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Abstract—The problem of reliable communication over the
memoryless state-dependent multiple-access channel (MAC) is
considered, where the encoders and the decoder are provided with
various degrees of asymmetric noisy channel state information
(CSI). For the case where the encoders observe causal, asymmetric
noisy CSI and the decoder observes complete CSI, inner and outer
bounds to the capacity region, which are tight for the sum-rate
capacity, are provided. Next, single-letter characterizations for
the channel capacity regions under each of the following system
settings are established: 1) the CSI at the encoders are asymmetric
deterministic functions of the CSI at the decoder and the encoders
have noncausal noisy CSI; 2) the encoders observe asymmetric
noisy CSI with asymmetric delays and the decoder observes com-
plete CSI; 3) a degraded message set scenario with asymmetric
noisy CSI at the encoders and complete and/or noisy CSI at the
decoder. The main component in these results is a generalization
of a recently introduced converse coding approach for the MAC
with asymmetric quantized CSI at the encoders and herein con-
siderably extended and adapted for the noisy CSI setup.

Index Terms—Asymmetric channel state information, capacity
region, converse coding theorem, Shannon strategies, state-depen-
dent multiple-access channel.

I. INTRODUCTION

A. Literature Review

M ODELING communication channels with a state
process, which governs the channel behavior, fits well

for many physical scenarios. For single-user channels, the
characterization of the capacity with various degrees of channel
state information at the transmitter (CSIT) and at the receiver
(CSIR) is well understood. Among them, Shannon [1] provides
the capacity formula for a discrete memoryless channel with
causal noiseless CSIT, where the state process is i.i.d., in terms
of Shannon strategies (random functions from the state space to
the channel input space). Gelfand and Pinsker [2] consider the
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same problem with noncausal side information and establish a
single-letter capacity formula. In [3], noisy state observation
available at both the transmitter and the receiver is considered
and the capacity under such a setting is derived. Later, in [4] this
result is shown to be a special case of Shannon’s model and the
authors also prove that when CSIT is a deterministic function
of CSIR, optimal codes can be constructed directly on the input
alphabet. Erez and Zamir [5] examine the discrete modulo-ad-
ditive noise channel with causal CSIT which governs the noise
distribution, and they determine the optimal strategies that
achieve channel capacity. In [6], fading channels with perfect
CSIT is considered and it is shown that with instantaneous and
perfect CSI, the transmitter can adjust the data rates for each
channel state to maximize the average transmission rate. In
[7], a single letter characterization of the capacity region for
single-user finite-state Markovian channels with quantized state
information available at the transmitter and full state informa-
tion at the decoder is provided. In a closely related direction,
finite-state channels (with memory) with output feedback is
investigated in [8]. In particular, [8] shows that it is possible to
formulate the computation of feedback capacity as a stochastic
control problem. In [9], finite-state channels with feedback,
where feedback is a time-invariant deterministic function of the
output samples, is considered.
The literature on state-dependent multiple access channels

with different assumptions of CSIR and CSIT (such as causal
versus noncausal, perfect versus imperfect) is extensive and the
main contributions of the current paper have several interactions
with the available results in the literature, which we present in
Section I-B. Hence, we believe that in order to suitably high-
light the contributions of this paper, it is worth discussing the
relevant literature for the multiuser setting in more detail. To
start, [10] provides a multiletter characterization of the capacity
region of time-varying MACs with general channel statistics
(with/without memory) under a general state process (not neces-
sarily stationary or ergodic) and with various degrees of CSIT
and CSIR. In [10], it is also shown that when the channel is
memoryless, if the encoders use only the past asymmetric par-
tial (but not noisy) CSI and the decoder has complete CSI, then it
is possible to simplify the multiletter characterization to a single
letter one [10, Th. 4]. In [11], a general framework for the ca-
pacity region of MACs with causal and noncausal CSI is pre-
sented. In particular, an achievable rate region is presented for
the memoryless state-dependent MAC with correlated CSI and
the sum-rate capacity is established under the condition that the
state information available to each encoder are independent. In
[12], MACs with complete CSIR and noncausal, partial, rate
limited CSITs are considered. In particular, for the degraded
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case, i.e., the case where the CSI available at one of the encoders
is a subset of the CSI available at the other encoder, a single
letter formula for the capacity region is provided and when the
CSITs are not degraded, inner and outer bounds are derived, see
[12, Ths. 1, 2]. In [13], state-dependent MAC in which transmit-
ters observe asymmetric partial quantized CSI causally, and the
receiver has full CSI is considered and a single letter characteri-
zation of the capacity region is obtained. In [14], memoryless
state-dependent MACs with two independent states (see also
[15] for the common state), each known causally and strictly
causally to one encoder, is considered and an achievable rate
region, which is shown to contain an achievable region where
each user applies Shannon strategies, is proposed. In [16], an-
other achievable rate region for the same problem is proposed
and in [17] it is shown that this region can be strictly larger than
the one proposed in [14]. In [14], it is also shown that strictly
causal CSI does not increase the sum-rate capacity. In [18], the
finite-state Markovian MAC with asymmetric delayed CSITs is
studied and its capacity region is determined. In [19], the ca-
pacity region of some multiple-user channels with causal CSI
is established and inner and outer capacity bounds are provided
for the MAC. Another active research direction on the state-de-
pendentMAC regards the so-called cooperative state-dependent
MAC where there exists a degraded condition on the message
sets. In particular, [20] and [21] characterize the capacity re-
gion of the cooperative state-dependent MAC with states non-
causally and causally available at the transmitters. For more re-
cent results on the cooperative state-dependent MAC problem
see [22]–[24] and [25]. Finally, for a comprehensive survey on
channel coding with side information see [26] and for other re-
cent results on the multiuser channels with side information see
[27]–[30] and [31].

B. Main Contributions and Connections With the Literature

We consider several scenarios where the encoders and the de-
coder observe various degrees of noisy CSI. The essential re-
quirement we impose is that the noisy CSI available to the de-
cision makers is realized via the corruption of CSI by different
noise processes, which give a realistic physical structure of the
communication setup.We herein note that the asymmetric noisy
CSI assumption is acceptable as typically the feedback links are
imperfect and sufficiently far from each other so that the infor-
mation carried through them is corrupted by different (indepen-
dent) noise processes. It should also be noted that asymmetric
side information has many applications in different multiuser
models. Finally, what makes (asymmetric) noisy setups partic-
ularly interesting are the facts that
i) No transmitter CSI contains the CSI available to the other
one.

ii) CSI available to the decoder does not contain any of the
CSI available to the two encoders.

When existing results, which provide a single letter capacity for-
mulation, are examined, it can be observed that most of them
do not satisfy or or both (e.g., [13], [10], [11], [12],
[18]). Nonetheless, among these, [10] discusses the situation
with noisy CSI and makes the observation that the situation
where the CSITs and CSIR are noisy versions of the state
can be accommodated by their models. However, they also note

that if the noises corrupting transmitters and receiver CSI are
different, then the encoder CSI will, in general, not be con-
tained in the decoder CSI. Hence, motivated by similar obser-
vations in the literature (e.g., [11]), we partially treat the sce-
narios below and provide inner and outer bounds, which are
tight for the sum-rate capacity, for scenario (1) below and pro-
vide a single-letter characterization for the capacity region of
the latter scenarios.
1) The state-dependent MAC in which each of the transmit-
ters has an asymmetric causal noisy CSI and the receiver
has complete CSI (Theorems 2.1, 2.2, and Corollary 2.1).

2) The state-dependent MAC in which each of the transmit-
ters has an asymmetric noncausal noisy CSIT which is
a deterministic function of the CSIR at the receiver (see
Theorem 2.3).

3) The state-dependent MAC in which each of the transmit-
ters has an asymmetrically delayed and asymmetric noisy
CSI and the receiver has complete CSI (see Theorem 2.4).

4) The state-dependent MAC with degraded message set
where both transmitters transmit a common message and
one transmitter (informed transmitter) transmits a private
message. The informed transmitter has causal noisy CSI,
the other encoder has a delayed noisy CSI, and the receiver
has various degrees of CSI (see Theorems 2.5 and 2.6).

Let us now briefly position these contributions with respect
to the available results in the literature. The sum-rate capacity
determined in (1) can be thought as an extension of [11, Th. 4]
to the case where the encoders have correlated CSI. The causal
setup of (2) is solved in [13]. The solution that we provide to the
noncausal case partially solves [12] and extends [11, Th. 5] to
the case where the encoders have correlated CSI. Furthermore,
since the causal and noncausal capacities are identical for sce-
nario (2), the causal solution can be considered as an extension
of [4, Proposition 1] to a noisy multiuser case. Finally, (4) is an
extension of [20, Th. 4] to a noisy setup.

C. Converse Coding Approach

The most relevant paper to this work is [13] which provides a
converse coding approach for the state-dependent MAC where
asymmetric partial state information is available at the encoders.
In this paper, we adopt and expand on the converse technique
of this paper and use it in a noisy setup. The converse coding
approach of [13] is based on team decision theoretic methods
[32] (see also [33], [34] and [35] for recent team decision and
control theoretic approaches) where the authors use memoryless
stationary team policies which play a key role in showing that
the past information is irrelevant. As the authors mention in [13,
Remark 2], for the validity of their arguments, it would suffice
that the state information available at the decoder contains the
one available at the two transmitters. In this way, the decoder
does not need to estimate the coding policies used in decentral-
ized time-sharing.
For the noisy setup, we need to modify this approach to ac-

count for the fact that the decoder does not have access to the
state information at the encoders, and that the past state infor-
mation does not lead to a tractable recursion. This difficulty is
overcome by showing that a product form on the team policies
exists in the noisy setup as well.
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The rest of the paper is organized as follows. In Section II, we
formally state scenarios (1)–(4), and present themain results and
several observations. In Section III, we provide two examples
in one of which we apply the result of [5] and get the full ca-
pacity region by only considering the tightness of the sum-rate
capacity. Finally, in Section IV, we present concluding remarks.
Throughout the paper, we will use the following notations. A

random variable will be denoted by an upper case letter and
its particular realization by a lower case letter . For a vector ,
and a positive integer , will denote the th entry of , while

will denote the vector of the first entries
and will denote the vector of en-
tries between , of . For a finite set , will denote the
simplex of probability distributions over . Probability distri-
butions are denoted by and subscripted by the name of the
random variables and conditioning, e.g., is
the conditional probability of given

. Finally, for a positive integer , we shall denote by
the set of -strings of length smaller than

. We denote the indicator function of an event by . All
sets considered hereafter are finite.

II. MAIN RESULTS

Consider a two-user memoryless state-dependent MAC, with
two encoders, , , and two independent message sources
and which are uniformly distributed in the finite sets
and , respectively. The channel inputs from the encoders
are and , respectively, and the channel
output is . The channel state process is modeled as a se-
quence of i.i.d. random variables in some finite space
. Let denote a pair of random variables available
at two encoders, , , respectively, at time . Throughout the
paper, by symmetric side information we will refer to the case
where and by asymmetric side information to when
this does not occur. Furthermore, by noisy side information will
refer to the case where are correlated according to
a given joint distribution .

A. Asymmetric Causal Noisy CSIT

Let the two encoders have access to a causal noisy version
of the state information at each time , modeled by

, , respectively, where the joint distribution
of factorizes as

(1)

The system is depicted in Fig. 1. Let be available at the re-
ceiver and let be a sequence of i.i.d. triples,
independent from . Hence, for any ,

(2)

Fig. 1. Multiple-access channel with asymmetric causal noisy CSI.

The channel inputs at time , i.e., and , are functions of
the locally available information and , re-
spectively. Let and , respec-
tively. Then, the laws governing -sequences of state, input, and
output letters are given by

(3)

where , the channel’s transition
probability distribution, is given a priori.
Definition 2.1: An code with block length

and rate pair for a state-dependent MAC with causal
noisy state information consists of
1) A sequence of mappings for each encoder

2) An associated decoding function

Let . The

system’s probability of error, , is given by

A rate pair is achievable if for any , there exists,
for all sufficiently large an code such that

, , and .
The capacity region of the state-dependent MAC, , is the
closure of the set of all achievable rate pairs and the

sum-rate capacity is defined as
.
Before proceeding with the main result, we introduce mem-

oryless stationary team policies [13] and their associated rate
regions. Let the set of all possible functions from to and
to be denoted by and , re-

spectively. We shall refer to -valued and -valued random
vectors as Shannon strategies.
Definition 2.2 [13]: A memoryless stationary (in time) team

policy is a family
(4)
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of probability distribution pairs on .
For every memoryless stationary team policy , let

denote the region of all rate pairs satisfying

(5)

(6)

(7)

where , , , and are random variables taking values
in , , , and , respectively, and whose joint probability
distribution factorizes as

(8)

Let denote the closure of the convex

hull of the rate regions given by (5)–(7) associated with
all possible memoryless stationary team polices as defined in
(4).
Theorem 2.1 (Inner Bound to ) : The achiev-

ability proof (which we omit) is based on a random code con-
struction with Shannon strategies and follows the standard ar-
guments involving joint -typical sequences (e.g., cf. [36, Sec.
15.2]). Let

where is the set of positive reals.
Theorem 2.2 (Outer Bound to ) :
Proof of Theorem 2.2: We need to show that all achievable

rates satisfy

i.e., a converse for the sum-rate capacity. Following [13], for
, let

(9)

Observe that and

where is the set of all -strings of length less than .
Recall that

and , for all
. Then, we can define the Shannon strategies

and by putting, for every and ,

(10)

We now show that the sum of any achievable rate pair can be
written as the convex combinations of mutual information terms
which are indexed by the realization of past complete CSI.
Lemma 2.1: Let and be the Shannon

strategies induced by and , respectively, as shown in
(10). Assume that a rate pair , with block length

and a constant , is achievable. Then,

(11)
Proof: Let . By Fano’s inequality, we

obtain
(12)

Observing that

(13)

Combining (12) and (13) gives

and

(14)
Furthermore,

(15)

where is implied by (2), in are Shannon
strategies whose realizations are mappings for

and thus holds since conditioning does not increase
entropy. Finally, follows since

(16)

where the first equality is verified by (3) and (2), where
for . At this point, it is worth noting that by
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(16), one can remove from (15) in the conditioning. How-
ever, we will soon observe why it is crucial to keep it when we
prove the product form. Now, let and combining
(14)–(15) gives

(17)

where is valid since . Further-
more,

(18)

and substituting the above into (17) yields (11).
Note that, for any , is a

function of the joint conditional distribution of channel state ,
inputs , , and output given the past realization
. Hence, to complete the proof of the outer bound, we need to

show that factorizes as in (8).
This is done in the lemma below. In particular, it is crucial to ob-
serve that the knowledge of the past state at the decoder, ,
is enough to provide a product form on and . Let

(19)

and

(20)

where and denote particular realizations of and
, respectively.

Lemma 2.2: For every and , the fol-
lowing holds:

(21)

Proof: Let and . Observe
that

(22)

where the second equality is shown in (16). Let us now con-
sider the term above. We have the
following:

(23)

where is due to (2) and (10), is valid by (10), is
due to (2), is valid by (1) and (10), is valid due to (19),
and is valid due to (20). Substituting (23) into (22)
proves the lemma.
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We can now complete the proof of Theorem 2.2. We have

where denotes the mutual infor-

mation induced by the product distribution and
the second step is valid since
is a function of the joint conditional distribution of channel
state , inputs and output given the past realization

. Hence, since , any achievable
pair satisfies .
As a consequence of Theorems 2.1 and 2.2, we have the fol-

lowing corollary which can be thought of as an extension of [11,
Th. 4] to the case where the encoders have correlated CSI.
Corollary 2.1:

(24)

Proof of Corollary 2.1: We need to show that
achieving (24). We follows steps akin

to [36, p. 535] where discrete memoryless MACs are consid-
ered. Let us fix and consider the rate constraints
given in

(25)

(26)

and

(27)

where (25), (26), and (27) are valid since and are inde-
pendent of each other and independent of . Observe now that
for any ,

since . There-
fore, the sum-rate constraint in is always active and hence,
there exists achieving (24).
We conclude this section with a number of remarks.
Remark 2.1: One essential step in the proof of Theorem 2.2 is

that, once we have the complete CSI, conditioning on which al-
lows a product form on and , there is no loss of optimality
(for the sum-rate capacity) in using associated memoryless team
policies instead of using all the past information at the receiver.
Remark 2.2: For the validity of Corollary 2.1, it is crucial to

have the product form on the pair . If this is not the

case, we would get that

and
. Therefore, it is possible to get an obsolete sum-

rate constraint in and hence, achievability of is not
guaranteed. Note that the channel inputs are not independent
since and .
Remark 2.3 (Cases of Partial and No CSIR): In the situation

where the receiver has partial information about the state at time
in the sense that it is provided with process , ,
which is independent of and satisfies the following:

(28)

it can be shown that the sum-rate capacity admits a similar ex-
pression as in (24) with replaced by , see [37, Th. 5.2.3]. Fur-
thermore, inspired by the coding schemes of the lossless CEO
problem [38] as well as of a recently proposed achievable re-
gion [14], an inner bound, which demonstrates the rate required
to transmit the above partial information about the state in the
case where the receiver has no CSI, is shown in [37, Th. 5.3.2].

B. CSITs as Deterministic Functions of CSIR: Noncausal Case

In this section, we consider the situation where the transmit-
ters have access to partial state information available at the de-
coder. In particular, let , where ,

and such that

(29)

The channel is driven by the state process and hence,

(30)

Note that one can define an equivalent channel with conditional
output probability

(31)

Hence, the causal setup of this problem is no more general than
the setup in [13] and the main result of this section is to show
that the result of [13] also holds for noncausal coding.
We keep the channel codes definition identical for the causal

and noncausal cases, except for the noncausal case we have;
, , . Let

denote the capacity region. We need to modify Definition 2.2 in
order to take the current CSI into account.
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Definition 2.3: A memoryless stationary (in time) team
policy is a family

(32)

For every defined in (32), denotes the region of
all rate pairs satisfying

(33)

(34)

(35)

where , , , and are random variables taking values
in , , , and , respectively, and whose joint probability
distribution factorizes as

(36)

Let denote the closure of the convex hull of

the rate regions given by (33)–(35) associated with all
possible memoryless stationary team polices as defined in (32).

Theorem 2.3 : For the achiev-

ability proof, see [13, Sec. III] and observe that any rate
which is achievable with causal CSI is also achievable with
noncausal CSI. For the converse proof of the noncausal case
see Appendix A. The proof for the noncausal case is realized
by observing that there is no loss of optimality if not only the
past, as shown in [13], but also the future CSI is ignored given
that the receiver is provided with complete CSI. A similar
observation for independent CSIT is also made see [11, Th. 5].
Consider now the setup in Section II in order to observe that

for the noncausal case the optimality of Shannon strategies is
not guaranteed. Recall that, we have

(37)

where . Consider now the right-hand side of
(37) and observe that

and therefore, the past channel outputs cannot be eliminated.

C. Asymmetric Noisy CSIT With Delays

Consider the problem defined in Section II-A where the two
encoders have access to asymmetrically delayed, where delays
are and , respectively, and noisy versions of the
state information at each time , modeled by
, , respectively. The rest of the channel model

is identical and hence, (1), (2), and (3) are valid throughout this
section. We also assume that is fully available at the receiver.
A code can be defined as in Definition 2.1, except now

1 Let denotes the capacity region of the delayed setup.
In the main result of this section the team policies are com-

posed of probability distributions on the channel inputs rather
than Shannon strategies.
Definition 2.4: A memoryless stationary (in time) team

policy is a family

(38)

For every memoryless stationary team policy , de-
notes the region of all rate pairs satisfying

(39)

(40)

(41)

where , , , and are random variables taking values
in , , , and , respectively, and whose joint probability
distribution factorizes as

(42)

Let denotes the closure of the convex hull

of the rate regions given by (39)–(41) associated with
all possible memoryless stationary team polices as defined in
(38).

Theorem 2.4 : Achievability can

be shown via random coding arguments. For the converse, see
Appendix B.
Remark 2.4 (Strictly Causal CSIT): When ,

Theorem 2.4 is the capacity region of the setup with strictly
causal CSITs. This case was considered in the literature, e.g., see
[14], [16], [15], and [22], where it is shown that strictly causal
side information is helpful. Theorem 2.4 verifies that since the
full CSI is available at the receiver and since the decoder does
not need to access the current CSI at the encoders, there exists

1Obviously, when then and
.
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Fig. 2. MAC with degraded message set and with noisy CSI.

no loss of optimality if the past information at the encoders are
ignored.

D. Degraded Message Set With Noisy CSIT

Assume a common message is provided to both encoders
and one of the encoders has its own private message. Assume
further that the encoder with the private message has causal
noisy CSI, whereas the encoder with the common message only
observes noisy state information with delay . Let the
common and the private messages be and , respectively,
and , , and denote the CSI at encoder ,
, respectively, where satisfies (1) and (2). Hence,

and ; see
Fig. 2. Let denote the capacity region for this channel. Re-
call that .
Definition 2.5: A memoryless stationary (in time) team

policy is a family

(43)

of probability distributions on .
Let for every , denote the region of all rate pairs

satisfying

(44)

(45)

where , , , and are random variables taking values
in , , , and , respectively, and whose joint probability
distribution factorizes as

(46)

Let denotes the closure of the convex hull of

the rate regions given by (44) and (45) associated with
all possible memoryless stationary team polices as defined in
(43).

Theorem 2.5 : See Appendix C for

the proof.

Fig. 3. MAC with degraded message set and with noisy CSIT and CSIR.

Remark 2.5: Theorem 2.5 shows that when the commonmes-
sage encoder does not have access to the current noisy CSI
(since the delay ), by enlarging the optimization space
of the other encoder, via Shannon strategies, the past CSI can
be ignored without loss of optimality if the decoder is provided
with complete CSI.
One important observation to be made in the degraded mes-

sage set scenario is that we do not require a product form on the
pair [see (46)]. In connection with this observation,
let us consider the following noisy CSIR setup.
Let the encoder with the private message causally observe

the noisy state information, whereas let the encoder with the
common message have no CSI, i.e., and

, and let the decoder also have access to noisy
CSI at time , ; see Fig. 3, where

(47)

and let denotes the capacity region for this setup.
Let for every memoryless stationary team policy defined in

(43), denote the region of all rate pairs
satisfying

(48)

(49)

where , , , and are random variables taking values
in , , , and , respectively, and whose joint probability
distribution factorizes as

(50)

Let denote the closure of the convex hull of

the rate regions given by (48) and (49) associated with
all possible as defined in (43).

Theorem 2.6 :

Proof: The achievability proof is identical to that of The-
orem 2.5. The converse proof is also similar and therefore, we



7060 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

only provide a sketch. In particular, observe the following lines
of equations for the converse proof of the condition on :

(51)

where follows since state is i.i.d., where is the Shannon
strategy induced by encoder at time as shown in (105), and

is valid since conditioning does not increase entropy, and
is valid since

(52)

where the first equality is valid due to (3) and the second equality
holds due to (47). Hence, one can directly obtain that

(53)

(54)

where . We now need to show that the joint

distribution satisfies (50).

Let and observe
that

(55)

where the first equality is verified by (3) and by the fact that
is independent of .

Remark 2.6: It should be observed that unlike Theorem
2.5 and results in the previous sections, for the validity of
Theorem 2.6, it is not required to have a Markov condition on

. Furthermore, the result also holds with no
CSIR, i.e., is allowed, and in this case Theorem 2.6 is
as an extension of [20, Th. 4], to a noisy setup.
Note that for the setup given in [20, Th. 4], Theorem

2.6 provides an equivalent characterization. Recall that
in [20, Th. 4] the informed encoder has full CSI, i.e.,

, both the uniformed encoder and the
decoder have no CSI and the capacity region is given as
the closure of all rate pairs satisfying

(56)

(57)

for some joint measure on having the
form

(58)

where . On the other hand, for this setup,

Theorem 2.6 gives the capacity region as

where denotes the region of all rate pairs
satisfying

(59)

(60)

where factorizes as

(61)

and .
Although the relation between an auxiliary variable and

Shannon strategies is well understood for the single-user case
(e.g., see [26, Sec. 3.2]), we believe that it requires more
attention in the multiuser case; in particular, note the differ-
ence between and . Hence, we provide a proof for

, see Appendix D.
We conclude this section with the following remark.
Remark 2.7: For the validity of converse proof of Theorem

2.6, it is crucial that only depends on . To be more ex-
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plicit, let us assume and consider the following steps of
the converse:

(62)

Since is not available to the decoder, the above equality is
valid if does not provide any information about . Hence,
in other words, whether CSITs are noisy or not, if there is no
CSI or noisy CSI at the decoder, the arguments above would
fail if the uninformed encoder observes some degree of CSI, i.e.,

so that carries information about .

III. EXAMPLES

We present two examples. In the first example, we discuss
the state dependent modulo-additive MACwith noisy CSIT and
complete CSIR (see Section II-A) and show that the proposed
inner and outer bounds are tight and yield the capacity region.
In the second example, we consider the problem defined in Sec-
tion II-B where the channel is a binary multiplier MAC whose
state is an interference sequence.

A. Modulo-Additive State-Dependent MAC With Noisy CSIT

Recall that the results of Section II-A are given in terms of
Shannon-strategies. Hence, their computation requires an op-
timization over an extended space of the input alphabet to a
space of strategies and is often hard; in fact, very few explicit
solutions exist even in the single-user case. In [5], modulo-addi-
tive single-user channel with complete CSIT is considered and
a closed-form solution for the capacity is derived. Based on
this result, we now consider the modulo-additive state-depen-
dent MAC with asymmetric noisy CSIT and show that for the
sum-rate capacity, the optimal set of strategies has uniform dis-
tribution. This enables us to determine the entire capacity region
by observing that under the uniform distribution both inner and
outer bounds are tight.
To be more explicit, we consider a two-user state-dependent

MAC in which the channel noise, defined by a process ,
is correlated with the state process. The channel is given by

where
and is conditionally independent of given the state
and in the sequel addition (and subtraction) is understood to

be performed mod- . Assume further that we have the setup of
Section II-A. The following theorem is the main result of this
example and can be though as an extension of [5, Th. 1] to a
noisy multiuser setting.
Theorem 3.1: The capacity region of the modulo-additive

state-dependent MAC defined above is given by the closure of
the rate pairs satisfying

(63)

where .
Proof: First, recall the rate condition given in Theorem 2.2

(64)

The proof composed of two steps; we first determine the
optimal distributions of , , the distributions achieving the
sum-rate capacity, and then we show these distributions yield
the same inner bound. Let us first consider .
Clearly, and

.
Observe that

(65)

where the second step is valid since is conditionally inde-
pendent of given . Therefore,

. Let be two
mappings from to and to , respectively, for which

. Now recall that, by
Corollary 2.1, we have

(66)

and we now determine the policies and
achieving the supremum above. Let us first

define the following class of strategies:

(67)

(68)

Note that
since
. Note that , but

if we choose and uniformly distributed within and
, respectively (with zero mass on strategies not in and
), we would obtain

(69)
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where valid since and are uniformly distributed,
is due to (68) (i.e., follows from the fact that traces all
possible values of ) and finally, is valid since .

Therefore, we get that which is achieved
by

(70)

Let us now consider the inner bound. In particular, we need
to show that the sets of policies in (70) give

. Consider and observe that

(71)

where is valid since is uniformly distributed and is
due to (68) (i.e., follows from the fact that traces all
possible values of ). Thus, . It can be
shown similarly that under (70) .
Finally, it is easy to see that when there is no side informa-

tion at the encoders and at the decoder the capacity region of
modulo-additive state-dependent MAC is given by the closure
of rate pairs where

(72)

Observe that we have

and

where can be achieved with any deterministic mapping
and is valid since and (and hence ) are correlated.
Therefore, availability of state information strictly increases,

by an amount of at least , the capacity region of the
modulo-additive state-dependent MAC.

B. Binary Multiplier State-Dependent MAC With Interference

Consider the binary multiplier MAC with state process in-
terfering the output, namely where

. Assume further that the communica-
tion setup is given as in Section II-B with where

is Bernoulli with . Clearly, in
this setup we have

(73)

We now show that the capacity region, with both causal and
noncausal codings, of this channel is given by the closure of

where , and
.

First recall the capacity region given in Theorem 2.3 and ob-
serve that

, where the last equality
follows from (73). Hence, input distributions do not effect

. Clearly, ,
and and we now show that equalities can be
achieved. More explicitly, we have the following optimizing
distributions which can be obtained using basic inequalities:

(74)

(75)

(76)

and in the rest, let us show that these yield the equalities in the
conditional entropies. Let us start with , i.e., .
Note that

(77)

Substituting (76) in (77) gives

(78)
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We next show that under (76) ,
for which it is enough to show that .
We have

(79)

where (79) is due to (73) and (32). We can similarly show
that and hence,

. Therefore, . Since the above
derivation is symmetric, under (75) .
It now remains to show that with (74), is equal to

one. It should be observed that

where is due to (73) and (32), is due to (74), and the last
step is valid since for given , there are only two pairs of
for which (and zero for the
other twos). Hence, .
Finally, it can be easily shown that the capacity region of

without CSIT and CSIR is given by the closure
of where , , and

. Therefore, availability of noisy CSI at
the encoders (both causal and non-causal) and at the decoder
increases the capacity region by an amount of .

IV. CONCLUSION AND REMARKS

We have considered several scenarios for the memoryless
state-dependent MAC with an i.i.d. state process, asymmetric
noisy CSI at the encoders, and complete and noisy CSI at the
receiver. When the encoders have access to causal noisy CSI,
single-letter inner and outer bounds, which are tight for the
sum-rate capacity, are obtained. In order to reduce the space
of optimization, from Shannon strategies to channel inputs, we
consider the case where CSITs are asymmetric deterministic
functions of noisy CSIR. The causal setup of this problem is

considered in [13] and a single-letter characterization for ca-
pacity region is provided. Hence, we also considered the non-
causal setup and showed that the causal and noncausal capacity
regions are identical.
When the decoder does not have access to the current CSI at

the encoder, which matches with the delayed scenario, we ob-
serve that a single-letter characterization of the capacity region
can be obtained. We further discuss a degraded message set sce-
nario and show that when the common message encoder does
not have access to the current noisy CSI, due to delay, it is pos-
sible to obtain a single-letter expression for the capacity region.
Since a product form is not required in this case, we observed
that as long as the common message encoder does not have ac-
cess to CSI, then in any noisy setup (the cases of no CSIR or
noisy CSIR) it is possible to obtain the capacity region.
Finally, the following problems are worth exploring in the

future: the complete characterization of the capacity region for
the problem defined in Section II-A and its noncausal extension,
the state-dependent MAC with degraded message set where ei-
ther both encoders observe causal noisy CSI or the informed en-
coder observes noisy CSI noncausally while the other encoder
observes noisy CSI with delay.

APPENDIX A
CONVERSE PROOF OF THEOREM 2.3: NONCAUSAL CASE

Let

(80)

Observe that , where denotes the
concatenation of two vectors and , and

Lemma A.1: Assume that a rate pair , with
block length and a constant , is achievable.
Let
,

, and
. Then,

(81)

(82)

(83)

Proof: Let us first consider the sum-rate. With standard
steps, we obtain

(84)
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Note that since is independent of ;
and

(85)

where holds conditioning does not increase entropy,
holds since , , and is
due to (3). Combining (84) and (85) similar to (17), gives

(86)

Furthermore,

(87)

and substituting the above into (86) yields (83).
Let us now consider encoder . Using Fano’s inequality and

standard steps, we first obtain

(88)

Furthermore,

(89)

where is due to (2) and conditioning does not increase en-
tropy, holds since conditioning does not increase entropy,

holds since , , is
valid since conditioning does not increase entropy and finally,

is valid due to (3) and , , being a function of
.
Now combining (88)–(89) and following steps akin to (86)

and (87), we can verify (81). To verify (82) for encoder it is
enough to switch the roles of encoder and .
Note that for any for any ,

,
, and are

functions of
Hence, we need to show that this distribution factorizes as in
(36). Let

(90)
and

(91)

Lemma A.2: For every and ,
the following holds:

(92)

Proof: First observe that due to (3), we have

(93)

Let us now consider the second term in (93). We have

(94)
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where follows since , ,
is valid since and are independent of and state

process being i.i.d. and (iii) follows due to (90) and follows
due to (91). Substituting (94) in (93) completes the proof.
We can now complete the proof of Theorem 2.3. With

Lemma A.1, it is shown that any achievable rate pair can
be approximated by the convex combinations of rate condi-
tions given in (33)–(35) which are indexed by and
satisfy (36) for joint state-input-output distributions. Hence,
since , any achievable rate pair belongs to

.

APPENDIX B
CONVERSE PROOF OF THEOREM 2.4

Recall that is defined in (80).
Lemma B.1: Assume that a rate pair , with

block length and a constant , is achievable.
Then,

(95)

(96)

(97)

Proof: Let us now consider encoder . We have

(98)

Furthermore,

(99)

where is due to (2) and conditioning does not increase en-

tropy, is valid since , is valid

since conditioning does not increase entropy and finally, is
valid by (3). Following similar steps such as (17) and (18) ver-
ifies (95). Finally, (96) and (97) can be verified similarly.

Lemma B.2: For every and , the
following holds

(100)

Let

(101)
and

We can now verify (100) by following the same steps in Lemma
2.2.
Lemmas B.1 and B.2 complete the proof of converse.

APPENDIX C
ACHIEVABILITY AND CONVERSE PROOFS OF THEOREM 2.5

Achievability Proof: Fix .
Codebook Generation—Fix and .

For each , randomly generate ,
each according to . Reveal this code-
book to encoder and, for each and

, encoder randomly generates ,
each according to . These codeword
pairs form the codebook, which is revealed to the decoder.
Encoding—The encoding functions are defined as follows:

and
where and denote the th component

of and , respectively. Therefore, to send the
messages and , transmit the corresponding and

, respectively.
Decoding—After receiving , the decoder looks for

the only pair such that are
jointly -typical and declares this pair as its estimate .
Error Analysis—Let
, and and assume

that was sent. Then,

(102)
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Since is i.i.d., for .
Next, let us consider the second term

(103)

where holds since is independent of given
and follows since

where the second equality follows since and are indepen-
dent given . Next,

(104)

where holds since for , , is inde-
pendent of and follows since

and the rate conditions of the imply that each term tends
in (102) to zero as . Finally, observe that the anal-
ysis for the error event is identical to the
case of which induces the same sum-rate
constraint.
Note that themain motivation in indexingmutual information

terms by the past CSI, is to get a product form on the team
policies. In the degraded message set setup, we do not require a
product form and therefore, the convex combination argument is
not essential. However, we herein keep this indexing [see (46)]
to avoid the use of a time sharing auxiliary random variable.

Converse Proof: Since ,
we have

(105)

Lemma C.1: Let be the Shannon strategy in-
duced by as shown in (105). Assume that a rate pair

, with block length and a constant ,
is achievable. Then,

(106)

(107)

where and are defined in (9).
Proof: Let us first consider the sum-rate condition. Since,

(108)

where can be shown in a similar way as (16), we have,

(109)

and

(110)

Substituting the above into (109) yields (107).
Let us now consider encoder . With Fano’s inequality and

standard steps, we obtain

(111)
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Following similar reasonings as in (99) we obtain

(112)

where is valid since

(113)

where the first equality is due to (3) and the second equality is
due to (1) and (2). Following (16), we can directly verify (106).

We now need to show that the joint conditional distribution
factorizes as in (46). Let first

and observe that

(114)

where the equalities are verified by (3), by (1), and by the fact
that is independent of .
We can now complete the converse proof of Theorem 2.5.

With Lemma C.1 it is shown that any achievable rate pair can
be approximated by the convex combinations of rate conditions
which are indexed by and satisfy (46) for joint
state-input-output distributions. Hence, any achievable pair

.

APPENDIX D
PROOF OF

Let us first show that . Recall that
and . Hence, we have either

or else. In the case where , we note that is
limited to a finite set without loss of generality. Hence, we can
always take at least such that it satisfies (56), (57), and
(58). Then, we can directly conclude that since

and this
is a special case of .
In order to prove the other direction, i.e., , let

be the closure of all rate pairs satisfying

(115)

(116)

for some joint measure on having the
form

(117)

for some , where ,
and we first show that , and following this, we show
that .

Lemma D.1: :
Proof: It is obvious that and hence, we need to

show that . Let be a joint
distribution in the form of (58), i.e.,

(118)

Let denote a -by- matrix where
, , ,

, and . Hence, is a -by-
row stochastic matrix, i.e., and

, , . Let denote a -by-
binary stochastic matrix, that is a matrix with each row has
exactly one nonzero element, which is 1. Observe now that any
row stochastic matrix can be written as a convex combination
of binary stochastic matrices (e.g., see [39, Lemma 5] and [40,
Proposition IV.1]). Therefore, we have

(119)

where is a binary stochastic matrix and by [39, Lemma 5],
.

Let, for the joint distribution ,

(120)

(121)

Hence, . Now, observe that for a fixed distri-
bution , both and
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are convex in and hence, convex in
. This and (119) imply that

(122)

(123)

where and denote the mutual
information terms induced by .
Now, let , , be such that

and hence, , . Let
. Since a convex combination of achievable

rates is also achievable, so . This obser-
vation and inequalities (120)–(123) complete the claim that

.
Up to now, we have shown that and
. In order to prove that , it remains to show

that . Note that still depends on
in which can be larger than . Hence, in the next lemma
we basically show that for every , there exists a

which induces the same rate constraints as induced
by .

Lemma D.2: :
Proof: Fix a distribution sat-

isfying (117), i.e.,

(124)

Observe that for every satisfying , one can
define

(125)

where is the set of all mappings from to . Now, let

be the mutual information pair induced by .
We have

(126)

where is valid since , i.e., for each
there exists only one such that ,

is valid since

(127)

where is valid since and are independent and
is valid due to (3). Similarly, we have
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(128)

where and follow from the same reasonings of and
, respectively. Let

and which

imply . Observe now that for a dis-
tribution in the form of , one can de-
fine . Therefore, since

, and due to (126) and (128),

, which completes the claim.
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