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Outline

1. Regret-optimal control

- This part is based on joint work w. Gautam Goel, Sahin Lale

and Babak Hassibi

2. The feedback capacity of Gaussian channels

- This part is based on joint work w. Victoria Kostina and

Babak Hassibi
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The LQR setting

A time-invariant linear dynamical system is given by

xt+1 = Axt +Buut +Bwwt,

where xt ∈ R
n is state, ut ∈ R

m is the control and wt ∈ R
p

is the disturbance vector

- The pair (A,Bu) is stabilizable
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The LQR setting

A time-invariant linear dynamical system is given by

xt+1 = Axt +Buut +Bwwt,

where xt ∈ R
n is state, ut ∈ R

m is the control and wt ∈ R
p

is the disturbance vector

- The pair (A,Bu) is stabilizable

The operation:

A policy K is a linear operator from w = {wt} to u = {ut}
- A causal mapping is a sequence of mappings

Kt : (w−∞, . . . , wt) → ut

- A strictly causal policy is

Kt : (w−∞, . . . , wt−1) → ut
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The linear quadratic cost

The LQR cost of a linear controller K is

cost(K;w) =
∞∑

t=−∞

(x∗tQxt + u∗tRut)

, w∗T ∗
KTKw

where Q,R ≻ 0 are weight matrices.
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The linear quadratic cost

The LQR cost of a linear controller K is

cost(K;w) =
∞∑

t=−∞

(x∗tQxt + u∗tRut)

, w∗T ∗
KTKw

where Q,R ≻ 0 are weight matrices.

For a linear controller (policy) K, we can always write

[
x

u

]

=

[
FK + G

K

]

︸ ︷︷ ︸

TK

w. (1)
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Strategies to design a controller

One aims minimize the cost

cost(K;w),

but need to specify the disturbance w
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Strategies to design a controller

One aims minimize the cost

cost(K;w),

but need to specify the disturbance w

If wt is white with Gaussian distribution,

min
K

E[cost(K;w)],

the solution is LQR controller ut = −Klqrxt (H2 control)
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Strategies to design a controller

One aims minimize the cost

cost(K;w),

but need to specify the disturbance w

If wt is white with Gaussian distribution,

min
K

E[cost(K;w)],

the solution is LQR controller ut = −Klqrxt (H2 control)

The robust approach (H∞ control):

min
K

max
w∈ℓ2

cost(K;w)

‖w‖2
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Scalar system with A = 0.9 and Bu = Bw = Q = R = 1.
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The Regret-Optimal Controller

-

w Regret

Non-causal

Causal

Cost 1

Cost 2
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The Regret-Optimal Controller

-

w Regret

Non-causal

Causal

Cost 1

Cost 2

Our regret approach:

Regret(K;w) =

(

cost(K;w)− inf
K′ is non-causal

cost(K′;w)

)
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The Regret-Optimal Controller

-

w Regret

Non-causal

Causal

Cost 1

Cost 2

Our regret approach:

Regret(K;w) =

(

cost(K;w)− inf
K′ is non-causal

cost(K′;w)

)

The design criterion is the worst-case regret:

Regret∗ = inf
K is causal

sup
‖w‖2≤1

Regret(K;w).
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Main results: the regret

Theorem (Sabag, Goel, Lale, Hassibi 21)

The optimal regret for the strictly-causal scenario is given by

Regret∗ = σ̄(ZΠ), (2)

where Z and Π are the unique solutions for the Lyapunov

equations

Z = AKZA∗
K +Bu(R+B∗

uPBu)
−1B∗

u

Π = A∗
KΠAK + PBwB

∗
wP. (3)
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Main results: the regret

Theorem (Sabag, Goel, Lale, Hassibi 21)

The optimal regret for the strictly-causal scenario is given by

Regret∗ = σ̄(ZΠ), (2)

where Z and Π are the unique solutions for the Lyapunov

equations

Z = AKZA∗
K +Bu(R+B∗

uPBu)
−1B∗

u

Π = A∗
KΠAK + PBwB

∗
wP. (3)

where P solves the LQR Riccati equation

P = Q+A∗PA−A∗PBu(R+B∗
uPBu)

−1B∗
uPA

Klqr = (R+B∗
uPBu)

−1B∗
uPA

AK = A−BuKlqr
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Main results: strictly-causal controller

Theorem (Sabag, Goel, Lale, Hassibi)

A strictly causal regret-optimal controller is given by

ut = ût −Klqrxt, (4)

where ût is given by

ξt+1 = Fξt +Gwt

ût = −(R+B∗
uPBu)

−1B∗
uΠξt. (5)

and

G = (I −AKZA∗
KΠ)−1AKZPBw

F = AK −GB∗
wP,

Recall that −Klqrxt is the standard LQR (H2) controller
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Comparison

H2 criterion (Frobenius) H∞ criterion (operator)

Noncausal 0.47 0.99

Regret-optimal 0.618 1.14

H2 controller 0.598 1.28

H∞ controller 0.84 0.99
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Main ideas

The regret can be reduced to a Nehari problem (1957)

- Given an anticausal (upper triangular) operator U ,

inf
L is causal

‖L − U‖

Explicit regret and controller via frequency domain
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Main ideas

The regret can be reduced to a Nehari problem (1957)

- Given an anticausal (upper triangular) operator U ,

inf
L is causal

‖L − U‖

Explicit regret and controller via frequency domain

The full-information control is just an example:

-
Disturbance Regret

Superior

Designed

Cost 1

Cost 2

System

System
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Main ideas

The regret can be reduced to a Nehari problem (1957)

- Given an anticausal (upper triangular) operator U ,

inf
L is causal

‖L − U‖

Explicit regret and controller via frequency domain

The full-information control is just an example:

-
Disturbance Regret

Superior

Designed

Cost 1

Cost 2

System

System

- The filtering problem (Kalman setting) in AISTATS 2021
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Part II: Feedback capacity of Gaussian

channels
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Channel with feedback

Encoder PY |X Decoder

Unit Delay

m xi yi

yiyi−1

m̂

A uniform message m ∈ [1 : 2nR]

At time i, encoding mapping is ei : [1 : 2nR]× Y i−1

Decoder mapping Yn → [1 : 2nR]
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Channel with feedback

Encoder PY |X Decoder

Unit Delay

m xi yi

yiyi−1

m̂

A uniform message m ∈ [1 : 2nR]

At time i, encoding mapping is ei : [1 : 2nR]× Y i−1

Decoder mapping Yn → [1 : 2nR]

Given a channel law, PY |X , the channel capacity is the

maximal information rate R such that Pr(M 6= M̂)
n→∞−−−→ 0
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Channel with feedback

Encoder PY |X Decoder

Unit Delay

m xi yi

yiyi−1

m̂

A uniform message m ∈ [1 : 2nR]

At time i, encoding mapping is ei : [1 : 2nR]× Y i−1

Decoder mapping Yn → [1 : 2nR]

Given a channel law, PY |X , the channel capacity is the

maximal information rate R such that Pr(M 6= M̂)
n→∞−−−→ 0

Feedback does not increase the capacity (Shannon 56)

- But, feedback has other benefits...
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The AWGN channel

The channel is given by

yi = xi + zi,

where {zi}i≥1 is a white process with zi ∼ N(0, Z)

An average power constraint 1
n

∑n
i=1 E[x

2
i ] ≤ P
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The AWGN channel

The channel is given by

yi = xi + zi,

where {zi}i≥1 is a white process with zi ∼ N(0, Z)

An average power constraint 1
n

∑n
i=1 E[x

2
i ] ≤ P

1. Feedback does not increase the capacity

Cfb(P ) = C(P ) = max I(X;Y ) = 0.5 log

(

1 +
P

Z

)
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The AWGN channel

The channel is given by

yi = xi + zi,

where {zi}i≥1 is a white process with zi ∼ N(0, Z)

An average power constraint 1
n

∑n
i=1 E[x

2
i ] ≤ P

1. Feedback does not increase the capacity

Cfb(P ) = C(P ) = max I(X;Y ) = 0.5 log

(

1 +
P

Z

)

2. Feedback improves the probability of error

- In part, the linear Schalkwijk-Kailath (1966) coding

xi ∝ (z0 − ẑ0(y
i−1))

achieves doubly-exponential decay (as n grows)
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The additive Gaussian noise channel

The channel is given by

Yi = Xi + Zi,

where {zi}i≥1 is a colored Gaussian process

- Feedback capacity is defined similarly
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The additive Gaussian noise channel

The channel is given by

Yi = Xi + Zi,

where {zi}i≥1 is a colored Gaussian process

- Feedback capacity is defined similarly

This is a channel with memory:

- The current noise Zi is correlated with Zi−1

- An optimal input should exploit this correlation via Zi−1

The optimal input distribution is not i.i.d.

Sabag, Kostina, Hassibi The feedback capacity of Gaussian channels



The additive Gaussian noise channel

The channel is given by

Yi = Xi + Zi,

where {zi}i≥1 is a colored Gaussian process

- Feedback capacity is defined similarly

This is a channel with memory:

- The current noise Zi is correlated with Zi−1

- An optimal input should exploit this correlation via Zi−1

The optimal input distribution is not i.i.d.

Feedback can increase the channel capacity

- But, not too much (Pinsker 69) (Ebert 70) (Cover-Pombra

89)
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The first works

Motivated by the SK scheme, Butman (67,69,76) studied

{Zi} an auto-regressive (AR) noise

Zi =
k∑

i=1

αiZi−k + Ui, (6)

where Ui ∼ N(0, 1) is i.i.d.
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The first works

Motivated by the SK scheme, Butman (67,69,76) studied

{Zi} an auto-regressive (AR) noise

Zi =
k∑

i=1

αiZi−k + Ui, (6)

where Ui ∼ N(0, 1) is i.i.d.

- Achievable rates using linear coding schemes

- Upper bounds on the feedback capacity of AR noise

Schemes and bounds also in Tiernan and Schalkwijk

(74,76)
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General capacity expression

Theorem (Cover, Pombra 89)

The feedback capacity of Gaussian channels is

Cfb(P ) = lim
n→∞

1

2n
max
B,ΣV

log
detΣ

(n)
X+Z

detΣ
(n)
Z

, (7)

where the nth maximization is over

Xn = BZn + V n

with B being a strictly causal operator, V n is a Gaussian

process and
1

n
Tr(Σ

(n)
X ) ≤ P.
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General capacity expression

Theorem (Cover, Pombra 89)

The feedback capacity of Gaussian channels is

Cfb(P ) = lim
n→∞

1

2n
max
B,ΣV

log
detΣ

(n)
X+Z

detΣ
(n)
Z

, (7)

where the nth maximization is over

Xn = BZn + V n

with B being a strictly causal operator, V n is a Gaussian

process and
1

n
Tr(Σ

(n)
X ) ≤ P.

For a fixed n, it is a convex program (Ordentlich, Boyd 98)

Non-trivial to compute the limit
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Past literature - I
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without feedback-I,” 1988

S. Ihara, ”Capacity of mismatched Gaussian channels with and

without feedback,” 1990

E. Ordentlich, ”A class of optimal coding schemes for moving

average additive Gaussian noise channels with feedback,” 1994

L. H. Ozarow, ”Random coding for additive Gaussian channels

with feedback,” 1990.
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channels with feedback,” 1990

J. Wolfowitz, ”Signalling over a Gaussian channel with feedback

and autoregressive noise,” 1975.
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maximization with linear matrix inequality constraints,” 1998
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The control perspective

Yang-Kavcic-Tatikonda (2007) derive an MDP formulation

- The formulation holds for any n

- The MDP state is a covariance matrix

For first-order ARMA,

Zi + βZi−1 = Ui + αUi−1, with Ui ∼ N(0, 1) (8)

they demonstrated the lower bound

Cfb(P ) ≥ − log x0,

and conjectured it to be the feedback capacity where x0 is

the positive root of Px2

1−x2 = (1+σαx)2

(1+σβx)2
with σ = sign(β − α)
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The control perspective

Yang-Kavcic-Tatikonda (2007) derive an MDP formulation

- The formulation holds for any n

- The MDP state is a covariance matrix

For first-order ARMA,

Zi + βZi−1 = Ui + αUi−1, with Ui ∼ N(0, 1) (8)

they demonstrated the lower bound

Cfb(P ) ≥ − log x0,

and conjectured it to be the feedback capacity where x0 is

the positive root of Px2

1−x2 = (1+σαx)2

(1+σβx)2
with σ = sign(β − α)

Kim (2006) confirms their conjecture for β = 0
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Variational formula

Kim (2009) - variational formula for stationary noise:
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Variational formula

Kim (2009) - variational formula for stationary noise:

Still, not computable

Resembles entropy in robust control (Mustafa, Glover 90),

(Doyle, Glover 88)

Computation of optimal SV , B for ARMA noise of first order

- This confirms the conjecture in (Yang et al. 07)
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Past literature - II

C. Li and N. Elia, ”Youla coding and computation of Gaussian

feedback capacity,” 2018

T. Liu and G. Han, ”Feedback capacity of stationary Gaussian

channels further examined,” 2019

C. D. Charalambous, C. K. Kourtellaris and S. Loyka ”Capacity

achieving distributions and separation principle for feedback

Gaussian channels with memory: the LQG theory of directed

information,” 2018

A. Gattami, ”Feedback capacity of Gaussian channels revisited,”

2019

C. D. Charalambous, C. K. Kourtellaris and S. Loyka, ”New

formulas of ergodic feedback capacity of AGN channels driven

by stable and unstable autoregressive noise,” 2020

S. Fang and Q. Zhu, ”A connection between feedback capacity

and Kalman filter for colored Gaussian noises,” 2020
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Our setting

The channel is MIMO

yi = Λxi + zi,

where Λ ∈ R
m×p is known.
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Our setting

The channel is MIMO

yi = Λxi + zi,

where Λ ∈ R
m×p is known.

The noise is generated by a state-space

si+1 = F si +Gwi

zi = Hsi + vi,

where (wi,vi) ∼ N(0,

(
W L

LT V

)

) is an i.i.d. sequence

- The initial state s1 ∼ N(0,Σ1|0)
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Our setting

The channel is MIMO

yi = Λxi + zi,

where Λ ∈ R
m×p is known.

The noise is generated by a state-space

si+1 = F si +Gwi

zi = Hsi + vi,

where (wi,vi) ∼ N(0,

(
W L

LT V

)

) is an i.i.d. sequence

- The initial state s1 ∼ N(0,Σ1|0)

When F (and L = 0) is stable, it is the stationary case
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Reminder: Kalman filter

Define

ŝi = E[si| zi−1]

Σi = cov(si − ŝi).

The Kalman filter is given by

ŝi+1 = F ŝi+Kp,i(zi−H ŝi), (9)

with

Kp,i = (FΣiH
T +GL)Ψ−1

i , Ψi = HΣiH
T + V,

and the covariance update is

Σi+1 = FΣiF
T +GWGT −KpΨiK

T
p . (10)

The innovations process is ei = zi−H ŝi with ei ∼ N(0,Ψi)
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The Riccati equation

The recursion converges to the stabilizing solution of

Σ = FΣF T +W −KpΨKT
p ,

where Kp = (FΣHT +GL)Ψ−1 and Ψ = HΣHT + V .

In the stationary case, no further assumptions

In the non-stationary case, we assume detectability and

stabilizability
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Main result

Theorem (Sabag, Kostina, Hassibi 21)

The feedback capacity of the MIMO Gaussian channel is

Cfb(P ) = max
Π,Σ̂,Γ

1

2
log det(ΨY )−

1

2
log det(Ψ)

ΨY = ΛΠΛT +HΣ̂HT + ΛΓHT +HΓTΛT +Ψ

The channel:

yi = Λxi + zi

The noise:

si+1 = F si +Gwi

zi = Hsi + vi
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Main result

Theorem (Sabag, Kostina, Hassibi 21)

The feedback capacity of the MIMO Gaussian channel is

Cfb(P ) = max
Π,Σ̂,Γ

1

2
log det(ΨY )−

1

2
log det(Ψ)

ΨY = ΛΠΛT +HΣ̂HT + ΛΓHT +HΓTΛT +Ψ

s.t.

(
Π Γ

ΓT Σ̂

)

� 0, Tr(Π) ≤ P,

The channel:

yi = Λxi + zi

The noise:

si+1 = F si +Gwi

zi = Hsi + vi
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Main result

Theorem (Sabag, Kostina, Hassibi 21)

The feedback capacity of the MIMO Gaussian channel is

Cfb(P ) = max
Π,Σ̂,Γ

1

2
log det(ΨY )−

1

2
log det(Ψ)

ΨY = ΛΠΛT +HΣ̂HT + ΛΓHT +HΓTΛT +Ψ

s.t.

(
Π Γ

ΓT Σ̂

)

� 0, Tr(Π) ≤ P,

(
F Σ̂F T +KpΨKT

p − Σ̂ FΓTΛT + F Σ̂HT +KpΨ

(·)T ΨY

)

� 0

The channel:

yi = Λxi + zi

The noise:

si+1 = F si +Gwi

zi = Hsi + vi
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The linear matrix inequalities (LMIs)

The decision variable Π is the inputs covariance:

- The constraint Tr(Π) ≤ P is the power constraint

- The first LMI
(
Π Γ

ΓT Σ̂

)

� 0

is a verification that Xi forms a covariance matrix with a

correlated signal
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The linear matrix inequalities (LMIs)

The decision variable Π is the inputs covariance:

- The constraint Tr(Π) ≤ P is the power constraint

- The first LMI
(
Π Γ

ΓT Σ̂

)

� 0

is a verification that Xi forms a covariance matrix with a

correlated signal

The second LMI
(
F Σ̂F T +KpΨKT

p − Σ̂ FΓTΛT + F Σ̂HT +KpΨ

(·)T ΨY

)

� 0

corresponds to a Riccati inequality

Σ̂ � F Σ̂F T +KpΨKT
p

− (FΓTΛT + F Σ̂HT +KpΨ)Ψ−1
Y (FΓTΛT + F Σ̂HT +KpΨ)T
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Main results: a scalar channel

Theorem

The feedback capacity of the scalar Gaussian channel is

Cfb(P ) = max
Σ̂,Γ

1

2
log

(

1 +
P +HΣ̂HT + 2ΓHT

Ψ

)

s.t.

(
P Γ

ΓT Σ̂

)

� 0,

(
F Σ̂F T +KpΨKT

p − Σ̂ FΓT + F Σ̂HT +KpΨ

(FΓT + F Σ̂HT +KpΨ)T P +HΣ̂HT + 2ΓHT +Ψ

)

� 0,

where Kp and Ψ are constants.

If H = 0, the capacity is C(P ) = 1
2 log

(
1 + P

V

)
.
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Discussion

This is the most general formulation with solution:

1. General state-space

2. Noise may be non-stationary

3. MIMO channels

The state-space structure is important

The solution subsumes (Kim 06,09),

and is similar to (Gattami 19) that studies a scalar channel

with state-space that is stationary, controllable with

fully-correlated disturbances

Can the capacity be simplified further?
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The moving average noise

Consider Zi = Ui + αUi−1 with α ∈ R and Ui ∼ N(0, 1)

Theorem (Alternative expression for (Kim, 06))

The feedback capacity of first-order MA noise process is

Cfb(P ) =
1

2
log(1 + SNR), (11)

where SNR is the positive root of the polynomial

SNR =
(√

P + |α|
√

SNR

1+SNR

)2

.
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The moving average noise

Consider Zi = Ui + αUi−1 with α ∈ R and Ui ∼ N(0, 1)

Theorem (Alternative expression for (Kim, 06))

The feedback capacity of first-order MA noise process is

Cfb(P ) =
1

2
log(1 + SNR), (11)

where SNR is the positive root of the polynomial

SNR =
(√

P + |α|
√

SNR

1+SNR

)2

.

Proof: it is easy to show that the Schur complement of both

LMIs equals zero. Substitute these equations into the

objective.

The fixed-point polynomial is different from (Kim 06)

- However, their positive roots coincide
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Main steps

Reminder: the capacity is given by

Cfb(P ) = lim
n→∞

1

2n
max

{Xi=BZi−1+Vi}ni=1

log
detΣ

(n)
X+Z

detΣ
(n)
Z

Road map:

1. Sequentialize the objective

2. Sequentialize the domain

3. Formulate a SCOP (sequential convex optimization

problem)

4. A ”single-letter” upper bound

5. Show that the upper bound can be achieved
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The directed information (DI)

1 The DI was defined in (Massey 90)

I(Xn → Y n) =

n∑

i=1

I(Xi;Yi|Y i−1)

=
∑

h(Yi|Y i−1)− h(Xi + Zi|Y i−1, Xi, Zi−1)

=
∑

h(Yi|Y i−1)− h(Zi|Zi−1)

= h(Y n)− h(Zn)

2 For Gaussian inputs, the Cover and Pombra objective is DI

I(Xn → Y n) = log
detK

(n)
X+Z

detK
(n)
Z

(12)

3 Aligns with feedback capacity theorems (Tatikonda, Mitter

00,09) (Permuter, Weissman, Goldsmith 08)
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The structure: cascaded filtering problem

+ Dec.Enc.

yi−1

zi
yiΛxi

The encoder constructs

ŝi , E[si| zi−1] from

si+1 = F si +Gwi

zi = Hsi + vi,

The innovation Ψi = cov(zi −H ŝi)
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The structure: cascaded filtering problem

+ Dec.Enc.

yi−1

zi
yiΛxi

The encoder constructs

ŝi , E[si| zi−1] from

si+1 = F si +Gwi

zi = Hsi + vi,

The innovation Ψi = cov(zi −H ŝi)

The decoder constructs
ˆ̂si , E[ŝi |yi−1]from

ŝi+1 = F ŝi +Kp,i ei,

yi = xi +H ŝi +(zi −H ŝi),

The innovation ΨY,i = cov(yi − ˆ̂yi)
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The structure: cascaded filtering problem

+ Dec.Enc.

yi−1

zi
yiΛxi

The encoder constructs

ŝi , E[si| zi−1] from

si+1 = F si +Gwi

zi = Hsi + vi,

The innovation Ψi = cov(zi −H ŝi)

The decoder constructs
ˆ̂si , E[ŝi |yi−1]from

ŝi+1 = F ŝi +Kp,i ei,

yi = xi +H ŝi +(zi −H ŝi),

The innovation ΨY,i = cov(yi − ˆ̂yi)

- The objective reads

h(Yi|Y i−1)− h(Zi|Zi−1) = 0.5 log det(ΨY,i)− 0.5 log det(Ψi)
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The optimal policy

Lemma

For each n, it is sufficient to optimize with inputs of the form

xi = ΓiΣ̂
†
i (ŝi− ˆ̂si) +mi, i = 1, . . . , n

where:

- Similar policy structures in (Yang et al. 07), (Kim 09), (Gattami

19), (Charalmbous et al. 18, 20)
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†
i (ŝi− ˆ̂si) +mi, i = 1, . . . , n
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The optimal policy

Lemma

For each n, it is sufficient to optimize with inputs of the form

xi = ΓiΣ̂
†
i (ŝi− ˆ̂si) +mi, i = 1, . . . , n

where:

mi ∼ N(0,Mi) is independent of (xi−1,yi−1)

Σ̂†
i is the pseudo-inverse of Σ̂i = cov(ŝi− ˆ̂si)

Γi is a matrix that satisfies

Γi(I − Σ̂†
i Σ̂i) = 0

the input satisfies
∑n

i=1Tr(ΓiΣ̂
†
iΓ

T
i +Mi) ≤ nP

- Similar policy structures in (Yang et al. 07), (Kim 09), (Gattami

19), (Charalmbous et al. 18, 20)
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The AR noise

Consider the AR noise Zi + βZi−1 = Ui with Ui ∼ N(0, 1)

The feedback capacity with P = 1

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Y

The regression parameter β
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The AR noise - contd.

The optimal inputs are xi = ΓΣ̂†(ŝi− ˆ̂si) +mi

- The power of each component

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ΓΣ̂†ΓT
M

The parameter β

P
o
w

e
r

The range β ∈ [0, 1.5] shows our disagreement with

(Gattami 19)

For large β, i.i.d. inputs become optimal
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Main steps

Reminder: the capacity is given by

Cfb(P ) = lim
n→∞

1

2n
max

{Xi=BZi−1+Vi}ni=1

log
detΣ

(n)
X+Z

detΣ
(n)
Z

Road map:

Sequentialize the objective

Sequentialize the domain

3. Formulate a SCOP

4. A ”single-letter” upper bound

5. Show that the upper bound can be achieved
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The controlled state-space

Lemma

For a fixed policy {(Γi,Mi)}ni=1,

ŝi+1 = F ŝi+Kp,i ei,

yi = (ΛΓiΣ̂
†
i +H) ŝi−ΛΓiΣ̂

†
i
ˆ̂si+Λmi + ei,

Consequently, the error covariance Σ̂i = cov(ŝi− ˆ̂si) satisfies

Σ̂i+1 = F Σ̂iF
T +Kp,iΨiK

T
p,i −KY,iΨY,iK

T
Y,i

with Σ̂1 = 0, and

ΨY,i = (ΛΓiΣ̂
†
i +H)Σ̂i(ΛΓiΣ̂

†
i +H)T + ΛMiΛ

T +Ψi

KY,i = (F Σ̂i(ΛΓiΣ̂
†
i +H)T +Kp,iΨi)Ψ

−1
Y,i

- Similar state-space in (Kim 09), (Charalmbous et al. 20)
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SCOP formulation

Lemma (Sequential convex-optimization problem)

The n-letter capacity can be bounded as

Cn(P ) ≤ max
{Γi,Πi,Σ̂i+1}ni=1

1

2n

n∑

i=1

log det(ΨY,i)− log det(Ψi)

s.t.

(
Πt Γt

ΓT
t Σ̂t

)

� 0,
1

n

n∑

i=1

Tr(Πi) ≤ P,

(
F Σ̂tF

T +Kp,tΨtK
T
p,t − Σ̂t+1 KY,tΨY,t

ΨY,tK
T
Y,t ΨY,t

)

� 0,

where the LMIs hold for t = 1, . . . , n and Σ̂1 = 0.
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Proof outline

The argument of the objective is

ΨY,i = (ΛΓiΣ̂
†
i +H)Σ̂i(ΛΓiΣ̂

†
i +H)T + ΛMiΛ

T +Ψi

- Define an auxiliary decision variable Πi , Mi + ΓiΣ̂
†
iΓ

T

- Reduce the variable Mi

The Schur complement transformation (e.g. Boyd 94)

Πi � ΓiΣ̂
†
iΓ

T
i

Γi(I − Σ̂†
i Σ̂i) = 0

⇐⇒
(
Πi Γi

ΓT
i Σ̂i

)

� 0.

Relax Riccati recursion to a matrix inequality + Schur

complement transformation
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Single-letter Upper Bound

Lemma (The upper bound)

The feedback capacity is bounded by the convex optimization

problem

Cfb(P ) ≤ max
Π,Σ̂,Γ

1

2
log det(ΨY )−

1

2
log det(Ψ)

s.t.

(
Π Γ

ΓT Σ̂

)

� 0, Tr(Π) ≤ P,

ΨY = ΛΠΛT +HΣ̂HT + ΛΓHT +HΓTΛT +Ψ

KY = (FΓTΛT + F Σ̂HT +KpΨ)Ψ−1
Y

(
F Σ̂F T +KpΨKT

p − Σ̂ KY ΨY

ΨY K
T
Y ΨY

)

� 0.
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Proof outline

Define the uniform convex combinations

Π̄n =
1

n

n∑

i=1

Πi, Γ̄n =
1

n

n∑

i=1

Γi,
¯̂
Σn =

1

n

n∑

i=1

Σ̂i

By the concavity of log det(·),

1

n

n∑

i=1

log det(ΨY,i) ≤ log det

(

1

n

n∑

i=1

ΨY,i

)

Some of the constraints are satisfied for each n

The Riccati LMI, however, is satisfied in the asymptotics

only
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Lower bound

Lemma (Lower bound)

The feedback capacity is lower bounded by the optimization

problem

Cfb(P ) ≥ max
Γ,Π,Σ̂

log det(ΨY )− log det(Ψ)

s.t.

(
Π Γ

ΓT Σ̂

)

� 0, Tr(Π) ≤ P

KY = (F Σ̂HT + FΓTΛT +KpΨ)Ψ−1
Y

ΨY = ΛΠΛT + ΛΓHT +HΓTΛT +Ψ

Σ̂ = F Σ̂F T +KpΨKT
p −KY ΨY K

T
Y

∃K : ρ(F −K(ΛΓΣ̂† +H)) < 1.

- Convergence of Riccati recursion (Nicolao, Gevers 92)
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Conclusions

A closed-form capacity expression as a finite-dimensional

convex optimization problem

The derivation relies on the noise state-space

Sequential structures also exploited in (Tanaka, Kim,

Parillo, Mitter 16) and its extension in (Sabag, Tian,

Kostina, Hassibi 20)

Ongoing work:

- Optimal (and simple) coding scheme

Thank you for your attention!

Sabag, Kostina, Hassibi The feedback capacity of Gaussian channels


