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Abstract. Static reduction of information structures is a method that is commonly adopted
in stochastic control, team theory, and game theory. One approach entails change of measure argu-
ments, which has been crucial for stochastic analysis and has been an effective method for establish-
ing existence and approximation results for optimal policies. Another approach entails utilization of
invertibility properties of measurements, with further generalizations of equivalent information struc-
ture reductions being possible. In this paper, we demonstrate the limitations of such approaches for
a wide class of stochastic dynamic games and teams, and present a systematic classification of static
reductions for which both positive and negative results on equivalence properties of equilibrium so-
lutions can be obtained: (i) those that are policy-independent, (ii) those that are policy-dependent,
and (iii) a third type that we will refer to as static measurements with control-sharing reduction
(where the measurements are static although control actions are shared according to the partially
nested information structure). For the first type, we show that there is a bijection between Nash
equilibrium policies under the original information structure and their policy-independent static re-
ductions, and establish sufficient conditions under which stationary solutions are also isomorphic
between these information structures. For the second type, however, we show that there is generally
no isomorphism between Nash equilibrium (or stationary) solutions under the original information
structure and their policy-dependent static reductions. Sufficient conditions (on the cost functions
and policies) are obtained to establish such an isomorphism relationship between Nash equilibria
of dynamic non-zero-sum games and their policy-dependent static reductions. For zero-sum games
and teams, these sufficient conditions can be further relaxed. In view of the equivalence between
policies for dynamic games and their static reductions, and closed-loop and open-loop policies, we
also present three classes of multistage games and teams with partially nested information struc-
tures, where we establish connections between closed-loop, open-loop, and control-sharing Nash and
saddle point equilibria. By taking into account a playerwise concept of equilibrium, we introduce
two further classes of ``playerwise"" static reductions: (i) independent data reduction under which the
policy-independent reduction holds through players and time, and (ii) playerwise (partially) nested
independent reduction under which measurements are independent through players but (partially)
nested through time for each player.
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ISOMORPHISM PROPERTIES OF EQUILIBRIUM SOLUTIONS 3103

individual cost functions under a particular notion of equilibrium. At each time stage,
each DM has only partial access to the global information, which is characterized by
the information structure (IS) of the problem. If there is a predefined order in which
DMs act, we will call the game sequential. The specific form of an IS has been shown
to have subtle impact on (different types of) equilibria in games, as well as on their
existence, uniqueness, and characterization (see, for example, [34, 5, 4]).

Static reduction of dynamic ISs has been a powerful method that has been com-
monly adopted in stochastic control, team theory, and game theory. One static reduc-
tion method based on change of measure techniques, in particular, has been utilized
extensively in classical stochastic control since Girsanov's method [21] has been ap-
plied to control by Bene\v s [9] (for partially observed control these were considered in
[19, 10] and in discrete time in [11, 12] and in decentralized stochastic control [37]
among others). Another commonly studied reduction method, for partially nested
ISs builds on invertibility properties [22, 23].

In this paper, we demonstrate the limitations of such approaches for a wide class
of stochastic dynamic games (DGs) and teams, also building on and generalizing
the earlier developments on deterministic games in [35, 30, 2, 1, 5] as well as linear
quadratic stochastic games [3] (see [15] for a more recent study). More operationally,
we present sufficient conditions under which some reduction is feasible and preserves
equilibrium properties for stochastic DGs and teams.

Significance, main results, and contributions.
The question of when isomorphism properties for Nash equilibrium (NE) and

stationarity for stochastic DGs hold between an original IS and its static reduction
is mathematically subtle and practically important to address. On the practical side,
we can list several important applications:

For optimal stochastic control in both continuous time and discrete time, change
of measure arguments have been critical for arriving at optimality and existence results
(see, e.g., [9, 19, 11]).

In decentralized stochastic control theory, to establish the optimality of linear
policies in the setup of linear quadratic Gaussian (LQG) stochastic teams under par-
tially nested ISs, static reduction to a convex static LQG teams has been utilized in
[22, 23]. In addition, toward studying the existence of optimal solutions in stochastic
team theory and their approximations, static reduction methods have been shown to
be effective (see, e.g., [38, 29, 39]). Further, in studying the existence and approxi-
mations of a saddle-point equilibrium (SPE) for zero-sum (ZS) DGs, static reduction
methods have been shown to be critical (see, e.g., [24]).

Questions on equivalences of Nash equilibria under different ISs are also important
in establishing convergence results and limit theorems (as the number of players drives
to infinity), because the desired compactness and convexity for analysis often hold un-
der more relaxed conditions for open-loop policies (when compared with closed-loop
policies) [32, 18, 13, 26, 27]. Along this line, for the existence of Nash equilibria in
stochastic game theory, static reduction turns out to be a powerful method that asso-
ciates with the general analysis provided in [6], which is applicable to static Bayesian
games with incomplete information. In this context, in the stochastic game theory
literature, closed-loop policies are defined as measurable functions of (local) history
of states or observations, and open-loop policies are measurable functions of (local)
history of noise processes for each player (which can be viewed as policies for DGs
under a static reduction). In (continuous time) game theory, closed-loop policies are
control processes adapted to the filtration generated by local measurements and past
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3104 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

actions, and open-loop policies1 are adapted processes to the filtration generated by
Brownian motions obtained possibly via Girsanov-reduction (see, e.g., [13, section
2.1]).

Equivalence properties of Nash equilibria under different ISs arise prominently
in stochastic non-zero-sum (NZS) DGs with weakly coupled players [4] and mean-
field games where the population of players is large or infinite [14, 26, 13, 16, 20].
For both classes of games, roughly speaking, closeness of performance under open-
loop and closed-loop Nash equilibria is a result of diminishing strategic interactions
among the players, due to weak coupling in the former class and each player having
only an infinitesimal role in the latter class [14, 26, 13, 16, 20]. For NZS DGs with a
finite number of players, closed-loop and open-loop Nash equilibria are generally not
equivalent, although asymptotically in the number of agents, they might be equivalent;
e.g., in [14], an example of a weakly-interacting finite-player game with a classical IS
has been provided such that a unique open-loop NE (constructed using Pontryagin's
stochastic maximum principle) and a unique closed-loop (pure-feedback no memory)
NE (constructed using dynamic programming) (see [14, eqs. (3.16) and (3.31)]) are
distinct but converge to the same limit as the number of players goes to infinity (see
also [13, section 2.1]).

The subtle dependence of solutions as well as computational solution techniques
on ISs were pointed out first in the context of deterministic ZS DGs, toward estab-
lishing connections between open-loop and closed-loop SP equilibria, particularly by
Witsenhausen, who has established critical relations between ISs and values of SPs
[34] (see also later works in [35, 7]). Also building on [34] and the ordered inter-
changeability property of multiple SPs [4], for deterministic ZS DGs, [2] established
connections between open-loop (where policies are functions of only initial states),
closed-loop and pure-feedback SPs. For deterministic NZS DGs, on the other hand,
it has been shown in [1] that the preceding connections (for deterministic ZS DGs)
are no longer valid in general.

In view of these applications of static reductions, it is important to establish the
most general conditions under which equilibrium solutions, stationary solutions, and
optimal solutions are isomorphic under static reductions of ISs.

In this paper, we provide a systematic characterization of static reduction tech-
niques for equivalent ISs and introduce several new ones. We categorize static reduc-
tions as those that are ``policy-independent"" and those that are ``policy-dependent""
to emphasize the important distinction between these two reductions. As it has been
shown in this paper, this dependency on policies has a consequential impact on the
isomorphism properties of Nash equilibria for NZS DGs (person-by-person optimality
for teams and SP equilibria for ZS DGs) and those under their reductions: a NE for
a DG does not correspond to, in general, a NE for the corresponding game obtained
through the policy-dependent static reduction (the converse has also been shown to
be true). We emphasize that the ISs of a game and its reduction are isomorphic under
both reductions (e.g., when one views the IS using the sigma-field generated by ran-
dom variables); however, one of our contributions in the paper is to demonstrate that
this does not imply any isomorphic connection between NE policies. It appears that
this important difference regarding static reduction methods and its subtle impact on

1In more precise terms, such policies have the qualifier ``adapted"", while plain ``open-loop"" ter-
minology is more commonly used to refer to policies that are just functions of time and also of the
initial state (if it is available to the players). In the paper, we will continue using the terminology
``open-loop"" for both, where the distinction will be clear from context.
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ISOMORPHISM PROPERTIES OF EQUILIBRIUM SOLUTIONS 3105

NE under PI Static Re-
ductions

Stationary Policy under
PI Static Reductions

NE for \scrP Stationary Policy for \scrP 
Theorem 3.1 \times 

Fig. 2.1. A chart of the connections between two optimality concepts in DGs and their policy-
independent (PI) static reductions.

NE/SPE for

PS,CS
NZS /PS,CS

ZS

NE/SPE for

PD,CS
NZS /PD,CS

ZS

Stationary Policy
for PS

NZS/PS
ZS

NE/SPE for
PS
NZS/PS

ZS

Stationary Policy
for PD

NZS/PD
ZS

NE/SPE for
PD
NZS/PD

ZS

Theorem 3.2Theorem 4.1
Theorems 3.4 and
4.2××

Fig. 2.2. A chart of the connections between NE (stationary) policies for NZS DGs \scrP S
NZS, \scrP 

D
NZS

(also saddle-point equilibrium (SPE) for ZS DGs).

the isomorphism of equilibrium solutions have not been studied in the literature and
appears for the first time in this paper.

In this paper, in addition to these negative results, we also provide sufficient
conditions for positive results; these also appear for the first time in the literature in
precise terms.

In the following, we provide a list of our contributions in this paper (see also
Figures 2.1 and 2.2 for a visual summary of some of our contributions):

(i) We show that there is a bijection between Nash equilibria (SP equilibria) of
stochastic NZS DGs (stochastic ZS DGs) and their policy-independent static
reductions (Theorem 3.1 and Figure 2.1).

(ii) For NZS DGs with partially nested ISs, we show that the isomorphism re-
lations between their Nash equilibria and Nash equilibria of their policy-
dependent static reductions fail to hold, in general (Proposition 3.1). Then,
we present sufficient conditions for such relations to hold (Theorem 3.2 and
Figure 2.2).

(iii) We define the reduction of NZS DGs with control-sharing IS to ones with
static measurements with control-sharing IS as static measurements with
control-sharing reduction. We show that this reduction is independent of poli-
cies (see Theorem 3.3), and study the subtle impact of static measurements
with control-sharing reductions (where IS is expanded via control-sharing
according to partially nested IS) on the equivalence relationships of Nash
equilibria (Theorems 3.3 and 3.4 and Figure 2.2).

(iv) For ZS DGs, we show that the sufficient conditions above can be relaxed. Us-
ing the ordered interchangeability property of multiple SPE policies, we estab-
lish stronger results on an equivalence relationship, existence and uniqueness
of SPs of DGs and SPs of games under policy-dependent static reductions
(Proposition 4.1 and Theorem 4.1) and static measurements with control-
sharing reductions (Theorem 4.2, and Corollary 4.4) (see Figure 2.2). We also
establish equivalence relationships between person-by-person optimal (glob-
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3106 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

ally optimal) policies of teams under policy-dependent static reductions (see
Proposition 5.1 and Corollary 5.2).

(v) For a class of multistage games, we establish relations between closed-loop,
open-loop, control-sharing policies, and their reductions: (1) We study multi-
stage ZS DGs (Corollary 6.2), where we establish various results on the con-
nections between closed-loop, open-loop, and control-sharing Nash equilibria.
(2) Under uniqueness of Nash equilibria for LQG games under the policy-
dependent static reductions, we establish stronger results for LQG games in
Corollary 4.4, which generalize the results in [15] for ZS DGs with mutually
quadratic invariant IS. (3) Finally, in view of the results in [3] for stochastic
NZS DGs, we study the structure, existence, and uniqueness of Nash equilib-
ria for LQG games with one-step-delay sharing and one-step-delay observation
sharing (Corollary 7.2). In addition, we study multistage teams under two
classes of static reductions: (i) independent data reduction under which the
policy-independent reduction holds through players and time, and (ii) play-
erwise (partially) nested independent reduction under which measurements
are independent through players, but (partially) nested through time.

We list below, for convenience, some of the acronyms frequently used in this
paper:

Information structure IS
Decision Maker, Player DM, PL

Non-Zero-Sum Dynamic Game (Zero-Sum Dynamic Game) NZS DG (ZSG DG)

Decision-Maker-wise Nash (Saddle-Point) Equilibrium DM-NE (DM-SPE)
Playerwise Nash (Saddle-Point) Equilibrium PL-NE (PL-SPE)

Policy-Independent (-Dependent) PI (PD)

Static Measurements with Control-Sharing SMCS

2. ISs and PI and PD static reductions of sequential dynamic games.

2.1. An intrinsic model for sequential DGs (generalizing Witsenhausen's
one-shot-DM formulation). Consider the class of games where DMs act in a pre-
defined order. Following Witsenhausen's formulation for teams, such games will be
called sequential games, for which we introduce an intrinsic model, as in Witsen-
hausen's formulation for teams [36]. In this model (described in discrete time), any
action applied at any given time is regarded as applied by an individual DM, who
acts only once.

\bullet There exists a collection of measurable spaces \{ (\Omega ,\scrF ), (\BbbU i,\scrU i), (\BbbY i,\scrY i), i \in 
\scrN \} , specifying the system's distinguishable events, control spaces, and mea-
surement spaces. The set \scrN := \{ 1,2, . . . ,N\} denotes the set of all DMs; the
pair (\Omega ,\scrF ) is a measurable space; the pair (\BbbU i,\scrU i) denotes the Borel space
from which the action ui of DMi is selected; the pair (\BbbY i,\scrY i) denotes the
Borel observation/measurement space.

\bullet There is a measurement constraint that governs the connections between the
observations and the system's distinguishable events. The \BbbY i-valued obser-
vation variables are given by yi = hi(\omega ,u1:i - 1), where his are measurable
functions. We denote \{ 1, . . . , p\} by 1 : p.

\bullet There is a set \Gamma of admissible control laws \gamma = \{ \gamma i\} i\in \scrN , also called designs
or policies (pure strategies), which are measurable control functions, so that
ui = \gamma i(yi). Let \Gamma i be the set of all admissible policies for DMi, and thus
\Gamma :=

\prod 
i\in \scrN \Gamma i.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ISOMORPHISM PROPERTIES OF EQUILIBRIUM SOLUTIONS 3107

\bullet There is a probability measure P on (\Omega ,\scrF ), making the triple a probability
space.

2.2. A playerwise intrinsic model for games with players acting multi-
ple times. Under the intrinsic model for sequential games, every DM acts separately
and only once. However, depending on the IS and cost functions, it may be convenient
(and more appropriate depending on the desired equilibrium concepts) to consider a
collection of DMs as a single player acting as a team (when collections of teams take
part in the game). To formalize this formulation for sequential games where col-
lections of DMs cooperate among themselves as a team (also called player) to play
sequentially against other collections of DMs (other teams/players), we introduce N -
player games, where each player is a collection of (one-shot) DMs. We emphasize that
(one-shot) DMs act sequentially in our setup for games. Hence, we have, as a formal
description, the following:

\bullet Let \scrN := \{ 1,2, . . . ,N\} denote the set of players and for each i\in \scrN , introduce
a subset TEi of a set \scrM := \{ 1,2, . . . ,M\} denoting a collection of DMs, DMk

for k \in TEi, acting as player i (PLi) (said another way, PLi encapsulates the
collection of DMs indexed by TEi acting | TEi| times, where | \cdot | denotes the
cardinality of the set TEi).

\bullet The observation and action spaces are standard Borel spaces for each PLi

(i\in \scrN ), denoted by Yi :=
\prod 

k\in TEi \BbbY i
k and Ui :=

\prod 
k\in TEi \BbbU i

k, respectively.
\bullet The \BbbY i

k-valued observation variables are given by yik = hi
k(\omega ,\{ up

s\} (s,p)\in Li
k
),

where Li
k denotes the set of all DMs acting before DMk of PLi (i.e., (s, p)\in Li

k

if DMs of PLp acts before DMk of PLi for all p\in \scrN and s\in TEp).
\bullet An admissible policy for each PLi is denoted by \bfitgamma \bfiti := \{ \gamma i

k\} k\in TEi \in \Gamma i with
ui
k = \gamma i

k(y
i
k), where the set of admissible policies for each player is denoted by

\Gamma i :=
\prod 

k\in TEi \Gamma i
k for i \in \scrN . An admissible policy tuple for all players in the

game is denoted by \bfitgamma := \bfitgamma 1:N = \{ \bfitgamma 1, . . . ,\bfitgamma N\} \in \Gamma , where \Gamma :=
\prod 

i\in \scrN \Gamma i.

2.3. Stochastic NZS DGs under PI static reductions. Let the action and
observation spaces be subsets of appropriate dimensional Euclidean spaces, i.e., \BbbU i

k \subseteq 
\BbbR nk

i and \BbbY i
k \subseteq \BbbR mk

i , for i \in \scrN and k \in TEi, where nk
i and mk

i are positive integers.
We formally introduce a dynamic sequential (playerwise) game as follows:

Problem \bfscrP : Consider a sequential game within the intrinsic model as follows:
(i) Observations of DMs are given by

yik = hi
k(\omega 0, \omega 

i
k,\{ up

s , y
p
s\} (s,p)\in Li

k
),(2.1)

where \omega i
k : (\Omega ,\scrF , P ) \rightarrow (\Omega i

k,\scrF i
k) is an exogenous random variable for i \in \scrN 

and k \in TEi, where \Omega i
k is a Borel space with its Borel \sigma -field \scrF i

k. Here \omega 0 is
a common \Omega 0-valued cost function-relevant exogenous random variable.

(ii) IS of DMk of PLi is given by Iik = \{ yik\} (or Iik = \{ yps\} (p,s)\in Ki
k
for Ki

k \subseteq Li
k).

(iii) A possibly different expected cost function (to minimize under a particular
notion of equilibrium) for each PLi, under a policy tuple \bfitgamma := \bfitgamma 1:N \in \Gamma , is
given by

J i(\bfitgamma ) :=E\bfitgamma 
\bigl[ 
ci(\omega 0,\bfitu 

1:N )
\bigr] 

(2.2)

for some Borel measurable cost functions ci : \Omega 0 \times 
\prod N

j=1U
j \rightarrow \BbbR .

In view of Witsenhausen's static reduction for teams (see [37, 38]), we introduce
an absolute continuity condition that guarantees the existence of PI static reduction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3108 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

Assumption 2.1. For any DMk of PLi, there exists a probability measure Qi
k on

\BbbY i
k and a function f i

k such that for any Borel set \BbbA i
k,

P (yik \in \BbbA i
k

\bigm| \bigm| \omega 0,\{ up
s , y

p
s\} (s,p)\in Li

k
)=

\int 
\BbbA i

k

f i
k(y

i
k, \omega 0,\{ up

s , y
p
s\} (s,p)\in Li

k
)Qi

k(dy
i
k).(2.3)

Let P be the joint distribution of (\omega 0,\bfitu 
1:N ,\bfity 1:N ), and let \BbbP 0 be the distribution

of \omega 0. If Assumption 2.1 holds, for every Borel set \BbbA , we have

P (\BbbA ) =
\int 
\BbbA 

dP

d\BbbQ 
\BbbQ (d\omega 0, d\bfitu 

1:N , d\bfity 1:N ),(2.4)

\BbbQ (d\omega 0, d\bfitu 
1:N , d\bfity 1:N ) := \BbbP 0(d\omega 0)

N\prod 
i=1

\prod 
k\in TEi

Qi
k(dy

i
k)1\{ \gamma i

k(y
i
k)\in dui

k\} ,(2.5)

dP

d\BbbQ 
:=

N\prod 
i=1

\prod 
k\in TEi

f i
k(y

i
k, \omega 0,\{ up

s , y
p
s\} (s,p)\in Li

k
).(2.6)

Definition 2.1 (PI static reduction). For a stochastic game \scrP with cost
functions ci for i \in \scrN and a given IS under Assumption 2.1, a PI static reduction is
a change of measure (2.4) under which measurements yik in (2.1) have independent
distributions Qi

k and the expected cost functions are given by

J i(\gamma ):=E
\gamma 

\BbbQ 
\bigl[ 
\~ci(\omega 0,\bfitu 

1:N ,\bfity 1:N )
\bigr] 
,(2.7)

where the new cost functions under the reduction for all i= 1, . . . ,N are

\~ci(\omega 0,\bfitu 
1:N ,\bfity 1:N ):= ci(\omega 0,\bfitu 

1:N )
dP

d\BbbQ 
.(2.8)

We now recall definitions of NE and stationary policies for \scrP .

Definition 2.2. For a stochastic game \scrP with a given IS, and cost functions ci:
\bullet A policy \bfitgamma \ast \in \Gamma is PL-NE if for all \bfitbeta i \in \Gamma i and i\in \scrN ,

J i(\bfitgamma \ast )\leq J i(\bfitgamma  - i\ast ,\bfitbeta i) :=E
(\bfitgamma  - i\ast ,\beta i)

P [ci(\omega 0,\bfitu 
1:N )],

where (\bfitgamma  - i\ast ,\bfitbeta i) := (\bfitgamma 1\ast :i - 1\ast ,\bfitbeta i,\bfitgamma i+1\ast :N\ast ).

\bullet A policy \bfitgamma \ast \in \Gamma is DM-NE if for all \beta i
k \in \Gamma i

k and i\in \scrN and k \in TEi,

J i(\bfitgamma \ast )\leq J i(\bfitgamma  - i\ast , (\bfitgamma i\ast 
 - k, \beta 

i
k)) :=E

(\bfitgamma  - i\ast ,\bfitgamma i\ast 
 - k,\beta 

i
k)

P

\bigl[ 
ci(\omega 0,\bfitu 

1:N )
\bigr] 
,

where (\bfitgamma i\ast 
 - k, \beta 

i
k) := (\gamma i\ast 

1:k - 1, \beta 
i
k, \gamma 

i\ast 
k+1:| TEi| ).

\bullet A policy \bfitgamma \ast \in \Gamma is a (DM-wise) stationary policy if for all i\in \scrN ,

\nabla ui
k
EP

\biggl[ 
ci
\biggl( 
\omega 0,\bfitgamma 

i\ast 
 - k(\bfity 

i
 - k), u

i
k,\bfitgamma 

 - i\ast (\bfity  - i)

\biggr) \bigm| \bigm| \bigm| \bigm| yik\biggr] \bigm| \bigm| \bigm| \bigm| 
ui
k=\gamma i\ast 

k (yi
k)

= 0 P -a.s.

We can provide a description of NE and stationary policies of games under PI
static reductions similar to (2.2) by replacing the cost functions ci with \~ci and con-
sidering expectations with respect to the measure \BbbQ . One of our goals is to study the
connections between NE and stationary policies in Definition 2.2 and those under the
PI reductions (see Figure 2.1).
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ISOMORPHISM PROPERTIES OF EQUILIBRIUM SOLUTIONS 3109

2.4. Stochastic NZS DGs under PD static reductions. Consider dynamic
NZS DGs with partially nested ISs, and with observations of DMs defined as

yDi,k :=

\biggl\{ 
yD\downarrow (i,k), \^y

D
i,k := gi,k(hi,k(\zeta ), u

D
\downarrow (i,k))

\biggr\} 
,(2.9)

where \zeta := \{ \omega 0,\bfitomega 
1:N\} denotes the set of all relevant random variables (with \bfitomega i :=

(\omega i
k)k\in TEi), and gi,k and hi,k are measurable functions. In the above, \downarrow (i, k) :=

\{ (j, l)| \^yDi,k is affected by uj
l \} . Denote the IS of DMk of PLi by IDi,k = \{ yDi,k\} , and the IS

of PLi by \bfitI D
i := \{ \bfity D

i \} , where \bfity D
i := \{ yDi,k\} k\in TEi , with the space of admissible policies

denoted by \Gamma D. Define NZS DGs with a partially nested ISs as follows:
Problem \bfscrP D

NZS: Consider a stochastic dynamic NZS DG with a partially nested
IS, \bfitI D

i = \{ \bfity D
i \} for all i \in \scrN , and with the expected cost functions under \bfitgamma D \in \Gamma D

given byJ i(\bfitgamma D) := E
\bigl[ 
ci(\omega 0,\bfitgamma 

D
1 (\bfity 

D
1 ), . . . ,\bfitgamma 

D
N (\bfity D

N ))
\bigr] 
, for some Borel measurable cost

functions ci : \Omega 0 \times \prod N
j=1U

j \rightarrow \BbbR . Obtain a policy \bfitgamma D\ast \in \Gamma D which is a PL-NE

(DM-NE) for \scrP D
NZS.

We note that for 2-player games if J1 \equiv  - J2, then we have a ZS DG, in which
case PL-NE is known as playerwise saddle-point equilibrium (PL-SPE).

Assumption 2.2. For all i \in \scrN , k \in TEi and for every fixed uD
\downarrow (i,k), the function

gi,k(\cdot , uD
\downarrow (i,k)) : hi,k(\zeta ) \mapsto \rightarrow \^yDi,k is invertible for all realizations of \zeta .

Based on [22, 23] for teams, under Assumption 2.2, given the policy \bfitgamma D, we can
define the observations within the policy-dependent reduction as follows:

ySi,k =

\biggl\{ 
yS\downarrow (i,k), \^y

S
i,k := hi,k(\zeta )

\biggr\} 
.(2.10)

Let the IS of DMk of PLi be ISi,k = \{ ySi,k\} , and the IS of PLi be \bfitI S
i = \{ \bfity S

i \} where

\bfity S
i = \{ ySi,k\} k\in TEi with the corresponding space of admissible policies \Gamma S.

Problem \bfscrP S
NZS: Consider a NZSG with \bfitI S

i = \{ \bfity S
i \} for all i\in \scrN , and with the ex-

pected cost functions under \bfitgamma S \in \Gamma S given by J i(\bfitgamma S) :=E
\bigl[ 
ci(\omega 0,\bfitgamma 

S
1(\bfity 

S
1), . . . ,\bfitgamma 

S
N (\bfity S

N ))
\bigr] 
.

Find a policy \bfitgamma S\ast \in \Gamma S that is a PL-NE (DM-NE) for \scrP S
NZS.

Definition 2.3 (PD static reduction). Consider a partially nested stochastic
DG \scrP D

NZS with a given IS, \bfitI D
i , where Assumption 2.2 holds. A PD static reduction

is defined as the reduction of a stochastic DG \scrP D
NZS to a static one \scrP S

NZS (which has
an equivalent IS, \bfitI S

i ), where under the reduction, the cost functions are unaltered and
measurements are static), and for a given admissible policy \bfitgamma D \in \Gamma D, an admissible

policy \bfitgamma S \in \Gamma S can be constructed through a relation

ui
k = \gamma S

i,k

\bigl( 
ySi,k

\bigr) 
= \gamma D

i,k

\Bigl( 
yD\downarrow (i,k), gi,k

\Bigl( 
hi,k(\zeta ), \gamma 

D
\downarrow (i,k)(y

D
\downarrow (i,k))

\Bigr) \Bigr) 
P -a.s.(2.11)

for all i\in \scrN and k \in TEi.

One question to be addressed is the following: Given a PL-NE (DM-NE) policy
\bfitgamma S\ast \in \Gamma S for \scrP S

NZS, is a policy \bfitgamma D\ast \in \Gamma D satisfying (2.11) also a PL-NE (DM-NE)
policy for \scrP D

NZS? Further, is the converse statement true? In section 3.1, we provide
examples to show that the answer to this question is negative in general. Then, we
introduce sufficient conditions for NZS DGs, where positive results can be established
(see Figure 2.2). Figure 2.2 also illustrates some of our results for ZS DGs.
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3110 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

2.5. Stochastic NZS DGs under static measurements with control-
sharing reduction. We now expand partially nested ISs such that controls are
shared whenever observations are, i.e., for each DMk of PLi, we define

yD,CS
i,k :=

\biggl\{ 
yD\downarrow (i,k), u

\downarrow (i,k), \^yDi,k

\biggr\} 
(2.12)

with ID,CS
i,k := \{ yD,CS

i,k \} and \bfitI D,CS
i := \{ \bfity D,CS

i \} , where \bfity D,CS
i := \{ yD,CS

i,k \} k\in TEi with the

space of admissible policies \Gamma D,CS.
Problem \bfscrP D,CS

NZS : For a stochastic NZS DG with \bfitI D,CS
i (with measurements as

(2.12)) for all i\in \scrN , consider expected cost functions (to be minimized under the NE
concept) as in (2.2) under policy \bfitgamma D,CS \in \Gamma D,CS.

The invertibility condition (Assumption 2.2) allows us to reduce the original DG
to another one where measurements are static as

yS,CSi,k :=

\biggl\{ 
yS\downarrow (i,k), u

\downarrow (i,k), \^ySi,k

\biggr\} 
(2.13)

with IS,CSi,k := \{ yS,CSi,k \} and \bfitI S,CS
i := \{ \bfity S,CS

i \} , where \bfity S,CS
i := \{ yS,CSi,k \} k\in TEi with the space

of admissible policies denoted by \Gamma S,CS.
Problem \bfscrP S,CS

NZS : For a stochastic NZS DG with \bfitI S,CS
i , with measurements (2.13)

for all i\in \scrN , consider expected cost functions (to be minimized under the NE concept)
as in (2.2) under policy \bfitgamma S,CS.

We refer to \scrP S,CS
NZS as static measurements with control-sharing stochastic NZS

DGs.

Definition 2.4 (static measurements with control-sharing (SMCS) re-
duction). Consider a stochastic NZS DG \scrP D,CS

NZS with a given IS \bfitI D,CS
i , where As-

sumption 2.2 holds. SMCS reduction is the reduction of \scrP D,CS
NZS to \scrP S,CS

NZS with IS, \bfitI S,CS
i ,

where under the reduction the costs are unaltered and the measurements are static,
and for a given admissible policy \bfitgamma D,CS for \scrP D,CS

NZS , an admissible policy \bfitgamma S,CS for \scrP S,CS
NZS

can be constructed for each i\in \scrN and k \in TEi, through the relation

\gamma D,CS
i,k (yD,CS

i,k ) = \gamma S,CS
i,k (yS,CSi,k ) for all u\downarrow (i,k) P -a.s.(2.14)

In section 3.2, we establish various results on connections between NE policies of
\scrP D
NZS, \scrP S

NZS, \scrP S,CS
NZS , and \scrP D,CS

NZS using SMCS reductions.

2.6. Stochastic teams and ZS DGs under PD static reductions. In this
paper, we also consider stochastic teams and ZS DGs, where we establish stronger
results compared to those for NZS DGs.

2.6.1. Stochastic teams. Along the same lines as \scrP D
NZS, \scrP S

NZS, \scrP D,CS
NZS , and \scrP S,CS

NZS ,
we define team problems \scrP D

TE, \scrP S
TE, \scrP D,CS

TE , and \scrP S,CS
TE by letting the cost functions be

identical, ci = c for all players i \in \scrN . To simplify our presentation, we assume that
each player consists of a single DM. We now recall the definition of globally optimal
policies for \scrP D

TE.

Definition 2.5 (global optimality concept for \bfscrP D
TE). For a stochastic team

\scrP D
TE with a given IS, and cost function c, a policy \gamma D\ast is globally optimal if

J(\gamma D\ast ) = inf
\gamma D\in \Gamma D

E
\bigl[ 
c(\omega 0, \gamma 

D
1 (y

D
1 ), . . . , \gamma 

D
N (yDN ))

\bigr] 
.

To be consistent with the terminology of teams used in the literature, we refer to
NE policies for teams as person-by-person (PBP) optimal policies.
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ISOMORPHISM PROPERTIES OF EQUILIBRIUM SOLUTIONS 3111

2.6.2. Stochastic ZS DGs. ZS DGs enjoy some stronger properties not shared
with NZS DGs, but shared with teams; for example, they typically have (saddle-point)
values which can be used to partially ordered ISs as in teams, and also they feature
some regularity properties. We show that sufficient conditions presented for NZS
DGs can be relaxed (see Figure 2.2). For ZS DGs, we also establish stronger results
compared to NZS DGs using the interchangeability property of multiple playerwise
saddle points.

Problem \bfscrP D
ZS: Consider a 2-player sequential stochastic ZS DG with a partially

nested IS, \bfitI D
i = \{ \bfity D

i \} (with measurements \bfity D
i = \{ yDi,k\} k\in TEi defined in (2.9)), and

with an expected cost function under a policy \gamma D := (\bfitgamma D
1 ,\bfitgamma 

D
2 )\in \Gamma D given by J(\bfitgamma D) :=

E[c(\omega 0,\bfitgamma 
D
1 (\bfity 

D
1 ),\bfitgamma 

D
2 (\bfity 

D
2 ))] for some Borel measurable cost function c : \Omega 0\times U1\times U2 \rightarrow 

\BbbR . Obtain a policy \bfitgamma D\ast \in \Gamma D which is a PL-SPE for \scrP D
ZS, that is,

J(\bfitgamma D\ast ) = inf
\bfitgamma D

1\in \Gamma D
1

J(\bfitgamma D
1 ,\bfitgamma 

D\ast 
2 ), J(\bfitgamma D\ast ) = sup

\bfitgamma D
2\in \Gamma D

2

J(\bfitgamma D
2 ,\bfitgamma 

D\ast 
1 ).

Further, obtain a policy \bfitgamma D\ast that is a DM-SPE for \scrP D
ZS, that is, for all k \in TE1 and

j \in TE2

J(\bfitgamma D\ast ) = inf
\gamma D
1,k\in \Gamma D

1,k

J(\bfitgamma D\ast 
1, - k, \gamma 

D
1,k,\bfitgamma 

D\ast 
2 ), J(\bfitgamma D\ast )

= sup
\gamma D
2,j\in \Gamma D

2,j

J(\bfitgamma D\ast 
2, - k, \gamma 

D
2,j ,\bfitgamma 

D\ast 
1 ).

Problem \bfscrP S
ZS: Consider a 2-player sequential stochastic ZS DG with IS \bfitI S

i =
\{ \bfity S

i \} (with measurements \bfity S
i = \{ ySi,k\} k\in TEi defined in (2.10)), and with an expected

cost function under a policy \bfitgamma S := (\bfitgamma S
1,\bfitgamma 

S
2) \in \Gamma S given by J(\bfitgamma S) := E[c(\omega 0,\bfitgamma 

S
1(\bfity 

S
1),

\bfitgamma S
2(\bfity 

S
2))]. Obtain a policy \bfitgamma S\ast which is a PL-SPE (DM-SPE) for \scrP S

ZS.

2.7. Multistage stochastic games. We introduce in this subsection multistage
stochastic games. As in the playerwise setting, depending on the IS and cost functions,
it may be convenient to consider a collection of DMs as a single player acting multiple
times, at different time instants. In the multistage setting, this leads to the notion of
a ``player"", which is a collection of DMs acting over time.

Problem \bfscrP M: Consider the following formulation of multistage stochastic
games:

(i) The state dynamics and observations are given, respectively, by

xt+1 = ft(x0:t, u
1:N
0:t ,wt),(2.15)

yit = hi
t(x0:t, u

1:N
0:t - 1, v

i
t)(2.16)

for t\in \scrT := \{ 0, . . . , T - 1\} and i\in \scrN , where ft and hi
t are measurable functions.2

x0:t := (x0, . . . , xt), and wt, v
1:N
t for all t \in \scrT are random variables taking

values in standard Borel spaces. We let u1:N
0:t := (u1

0:t, . . . , u
N
0:t), and introduce

appropriate collections of DMs as players, with PLi for i\in \scrN , acting at different
time instants t\in \scrT and comprised of DMi

0 to DMi
T - 1.

2Here, ft can depend on history (possibly a partial history) of states in addition to the current
state xt. Although some of our results in section 6 hold also for this general model, we will not
study this model explicitly. We refer the reader to [8] which has studied NZS DGs with such state
dynamics.
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3112 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

(ii) The observation and action spaces are standard Borel spaces with Yi :=\prod T - 1
t=0 \BbbY i

t and Ui :=
\prod T - 1

t=0 \BbbU i
t, respectively.

(iii) An admissible policy for PLi is \bfitgamma \bfiti \in \Gamma i where \bfitgamma \bfiti := (\gamma i
0:T - 1) and \Gamma i :=

\prod T - 1
t=0 \Gamma i

t.
(iv) A multistage expected cost function for i\in \scrN is given by

J i(\bfitgamma ) =E\bfitgamma 

\Biggl[ 
T - 1\sum 
t=0

cit(\omega 0, xt, u
1:N
t ) + ciT (xT )

\Biggr] 
(2.17)

for some Borel measurable cost functions ci : \Omega 0 \times \BbbX t \times 
\prod N

j=1\BbbU 
j
t \rightarrow \BbbR , where

\bfitgamma = \bfitgamma 1:\bfitN , and \omega 0 is a common \Omega 0-valued cost function-relevant exogenous
random variable, \omega 0 : (\Omega ,\scrF , P )\rightarrow (\Omega 0,\scrF 0), where \Omega 0 is a Borel space with its
Borel \sigma -field \scrF 0.

Definition 2.6. For a multistage stochastic game, a policy \bfitgamma \ast is PL-NE if for

all i \in \scrN and for all \bfitbeta i \in \Gamma i, J i(\bfitgamma \ast ) \leq J i(\bfitgamma  - i,\ast ,\bfitbeta i). Also, a policy \bfitgamma \ast is (one-shot)
DM-NE if for all i\in \scrN and k \in \scrT and for all \beta i

t \in \Gamma i
t, J

i(\bfitgamma \ast )\leq J i(\bfitgamma  - i,\ast , (\gamma i\ast 
 - t, \beta 

i
t)).

3. Main results for NZS DGs.

3.1. NE for NZS DG under PI and PD static reductions. We first estab-
lish connections between PL-NE, DM-NE, and stationary policies for DGs and their
PI static reductions.

Theorem 3.1. Consider a stochastic DG \scrP with a PI static reduction (2.3).
(i) A policy \bfitgamma \ast is PL-NE (DM-NE) for \scrP if and only if \bfitgamma \ast is PL-NE (DM-NE)

for a PI static reduction of \scrP .
(ii) Let a policy \bfitgamma \ast satisfy P -a.s., for all i\in \scrN and k \in TEi,

\nabla ui
k
E

(\bfitgamma  - i\ast ,\bfitgamma i\ast 
 - k)

\BbbQ 

\biggl[ 
dP

d\BbbQ 

\bigm| \bigm| \bigm| \bigm| yik\biggr] \bigm| \bigm| \bigm| \bigm| 
ui
k=\gamma i\ast 

k (yi
k)

= 0.(3.1)

Then, \bfitgamma \ast is stationary for \scrP if and only if \bfitgamma \ast is stationary for a PI static
reduction of \scrP .

Proof. The proof is provided in Appendix A.

Next, we study the connections between NE policies of NZS DGs and their PD
static reductions, and present both positive and negative results. Consider the setting
of section 2.4, and note again that for results on the PD static reduction we will only
consider pure strategies since the PD static reduction is ill-defined for randomized
policies (unless control actions are shared).

We first show that a policy \gamma D\ast may be stationary (also NE) for \scrP D
NZS, but \gamma S\ast 

under the PD static reduction it may not be a NE for \scrP S
NZS.

Example 1. Consider a 2-PL stochastic NZS DG (where each player has only
one associated DM, denoted by DM1 and DM2 for PL1 and PL2, respectively) with
ID1 = \{ yD1 \} and ID2 = \{ yD2 \} := \{ yD1 , \^yD2 \} , where \^yD2 = \omega 2 + u1, and yD1 = yS1 := \omega 1 and \omega 2

are primitive random variables. With B a given positive number, let

J1(\gamma D
1 , \gamma 

D
2 ) =E(\gamma D

1 ,\gamma 
D
2 )[(u1 + u2  - B + \omega 2)

2], J2(\gamma D
1 , \gamma 

D
2 ) =E(\gamma D

1 ,\gamma 
D
2 )[(u1 + u2 + \omega 2)

2].

For this game, we note the following two results:
\bullet \gamma D\ast = (\gamma D\ast 

1 , \gamma D\ast 
2 ) := (0, (0, - I)) (where I is the identity map, and (0, (0, I))

denotes the policy such that \gamma D\ast 
1 \equiv 0, \gamma D\ast 

2,1 \equiv 0, and \gamma D\ast 
2,2 is the identity map
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ISOMORPHISM PROPERTIES OF EQUILIBRIUM SOLUTIONS 3113

multiplied by  - 1, that is, u2 = \gamma D\ast 
2 (yD1 , \^y

D
2 ) =  - \^yD2 for u1 = \gamma D\ast 

1 (yD1 ) = 0) is
stationary (also DM-NE (PL-NE)) for \scrP D

NZS. This follows because for every
u1, fixing the policy of DM2 to \gamma D\ast 

2 := (0, I) implies that every arbitrary
policy of DM1 satisfies the stationarity criterion for DM1 and is also a best
response.

\bullet A policy \gamma S\ast = (\gamma S\ast 
1 , \gamma S\ast 

2 ) = (0, ( - \gamma D\ast 
1 , - I)) (where \gamma S\ast 

1 \equiv 0, \gamma S\ast 
2,1 =  - \gamma D\ast 

1 ,
and \gamma D\ast 

2,2 is the identity map multiplied by  - 1 with u1 = \gamma S\ast 
1 (yS1) = 0 and

u2 =  - \omega 2  - \gamma S\ast 
1 (yS1 )), satisfying (2.11), is not stationary for \scrP S

NZS. In fact,
there is no stationary policy (and hence no DM-NE) for \scrP S

NZS since for ev-
ery fixed policy \gamma S

2 , the stationarity criterion for DM2 implies that u2 =
\gamma S
2 (y

S
2) =  - \gamma S

1 (y
S
1)  - \^yS2 , and the stationarity criterion for DM1 implies that

u1\ast  - \gamma S
1 (y

S
1) - B = 0, which fails to hold since B \not = 0.

Next, we show that if a policy \gamma S\ast is stationary (also NE) for \scrP S
NZS, \gamma 

D\ast , satisfying
the PD static reduction, it need not be a NE for \scrP D

NZS.

Example 2. Consider a 2-PL identical interest NZS DG (where each player has
only one associated DM, denoted by DM1 and DM2 for PL1 and PL2, respectively)
with ID1 = \{ yD1 \} and ID2 := \{ yD2 \} = \{ yD1 , \^yD2 \} , where \^yD2 = \omega 2 + u1, and \omega 2 =: \^yS2 and
yD1 =: yS1 = \omega 1 are primitive random variables. Let the identical expected cost function
be given by

E[c(\omega 2, u
1, u2)] :=E[(u1  - u2 + \omega 2)

2  - \alpha (u1)2],(3.2)

for a given \alpha \in (0,1).
\bullet A policy \gamma S\ast = (\gamma S\ast 

1 , \gamma S\ast 
2 ) = (0, (0, I)) (where the policy (0, (0, I)) denotes

\gamma S\ast 
1 \equiv 0, \gamma S\ast 

2,1 \equiv 0, and \gamma S\ast 
2,2 is the identity map, I, that is, u1\ast = \gamma S\ast 

1 (yS1) = 0
and u2\ast = \gamma S\ast 

2 (yS1 , \^y
S
2) = \^yS2) is a NE for \scrP S

NZS.
\bullet However, a policy \gamma D\ast = (\gamma D\ast 

1 , \gamma D\ast 
2 ) = (0, ( - \gamma S\ast 

1 , I)) constructed under a rela-
tion (2.11) (where the policy (0, ( - \gamma S\ast 

1 , I)) denotes \gamma D\ast 
1 \equiv 0, \gamma D\ast 

2,1 = - \gamma S\ast 
1 , and

\gamma D\ast 
2,2 is the identity map, that is, u1\ast = \gamma D\ast 

1 (yD1 ) = 0 and u2\ast = \^yD2  - \gamma S\ast 
1 (yD1 ))

is not a NE for \scrP D
NZS since fixing a policy of DM2 to \gamma D\ast 

2 such that u2\ast =
\^yD2  - \gamma S\ast 

1 (yD1 ), the expected cost function will be concave in u1 (c(u1, u2\ast ) =
 - \alpha (u1)2) and the value will be unbounded from below. We note, however,
that \gamma D\ast is a stationary policy for \scrP D

NZS.

Now, we introduce a regularity and convexity assumption on the cost functions.

Assumption 3.1. For every i\in \scrN and \omega 0,
(a) the cost function ci is continuously differentiable in \bfitu 1:N ;
(b) the cost function ci is (jointly) convex in \bfitu 1:N .

Next, we introduce a condition that is critical in the results to follow.

Condition (C) 1. A policy \bfitgamma D satisfies Condition (C) if for all i \in \scrN and

k \in TEi, \gamma D
i,k

\Bigl( 
\{ gj,k(hj,k(\zeta ), u

\downarrow (j,l))\} (j,l)\in \downarrow (i,k), gi,k(hi,k(\zeta ), u
\downarrow (i,k))

\Bigr) 
is affine in u\downarrow (i,k).

We note that if gj,k are affine in actions, then any policies \bfitgamma D affine in actions
satisfy Condition (C). Next, in view of Example 1, we readily have the following result
for NZS DGs.

Proposition 3.1. Consider a stochastic NZS DG \scrP D
NZS with a partially nested

IS. Then we have the following:
(i) If a policy \bfitgamma D\ast is PL-NE (DM-NE, stationary) for \scrP D

NZS, then \bfitgamma S\ast under
policy dependent static reduction (2.11), is not necessarily PL-NE (DM-NE,
stationary) for \scrP S

NZS.
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3114 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

(ii) If a policy \bfitgamma S\ast is PL-NE (DM-NE, stationary) for \scrP S
NZS, then \bfitgamma D\ast satisfying

(2.11) is not necessarily PL-NE (DM-NE, stationary) for \scrP D
NZS.

(iii) Statement of part (i) is valid even if Assumptions 2.2 and 3.1 hold, and \bfitgamma D\ast 

satisfies Condition (C).

Proof. Parts (i) and (iii) follow from Example 1, and part (ii) follows from Ex-
ample 2.

Now, we introduce a condition under which we can establish connections between
PL-NE (DM-NE, stationary) policies for NZS DGs and their PD static reductions.

Assumption 3.2. There exists a constant \alpha ij such that ci(\cdot ) = \alpha ijcj(\cdot ) for all
i, j \in \scrN with \{ i\} \in \{ \downarrow j\} .

ZS DGs and teams are important special classes of games where Assumption 3.2
holds.

Theorem 3.2. Consider a stochastic NZS DG \scrP D
NZS with a partially nested IS.

Let Assumptions 2.2, 3.1, and 3.2 hold. Then, a policy \bfitgamma D\ast satisfying Condition (C)
is stationary (DM-NE) for \scrP D

NZS if and only if \bfitgamma S\ast , satisfying (2.11), is stationary
(DM-NE) for \scrP S

NZS.

Proof. This follows from an argument similar to that in [31, Theorem 4.2].

We next show that these sufficient conditions can be relaxed under the SMCS
reductions.

3.2. NE for NZS DGs under SMCS reductions. Here, we study the impact
of the expansion of IS via control-sharing (see (2.13)), and establish isomorphism
relations between NE policies of \scrP D

NZS, \scrP S
NZS, \scrP D,CS

NZS , and \scrP S,CS
NZS . We first have the

following result.

Theorem 3.3. For stochastic NZS DGs with partially nested IS, where Assump-
tion 2.2 holds, SMCS reduction is PI.

Proof. Since Assumption 2.2 holds and each DMk of PLi has access to u\downarrow (i,k),
SMCS reduction to \scrP S,CS

NZS for each DM is independent of precedent DMs' policies:
given \bfitgamma D,CS, a policy \bfitgamma S,CS can be constructed through (2.14), i.e., for every i\in \scrN and

k \in TEi, ui
k = \gamma D,CS

i,k (yD\downarrow (i,k), u
\downarrow (i,k), gi,k(hi,k(\zeta ), u

\downarrow (i,k))) = \gamma S,CS
i,k (yS\downarrow (i,k), u

\downarrow (i,k), \^yS(i,k)) for

every u\downarrow (i,k) P -a.s. The fact that the expected cost functions do not change under
the above reduction completes the proof.

In view of Theorem 3.3, we obtain that since SMCS reduction is PI, the isomor-
phism between NE policies can be relaxed compared to those in Theorem 3.2 for PD
static reductions.

Theorem 3.4. Consider a stochastic NZS DG with a partially nested IS.
(i) If Assumption 2.2 holds, then a policy \bfitgamma D,CS\ast is PL-NE (DM-NE, stationary)

if and only if \bfitgamma S,CS\ast is a PL-NE (DM-NE, stationary) policy for \scrP S,CS
NZS under

the SMCS reduction (see (2.14)).
(ii) Any PL-NE (DM-NE, stationary) policy \bfitgamma D\ast constitutes a PL-NE (DM-NE,

stationary) policy on the enlarged space \Gamma D,CS for \scrP D,CS
NZS ; however, in gen-

eral, if \bfitgamma D,CS\ast is PL-NE (DM-NE, stationary) for \scrP D,CS
NZS , then \bfitgamma D\ast satisfying

\gamma D\ast 
i,k(y

D
i,k) = \gamma D,CS,\ast 

i,k (yD,CS
i,k ) P -a.s. for all i\in \scrN and k \in TEi, is not necessarily

PL-NE (DM-NE, stationary) for \scrP D
NZS.
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(iii) Any PL-NE (DM-NE, stationary) policy \bfitgamma S\ast constitutes a PL-NE (DM-NE,

stationary) policy on the enlarged space \Gamma S,CS for \scrP S,CS
NZS ; however, in general,

if \bfitgamma S,CS\ast is PL-NE (DM-NE, stationary) for \scrP S,CS
NZS , then \bfitgamma S\ast satisfying for all

i\in \scrN and k \in TEi, \gamma S\ast 
i,k(y

S
i,k) = \gamma S,CS\ast 

i,k (yS,CSi,k ) P -a.s. is not necessarily PL-NE

(DM-NE, stationary) for \scrP S
NZS.

(iv) Under Assumptions 2.2, 3.1(a) and 3.2, if a stationary policy \bfitgamma S,CS\ast for \scrP S,CS
NZS

is affine in actions, then \bfitgamma S\ast is a stationary policy for \scrP S
NZS, where for every

i\in \scrN and k \in TEi, \gamma S,\ast 
i,k (y

S
i,k) = \gamma S,CS,\ast 

i,k (yS,CSi,k ) P -a.s.

Proof. The proof is provided in Appendix A.

4. Main results for ZS DGs.

4.1. SPs for ZS DGs under PD static reduction. In this section, we study
ZS DGs under PD static reductions. We establish results similar to those for NZS DGs,
but without imposing Assumption 3.2. Furthermore, we establish stronger results
due to the ordered intechangeability property of multiple PL-SPE policies. First, we
provide two examples, clearly capturing a subtlety of the connection between PL-SPE
(DM-SPE) for ZS DGs, and their PD static reductions.

Example 3. Consider a 2-DM stochastic ZS DG \scrP D
ZS with ID1 = \{ yD1 \} and ID2 :=

\{ yD2 \} := \{ yD1 , \^yD2 \} , where \^yD2 = \omega 2 +u1, and \omega 2 =: \^yS2 and yD1 =: yS1 = \omega 1 (IS2 = \{ \omega 1, \omega 2\} )
are primitive random variables. Assume that DM1 is the minimizer and DM2 is
the maximizer, and the expected cost function is given for a given \alpha \in (0,1) as
E[c(\omega 2, u

1, u2)] :=E[\alpha (u1)2  - (u1  - u2 + \omega 2)
2].

\bullet Then, a policy \gamma D\ast := (\gamma D\ast 
1 , \gamma D\ast 

2 ) = (0, (0, I)) (where \gamma D\ast 
1 \equiv 0, \gamma D\ast 

2,1 \equiv 0 and
\gamma D\ast 
2,2 is the identity map with u1 = \gamma D\ast 

1 (yD1 ) = 0 and u2 = \^yD2 ) is PL-SPE
(DM-SPE) for \scrP D

ZS. This is true, because, with \alpha \in (0,1), when u2 = \^yD2 , the
best response strategy for DM1 is zero. Note that by fixing the policy of DM2

to (0, I), the expected cost will be convex in u1, and hence, stationary policy
(0, I) will minimize the conditional expected cost function for DM1.

\bullet A policy \gamma S\ast := (\gamma S\ast 
1 , \gamma S\ast 

2 ) = (0, (\gamma S\ast 
1 , I)) (where \gamma S\ast 

1 \equiv 0, \gamma S\ast 
2,1 = \gamma D\ast 

2,1 and \gamma D\ast 
2,2

is the identity map with u1 = \gamma S\ast 
1 (yS1) = 0 and u2 = \^yS2 + \gamma S\ast 

1 (yS1)), satisfying
(2.11), is not SPE for \scrP S

ZS. This is true, because, by fixing the policy of DM2

to u2 = \^yD2 + \gamma S\ast 
1 (yS1) = \omega 2, the expected cost function will be concave in

u1, and hence, the above stationary policy will actually maximize (and not
minimize) the conditional expected cost function for DM1.

Example 4. Consider a 2-DM stochastic ZS DG \scrP D
ZS with ID1 = \{ yD1 \} and ID2 :=

\{ yD2 \} := \{ yD1 , \^yD2 \} , where \^yD2 := \omega 2 + u1 and \^yS2 := \omega 2, and yD1 =: yS1 = \omega 1 are primitive
random variables. Let the expected cost function be given as

E[c(\omega 2, u
1, u2)] :=E[(u1  - u2 + \omega 2)

2  - \alpha (u1)2  - \beta (u2  - \omega 2)
2],(4.1)

with \alpha \in (0,1) and \beta > 1. Let DM1 be the minimizer and DM2 is the maximizer.
Then, we have the following:

\bullet A policy \gamma S\ast := (\gamma S\ast 
1 , \gamma S\ast 

2 ) = (0, (0, I)) (where \gamma S\ast 
1 \equiv 0, \gamma S\ast 

2,1 \equiv 0, and \gamma S\ast 
2,2

is the identity map with u1 = \gamma S\ast 
1 (yS1) = 0 and u2 = \gamma S\ast 

2 (yS1 , \^y
S
2) = \^yS2) is

PL-SPE (DM-SPE) for \scrP S
ZS. This is true, because fixing a policy of DM2

to u2 = \gamma S\ast 
2 (yS1 , \^y

S
2) = \^yS2 , the expected cost function will be convex in u1

(c(u1, u2) = (1  - \alpha )(u1)2). On the other hand, fixing a policy of DM1 to
u1 = \gamma S\ast 

1 (yS1) = 0, the expected cost function will be concave in u2 (c(u1, u2) =
(1 - \beta )(u2  - \omega 2)

2). Hence, \gamma S\ast is PL-SPE (DM-SPE).
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\bullet However, \gamma D\ast := (\gamma D\ast 
1 , \gamma D\ast 

2 ) = (0, ( - \gamma S\ast 
1 , I)) (where \gamma D\ast 

1 \equiv 0, \gamma D\ast 
2,1 =  - \gamma S\ast 

2,1,
and \gamma D\ast 

2,2 is the identity map with u1 = \gamma D\ast 
1 (yD1 ) = 0 and u2 = \^yD2  - \gamma S\ast 

1 (yD1 )),
satisfying (2.11), is not a PL-SPE (DM-SPE) for \scrP D

ZS since fixing the policy
of DM2 to u2\ast = \^yD2  - \gamma D\ast 

1 (yD1 ), the expected cost function will be concave in
u1 (c(u1, u2\ast ) = - (\alpha + \beta )(u1)2).

In view of Examples 3 and 4, we can state the following negative result for ZS
DGs.

Proposition 4.1. Consider a stochastic ZS DG \scrP D
ZS with a partially nested IS.

Then, we have the following:
(i) If a policy \bfitgamma D\ast is PL-SPE (DM-SPE, stationary) for \scrP D

ZS, then \bfitgamma S\ast is not
necessarily PL-SPE (DM-SPE, stationary) for \scrP S

ZS.
(ii) If a policy \bfitgamma S\ast is PL-SPE (DM-SPE, stationary) for \scrP S

ZS, then \bfitgamma D\ast is not
necessarily PL-SPE (DM-SPE, stationary) for \scrP D

ZS.
(iii) Statements of parts (i) and (ii) hold even if Assumptions 2.2 and 3.1(a) hold.

Proof. Part (i) follows from Example 3, part (ii) follows from Example 4, and
part (iii) follows from both Examples 3 and 4.

Next, we introduce a convexity condition for ZS DGs which will be instrumental
in obtaining some positive results.

Assumption 4.1. For every \omega 0, the cost function c is (jointly) convex in the actions
of minimizers and (jointly) concave in the actions of maximizers.

Theorem 4.1. Consider a stochastic ZS DG \scrP D
ZS with a partially nested IS. Let

Assumptions 2.2, 3.1(a), and 4.1 hold. Then, a policy \bfitgamma D\ast satisfying Condition (C)
is stationary (DM-SPE) for \scrP D

ZS if and only if \bfitgamma S\ast is a stationary (DM-SPE) policy
for \scrP S

ZS under PD static reduction (see (2.11)).

Proof. The proof follows from similar steps as those of [31, Theorem 4.2]. We
note that Assumption 3.2 holds, but since the cost function is not convex in the
maximizer's actions, the proof does not directly follow from that of Theorem 3.2.
However, since the cost is concave in that case, it can be shown that the limit and
expectation can be interchanged in the analysis, and similar analysis as that in the
proof of [31, Theorem 4.2] completes the proof.

4.2. SPs for ZS DGs under SMCS reductions. We study the impact of the
expansion of IS via control-sharing on SPE and stationary policies for ZS DGs.

Theorem 4.2. Given a stochastic ZS DG \scrP D
ZS with a partially nested IS, identical

connections as that for NZS DG in Theorem 3.4 (i)--(iv) hold for \scrP D
ZS, \scrP S

ZS, \scrP D,CS
ZS ,

and \scrP S,CS
ZS .

Proof. The proof follows from an argument similar to that used in
Theorem 3.4.

Now, as a corollary to Theorems 4.1 and 4.2, we present a result on uniqueness
as well as essential nonuniqueness of PL-SPE (DM-SPE) policies for ZS DGs, their
PD static reductions, and their SMCS reductions, which are useful, in particular, for
LQG models. First, we recall the definition of strong uniqueness of policies from [4,
p. 300].

Definition 4.3. Given a space of admissible policies \Gamma 1 \times \Gamma 2, a PL-SPE policy
pair (\bfitgamma 1\ast ,\bfitgamma 2\ast ) is strongly unique on \Gamma 1 \times \Gamma 2 if (\bfitgamma 1\ast ,\bfitgamma 2\ast ) is the unique PL-SPE in
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\Gamma 1\times \Gamma 2, and \bfitgamma 1\ast is the unique best response to \bfitgamma 2\ast , and \bfitgamma 2\ast is the unique best response
to \bfitgamma 1\ast .

Corollary 4.4. Consider a stochastic ZS DG (\scrP D
ZS) with partially nested IS. Let

Assumption 2.2 hold. Then, we have the following:
(i) If there exists a unique PL-SPE (DM-SPE) policy \bfitgamma S\ast for \scrP S

ZS, then there

exists a policy \bfitgamma S,CS\ast , satisfying, for all i \in \scrN and k \in TEi, \gamma S\ast 
i,k(y

S
i,k) =

\gamma S,CS\ast 
i,k (yS,CSi,k ) P -a.s., which is PL-SPE (DM-SPE) for \scrP S,CS

ZS , but not neces-
sarily essentially unique.

(ii) If there exists a strongly unique PL-SPE policy \bfitgamma S\ast for \scrP S
ZS, then a policy

\bfitgamma S,CS\ast , satisfying, for all i\in \scrN and k \in TEi, \gamma S\ast 
i,k(y

S
i,k) = \gamma S,CS\ast 

i,k (yS,CSi,k ) P -a.s.,

is an essentially unique PL-SPE policy for \scrP S,CS
ZS .

(iii) Let \bfitgamma S\ast be a strongly unique PL-SPE for \scrP S
ZS. If there exists a PL-SPE policy

\bfitgamma D\ast for \scrP D
ZS, then it is essentially unique and satisfies (2.11).

(iv) Let \bfitgamma S,CS\ast be an essentially unique PL-SPE (DM-SPE) policy for \scrP S,CS
ZS . If

there exists a PL-SPE (DM-SPE) policy \bfitgamma S\ast for \scrP S
ZS, then it is unique and

for every i\in \scrN and k \in TEi, \gamma S\ast 
i,k(y

S
i,k) = \gamma S,CS\ast 

i,k (yS,CSi,k ) P -a.s.

Proof. The proof is provided in Appendix A.

SMC reductions lead to nonunique representations of policies. This nonuniqueness
has a subtle impact on the isomorphism of NE policies. Corollary 4.4 yields that the
uniqueness of NE policies might not be preserved under SMC reductions for ZS DGs,
but strong uniqueness implies uniqueness of NE policies (up the representation) under
the expanded control-sharing IS. Applications of this set of results to multistage ZS
DGs will be studied in section 6.

5. Main results for dynamic teams. Results identical to those for NZGs
under PI static reductions can be established for teams.

Theorem 5.1. Consider a stochastic dynamic team \scrP D
TE with partially nested IS.

Let Assumption 2.2 hold. Then, \gamma D\ast is a globally optimal policy for \scrP D
TE if and only if

\gamma S\ast is a globally optimal policy for \scrP S
TE under the PD static reduction and/or SMCS

reduction.

Although the main notion of optimality for teams is global optimality, stationar-
ity (pbp optimality) are important for computation of globally optimal policies via
variational analysis (see e.g., [25]). In the following, we provide two examples that
serve to demonstrate that the subtlety of the connections between stationary (pbp
optimal) policies of \scrP D

TE and \scrP S
TE remains true for teams. These are counterexamples

which show that, in contrast to the case of globally optimal policies, the isomorphism
relations between stationary (pbp optimal) policies of \scrP D

TE and \scrP S
TE are no longer true,

in general (under Assumption 2.2).

Example 5. Consider a 2-DM stochastic team \scrP D
TE with ID1 = \{ yD1 \} and ID2 :=

\{ yD2 \} = \{ yD1 , \^yD2 \} , where \^yD2 = \omega 2 + u1, and \omega 2 =: \^yS2 = \omega 1 and yD1 =: yS1 are primitive
random variables. Let the expected cost function be given as

E[c(\omega 2, u
1, u2)] :=E[\alpha (u1)2 + \beta (u2  - \omega 2)

2  - (u1  - u2 + \omega 2)
2](5.1)

for a given \alpha \in (0,1) and \beta > 1.
\bullet A policy \gamma D\ast = (\gamma D\ast 

1 , \gamma D\ast 
2 ) = (0, (0, I)) (where \gamma D\ast 

1 \equiv 0, \gamma D\ast 
2,1 \equiv 0 and \gamma D\ast 

2,2 is the
identity map, that is, u1\ast = \gamma D\ast 

1 (yD1 ) = 0 and u2\ast = \^yD2 ) is pbp optimal for
\scrP D
TE since fixing the policy of DM2 to \gamma D\ast 

2 , the expected cost function will be
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convex in u1 (c(u1, u2) = (\alpha + \beta )(u1)2), and fixing the policy of DM1 to \gamma D\ast 
1

such that u1 = \gamma D\ast 
1 (yD1 ) = 0, the expected cost function will be convex in u2

(c(u1, u2) = (\beta  - 1)(u2  - \omega 2)
2).

\bullet However, under the PD static reduction, the policy \gamma S\ast = (\gamma S\ast 
1 , \gamma S\ast 

2 ) =
(0, ( - \gamma D\ast 

1 , I)) constructed under a relation (2.11), is not pbp optimal for \scrP S
TE

since fixing the policy of DM2 to \gamma S\ast 
2 such that u2 = \gamma S\ast 

2 (yS1 , \^y
S
2) = \^yS2 - \gamma D\ast 

1 (yD1 ),
the expected cost function will be concave in u1 (c(u1, u2) = (\alpha  - 1)(u1)2).

Example 6. Consider a 2-DM stochastic team \scrP D
TE with ID1 = \{ yD1 \} and ID2 =

\{ yD2 \} := \{ yD1 , \^yD2 \} , where \^yD2 = \omega 2 +
\surd 
u1, and \omega 2 and yD1 = yS1 := \omega 1 are primitive

random variables. Let \BbbU 1 =\BbbR + and the expected cost function be given by

E[c(\omega 2, u
1, u2)] :=E[(

\surd 
u1  - u2 + \omega 2)

2].(5.2)

\bullet A policy \gamma D\ast = (\gamma D\ast 
1 , \gamma D\ast 

2 ) = (0, (0, I)) (where \gamma D\ast 
1 \equiv 0, \gamma D\ast 

2,1 \equiv 0, and \gamma D\ast 
2,2 is

the identity map, that is, u1\ast = 0 and u2\ast = \^yD2 ) is stationary for \scrP D
TE.

\bullet However, under the PD static reduction, the corresponding policy \gamma S\ast =

(\gamma S\ast 
1 , \gamma S\ast 

2 ) = (0, (
\sqrt{} 

\gamma D\ast 
1 , I)) constructed under the relation (2.11) (where \gamma S\ast 

1 \equiv 
0, \gamma S\ast 

2,1 =
\sqrt{} 

\gamma D\ast 
1 , and \gamma S\ast 

2,2 is the identity map, that is, u1 = 0 and u2 =

\omega 2+
\sqrt{} 
\gamma D\ast 
1 (yS1)) is not stationary (although it is pbp optimal) for \scrP S

TE. Since
fixing the policy of DM2 to \gamma S\ast 

2 such that u2 = \omega 2, the derivative of the
expected cost function with respect to u1 is always 1. Hence, the criterion
for stationarity does not lead to a solution.

Hence, in view of the preceding examples, we have the following negative result.

Proposition 5.1. Consider a stochastic dynamic team \scrP D
TE with partially nested

IS. Let Assumption 2.2 hold. Then, we have the following:
(i) If \gamma D\ast is stationary (pbp optimal) for \scrP D

TE, then \gamma S\ast is not necessarily sta-
tionary (pbp optimal) for \scrP S

TE under the PD static reduction.
(ii) If \gamma S\ast is a stationary (pbp optimal) policy for \scrP S

TE, then \gamma D\ast , satisfying the
PD static reduction relation (2.11), is not necessarily pbp optimal for \scrP D

TE.

Proof. This is a direct consequence of the examples above, where Examples 5 and
6 imply part (i), and Example 2 implies part (ii).

Since teams constitute a special class of NZS DGs where Assumption 3.2 holds,
Theorems 3.2 and 3.4 establish connections between pbp optimal (globally optimal,
stationary) policies of \scrP D

TE, \scrP S
TE, \scrP D,CS

TE , and \scrP S,CS
TE . In the following, we first establish

results on the connections between uniqueness of pbp optimal policies for \scrP S
TE and

\scrP D
TE, which is useful, in particular, for LQG models. The following result is a corollary

to Theorems 5.1, 3.2, and 3.4.

Corollary 5.2. Consider a stochastic dynamic team \scrP D
TE with partially nested

IS. Assume that for all i \in \scrN , gi is linear in u\downarrow i for all \zeta (hence, Assumption 2.2
holds). Let Assumption 3.1 hold, and let \gamma S\ast \in \Gamma S be the unique pbp optimal policy
for \scrP S

TE (hence, globally optimal). Then, we have the following:
(i) If \gamma D\ast \in \Gamma D satisfying (2.11) is affine, then \gamma D\ast is an essentially unique affine

pbp optimal policy for \scrP D
TE (unique in the class of affine policies). Moreover,

if \^\gamma D \in \Gamma D is any nonlinear stationary (pbp optimal) policy for \scrP D
TE (if it

exists), then J(\gamma D\ast )\leq J(\^\gamma D).

(ii) If there exists an affine policy \gamma S,CS\ast for \scrP S,CS
TE with representation \gamma S,CS\ast 

i (yS,CSi )
= \gamma S\ast 

i (ySi ) for i \in \scrN P -a.s., then \gamma S,CS\ast is an essentially unique affine pbp
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optimal policy for \scrP S,CS
TE (there might exist other affine representations of the

policy). Moreover, if \^\gamma S,CS is any nonlinear pbp optimal policy for \scrP S,CS
TE (if

it exists), then J(\gamma S,CS\ast )\leq J(\^\gamma S,CS).

Proof. The policy \gamma D\ast and gi are affine in actions, and thus \gamma D\ast satisfies Condition
(C). Hence, by Theorem 3.2, \gamma D\ast is a stationary policy (also pbp optimal) for \scrP D

TE.

If there exists another linear stationary policy \~\gamma D\ast for \scrP D
TE, then by Theorem 3.2,

\~\gamma S\ast with \~\gamma S\ast 
i (ySi ) = \~\gamma D\ast 

i (yDi ) must be a stationary policy for \scrP S
TE, which contradicts

the uniqueness of the stationary policy for \scrP S
TE. The second part of (i) follows from

Theorem 5.1. Part (ii) can be shown similarly using Theorem 3.4.

6. Multistage ZS DGs and teams under reductions. In this section, we
study multistage deterministic and stochastic ZS DGs and teams.

6.1. Multistage deterministic ZS DGs. Consider the class of multistage de-
terministic ZS DGs, where the dynamics are described for t\in \scrT by

xt+1 = ft(xt, u
1
t , u

2
t )(6.1)

for some function ft : \BbbX t \times \BbbU 2
t \times \BbbU 2

t \rightarrow \BbbX t+1, where ui
t is the control of PLi, i = 1,2,

at time t. Using (6.1) recursively, we can generate uniquely functions \~ft and ht

such that xt+1 = \~ft(ht(\zeta ), u
1
0:t, u

2
0:t), where ht(\zeta ) := \zeta := x0, the initial state. Let

JDET = cT (xT ) +
\sum T - 1

t=0 ct(xt, u
1
t , u

2
t ), where the first player is the minimizer, and

the second one is the maximizer. Consider the following ISs: for i \in \{ 1,2\} and
t\in \scrT : Open-loop: IOL,i

t := \{ x0\} ; Closed-loop no memory (amnesic or pure-feedback):
IF,it := \{ xt\} ; Closed-loop (full memory path-dependent feedback): ICL,it := \{ x0:t\} .
Now, we recall the following results from [2, 34], reworded to fit the current framework.

Theorem 6.1 (see [2, 34]). Consider a deterministic ZS DG as formulated above.
Then, we have the following:

(i) Any PL-SPE policy pair for a game with IOL,i
t or IF,it as an IS constitutes a

PL-SPE policy for the corresponding game with IS ICL,it , i.e., PL-SPE policies
remain PL-SPE under the expanded CL IS ICL,it (but not every CL represen-
tation of policies is PL-SPE).
Let the ZS DG under the IS IF,it admit a unique pure-feedback PL-SPE (\bfitgamma f,1,
\bfitgamma f,2). Then, we have the following:

(ii) If (\bfitgamma o,1,\bfitgamma o,2) is any open loop (OL) PL-SPE, then (\bfitgamma o,1,\bfitgamma o,2) is the unique
OL PL-SPE, and \gamma f,i

t (xt) = \gamma o,i
t (x0) for all i\in \{ 1,2\} and t\in \scrT .

(iii) If (\bfitgamma c,1,\bfitgamma c,2) is any PL-SPE in CL policies, then \gamma f,i
t (xt) = \gamma c,i

t (x0:t) for all
i\in \{ 1,2\} and t\in \scrT .

In the following subsection, we obtain analogous results for stochastic ZS DGs.

6.2. Multistage stochastic ZS DGs. Let the state dynamics be given by

xt+1 = ft(xt, u
1
t , u

2
t ,wt)(6.2)

for some measurable function ft : \BbbX t \times \BbbU 2
t \times \BbbU 2

t \times \BbbW t \rightarrow \BbbX t+1, where \{ wt\} t\in \scrT are
primitive random variables. Using (6.2), we can generate recursively functions \~ft and
ht with \zeta = \{ x0,w0:T - 1\} . Let \^yDt := xt and \^ySt := ht(\zeta ). Let the expected cost
function (to be minimized by player 1 (PL1) and maximized by PL2) be given by

J STO(\bfitgamma ) =E\bfitgamma 
\Bigl[ 
cT (xT ) +

\sum T - 1
t=0 ct(xt, u

1
t , u

2
t )
\Bigr] 
.
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3120 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

Next, we introduce the following assumption, to be utilized in Corollary 6.2.

Assumption 6.1. For every t\in \scrT ,
(a) For fixed \{ u1

0:t, u
2
0:t\} , the function \~ft : ht(\zeta ) \mapsto \rightarrow xt+1 is invertible for all \zeta .

(b) Function ft :\BbbX t \times \BbbU 1
t \times \BbbU 2

t \times \BbbW t \rightarrow \BbbX t+1 is affine in \BbbU 1
t \times \BbbU 2

t .
(c) Function ct :\BbbX t\times \BbbU 1

t \times \BbbU 2
t \rightarrow \BbbR is continuously differentiable on \BbbX t\times \BbbU 1

t \times \BbbU 2
t .

Before we present our results in view of those in sections 4.1 and 4.2, we in-
troduce the following partially nested ISs: For i \in \{ 1,2\} and t \in \scrT : Partially
nested OL: IPNOL,i

t := \{ IPNOL,i
\downarrow t , \^ySt \} ; Partially nested CL: IPNCL,it := \{ IPNCL,i\downarrow t , \^yDt \} ; Dy-

namic partially nested control-sharing: ID,PNCS,i
t := \{ IPNCL,it , u1:2

\downarrow t \} ; Partially nested

with control-sharing: IPNCS,it := \{ IPNOL,i
t , u1:2

\downarrow t \} ; Classical (centralized) with control-

sharing: ICEN,CS,i
t := \{ \^yD0:t, u1:2

0:t - 1\} ; Classical (centralized) OL with control-sharing:

ICEN,OCS,i
t := \{ \^yS0:t, u1:2

0:t - 1\} ; Classical (centralized) OL: ICEN,OP,i
t := \{ \^yS0:t\} .

The following result is a corollary to Theorems 4.1 and 4.2, and Corollary 4.4.

Corollary 6.2. Consider the preceding classes of stochastic ZS DGs.
(i) Any PL-SPE (DM-SPE) policy pair for a game with IS IPNOL,i

t (with IPNCL,it )
is PL-SPE (DM-SPE) for the corresponding game with IS IPNCS,it (with
ID,PNCS,i
t ).

(ii) Under Assumption 6.1(a), (\bfitgamma dpncs,1,\bfitgamma dpncs,2) is PL-SPE (DM-SPE) for a
game with IS ID,PNCS,i

t if and only if (\bfitgamma pncs,1,\bfitgamma pncs,2) is PL-SPE (DM-SPE)
for the corresponding game with IS IPNCS,it and for all i \in \{ 1,2\} and t \in \scrT ,
\gamma dpncs,i
t (ID,PNCS,i

t ) = \gamma pncs,i
t (IPNCS,it ) for u1:2

\downarrow t P -a.s.

(iii) If there exists a strongly unique pure-feedback PL-SPE policy pair (\bfitgamma f,1,\bfitgamma f,2)
for a game with IS IF,it , then a policy pair (\bfitgamma c,cs,1,\bfitgamma c,cs,2) is an essentially
unique PL-SPE for the corresponding game with IS ICEN,CS,it , and \gamma c,cs,i

t

(ICEN,CS,i
t ) = \gamma f,i

t (IF,it ) P -a.s., i \in \{ 1,2\} and t \in \scrT . Further, this remains
true if (\bfitgamma c,cs,1,\bfitgamma c,cs,2) is replaced with a PL-SPE policy pair (\bfitgamma cl,1,\bfitgamma cl,2) for
the corresponding game with IS ICL,it , and \gamma cl,i

t (ICL,it ) = \gamma f,i
t (IF,it ) P -a.s..

(iv) If there exists a strongly unique pure-feedback PL-SPE policy pair (\bfitgamma f,1,\bfitgamma f,2)
for a game with IS IF,it , then a policy pair (\bfitgamma c,ocs,1,\bfitgamma c,ocs,2) is an essen-
tially unique PL-SPE for the corresponding game with IS ICEN,OCS,i

t , and
\gamma c,ocs,i
t (ICEN,OCS,i

t ) = \gamma f,i
t (IF,it ) P -a.s. for i \in \{ 1,2\} and t \in \scrT . Moreover,

if there exists an OL PL-SPE policy pair (\bfitgamma c,op,1,\bfitgamma c,op,2) for a game with
IS ICEN,OP,i

t , then it is unique and \gamma c,op,i
t (ICEN,OP,i

t ) = \gamma f,i
t (IF,it ) P -a.s. for

i\in \{ 1,2\} and t\in \scrT .
Let Assumptions 4.1 and 6.1 hold, and let there exist a unique OL PL-SPE
policy pair (\bfitgamma pnol,1,\bfitgamma pnol,2) for ZS DGs with IS IPNOL,i

t . Then, we have the
following:

(v) If, for a ZS DG, a CL policy pair (\bfitgamma pncl,1,\bfitgamma pncl,2), satisfying P -a.s. for all
i \in \{ 1,2\} and all t \in \scrT , \gamma pnol,i

t (IPNOL,i
t ) = \gamma pncl,i

t (IPNCL,it ) is affine in states,
then it is stationary for the corresponding game with IS IPNCL,it and essentially
unique in the class of policies affine in states.

(vi) Let (\bfitgamma pncs,1,\bfitgamma pncs,2) be any PL-SPE policy pair for a game with IS IPNCS,it ,
which is affine in actions. Then, \gamma pnol,i

t (IPNOL,i
t ) = \gamma pncs,i

t (IPNCS,it ) holds P -
a.s. for all i\in \{ 1,2\} and all t\in \scrT (affine PL-SPE policy pair for games with
IPNCS,it are essentially unique).

(vii) PL-SPE policy pairs (\bfitgamma pncl,1,\bfitgamma pncl,2), (\bfitgamma pncs,1,\bfitgamma pncs,2), and (\bfitgamma dpncs,1,
\bfitgamma dpncs,2) for a game with ISs IPNCL,it , IPNCS,it , or ID,PNCS,i

t , achieve the value
of expected cost as that under (\bfitgamma pnol,1,\bfitgamma pnol,2) for the corresponding game.
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Proof. The proof is provided in Appendix A.

6.2.1. Multistage stochastic teams. In this section, we introduce a new re-
duction concept building on the one introduced by Witsenhausen (called independent-
data reduction) [37, section 2.4] and another one in [33, section 3.2]. The underlying
idea is to view DMs acting in a sequence with increasing information as a single player
with a larger action space. This facilitates our optimality analysis.

Assumption 6.2. For every i \in \scrN and every t \in \scrT , there exists a probability
measure \~Qi

t on \BbbY i
t and a function \phi i

t such that for all Borel sets \BbbA =
\prod N

i=1\BbbA i with
\BbbA i \in \BbbY i

t,

P
\bigl( 
y1:Nt \in \BbbA | \omega 0,Ht

\bigr) 
=

N\prod 
i=1

\int 
\BbbA i

\phi i
t(y

i
t, \omega 0,Ht) \~Q

i
t(dy

i
t),(6.3)

where Ht := \{ x0, v
1:N
0:t - 1,w

1:N
0:t - 1, y

1:N
0:t - 1, u

1:N
0:t - 1\} .

Let \widetilde \BbbP be the joint distribution on (\omega 0, x0,\bfitw ,\bfitv ,\bfitu ,\bfity ), and let \mu be the fixed joint
distribution on (\omega 0, x0,\bfitw ,\bfitv ). Let \bfitz := \bfitz 1:N and \bfitz i := zi0:T - 1 for z = u, y,w, v and
i \in \scrN . Hence, under the preceding change of measure (6.3), there exists a reference
distribution \widetilde \BbbQ such that

\widetilde \BbbP (\BbbB ) = \int 
\BbbB 

d\widetilde \BbbP 
d\widetilde \BbbQ \widetilde \BbbQ (d\omega 0, dx0, d\bfitw , d\bfitv , d\bfitu , d\bfity ),(6.4)

\widetilde \BbbQ (d\omega 0, dx0, d\bfitw , d\bfitv , d\bfitu , d\bfity ) := \mu (d\omega 0, dx0, d\bfitw , d\bfitv )

T - 1\prod 
t=0

N\prod 
i=1

\widetilde Qi
t(dy

i
t)1\{ \gamma i

t(y
i
t)\in dui

t\} ,(6.5)

d\widetilde \BbbP 
d\widetilde \BbbQ :=

T - 1\prod 
t=0

N\prod 
i=1

\phi i
t(y

i
t, \omega 0, x0, v

1:N
0:t - 1,w

1:N
0:t - 1, y

1:N
0:t - 1, u

1:N
0:t - 1).(6.6)

Assumption 6.3. For every i\in \scrN , there exists \^Qi such that for every Borel set \BbbB 

\widetilde \BbbP (\BbbB ) = \int 
\BbbB 

d\widetilde \BbbP 
d\widehat \BbbQ \widehat \BbbQ (d\omega 0, dx0, d\bfitw , d\bfitv , d\bfitu , d\bfity ),(6.7)

\widehat \BbbQ (d\omega 0, dx0, d\bfitw , d\bfitv , d\bfitu , d\bfity ) :=

N\prod 
i=1

\widehat Qi(d\bfitu i, d\bfity i, d\bfitw i)\mu 0(d\omega 0, dx0).

Definition 6.3 (independent-data and PL-wise (partially) nested inde-
pendent reductions). Consider a multistage stochastic team \scrP M

TE with a given IS.
We introduce the following two playerwise reductions for it:

(i) (Independent-data reduction) Let Assumption 6.2 hold. An independent-data
reduction is a change of measure (6.4) under which the measurements have
distributions \widetilde Qi

t, and the expected cost function can be written as follows:

J(\bfitgamma ) :=E
\bfitgamma \widetilde \BbbP 
\Biggl[ 
T - 1\sum 
t=0

ct(\omega 0, xt, u
1:N
t ) + cT (xT )

\Biggr] 
(6.8)

=E
\bfitgamma \widetilde \BbbQ 
\bigl[ 
\^c(\omega 0, x0,\bfitw ,\bfitv ,\bfitu ,\bfity )

\bigr] 
,

where the new cost function is \widehat c(\omega 0, x0,\bfitw ,\bfitv ,\bfitu ,\bfity ) := [
\sum T - 1

t=0 ct(\omega 0, xt, u
1:N
t )+

cT (xT )]
d\widetilde \BbbP 
d\widetilde \BbbQ . The team problem under this static reduction can be viewed as

the one that Witsenhausen referred to as a static problem with independent
data [37].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

9/
24

 to
 1

30
.1

5.
24

4.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



3122 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

(ii) (PL-wise (partially) nested independent reduction) Let Assumption 6.3 hold.
PL-wise nested independent reduction is a reduction under which for each
PLi through t \in \scrT , the IS is nested (i.e., \sigma (yit) \subset \sigma (yit+1)), and J(\bfitgamma ) =

E
\bfitgamma \widehat \BbbQ [c(\omega 0,\bfitu ,\bfity ,\bfitw ) d\widetilde \BbbP 

d\widehat \BbbQ ]. If for each PLi through t \in \scrT , the IS is only partially

nested, the reduction is called a PL-wise partially nested independent reduc-
tion.

We note that one scenario where the PL-wise (partially) nested independent re-
duction arises is when each player has a nested private IS and the PI reduction can
be applied through players (or only through dynamics and not necessarily for obser-
vations through time) such that under the reduction, Assumption 6.3 holds. We also
note that the independent-data reduction does not require the IS to be nested, and on
the other hand, the PL-wise (partially) nested independent reduction does not require
Assumption 6.2 to hold. In particular, the PL-wise (partially) nested independent re-
duction can be applied even in the presence of common noise (or common random
shocks to all players through states or dynamics) without any further assumptions
on the noise processes or the structures of the dynamics and observations. Fur-
thermore, the PL-wise (partially) nested independent reduction also allows noiseless
control and/or state sharing through time for each player (where yit = hi

t(x
i
0:t, u

i
0:t - 1)).

Later on, in Corollary 6.4, we show that PL-wise pbp optimal policies for (multistage)
dynamic teams remain PL-wise pbp optimal policies for the teams under independent-
data and PL-wise (partially) nested independent reductions; however, DM-wise pbp
optimal policies only remain DM-wise pbp optimal policies under independent-data
static reductions and not necessarily under PL-wise (partially) nested independent
reductions.

The following corollary to Theorems 3.1(i) and 5.1 establishes connections be-
tween PL-wise and DM-wise pbp optimal policies of dynamic multistage teams and
those under independent-data and PL-wise (partially) nested independent reductions.

Corollary 6.4. Consider a multistage stochastic dynamic team \scrP M
TE.

(i) If there exists an independent-data static reduction, then \bfitgamma \ast is a PL-wise
(DM-wise) pbp optimal policy for \scrP M

TE if and only if it is a PL-wise (DM-
wise) pbp optimal policy under independent-data static reduction.

(ii) If there exists a PL-wise (partially) nested independent reduction, then, \bfitgamma \ast 

is a PL-wise pbp optimal policy for \scrP M
TE if and only if it is a PL-wise pbp

optimal policy under PL-wise (partially) nested independent reduction.

Part (ii) is not necessarily true for DM-wise pbp optimal policies, that is, al-
though PL-wise pbp optimal policies for (multistage) dynamic teams remain PL-wise
pbp optimal under independent-data and PL-wise (partially) nested independent re-
ductions, DM-wise pbp optimal policies only remain DM-wise pbp optimal under
independent-data static reductions.

Proof. Part (i) follows from Theorem 3.1, and the fact that the independent-data
static reduction is PI. Part (ii) follows from the fact that in the PL-wise (partially)
nested independent reduction, following from Assumption 6.3, the team problem can
be static through players via PI static reduction, and hence, every PL-wise pbp opti-
mal policy will be PL-wise pbp optimal under the reduction (since fixing policies of
other players, a PL-wise pbp optimal policy is globally optimal for the player through
time which will be PL-wise pbp optimal under PI, PD static reductions, and SMCS
reduction).
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7. Connections to results from the stochastic games literature.

7.1. Connections to results on LQG ZS DGs with a mutually quadratic
invariant IS [15]. A notable reference here is [15], where a result similar to Corol-
lary 4.4 has been established toward the connections of PL-SPE of \scrP D

ZS and \scrP S
ZS for a

specific class of LQG ZS DGs with mutually quadratic invariant ISs. In the following,
we summarize the relevant results of [15] and discuss connections to the results of
Corollary 4.4. We are given a linear state dynamics: xt+1 =Axt+B1u

1
t +B2u

2
t +wt,

where x0 \sim \scrN (0,\Sigma 0) and wt \sim \scrN (0,\Sigma t) are independent, with \Sigma t > 0, which can also
be expressed as (in compact form) \bfitx =H\zeta +D1\bfitu 

1 +D2\bfitu 
2, where \zeta := \{ x0,w0:T - 1\} ,

\bfitx := \{ x0:T \} , and \bfitu \bfiti := \{ ui
0:T - 1\} for i = 1,2 with appropriate dimensional matrices

H,D1, and D2.
Let PL1 be the minimizer, and let PL2 be the maximizer with the cost function

given by
\sum T - 1

t=0 x\prime 
tMtxt + (u1

t )
\prime R1

tu
1
t + (u2

t )
\prime R2

tu
2
t + x\prime 

TMTxT , where x\prime 
t denotes the

transpose of xt, and Ri
t and Mt are appropriate dimensional symmetric matrices for

all i= 1,2 and t\in \{ 0, . . . , T\} , where Ri
t are positive-definite and Mt are positive semi-

definite. Consider causal linear state-feedback policies, taken as those with control
actions of the form \bfitu \bfiti =Ki\bfitx , where Ki satisfies Ki \in Si for i= 1,2, and Si is an al-
gebraic structure representing the information available to PLi (that is, [si]jk \in \{ 0,1\} 
where [si]ps = 0 signifies that at time p, PLi does not have access to xs, with some
p, s\in \{ 0, . . . , T\} ).

Let the causal linear disturbance feedforward policies be those that map distur-
bance to actions. We note that causal state-feedback policies are closed-loop policies
(which correspond to policies in DGs) and causal disturbance feedforward policies are
open-loop policies (which correspond to policies under (PD) static reductions).

Assumption 7.1 (mutual quadratic invariance [15]). S1\times S2 is mutually quadratic
invariant under

\bigl[ 
D1 D2

\bigr] 
if for any (K1,K2) \in S1 \times S2, we have K1D1K

1 \in S1,
K1D2K

2 \in S1, K2D1K
1 \in S2, and K2D2K

2 \in S2.

We note that quadratic invariant IS is equivalent to the partially nested IS [28],
and hence, this setting can be considered as a special case of the setup introduced in
section 6. Also, [15, Theorem 2 and 5] have shown that if (Q\ast ,1,Q\ast ,2) is the unique
disturbance feedforward PL-SPE, which is also linear, then the policy pair (K\ast ,1,K\ast ,2)
obtained via \biggl[ 

K\ast ,1

K\ast ,2

\biggr] 
=

\biggl( 
I +

\biggl[ 
Q\ast ,1

Q\ast ,2

\biggr] \bigl[ 
D1 D2

\bigr] \biggr)  - 1 \biggl[ 
Q\ast ,1

Q\ast ,2

\biggr] 
(7.1)

provides a unique linear state-feedback PL-SPE in the class of linear state-feedback
policies. Moreover, the policy pair (u1 = K\ast ,1x, u2 = K\ast ,2x) remains PL-SPE if the
players are allowed to use state-feedback nonlinear strategies. The proof builds on first
showing that linear stationary state-feedback and disturbance feedforward policies
satisfy (7.1), and then using the uniqueness and linearity of disturbance feedforward
PL-SPE to establish the result.

\bullet By the fact that the mutually quadratic invariant condition implies partial
nestedness [28], since for the LQG ZS DGs with a partially nested IS, PL-
SPE under the PD static reduction is unique and linear, Corollary 4.4(vi)
leads to [15, Theorem 2 and 5]. Moreover, Theorem 4.1 and Corollary 6.2
generalize [15, Theorem 2 and 5] to ZS DGs with continuously differentiable
cost functions satisfying Assumption 4.1.

\bullet In view of Theorem 4.1, one can conclude that the result of [15, Lemma 1]
(showing that (7.1) holds for linear stationary state-feedback and disturbance
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3124 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

feedforward policies; see [15, eqs. (16) and (17)]) holds because of the convex-
ity and regularity of the cost function, and the fact that the PL-SPE under
the PD static reduction for LQG games with a partially nested IS is unique
and linear.

\bullet Finally, Proposition 3.1 had shown the gap between PL-NE of NZS DGs and
their PD static reductions, which explains the counterexample in [15, section
V. A] for LQG NZS DGs with a partially nested IS. Theorem 3.2 introduces
sufficient conditions under which some positive results can be established for
NZS DGs (Assumption 3.2).

7.2. Multistage LQG NZS DGs with one-step-delay sharing and one-
step-delay observation sharing ISs. In this section, we consider multistage LQG
NZS DGs with one-step-delay sharing and one-step-delay observation sharing ISs, as
introduced and discussed in [3]. Consider the class of N -player LQG NZS DGs with
state dynamics given by xt+1 =Atxt +

\sum N
i=1B

i
tu

i
t +wt, where At and Bi

t are appro-
priate dimensional matrices and \{ wt\} t are zero-mean mutually independent Gaussian
random vectors also independent of a zero-mean Gaussian random vector x0, the ini-
tial state. Observations of each player over time are defined by yit =Hi

txt + vit, where
Hi

t is an appropriate dimensional matrix, and \{ vit\} t are zero-mean mutually indepen-
dent Gaussian random vectors, and also independent of \{ wt\} t and x0. Covariances
are assumed to be positive definite. Let y

0:t
:= y1:N0:t and u0:t := u1:N

0:t .

The expected cost function for player i is defined as J i(\bfitgamma ) :=E[
\sum T - 1

t=0 (x\prime 
tQ

i
txt +\sum N

j=1(u
j
t )

\prime Rj,i
t uj

t )+x\prime 
TM

i
TxT ]. Let the corresponding observations under the PD static

reduction be as follows: yS,it = \~Hi
t\zeta , where \zeta := \{ x0,\bfitw ,\bfitv 1:N\} , and \~Hi

t is an appropriate
dimensional matrix which can be obtained recursively. Let yS

0:t
:= (yS,10:t , . . . , y

S,N
0:t ).

Consider the following partially nested ISs: One-step-delay observation sharing:
Ii,DOS
t := \{ y

0:t - 1
, yit\} ; One-step-delay sharing: Ii,DS

t := \{ y
0:t - 1

, u0:t - 1, y
i
t\} ; One-step-

delay observation sharing under the PD static reduction: Ii,SDOS
t := \{ yS

0:t - 1
, yS,it \} ;

One-step-delay sharing under SMCS reduction: Ii,SDS
t := \{ yS

0:t - 1
, yS,it , u0:t - 1\} .

Theorem 7.1 (see [3]). Consider the class of LQG NZS DGs introduced above.
(i) [3, Theorems 4 and 5] If the IS is Ii,DOS

t for all t\in \scrT and i\in \scrN , then under
some sufficient (contraction) conditions on the cost functions of players (see
[3]), there exists a unique PL-NE, which turns out to be linear (affine if the
random vectors have nonzero-mean).

(ii) If the IS is Ii,DS
t , then PL-NE policies are essentially nonunique [3, Example

1], which is true even when the contraction conditions of part (i) holds.

The proof builds on establishing the best-response maps in the single-stage case
as a contraction mapping in a Banach space of properly defined square-integrable
policies, where sufficient conditions for the contraction have been introduced in [3,
eq. (13)]. Crucial in this analysis is the fact that conditional expectation itself is a
nonexpansive map, which is employed in an appropriate way at every stage of the
decision process for the multistage setting (see [3, section IV]). Here, we address the
preceding class of NZS DGs under PD and SMCS reductions, and we compare our
results to those of Theorem 7.1. The following result is a corollary to Theorems 3.2
and 3.4.

Corollary 7.2. Consider the preceding class of LQG NZS DGs. Suppose that
there exists a PL-NE policy \bfitgamma S\ast for such a game with IS Ii, SDOS

t . Then, we have the
following:
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ISOMORPHISM PROPERTIES OF EQUILIBRIUM SOLUTIONS 3125

(i) The policy \bfitgamma S\ast is the unique PL-NE for the corresponding game with IS

Ii,SDOS
t , which is also affine.

(ii) If Assumption 3.2 holds, then an affine policy \bfitgamma D\ast is the unique affine PL-NE

for the corresponding game with IS Ii,DOS
t , where \gamma D,i\ast 

t (Ii,DOS
t ) = \gamma S,i\ast 

t (Ii, SDOS
t )

P -a.s..
(iii) There exists an affine PL-NE policy \bfitgamma S,CS\ast for the corresponding game with

IS Ii,DS
t , satisfying \gamma S,CS,i\ast 

t (Ii, DS
t ) = \gamma S,i\ast 

t (Ii,SDOS
t ) P -a.s. Moreover, if As-

sumption 3.2 holds, then \bfitgamma S,CS\ast is an essentially unique affine PL-NE under

Ii,DS
t .

(iv) If Assumption 3.2 does not hold, then an affine PL-NE \bfitgamma S,CS\ast for the corre-

sponding game with IS Ii,DS
t , satisfying \gamma S,CS,i\ast 

t (Ii, DS
t ) = \gamma S,i\ast 

t (Ii,SDOS
t ) P -a.s.,

is essentially nonunique PL-NE (there exist nonunique affine (and possibly a
plethora of nonlinear) PL-NEs with distinct characterizations under Ii,SDOS

t ).

Proof. Part (i) follows essentially from [3, Theorem 4] and part (ii) follows from
Theorem 3.2. Part (iii) follows from Theorem 3.4(iii), and part (iv) follows from
Theorem 3.4(iv).

In comparison to the results in Theorem 7.1, we note the following: 1) Corol-
lary 7.2(i) is essentially from Theorem 7.1(i); (2) The result of Theorem 7.1(ii) is
stronger than Corollary 7.2(ii) since Assumption 3.2 has not been imposed, and unique-
ness has been established (using the contraction condition) among all admissible poli-
cies (and not only linear ones) for the game with IS Ii,DOS

t ; (3) Corollary 7.2(iii) is a
new result compared to Theorem 7.1 as it introduces sufficient conditions for essential
uniqueness of linear PL-NE for the game with IS Ii,DS

t ; (4) The counterexample show-
ing the existence of essentially nonunique PL-NE policies has been presented in [3,
Example 1]. Corollary 7.2(iv) suggests the possibility of the existence of essentially
nonunique affine and/or nonlinear PL-NE policies, when Assumption 3.2 fails, and
hence, offers an explanation for the negative result.

8. Conclusion. In this paper, we have studied (equivalence) connections be-
tween NE of DGs and their reductions. We have discussed these connections under
three classes of reductions: policy-independent, policy-dependent static, and static
measurements with control-sharing.

Appendix A.

A.1. Proof of Theorem 3.1. We first recall sufficient conditions for the Bayes
Formula (e.g., [17, p. 216]) which is used in the proof of Theorem 3.1.

Lemma A.1. Consider a probability space (\widehat \Omega , \widehat \scrF ,\widehat \BbbP ) where \^\BbbP is absolutely contin-
uous with respect to some probability measure \widehat \BbbQ . Given a sub \sigma -field \scrG \subset \widehat \scrF , and a
random variable X on the probability space, which is integrable (E\widehat \BbbP [| X| ] <\infty ), then

the Bayes formula holds, that is, \widehat \BbbP -a.s E\widehat \BbbP [X| \scrG ] =E\widehat \BbbQ [X d\widehat \BbbP 
d\widehat \BbbQ | \scrG ]/E\widehat \BbbQ [ d\widehat \BbbP d\widehat \BbbQ | \scrG ].

Proof of Theorem 3.1. Since policies do not change under the reduction, the result
for NE policies follows from (2.7). Next, we prove the result for stationary policies.
Let \bfitgamma \ast be a stationary policy for \scrP . In the following, we show that if \bfitgamma \ast satisfies
(3.1), then it is also stationary under a PI static reduction. Since \bfitgamma \ast is a stationary
policy for \scrP , using Lemma A.1,

0 =\nabla ui
k
E

\gamma  - i\ast 
 - k

P [ci(\omega 0,\bfitu 
1:N )| yi] =\nabla ui

k

\biggl\{ 
E

\gamma  - i\ast 
 - k

\BbbQ [\~ci(\omega 0,\bfitu 
1:N ,\bfity 1:N )| yik]

E
\gamma  - i\ast 
k

\BbbQ [dPd\BbbQ | yik]

\biggr\} 
P -a.s.
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3126 SINA SANJARI, TAMER BASAR, AND SERDAR YUKSEL

at ui
k = \gamma i\ast 

k (yik), where the second equality follows from Lemma A.1. Hence,

\biggl\{ \biggl( 
\nabla ui

k
E

\gamma  - i\ast 
k

\BbbQ [\~ci(\omega 0,\bfitu 
1:N ,\bfity 1:N )| yik]

\biggr) 
E

\gamma  - i\ast 
k

\BbbQ 

\biggl[ 
dP

d\BbbQ 
| yik

\biggr] \bigg/ \biggl( 
E

\gamma  - i\ast 
k

\BbbQ 

\biggl[ 
dP

d\BbbQ 
| yik

\biggr] \biggr) 2

(A.1)

 - E
\gamma  - i\ast 
k

\BbbQ [\~ci(\omega 0,\bfitu 
1:N ,\bfity 1:N )| yik]

\biggl( 
\nabla ui

k
E

\gamma  - i\ast 
k

\BbbQ 

\biggl[ 
dP

d\BbbQ 
| yik

\biggr] \biggr) \bigg/ \biggl( 
E

\gamma  - i\ast 
k

\BbbQ 

\biggl[ 
dP

d\BbbQ 
| yik

\biggr] \biggr) 2\biggr\} 
= 0

at ui
k = \gamma i\ast 

k (yik). Since \bfitgamma 
\ast satisfies (3.1), the second line of (A.1) is equal to zero P -a.s.

Since dP
d\BbbQ > 0 P -a.s., the first line of (A.1) must be zero P -a.s., which implies that \bfitgamma \ast 

is a stationary policy for \scrP under PI static reductions. For the converse statement,
suppose a policy \bfitgamma \ast is stationary for \scrP under a PI static reduction and satisfies (3.1).
Then, (A.1) is equal to zero P -a.s., which implies that \bfitgamma \ast is a stationary policy for
\scrP , and this completes the proof.

A.2. Proof of Theorem 3.4.

Part (i): This follows from Theorem 3.3 since the SMCS reduction (2.14) is PI, and
the cost function remains unchanged under the SMCS reduction. For the
connections between stationary policies, we have P -a.s.,

0 =\nabla ui
k
E

\biggl[ 
c

\biggl( 
\omega 0, (\gamma 

D,CS\ast 
 - i, - k

(yD,CS
 - i, - k), u

i
k)

\biggr) \bigm| \bigm| \bigm| \bigm| yD,CS
i,k

\biggr] \bigm| \bigm| \bigm| \bigm| 
ui
k=\gamma D,CS\ast 

i (yD,CS
i,k )

(A.2)

=\nabla ui
k
E

\biggl[ 
c

\biggl( 
\omega 0, (\gamma 

S,CS\ast 
 - i, - k

(yS,CS - i, - k), u
i
k)

\biggr) \bigm| \bigm| \bigm| \bigm| ySi,k, \gamma S,CS\ast 
\downarrow (i,k)(y

S,CS
\downarrow (i,k))

\biggr] \bigm| \bigm| \bigm| \bigm| 
ui
k=\gamma S,CS\ast 

i,k (yS,CS
i,k )

=\nabla ui
k
E

\biggl[ 
c

\biggl( 
\omega 0, (\gamma 

S,CS\ast 
 - i, - k

(yS,CS - i, - k), u
i
k)

\biggr) \bigm| \bigm| \bigm| \bigm| yS,CSi,k

\biggr] \bigm| \bigm| \bigm| \bigm| 
ui
k=\gamma S,CS\ast 

i,k (yS,CS
i,k )

.

The second line of (A.2) follows from the relation (2.14) since the SMCS
reduction satisfying this relation is PI. The third line of (A.2) follows from
Assumption 2.2 since there is a bijection between yDi,k and ySi,k, and this com-
pletes the proof.

Part (ii): Let \bfitgamma D\ast be a PL-NE policy for \scrP D
NZS, and let \bfitgamma D,CS\ast \in \Gamma D,CS be such that

for all i \in \scrN and k \in TEi, \gamma D\ast 
i,k(y

D
i,k) = \gamma D,CS\ast 

i,k (yD,CS
i,k ) for all u\downarrow (i,k) P -a.s.

A representation of policy \bfitgamma D,CS\ast is \bfitgamma D\ast itself, where the extra information

u\downarrow (i,k) has not been used. In the following, we show that \bfitgamma D\ast is also a PL-NE

for \scrP D,CS
NZS . Suppose that it is not; then there is an index i \in \scrN and a policy

\bfitbeta i \in \Gamma D,CS
i (with (\bfitbeta i, \gamma 

D\ast 
 - i )\in \Gamma D,CS) such that

E

\biggl[ 
ci
\biggl( 
\omega 0, \gamma 

D\ast 
 - i
(yD - i),\bfitbeta 

i(yDi , \gamma 
D\ast 
\downarrow i (\bfity 

D
\downarrow i))

\biggr) \biggr] 
<E

\biggl[ 
ci
\biggl( 
\omega 0, \gamma 

D\ast 
 - i
(yD - i), \gamma 

D\ast 
i (\bfity D

i )

\biggr) \biggr] 
.(A.3)

Since for a policy (\bfitbeta i, \gamma D\ast 
 - i ) \in \Gamma D,CS there exists a policy (\^\bfitgamma D

i , \gamma 
D\ast 
 - i ) \in \Gamma D such

that ui = \bfitbeta i(\bfity D
i , \gamma 

D\ast 
\downarrow i (y

D
\downarrow i)) = \^\bfitgamma D

i (\bfity 
D
i ) P -a.s. We note that \gamma D\ast 

 - i remains un-

changed since the construction \gamma D,CS\ast 
 - i from \bfitgamma D\ast is independent of policies and

only depends on actions which remain unchanged by the construction. Hence,
(A.3) contradicts the assumption that \bfitgamma D\ast is a PL-NE for \scrP D

NZS. Similarly,
we can show the connections hold for DM-NE and stationary policies as well,
and the negative result follows from Example 2.
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Part (iii): Let \bfitgamma S\ast be PL-NE (DM-NE, stationary) for \scrP S
NZS, and let a policy \bfitgamma S,CS\ast \in 

\Gamma S,CS be such that for all i \in \scrN and k \in TEi, \gamma S\ast 
i,k(y

S
i,k) = \gamma S,CS\ast 

i,k (yS,CSi,k ) P -a.s.

A representation of policy \bfitgamma S,CS\ast is \bfitgamma S\ast itself, where the extra information

u\downarrow (i,k) has not been used. Similar to part (ii), \bfitgamma S\ast is also a PL-NE (DM-NE,

stationary) for \scrP S,CS
NZS .

A.3. Proof of Corollary 4.4. Part (i) follows from Theorem 4.2(iii) and Propo-
sition 4.1(ii). Now, we show part (ii). Suppose that a policy pair (\bfitgamma S\ast 

1 ,\bfitgamma S\ast 
2 ) is

the strongly unique PL-SPE for \scrP S
ZS. Following from Theorem 4.2(iii), (\bfitgamma S\ast 

1 ,\bfitgamma S\ast 
2 )

is also PL-SPE for \scrP S,CS
ZS . Let (\bfitgamma S,CS\ast 

1 ,\bfitgamma S,CS\ast 
2 ) be any other PL-SPE for \scrP S,CS

ZS . By
the ordered interchangeability of multiple pairs of PL-SPE policies of (\scrP S,CS

ZS ), pol-
icy pairs (\bfitgamma S\ast 

1 ,\bfitgamma S,CS\ast 
2 ) and (\bfitgamma S,CS\ast 

1 ,\bfitgamma S\ast 
2 ) are PL-SPE for \scrP S,CS

ZS . Since the IS is par-
tially nested, there exists a policy pair (\~\bfitgamma S\ast 

1 ,\bfitgamma S\ast 
2 ) \in \Gamma S (which is also unique since

the static reduction representation of any control-sharing policy is unique) such that
\~\bfitgamma S\ast 
1 (\bfity S

1) = \bfitgamma S,CS\ast 
1 (\bfity S,CS

1 ) P -a.s., and J(\~\bfitgamma S\ast 
1 ,\bfitgamma S\ast 

2 ) = J(\bfitgamma S,CS\ast 
1 ,\bfitgamma S\ast 

2 ). We note that the
representation of \bfitgamma S\ast 

2 remains unchanged for (\~\bfitgamma S\ast 
1 ,\bfitgamma S\ast 

2 ) since it is independent of the
precedent policies. But since J(\bfitgamma S,CS\ast 

1 ,\bfitgamma S\ast 
2 ) = J(\bfitgamma S\ast 

1 ,\bfitgamma S\ast 
2 ), and \bfitgamma S\ast 

1 is the unique best
response to \bfitgamma S\ast 

2 under the policy dependent static reduction (in \Gamma S), the policy \~\bfitgamma S\ast 
1

must be identical to \bfitgamma S\ast 
1 , which implies that \bfitgamma S,CS\ast 

1 (\bfity S,CS
1 ) = \bfitgamma S\ast 

1 (\bfity S
1) for P -a.s. Simi-

larly, we can show that \bfitgamma S,CS\ast 
2 (\bfity S,CS

2 ) = \bfitgamma S
2(\bfity 

S
2) P -a.s. Since a policy pair (\bfitgamma S,CS

1 ,\bfitgamma S,CS
2 )

is an arbitrary PL-SPE for \scrP S,CS
ZS , the proof is completed. Part (iii) follows from

part (ii) and Theorem 4.2(ii). Part (iv) follows from Theorem 4.2(iii), and part (v)
follows from Theorem 4.2(iii)(iv) and the ordered interchangeability property of mul-
tiple pairs of PL-SPE policies of \scrP S,CS

ZS . Part (vi) follows from Theorem 4.1 and the
ordered interchangeability property of multiple PL-SPE policy pairs since Condition
(C) holds.

A.4. Proof of Corollary 6.2. Part (i) follows from Theorem 4.2(ii)(iii), and
part (ii) follows from Theorem 4.2. Parts (v) and (vi) follow from an argument similar
to that used in the proof of Corollary 4.4(v)(vi) using Theorem 4.1(i). In the following,
we prove part (iii) and part (iv). We use a similar argument as that of [2, Proposition
2] and [4, p. 300] with a slight change of argument since we have a stochastic game.

Part (iii): Fix policy of PL2 to \bfitgamma f,2; then, we have xt+1 = \^ft(xt, u
1
t ,wt) and

\^JSTO(\bfitgamma c,cs,1) = E[\^cT (xT ) +
\sum T - 1

t=0 \^ct(xt, u
1
t )], where

\^ft and \^ct are known to

PL1 since under ICEN,CS,it , PL1 has access to the history of actions and obser-
vations of PL2. From standard stochastic control theory, since the problem is
a Markov chain for PL1, we know that for the above problem for PL1, there
is no loss in restricting policies to be pure-feedback (Markov), and hence, a
globally optimal policy under ICEN,CS,i

t is of pure-feedback form, and it can
be obtained by dynamic programming. Following from the hypothesis that
(\bfitgamma f,1,\bfitgamma f,2) is the strongly unique policy in the class of feedback no-memory
policies, the best response of PL1 to \bfitgamma f,2 for PL2 is \bfitgamma f,1. Similarly, by fixing
the policy of PL1 to \bfitgamma f,1, the best response of PL2 to \bfitgamma f,1 for PL1 is \bfitgamma f,2.
Hence, (\bfitgamma f,1,\bfitgamma f,2) is PL-SPE for games with ICEN,CS,it .

To show the essential uniqueness, first suppose that there exists another
essential nonunique PL-SPE policy pair (\^\bfitgamma c,cs,1, \^\bfitgamma c,cs,2) for a game with IS
ICEN,CS,it . By the ordered interchangeability property of multiple pairs of PL-
SPE policies, we have that (\bfitgamma f,1, \^\bfitgamma c,cs,2) and (\^\bfitgamma c,cs,1,\bfitgamma f,2) are also PL-SPE.
But by fixing policies of PL2 to \bfitgamma f,2 and using standard stochastic control
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theory as above, every globally optimal solution for PL1 is obtained by dy-
namic programming (we note that not all the representations of globally opti-
mal solutions are obtained by dynamic programming). Also, following from an
argument similar to that in [31, Theorem 4.1], all other representations \^\bfitgamma c,cs,1

of the pure-feedback globally optimal policy for PL1 are globally optimal for
PL1 by fixing policies of PL2 to \bfitgamma f,2, and hence, they all are best responses to
\bfitgamma f,2. Hence, since the pure-feedback PL-SPE policy pair is strongly unique,
any best response of PL1 to \bfitgamma f,2 must be a representation of \bfitgamma f,1, which
implies that \^\gamma c,cs,i

t (ICEN,CS,it ) = \gamma f,i
t (IF,it ) P -a.s., i\in \{ 1,2\} and t\in \scrT , and this

completes the proof of the first claim. To prove the second claim, we first note
that there exists a pure-feedback representation of (\bfitgamma c,cs,1,\bfitgamma c,cs,2), and this
representation is admissible for the game with IS ICL,it . Denote this represen-
tation by (\bfitgamma cl,1,\bfitgamma cl,2), where \gamma c,cs,i

t (ICEN,CS,it ) = \gamma cl,i
t (ICL,it ) P -a.s., i \in \{ 1,2\} .

But (\bfitgamma cl,1,\bfitgamma cl,2) is also PL-SPE for games with ICL,it since if it is not then,
for i= 1 or i= 2, we have for \bfitbeta cl,i, J i(\bfitgamma cl,1,\bfitgamma cl,2)\geq J i(\bfitbeta cl, - i,\bfitgamma cl,i), and this
contradicts the fact that (\bfitgamma cl,1,\bfitgamma cl,2) is PL-SPE for the corresponding game
with IS ICEN,CS,it (since (\bfitbeta cl, - i,\bfitgamma cl,i) is an admissible policy for games with
ICEN,CS,it ).

Part (iv): Following Theorem 4.2(i), a policy pair (\^\bfitgamma c,cs,1, \^\bfitgamma c,cs,2) is PL-SPE for a
game with IS ICEN,CS,it if and only if (\^\bfitgamma c,ocs,1, \^\bfitgamma c,ocs,2) is PL-SPE for the cor-
responding game with IS ICEN,OCS,i

t with \gamma c,cs,i
t (ICEN,CS,it ) = \gamma c,ocs,i

t (ICEN,OCS,i
t )

P -a.s. Hence, following part (iii), we have \gamma c,ocs,i
t (ICEN,OCS,i

t ) = \gamma f,i
t (IF,it )

P -a.s., which implies that (\^\bfitgamma c,ocs,1, \^\bfitgamma c,ocs,2) is essentially unique under IS
ICEN,OCS,i
t . For the second claim, by hypothesis, there exists an OL PL-SPE
policy pair (\bfitgamma c,op,1,\bfitgamma c,op,2) for a game with IS ICEN,OP,i

t . Since by Theo-
rem 4.2(iii), (\bfitgamma c,op,1,\bfitgamma c,op,2) is PL-SPE under IS ICEN,OCS,i

t , by the first claim
of part (iv), we have \gamma c,op,i

t (ICEN,OP,i
t ) = \gamma f,i

t (IF,it ) P -a.s. Since all represen-
tations of (\^\bfitgamma c,cs,1, \^\bfitgamma c,cs,2) admit a unique OL representation (\^\bfitgamma c,op,1, \^\bfitgamma c,op,2),
(\bfitgamma c,op,1,\bfitgamma c,op,2) is unique under IS ICEN,OP,i

t .
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