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Dual Effect, Certainty Equivalence and Separation
Revisited: A Counterexample and a Relaxed

Characterization for Optimality
Milan S. Derpich and Serdar Yüksel

Abstract—We study the optimality of control policies admitting
certainty equivalence or separation (of estimation and control) in
discrete-time stochastic control, with two main contributions: (i)
We first revisit the influential theorem given in the seminal 1974
paper by Bar-Shalom and Tse which studies the equivalence
between certainty equivalence (CE) and no-dual-effect (NDE)
properties in discrete-time stochastic control problems involving
a linear dynamic system with a possibly non-linear measurement
function. We show that there is a subtle error in Bar-Shalom and
Tse’s proof of the claim that CE implies NDE. Moreover, we prove
that the claim does not hold by providing a counterexample.
(ii) As our second and primary contribution, we introduce an
alternative and a more relaxed notion of dual-freeness and
establish that this new notion is sufficient to guarantee the
separation of estimation and control and CE in the same control
problem considered by Bar-Shalom and Tse.

I. INTRODUCTION

In the classical theory of partially observed Linear Quadratic
Gaussian problems under quadratic criteria [1]–[3], a cele-
brated result in the field is that the optimal control policy
has a separation structure, where the optimal control policy
(which turns out to be linear) has the same linear gain matrix
that one would obtain for the corresponding fully observed
problem but the state would be replaced with the conditional
expectation of the state given the information at the controller.
This phenomenon is known as the separation of estimation and
control (where in its generality, this separation principle is said
to hold when an optimal control exists in a subset of admissible
policies where the control depends on the information only
through the conditional expectation of the state given the
information available), and for this particular case, a more
special version of it, known as the certainty equivalence
principle (precise definitions to follow).

This result significantly eases the study of optimal partially
observed stochastic control problems; in general such prob-
lems require the usage of non-linear filtering, which is typi-
cally an infinite dimensional non-linear stochastic dynamical
system taking values from a space of probability measures [4],
[5], and hence are computationally challenging.
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lan.derpich@usm.cl. S. Yüksel is with the Department of Mathematics
and Statistics, Queen’s University, Kingston, Ontario, Canada, K7L 3N6.
Email: yuksel@mast.queensu.ca. This research was partially supported by
FONDECYT project 1171059, CONICYT basal fund FB0008, CONICYT
postdoctoral fellowship 74180079, and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

The celebrated paper [6] due to Bar-Shalom and Tse es-
tablishes conditions under which, in a given control problem,
certainty equivalence becomes equivalent to having the “so
called” no-dual-effect (NDE) property. As defined in [6], the
latter property is said to hold when the updated conditional
distribution of the plant state given the plant output measure-
ments does not depend on past control actions (the precise
definitions of certainty equivalence and NDE property given
in [6] are reproduced in Section II below). Besides revealing
a fundamental aspect of a class of control problems, the
equivalence between NDE and CE is useful when one of these
properties is seemingly more difficult to verify than the other.

The problems on separation, certainty equivalence and re-
lated concepts (such as neutrality and active probing) are at
the heart of partially observable optimal stochastic control
problems, and hence have received a large interest in the
classical stochastic control literature, as we briefly review in
the following. In the economics theory literature also, there
have been many contributions on this subject and the term
certainty-equivalence appears first in this literature, to our
knowledge [7] [8] [9]. Patchell and Jacobs [10] revisited
the concepts of separability (the property that the plant state
conditional estimate is a sufficient statistic), neutrality [11]
(where dual effect is not present) and certainty equivalence
(where the stochastic parameters are replaced by their condi-
tional expectations). As noted by Patchell and Jacobs, control
laws that include active experimentation have been called
‘dual’ control laws; active experimentation or probing is
performed to reduce the uncertainty regarding a dynamical
system. De Water and Willems [12] point to potentially ill-
posed aspects of prior definitions for certainty-equivalence (in
view of various interpretations for taking expectations) and
develop a refined characterization on what it means to be
certainty-equivalent, for both discrete-time and continuous-
time systems. In their formulation, a control policy is said
to be certainty equivalent when the conditional expectation of
an optimal control (policy realization) corresponding to the
system with no uncertainty conditioned on the information up
to a given time is the actual control applied at that time. They
also established that the LQG problem with linear Gaussian
measurements admits optimal policies which are certainty-
equivalent both in discrete-time and continuous-time [12]. For
discrete-time linear system and measurement models that are
not necessarily Gaussian (known as LQ, but not necessarily
LQG models), we note that separation also applies when
the noise processes are not Gaussian, though of course the
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estimations will no longer be linear; see [1, Lemma 5.2.1].
We also note that, in general continuous-time setups, the

analysis can be subtle due to the fact that the control policy
(only restricted to be measurable in general) may lead to issues
on the existence of strong solutions for a given controlled
stochastic differential equation. Lindquist [13] provides a
general separation theorem provided that the control laws
are among those which lead to the existence of a solution
to the controlled stochastic differential system, generalizing
previous analyses where only control laws of the Lipschitz
type were considered, e.g. by Kushner [14] where Lipschitz
continuity was in the conditional estimate and Wonham [15]
where Lipschitz property holds in the control when viewed as
a map from the normed linear space of continuous functions
on measurement history to control actions to allow for the
existence of strong solutions. To avoid such technical issues
on strong solutions, relaxed solution concepts were introduced
and studied in the literature based on the measure transforma-
tion technique due to Girsanov [16]–[18] which allows the
control to be a function of an independent Brownian process.
This approach requires absolute continuity conditions on the
measurement process which may not be always applicable,
though in the continuous-time literature this is the typical
setup. An alternative approach is presented in a recent arti-
cle by Georgiou and Lindquist [19], which provides a new
characterization for when separation holds for the cases with
linear Gaussian measurements (though with a more relaxed
system noise).

A further related paper is [20] (see also [21]), which studied
the separation problem in the context of networked LQG
systems and established the joint optimality of a separated
structure of optimal coding and control policies through the
approach which is further refined in this paper. Part of the
analysis (and the motivation) here builds on the approach de-
veloped in [20, Theorem 3.1], which however only considered
sample path equivalence and lacked the generality with an
argument tailored only for the networked control problem, and,
more importantly, did not establish the relation with [6].

Contributions. (i.) In Section II we review the definition of
NDE property provided by [6], highlighting one of its crucial
but implicit properties, namely, that the no-dual effect of the
control actions needs to hold even for arbitrary, unrestriced
control actions. As discussed therein, this turns out to be a very
demanding requirement. (ii.) After presenting in Section III the
theorem of [6] which asserts the equivalence between CE and
NDE, we show in Section IV-A that the proof of the claim
that CE implies NDE given in [6] is unfortunately incorrect.
Indeed, such an implication turns out to be false in general,
as we demonstrate by providing a simple counterexample in
Section IV-B. (iii.) The above mentioned findings motivate the
need to consider an alternative and relaxed (or refined) notion
of no dual effect which is less demanding and yet sufficient to
imply CE or separation in the same family of control problems
considered in [6]. We present such a refined definition of NDE
property in Section V and show in Section VI that in the
considered class of optimal stochastic control problems, this
characterization is sufficient to guarantee that separation or
certainty-equivalence holds.

II. REVISITING BAR-SHALOM AND TSE’S DEFINITIONS

In [6], certainty equivalence and the no-dual-effect property
are defined for the following general setup. The state of the
dynamical system to be controlled is given by the recursion

xk+1 = fk(xk, uk, vk), k = 0, 1, . . . , N − 1, (1)

where uk and vk are the controller action and process noise at
time k, respectively, and the distribution of the random initial
state x0 is known and given. The controller has access to the
measurements

yk = hk(xk, wk), k = 0, 1, . . . , N − 1, (2)

where wk is the measurement noise at time k. The xN =
{x0, . . . , xN}, uN−1, wN−1, vN−1, yN−1 sequences are
random and vector-valued (with appropriate dimensions), and
hence assumed to be measurable functions on F , where
(Ω,F , P ) is a probability space. In the above, fk, hk, for each
k, are assumed to be measurable with no further restrictions.

The controller applies a policy {γ0, . . . , γN−1} from a set of
admissible control policies ΠN = ×N−1

k=0 Πk, where, for each
k, Πk is the set of all functions of appropriate range measur-
able on the σ-field over Ω generated by Ik = {yk, uk−1} (the
information available at the controller at time k), such that

uk = γk(It) = γ(yk, uk−1), k = 0, . . . , N − 1. (3)

A given closed-loop system together with a cost function
and a class of admissible control policies is referred to as a
control problem.

A. Certainty Equivalence

As expressed in [6, eqs. (2.20)–(2.22)], a control problem
possesses the certainty equivalence (CE) property if the
closed-loop optimal control policy has the same form as the
deterministic optimal control policy under perfect state obser-
vation and in the absence of process noise. More precisely, if
in the absence of process noise the optimal closed-loop control
policy is

uCE
k = φk(xk), (4)

and CE holds, then the optimal closed-loop control policy for
the noisy and not necessarily fully observed system is

uCLO
k = φk

(
E[xk|yk, uk−1]

)
, ∀k. (5)

B. The No Dual Effect Property as Defined in [6]

The definition of the no dual effect property given in [6,
eqs. (2.13)–(2.15)] can be stated as follows.1

1In [6, eq. (2.13)], instead of Mr
k|k the authors define and utilize Mr

k|k,i ,

E[(xk,i − E[xk,i|yk, uk−1])r|yk, uk−1], where xk,i denotes the i-th entry
in the vector xk , stating in footnote 4 that joint moments should also be
included. Our notation using tensor products fulfills this need.

Authorized licensed use limited to: Queen's University. Downloaded on February 16,2022 at 15:24:46 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3151189, IEEE
Transactions on Automatic Control

3

Definition 1 (No Dual Effect Property as defined in [6]). In
a closed loop system, the controller is said to have no dual
effect of order r (r ≥ 2) if 2

E
[
Mr
k|k

∣∣∣ yj(ω, uj−1), uk−1
]

= E
[
Mr
k|k

∣∣∣ yj(ω, 0j−1), uk−1 = 0k−1
]
,

ω-a.s., ∀uk−1,∀j ≤ k, (6a)

where

Mr
k|k(yk(ω, uk−1), uk−1) , E

[
(w̃k)

{r}
∣∣∣yk(ω, uk−1), uk−1

]
(6b)

w̃k , xk − E[xk|yk(ω, uk−1), uk−1]
(6c)

and a{r} denotes the r-th order tensor product of vector a.

If r = 2, then (6) yields the second-order no-dual-effect
condition

E
[
w̃kw̃

′
k

∣∣yj(ω, uj−1), uk−1
]

= E
[
w̃kw̃

′
k

∣∣yj(ω, 0j−1), uk−1 = 0k−1
]
,

ω-a.s., ∀uk−1,∀j ≤ k. (7)

Remark 1. [On the open-loop vs. closed-loop interpretation
of control actions in Definition 1] The notation yj(ω, uk−1)
makes explicit the dependence of yj on the underlying sample-
space element ω and the control sequence uk−1. The facts
that uk−1 in (6a) does not depend on ω and that (6a) is to
hold for all sequences uk−1, imply that in (6) uk−1 is to
be interpreted as an arbitrary control action sequence, not
necessarily functionally dependent on ω or yk−1. In other
words, (6) is to hold even in open loop, wherein the control
actions uN−1 are generated without feedback. The arbitrary
and unrestricted nature of uN−1 in the above definition makes
the NDE condition very demanding.

Remark 2. [On the closed-loop interpretation of control
actions in Definition 1] If one were to interpret Definition
1 under a closed-loop, we naturally would have a more
restrictive setup compared with an open-loop restriction. Since
our analysis and counterexample to be presented is under an
open-loop interpretation, this is also applicable to a closed
loop interpretation. An additional, perhaps more direct, reason
why the NDE condition defined above under a closed-loop
interpretation is hard to satisfy, even for the 2nd-order NDE,
is because equality in (6a) is to hold even when j = 0, i.e.,
without conditioning on the measurements. In this case, and if
the control actions uk−1 are a function of the measurements
yk−1 (i.e., in closed loop), then it is natural to expect

E[w̃kw̃
′
k|uk−1(yk−1(ω, uk−2))]

to differ from
E[w̃kw̃

′
k|uk−1 = 0k−1]

2In [6, eq. (2.14)] (the original version of (6a)), the right-hand-side is
actually E[Mr

k|k

∣∣∣ yj(ω, 0k−1)]. However, we believe the authors of [6]
meant the more rigorously written form given by (6a), which is a weaker
requirement than the one obtained by a faithful and rigid reading of [6,
eq. (2.14)].

(for instance, the former is, in general, a random variable,
while the latter is a deterministic quantity). As well-known,
a notable exception is the LQG setup where conditional
covariance matrices do not depend on the measurement or
past control realizations.

III. THE EQUIVALENCE BETWEEN CE AND NDE
ESTABLISHED IN [6]

The connection between CE and NDE properties is studied
in [6, § III], for the particular case in which (1) is a linear
dynamical system with the same measurement function as
before,

xk+1 = Fkxk +Gkuk + vk, k = 0, . . . , N − 1 (8a)
yk = hk(xk, wk), k = 0, . . . , N − 1 (8b)

where each vk has covariance Vk,

E[vk] = 0, k = 0, . . . , N − 1 (9a)
E[vkvj ] = Vkδk,j , k = 0, . . . , N − 1 (9b)

wN−1
0 ⊥⊥ vN−1

0 , (9c)

where ⊥⊥ denotes probabilistic independence and δjk is the
Kronecker delta function (notice that ⊥⊥ differs from the
symbol ⊥ usually employed to denote the weaker notion of
uncorrelation or orthogonality).

The cost to be minimized is quadratic, given by

J0 , E

[
x′NQNxN +

∑N−1

i=0
x′iQixi + u′iRiui

]
(10)

with Qi ≥ 0 and Ri > 0 being matrices of appropriate
dimensions. The control problem is the minimization of J0

over all control policies {γ0, . . . , γN−1} ∈ ΠN (see (3)).
We can now re-state the theorem of [6] which, for this

setting, establishes an equivalence between 2-nd order NDE
and the CE property.

Theorem 1 (From [6, p. 98]). The optimal stochastic con-
trol for the system with linear dynamics (8a), process and
measurement noises (9), measurement equation (8b) and cost
function (10) has the CE property for all Qi ≥ 0, Ri > 0
if and only if the control has no dual effect of second order,
i.e., the updated covariance Σk|k is not a function of the past
control sequence uk−1, for all k.

In the latter statement, Σk|k is the conditional covariance
matrix defined as

Σk|k , E
[
w̃kw̃

′
k

∣∣ yk, uk−1
]
. (11)

Remark 3. The last condition stated in Theorem 1, which
reads “the updated covariance matrix Σk|k is not a function
of the past control sequence uk−1, for all k”, translates into

E
[
w̃kw̃

′
k

∣∣ yk(ω, uk−1), uk−1
]

= E
[
w̃kw̃

′
k

∣∣ yk(ω, 0k−1), uk−1 = 0k−1
]
,

ω-a.s.,∀uk−1 (12)

which satisfies (7) for j = k. However, in order to comply
with the definition of NDE, (12) should hold also when, in its
right-hand-side, yk is replaced by yj , for all j ≤ k (that is,
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while keeping the superscript k − 1 of uk−1and replacing yk

by yj). N

In the next section we will review part of the proof of this
theorem given in [6] and point out the main issue in it.

IV. ANALYSIS OF THE CHARACTERIZATION BY
BAR-SHALOM AND TSE [6] AND A COUNTEREXAMPLE

A. On the Proof that CE Implies NDE Given in [6]

The proof of Theorem 1 provided in [6] relies on the well
known fact that the minimum of (10) is given by the recursion

J∗k (Ik) , min
uk

E
[
x′kQkxk + u′kRkuk + J∗k+1(yk+1, uk)|Ik

]
,

k = N − 1, . . . , 0 (13a)

J∗N (IN ) , E[x′NQNxN |IN ] , (13b)

(recall that Ik = {yk, uk−1}). For this dynamical system, the
optimal deterministic control (in the absence of process noise
and with perfect state information) is

uCE
k = −(Rk +G′kPk+1Gk)−1G′kPk+1Fkxk, (14)

for k = 0, 1, . . . , N − 1, and thus from (14), CE holds if and
only if the optimal control action u∗k satisfies

u∗k = ũk , −(Rk +G′kPk+1Gk)−1G′kPk+1Fk E[xk|Ik] , (15)

for k = 0, 1, 2, . . . , N − 1, where Pk+1 is a matrix defined
recursively as [6, eq. (311)]

Pk , Qk

+ F ′k[Pk+1 − Pk+1Gk(Rk +G′kPk+1Gk)−1G′kPk+1]Fk,

k = 1, 2, . . . , N − 1 (16)

PN , QN . (17)

As argued in [6], if CE (i.e. (15)) holds, then the minimum
cost to go at time k can be written in the form [6, eq. (3.13)]

J∗k+1 = E
[
x′k+1Pk+1xk+1|Ik+1

]
+ βk+1, (18)

where, with βN = 0, βk is a sequence of scalar random
variables defined recursively as (see [6, eqs. (3.12), (3.14)])

βk , tr{VkPk+1}
+ tr{(G′kPk+1Fk)′(Rk +G′kPk+1Gk)−1(G′kPk+1Fk)

× E[w̃kw̃
′
k|Ik]}+ E[βk+1|Ik] (19)

and w̃k , xk − E[xk|Ik] (as in (6c)).
The “necessity” part in the proof of Theorem 1 given

in [6, p. 498], claiming that (CE holds for every R > 0,
Q ≥ 0)⇒NDE, relies on the following argument:

Suppose that CE holds for every Rk > 0, k = 1, . . . , N−1,
Qk ≥ 0, k = 1, . . . , N . Then, by definition, the uk which
minimizes3

Jk , E
[
x′kQkxk + u′kRkuk + J∗k+1|Ik

]
(20)

3This equation corresponds to [6, eq. (3.15)]. However, in the latter the
conditioning is on yk, u

k−1, which we believe to be a typo. In any case, this
conditioning does not change the forthcoming analysis.

(i.e., the RHS of (13a)), say u∗k, is equal to ũk (defined in (15)),
for all Rk > 0. But ũk is known to be the control that
minimizes

E
[
x′kQkxk + u′kRkuk + E

[
x′k+1Pk+1xk+1|Ik

]
|Ik
]

(see [6, eq. (3.9)] and the discussion therein). For this to hold
∀Rk > 0, one of the following two options must hold:

1) βk+1 is not a function of uk.
2) βk+1 is a function of uk which is minimized by ũk, for

all Rk > 0.
Here, the authors of [6] point out in the paragraph at the
end of the second column on [6, page 498] that βk+1 does
not depend on Rk while ũk does, deducing from this that
option 2) cannot happen and, accordingly, that βk+1 is not a
function of uk. Since βk+1 depends linearly on the expecta-
tions E[w̃jw̃

′
j |yk+1, uk], j ≥ k + 1 (see (19)), it is concluded

that “Σk|k is independent of uk−1, i.e., it is necessary that
the controls have no dual effect of second order” [6, p. 499].
From the above reasoning, what one actually concludes is that
E[w̃jw̃

′
j |yk+1(ω, uk), uk] does not change with uk, ω-a.s., for

every j ≥ k+1. Clearly, this does not coincide with the NDE
property of second order defined by the authors in (7) (that is,
in [6, eq. (2.14)]). See also Remark 3 above. Thus, we state
explicitly below the main issue with the proof:

By looking at (15), it is clear that ũk depends on Rk if and
only if E[xk|yk, uk−1] 6= 0. Hence, if E[xk|yk, uk−1] = 0,
which implies ũk = 0, it is possible that βk+1 depends on
uk and reaches its minimum precisely at uk = ũk = 0 (i.e.,
option 2 above can indeed happen). In the next section, we
present a simple setup in which this is the case, providing a
counterexample to the claim that (CE holds for every R > 0,
Q ≥ 0)⇒NDE in Theorem 1 (even when regarding (12) as
the definition for 2nd-order NDE instead of (7)).

B. A Counterexample for the Claim that CE⇒NDE

Consider a special case of the linear dynamics (8a) in which
xk and uk are scalars related by

xk+1 = Fxk +Guk + vk, k = 1, 2, · · · (21)

where x1 ∼ N (0, 1) and vk is i.i.d. with vk ∼ N (0, 1).
Suppose that the measurement system hk(xk, wk) is given by

yk = hk(xk, wk) =

{
0 , k is odd
sgn(xk) , k is even

k = 1, 2, . . . .

(22)

Let N = 3. At time k = 1, the sample y1 = 0 deterministi-
cally, and provides no information about x1. Hence

E[x1|y1] = 0 and x1 ⊥⊥ y1. (23)

Thus, from (15), the certainty-equivalent control is

ũ1 = 0, ∀R1 > 0, ∀P2. (24)

From (19),

β3 ≡ 0 (25)
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β2(y2, u1) = Q3 + min
u2

(u2 − ũ2)2(R2 +GQ3G) (26)

+
G2Q2

3F
2

R2 +G2Q3
E
[
(x2 − E[x2|y2, u1])2

∣∣ y2, u1

]
(27)

= Q3 +
G2Q2

3F
2

R2 +G2Q3
E
[
(x2 − E[x2|y2, u1])2

∣∣ y2, u1

]
(28)

with the optimal control action given by

u∗2 = ũ2. (29)

Likewise,

β1(y1) = P2 +
G2P 2

2F
2

R1 +G2P2
E
[
(x1 − E[x1|y1])2

∣∣ y1

]
(30)

+ min
u1

{
(u1 − ũ1)2(R1 +GP2G) + E[β2(y2, u1)|y1]

}
(31)

(23)
= P2 +

G2P 2
2F

2

R1 +G2P2
E[(x1)2] (32)

+ min
u1

{
(u1 − ũ1)2(R1 +GP2G) + E[β2(y2, u1)|y1]

}
(33)

(24)
= P2 +

G2P 2
2F

2

R1 +G2P2
E[(x1)2] (34)

+ min
u1

{
(u1)2(R1 +GP2G) + E[β2(y2, u1)|y1]

}
(35)

(28)
= P2 +

G2P 2
2F

2

R1 +G2P2
E[(x1)2] +Q3+ (36)

min
u1

(
(u1)2(R1 +GP2G) (37)

+
G2Q2

3F
2

R2 +G2Q3
E
[
(x2 − E[x2|y2, u1])2

])
(38)

Finding the value of u1 that minimizes

E
[
(x2 − E[x2|y2, u1])2

]
is equivalent to finding the minimum mean squared error
(MMSE) two-cell quantizer for a zero-mean Gaussian variable,
where the single threshold of the quantizer is −Gu1. This
optimal single threshold is known to be unique and equal to
zero [22, footnote 1]. Thus,

E
[
(x2 − E[x2|y2, u1])2

]
= E

[
(x2 − E[x2|y2, u1])2

]
depends on u1 and its minimizer (and that of the rightmost
term in (38)) is u∗1 = 0 = ũ1.

Therefore, the linear dynamics system (21) and its mea-
surement system (22) satisfy the CE condition for all
R1, R2 > 0 and Q1, Q2, Q3 ≥ 0. However, this system
does not have the NDE property, since, as already mentioned,
E
[
(x2 − E[x2|y2, u1])2|y2, u1

]
depends on u1.

V. REFINED CHARACTERIZATIONS OF THE NDE
PROPERTY

We now propose alternative definitions of the NDE prop-
erty which are less restrictive than [6] and yet sufficient to
guarantee that CE holds in the same setup considered by [6]
(as is shown in Section VI). We refer to them as NDE control
policy (NDECP) properties. The first definition is sample-path

based, which means that at each time k, the estimation error
ω̃k(ω) remains unaltered (as a random variable) when one or
more control policies prior to k are changed within a certain
set. The second definition is second-order (or covariance
based), requiring the same control-policy invariance criteria
for E[w̃k(ω)w̃k(ω)′] instead of w̃k(ω).

A. The NDECP Property: Sample-Path Characterizations

To state our definitions in a precise manner, it is convenient
to note that, for each k = 1, . . . , N , the estimation error w̃k
is a random variable that may functionally depend (at most)
on the control policies γ0, . . . , γk−1, and thus we write it as
w̃k(ω, γ0, . . . , γk−1).

Definition 2 (NDECP). A given control problem satisfies
the refined NDECP Property if there exists a set Π̃N =
Π̃0 × · · · × Π̃N−1 of policies containing an optimal control
policy {γ?j }

N−1
j=0 and the CE control policy such that for all

{γ̇j}N−1
j=0 , {γ̈j}

N−1
j=0 ∈ Π̃N and t = 1, . . . , N − 1,

w̃t(ω, γ̇0, . . . , γ̇k, γ
?
k+1, . . . , γ

?
t−1)

= w̃t(ω, γ̈0, . . . , γ̈k, γ
?
k+1, . . . , γ

?
t−1), ω-a.s., (39)

for k < t.

Thus, the refined NDE property holds if perturbing all
the policies {γ0, . . . , γk} ∈ Π̃k+1 has no effect on future
estimation errors, provided future policies are optimal.

We note that we can always take Π̃N to be ΠN , the set
of all admissible policies, in the definition above. In some
applications, one can relax the policies further without any
loss in performance, this is why the definition includes such
a refinement. We introduce next two alternative formulations
of the NDECP property which we show to be equivalent to
Definition 2. The value of providing these formulations is that
one may be easier to verify than the other; the equivalence of
these is shown in the Appendix.

Definition 3 (NDECP: “Mild” Formulation). A given control
problem satisfies the weak NDECP property if it meets all the
conditions of Definition 2 but replacing (39) by

w̃t(ω, γ0, . . . , γk−1, γk, γ
?
k+1, . . . , γ

?
t−1)

= w̃t(ω, γ0, . . . , γk−1, γ̈k, γ
?
k+1, . . . , γ

?
t−1), ω-a.s. (40)

In words, the mild NDECP property holds when perturbing
the current policy, say γk ∈ Π̃k, has no effect on future
estimation errors, provided future policies are optimal and past
policies belong to Π̃k and remain fixed.

Definition 4 (NDECP: “One-Step-Ahead” Formulation). A
given control problem satisfies the one-step mild NDECP
property if it meets all the conditions of Definition 2 but
replacing (39) by

w̃t(ω, γ0, . . . , γt−1) = w̃t(ω, γ̈0, . . . , γ̈t−1), ω-a.s. (41)

Unlike the previous definitions, the one-step mild NDECP
property holds when perturbing all policies {γ0, . . . , γt−1} ∈
Π̃t does not change the next estimation error. As noted
earlier in the paper, [20] already utilizes the condition that
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E[xt+1|It+1]−E[xt+1|It] does not depend on control policies
γ0, . . . , γt (provided that the control policies after time t
are those that are restricted to be optimal) to develop a
separation result on optimal control policies for networked
control applications. However, the analysis in [20] is restricted
to a networked control problem.

B. The NDECP Property: 2nd-Order Characterizations

As in Definition 1, it is also possible to define a NDECP
property of order 2, as follows:

Definition 5 (2nd-Order NDECP Property). A given control
problem satisfies the 2nd-order NDECP property if it meets
the conditions of Definition 2 but replacing (39) by

E
[
w̃t(ω, γ0, . . . , γk, γ

?
k+1, . . . , γ

?
t−1){2}

]
= E

[
w̃t(ω, γ̈0, . . . , γ̈k, γ

?
k+1, . . . , γ

?
t−1){2}

]
(42)

where for column vector a we use the notation a{2} := aa′.

Definition 6 (2nd-Order NDECP: “Mild” Formulation). A
given control problem satisfies the 2nd-order NDECP property
if it meets the conditions of Definition 2 but replacing (39) by

E
[
w̃t(ω, γ0, . . . , γk−1, γk, γ

?
k+1, . . . , γ

?
t−1){2}

]
= E

[
w̃t(ω, γ0, . . . , γk−1, γ̈k, γ

?
k+1, . . . , γ

?
t−1){2}

]
(43)

Definition 7 (2nd-Order NDECP: “One-Step-Ahead” For-
mulation). A given control problem satisfies the 2nd-order
NDECP property if it meets the conditions of Definition 2 but
replacing (39) by

E
[
w̃t(ω, γ0, . . . , γt−1){2}

]
= E

[
w̃t(ω, γ̈0, . . . , γ̈t−1){2}

]
(44)

The equivalence between Definitions 5, 6 and 7 follows
readily from the equivalence between definitions 2, 3 and 4
shown in the Appendix.

C. Comparison Between the NDE and NDECP Properties

All the NDECP definitions introduced above depart from
the NDE of [6] (stated in Definition 1) in the following two
important aspects:

1) The alternative definitions involve an independence con-
dition which is required to hold only for a set of policies
Π̃N containing, at least, the optimal control policy and
the CE policy. Instead, as discussed in Remark 1, the
NDE notion of [6] requires such independence over all
admissible control policies (see also Remark 2). On
its own, this difference makes the NDE condition so
restrictive that it is not difficult to find control problems
where, because of it, the NDECP holds but the NDE
doesn’t, as the example in Section V-D illustrates.

2) The alternative definitions require non-dependence on
control policies prior to time k without conditioning
(in particular, not conditioning on the measurements
yj , j ≤ k, thus differing from the definition of NDE
stated in Definition 1). Such conditioning makes the NDE
of [6] harder to satisfy. To see why, consider the random

variables s(ω, γ), u = u(ω, γ) and y(ω, u), where γ
belongs to some set Π, and notice that for every γ, γ̇ ∈ Π

E[s(ω, γ)|y(ω, u), u(ω, γ)]

= E[s(ω, γ̇)|y(ω, u), u(ω, γ̇)] ω-a.s.
=⇒ E[s(ω, γ)] = E[s(ω, γ̇)] , (45)

but the reverse implication is not necessarily true.

D. Example: Control Problem Satisfying NDECP but not NDE

Example 1. Let

xk+1 = axk + buk + vk

yk = xk1{|xk|≤M} + (xk + wk)1{|xk|>M}

where vk and wk are i.i.d. [−B,B]-valued (with B > 0)
uniformly distributed random variables and M is a constant
to be given below. Suppose that x0 is uniformly distributed
between [−A,A] (with A > 0). Consider the expected cost:

E

[
Px2

N +
N−1∑
k=0

qx2
k + ru2

k

]
,

with q > 0, r > 0. If the controller had access to the state
for all time stages, then the optimal controller would be linear
and the performance of this controller would be no worse than
the performance of the controller which only had access to
the measurement process given above [23], [24, p.457]. Now,
suppose that P = p is taken to be the fixed point solution of
the Riccati equation for this problem (whose existence follows
from the controllability and the scalar nature of the problem),
so that the resulting controller (with full state information) is
stationary. Accordingly, with p solving the Riccati equation:
p = q+a2p− a2pb2

b2p+r , with ut = − bpaxt

b2p+r =: kxt, we know that
such a control is stabilizing with (a+bk) =: ρ, |ρ| < 1. Then,
the closed loop system under this optimal control is given with

xk+1 = axk + buk + vk = ρxk + vk.

Now, if x0 ∈ [−A,A] and with |vk| ≤ B, we are guaranteed
that xk ∈ [−M,M ] where we take A+B 1

1−|ρ| =: M . Accord-
ingly, the optimal control (with full state information) would
be realizable with the information structure given above since
the event |xk| ≤ M would always be active. In particular,
in the definition of NDECP in Definition 2, if the policies
considered were the ones keeping the state in [−M,M ]. On
the other hand, if one were to apply an arbitrary control, say
one larger than 2M

b , then (xk+wk)1{|xk|>M} would be active,
and the separation property would no longer be applicable
as the control policy would affect the estimation error. The
message is that requiring that the no-dual effect property holds
for every possible action realization is too restrictive.

VI. THE NDECP IMPLIES CE

In this section we show that, despite being less restrictive
than the 2nd-order NDE property, the 2nd-order NDECP is
sufficient to guarantee that the CE property holds, for the same
control problem considered in [6, Section III].
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Theorem 2. Suppose that the control problem given by the dy-
namical system (8) with disturbances (9) and cost function (10)
satisfies Definition 7. Then the CE property holds (and thus
the optimal control policy is linear).

Proof. Denote the optimal control policy as γ?k , k =
0, 1, . . . , N − 1. The optimal mean cost-to-go from time k
onward, defined as J̄?k , E[J∗k (Ik)] (see (13)), is given
recursively by

J̄?k (γ0, . . . , γk−1) (46a)

= min
γk∈Π̃k

E
[
x′kQkxk + u′kRkuk + J̄?k+1(γ0, . . . , γk)

]
,

k = 0, . . . , N − 1 (46b)

J̄?N (γ0, . . . , γN−1) , E[x′NQNxN ] (46c)

Suppose that J̄?k+1 has the form

J̄?k+1(γ0, . . . , γk) (47a)

= E
[
x′k+1Pk+1xk+1

]
+ αk+1(γ0, . . . , γk), (47b)

where the matrix Pk+1 ≥ 0 does not depend on γk or uk and
αk+1 satisfies

αk+1(γ0, . . . , γk) doesn’t depend on {γ0, . . . , γk} ∈ Π̃k+1

(47c)

(The validity of this supposition will be demonstrated near the
end of this proof.) For k = N − 1 it is easy to see from (46c)
that (47) is true with

PN = QN , αN = 0. (48)

Now, assuming that (47) is true for k + 1, one has that

J̄?k (γ0, . . . , γk−1) (49)
(a)
= min

γk∈Π̃k

E
[
x′kQkxk + u′kRkuk + J̄?k+1

]
(50)

(47a)
= min

γk∈Π̃k

E
[
x′kQkxk + u′kRkuk + E

[
x′k+1Pk+1xk+1

]
+ αk+1

]
(51)

(b)
= min

γk∈Π̃k

E
[
x′kQkxk + u′kRkuk + x′k+1Pk+1xk+1

]
+ αk+1

(52)

(8a)
= min

γk∈Π̃k

{
E[x′kQkxk + u′kRkuk

+ (Fkxk +Gkuk + vk)′Pk+1(Fkxk +Gkuk + vk)]

}
+ αk+1

(9)
= min

γk∈Π̃k

{
E[u′k(Rk +G′kPk+1Gk)uk + 2u′kG

′
kPk+1Fkxk]

}
+ E[x′k(Qk + F ′kPk+1Fk)xk] + tr{VkPk+1}+ αk+1

(c)
= min

γk∈Π̃k

{
E[E[u′k(Rk +G′kPk+1Gk)uk

+ 2u′kG
′
kPk+1Fk E[xk|Ik]

∣∣Ik]]
}

+ E[x′k(Qk + F ′kPk+1Fk)xk] + tr{VkPk+1}+ αk+1

(d)

≥ E

[
E

[
min
uk

{
u′k(Rk +G′kPk+1Gk)uk+

2u′kG
′
kPk+1Fk E[xk|Ik]

}∣∣∣Ik]] (53)

+ E[x′k(Qk + F ′kPk+1Fk)xk] + tr{VkPk+1}+ αk+1

where (a) holds because γ?k ∈ Π̃k and Π̃ contains an
optimal policy by hypothesis, (b) is due to applying iterated
expectations so that E[E[·]] = E[·] and to (47c), (c) follows
from applying iterated expectations, and (d) holds because
uk = γk(Ik) is a measurable map with argument Ik. It is easy
to verify (e.g., by completing squares) that the minimizer of
the quadratic form in (53) over γk ∈ Π̃k is

u?k = γ?k(Ik) = −(Rk +G′kPk+1Gk)−1G′kPk+1Fk E[xk|Ik] ,
(54)

which corresponds to the CE control policy. Since latter
belongs to Π̃k, it follows that γ?k is also the solution to (53).
With this we have shown that if (47) holds at time k+ 1, then
the optimal control policy at time k is linear and coincides
with the certainty-equivalent control law. We now show that
the above also implies that (47) is true at time k. For this
purpose, substitute (54) into the conditional expectation in (53)
to obtain

E

[
min
γk∈Π̃k

{
u′k(Rk +G′kPk+1Gk)uk

+ 2u′kG
′
kPk+1Fk E[xk|Ik]

}∣∣∣∣Ik] (55)

= E

[
− E[xk|Ik]

′
(G′kPk+1Fk)′(Rk +G′kPk+1Gk)−1

× (G′kPk+1Fk) E[xk|Ik]

∣∣∣∣Ik] (56)

= E[w̃′k(G′kPk+1Fk)′(Rk +G′kPk+1Gk)−1(G′kPk+1Fk)w̃k|Ik]

− E[x′k(G′kPk+1Fk)′(Rk +G′kPk+1Gk)−1(G′kPk+1Fk)xk|Ik],
(57)

where we have utilized the orthogonality principle and w̃k =
xk − E[xk|Ik] (as defined in (6c)). Substituting (57) in (53)
we obtain

J̄∗k = E[E[w̃′k(G′kPk+1Fk)′(Rk +G′kPk+1Gk)−1

× (G′kPk+1Fk)w̃k|Ik]] (58)

− E[E[x′k(G′kPk+1Fk)′(Rk +G′kPk+1Gk)−1

× (G′kPk+1Fk)xk|Ik]] (59)
+ E[x′k(Qk + F ′kPk+1Fk)xk] + tr{VkPk+1}+ αk+1

= E[x′kPkxk] + αk (60)

with

αk , tr{VkPk+1}+ αk+1+

tr{(G′kPk+1Fk)′(Rk +G′kPk+1Gk)−1(G′kPk+1Fk)E[w̃kw̃
′
k]}

(61)

Pk , Qk + F ′k[Pk+1

− Pk+1Gk(Rk +G′kPk+1Gk)−1G′kPk+1]Fk (62)

The theorem statement assumes that the NDECP property of
Definition 7 holds, and thus E[w̃kw̃

′
k] does not depend on

{γ0, . . . , γk−1} ∈ Π̃k. Since we have supposed (47) to be
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true for k + 1, it follows that E[αk+1] does not depend on
{γ0, . . . , γk−1} ∈ Π̃k. We then have from (61) that (47) is
true for k as well. Therefore, by induction, (47) holds for
every k ∈ {1, 2, . . . , N − 1}, implying from the first part of
this proof that (54) does too, completing the proof.

Remark 4. Since the NDECP definitions 5, 6 and 7 are
equivalent, it follows that Theorem 2 also holds if the control
problem satisfies any of these versions of the NDECP. The
same is true for the sample-based NDECP mutually equivalent
definitions 2, 4 and 6, since a control problem satisfying any
of these will also satisfy Definition 7.

APPENDIX

Equivalence between Definitions 2, 3 and 4

The result is a direct consequence of the following lemma.

Lemma 1. Let {si(ω, γ0, . . . , γi−1)}Ni=1 be a collection of
random variables possibly depending on the sequence of pa-
rameters (policies) {γ0, . . . , γN−1} ∈ ΠN = Π0×· · ·×ΠN−1.
Let {γ?0 , . . . , γ?N−1} ∈ ΠN be a specific choice of these
parameters. Then the following statements are equivalent
(i)

st(ω, γ0, . . . , γk, γ
?
k+1, . . . , γ

?
t−1)

does not depend on {γ0, . . . , γk} ∈ Πk+1,

0 ≤ k < t ≤ N, ω ∈ Ω. (63)

(ii)

st(ω, γ0, . . . , γk, γ
?
k+1, . . . , γ

?
t−1)

does not depend on γk ∈ Πk,

0 ≤ k < t ≤ N, ω ∈ Ω (64)

(iii)

st(ω, γ0, . . . , γt−1)

does not depend on {γ0, . . . , γt−1} ∈ Πt, (65)
0 < t ≤ N, ω ∈ Ω (66)

Proof. (iii)⇒(ii): Immediate since (64) is a special case
of (65).
(ii)⇒(iii): For k = t− 1, (64) becomes

st(ω, γ0, . . . , γt−1)

does not depend on γt−1 ∈ Πt−1, 0 < t ≤ N, ω ∈ Ω
(67)

Thus, for every pair of sequences {γ̇i}t−1
i=0, {γ̈i}

t−1
i=0 ∈ Πt, we

have

st(ω, γ̇0, . . . , γ̇t−2, γ̇t−1) (68)
(67)
= st(ω, γ̇0, γ̇1, . . . , γ̇t−3, γ̇t−2, γ

?
t−1), ω ∈ Ω (69)

(64)
= st(ω, γ̇0, γ̇1, . . . , γ̇t−3, γ

?
t−2, γ

?
t−1), ω ∈ Ω (70)

...
(64)
= st(ω, γ̇0, γ

?
1 , . . . , γ

?
t−3, γ

?
t−2, γ

?
t−1), ω ∈ Ω, (71)

(64)
= st(ω, γ̈0, γ

?
1 , . . . , γ

?
t−3, γ

?
t−2, γ

?
t−1), ω ∈ Ω, (72)

...
(64)
= st(ω, γ̈0, γ̈, . . . , γ̈t−3, γ̈t−2, γ

?
t−1), ω ∈ Ω, (73)

(67)
= st(ω, γ̈0, γ̈, . . . , γ̈t−3, γ̈t−2, γ̈t−1), ω ∈ Ω, (74)

which means (ii)⇒(iii) and thus (ii)⇔(iii).
(i)⇒(iii): Immediate since (65) is obtained from (63) by
choosing t = i.
(iii)⇒(i): Immediate since (63) is a special case of (65). This
completes the proof.
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