fields is the
relative entropy over the limit field, that is,

lim
n→∞D(Pμ|FY

0,n
‖P ν |FY

0,n
) = D(Pμ|FY

0,∞
‖P ν |FY

0,∞
).
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Therefore,

lim
n→∞Eμ[D(πμ

n‖πν
n)]

= D(Pμ|⋂
n≥0 FX

n,∞∨FY
0,∞

‖P ν |⋂
n≥0 FX

n,∞∨FY
0,∞

)

−D(Pμ|FY
0,∞

‖P ν |FY
0,∞

).

By Lemma 1.1, we have

dPμ|⋂
n≥0 FX

n,∞∨FY
0,∞

dP ν |⋂
n≥0 FX

n,∞∨FY
0,∞

=Eν

[
dμ

dν
(X0)

∣∣∣∣ ⋂
n≥0

FX
n,∞ ∨ FY

0,∞

]
=f1

dPμ|FY
0,∞

dP ν |FY
0,∞

= Eν

[
dμ

dν
(X0)

∣∣∣∣FY
0,∞

]
= f2.

Note that f1 is
⋂

n≥0 FX
n,∞ ∨ FY

0,∞ measurable, while f2 is
FY

0,∞ measurable, and FY
0,∞ ⊂ ⋂

n≥0 FX
n,∞ ∨ FY

0,∞. By Lemma
A.5, we have that if the filter merges in total variation in
expectation, then for a set of state and observation sequences
ω = (xi, yi)

∞
i=0 ∈ A ⊂ FX

0,∞ ∨ FY
0,∞ withP ν(A) = 1, we have

f1(ω) = f2(ω). Yet this then means over the set A of P ν

measure 1, f1 = f2 is FY
0,∞ measurable. We then have

D(Pμ|⋂
n≥0 FX

n,∞∨FY
0,∞

‖P ν |⋂
n≥0 FX

n,∞∨FY
0,∞

)

−D(Pμ|FY
0,∞

‖P ν |FY
0,∞

)

= Eμ[log(f1)]− Eμ[log(f2)]

= Eν [f1 log(f1)]− Eν [f2 log(f2)]

=

∫
Ω

f1(ω) log(f1(ω))dP
ν |⋂

n≥0 FX
n,∞∨FY

0,∞
(ω)

−
∫
Ω

f2(ω) log(f2(ω))dP
ν |FY

0,∞
(ω)

=

∫
A

f1(ω) log(f1(ω))dP
ν |⋂

n≥0 FX
n,∞∨FY

0,∞
(ω)

−
∫
A

f2(ω) log(f2(ω))dP
ν |FY

0,∞
(ω)

=

∫
A

f1(ω) log(f1(ω))dP
ν |FY

0,∞
(ω)

−
∫
A

f2(ω) log(f2(ω))dP
ν |FY

0,∞
(ω) = 0.

Therefore, if the relative entropy of the filter is ever finite, then
total variation merging in expectation is equivalent to merging
in relative entropy.

V. CONCLUSION

We presented a notion of stochastic observability for non-
linear systems. This notion is explicit, is relatively eas-
ily computed due to its functional approximation formu-
lation, and is shown via examples to be applicable to a
large class of systems. The implications of this definition
for filter stability were presented in detail. Further rela-
tions under various stability criteria and implications were
studied.

APPENDIX

SUPPORTING RESULTS FOR SECTION IV-E

We present a number of supporting results. The approach for
these build on similar arguments in [14] and [55]. The proofs
here are kept brief due to space constraints or omitted.

Lemma A.1: Assume μ 	 ν. For any sigma field G ⊆
FX

0,∞ ∨ FY
0,∞, we have

dPμ|G
dP ν |G = Eν

[
dμ

dν
(X0)

∣∣∣∣G
]

Pμ a.s.

Lemma A.2: Assume μ 	 ν. For any two sigma fields
G1,G2 ⊂ FX

0,∞ ∨ FY
0,∞, let Pμ|G1

|G2 represent the probability
measure Pμ restricted to G1, conditioned on field G2. We then
have

dPμ|G1
|G2

dP ν |G1
|G2

=
Eν [dμdν (X0)|G1 ∨ G2]

Eν [dμdν (X0)|G2]
Pμ a.s.

Lemma A.3: Assume μ 	 ν, for any two sigma fields
G1,G2 ⊂ FX

0,∞ ∨ FY
0,∞, we have Pμ a.s.

‖Pμ|G1
|G2 − P ν |G1

|G2‖TV

=
Eν

[ ∣∣∣Eν
[
dμ
dν (X0)|G1 ∨ G2

]
− Eν

[
dμ
dν (X0)|G2

]∣∣∣ ∣∣∣G2

]
Eν

[
dμ
dν (X0)|G2

]
For the specific case of the nonlinear filter, that is, G1 = FX

n

and G2 = FY
0,n, the results presented above imply the following

known results in the literature.
Lemma A.4 (see [55, Lemma 5.6]): Assume μ 	 ν. Then,

we have that πμ
n 	 πν

n a.s., and we have

dπμ
n

dπν
n

(x) =
Eν [dμdν (X0)|Y[0,n], Xn = x]

Eν [dμdν (X0)|Y[0,n]]
Pμ a.s. (15)

Lemma A.5 (see [14, eq. 1.10]): The filter merges in total
variation in expectation if and only if P ν a.s.

Eν

[
dμ

dν
(X0)

∣∣∣∣ ⋂
n≥0

FY
0,∞ ∨ FX

n,∞

]
= Eν

[
dμ

dν
(X0)

∣∣∣∣FY
0,∞

∣∣∣∣ .
(16)

Since our results apply to any general sigma field, not just the
fields used in the analysis of the filter, we can study the predictor
process to establish Lemmas A.6–A.8, in the following.

Lemma A.6: Assumeμ 	 ν. Then, we have that πμ
n− 	 πμ

n−
Pμ a.s., and we have

dπμ
n−

dπν
n−

(x) =
Eν [dμdν (X0)|Y[0,n−1], Xn = x]

Eν [dμdν (X0)|Y[0,n−1]]
Pμ a.s. (17)

Proof: These results become clear from Lemma A.2 when
we state the predictor as Pμ restricted to FX

n conditioned on
FY

0,n−1.
Lemma A.7: Assume μ 	 γ for some measure γ. We can

express (18) shown at the top of the next page.
Proof: By Lemma A.3, we can write unnumbered equation

shown at the top of the next page. Since Yn is a function
of Xn and the random noise Zn, which is independent of
Xn and past Y[0,n−1] measurements, we have that σ(Y[0,n−1],
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‖πμ
n− − πγ

n−‖TV =
Eγ

[∣∣∣Eγ [dμdγ (X0)|Y[0,∞), X[n,∞)]− Eγ [dμdγ (X0)|Y[0,n−1]]
∣∣∣∣∣∣Y[0,n−1]

]
Eγ

[
dμ
dγ (X0)

∣∣∣Y[0,n−1]

] . (18)

‖πμ
n− − πγ

n−‖TV =
Eγ

[
|Eγ [dμdγ (X0)|Y[0,n−1], Xn]− Eγ [dμdγ (X0)|Y[0,n−1]]|

∣∣∣Y[0,n−1]

]
Eγ

[
dμ
dγ (X0)

∣∣∣Y[0,n−1]

] .

Xn) = σ(Y[0,n], Xn). Further, by the Markov property, we
have that we have that (X[0,n−1], Y[0,n−1]) are independent of
(X[n+1,∞), Y[n+1,∞)) conditioned on (Xn, Yn); therefore, we
can state

Eγ

[
dμ

dν
(X0)|Y[0,n−1], Xn

]
= Eγ

[
dμ

dν
(X0)|Y[0,∞), X[n,∞)

]
.

Lemma A.8: The predictor merges in total variation in expec-
tation if and only if P ν a.s.

Eν

[
dμ

dν
(X0)

∣∣∣∣ ⋂
n≥1

FY
0,∞ ∨ FX

n,∞

]
= Eν

[
dμ

dν
(X0)

∣∣∣∣FY
0,∞

]
.

(19)

Proof: Building on the proof of Lemma A.7, we have

Eμ
[‖πμ

n− − πν
n−‖TV

]
= Eν

[
dPμ|FY

0,n−1

dP ν |FY
0,n−1

‖πμ
n− − πν

n−‖TV

]

= Eν

[
Eν

[
dμ

dν
(X0)

∣∣∣∣Y[0,n−1]

]
‖πμ

n− − πν
n−‖TV

]

= Eν

[
Eν

[ ∣∣∣∣Eν

[
dμ

dν
(X0)

∣∣∣∣Y[0,∞), X[n,∞)

]

− Eν

[
dμ

dν
(X0)|Y[0,n−1]

]
||Y[0,n−1]

]]

= Eν

[∣∣∣∣Eν

[
dμ

dν
(X0)|Y[0,∞), X[n,∞)

]

− Eν

[
dμ

dν
(X0)|Y[0,n−1]

] ∣∣∣∣
]
.

We then see that An = Eν [dμdν (X0)|Y[0,n−1]] is a nonneg-
ative uniformly integrable martingale adapted to the in-
creasing filtration FY

0,n−1. Hence, the limit as n → ∞ in

L1(P ν) is Eν [dμdν (X0)|FY
0,∞]. Similarly, we can view Bn =

Eν [dμdν (X0)|Y[0,∞), X[n,∞)] as backward nonnegative uni-
formly integrable martingale with respect to the decreasing
sequence of filtrations FY

0,∞ ∨ FX
n,∞. Then, by the backward

martingale convergence theorem, the limit asn → ∞ inL1(P ν)
is Eν [dμdν (X0)|

⋂∞
n=1 FY

1,∞ ∨ FX
n,∞]. It is then clear the total

variation in expectation is zero if and only if (19) holds.
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