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STATIONARY AND ERGODIC PROPERTIES
OF STOCHASTIC NONLINEAR SYSTEMS CONTROLLED

OVER COMMUNICATION CHANNELS∗

SERDAR YÜKSEL†

Abstract. This paper is concerned with the following problem: Given a stochastic nonlinear
system controlled over a noisy channel, what is the largest class of channels for which there exist
coding and control policies so that the closed-loop system is stochastically stable? Stochastic sta-
bility notions considered are stationarity, ergodicity or asymptotic mean stationarity. We do not
restrict the state space to be compact, for example, systems considered can be driven by unbounded
noise. Necessary and sufficient conditions are obtained for a large class of systems and channels.
A generalization of Bode’s integral formula for a large class of nonlinear systems and information
channels is obtained. The findings generalize existing results for linear systems.
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1. Introduction. Consider an N -dimensional controlled nonlinear system de-
scribed by the discrete-time equations

xt+1 = f(xt, ut, wt)(1.1)

for a (Borel measurable) function f , with {wt} being an independent and identically
distributed (i.i.d.) system noise process with wt ∼ ν.

This system is connected over a noisy channel with a finite capacity to a con-
troller, as shown in Figure 1. The controller has access to the information it has
received through the channel. A source coder maps the source symbols, state values,
to corresponding channel inputs. The channel inputs are transmitted through a chan-
nel; we assume that the channel is a finite alphabet channel with input alphabet M
and output alphabet M′.

We refer by a coding policy Π a sequence of functions {γet , t ≥ 0} which are causal
such that the channel input at time t, qt ∈M, under Πcomp is generated by a function
of its local information, that is,

qt = γet (Iet ),

where Iet = {x[0,t], q
′
[0,t−1]} and qt ∈ M, the channel input alphabet given by M :=

{1, 2, . . . ,M}, for 0 ≤ t ≤ T − 1. Here, we have the notation for t ≥ 1: x[0,t−1] =
{xs, 0 ≤ s ≤ t− 1}.

The channel maps qt to q′t in a stochastic fashion so that P (q′t|qt, q[0,t−1], q
′
[0,t−1])

is a conditional probability measure on M′ for all t ∈ Z+. If this expression is equal
to P (q′t|qt), the channel is said to be a memoryless channel, that is, the past variables
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Fig. 1. Control over a noisy channel with feedback.

do not affect the channel output q′t given the current channel input qt. Even though in
this paper we will consider discrete alphabet channels, the analysis is also applicable
to a large class of continuous alphabet channels (through an appropriate quantized
approximation of the channel; see, e.g., [14]).

The receiver/controller, upon receiving the information from the channel, gener-
ates its decision at time t, also causally: An admissible causal controller policy is a
sequence of functions γ = {γt} such that

γt :M′t+1 → Rm, t ≥ 0,

so that ut = γt(q
′
[0,t]). We call such encoding and control policies causal or admissible.

In the networked control literature, the goal in the encoder/controller design is
typically either to optimize the system according to some performance criterion or
stabilize the system. For stabilization, linear systems have been studied extensively
where the goal has been to identify conditions so that the controlled state is stochas-
tically stable, as we review briefly later.

This paper is concerned with necessary and sufficient conditions on information
channels in a networked control system for which there exist coding and control poli-
cies such that the controlled system is stochastically stable in one or more of the
following senses: (i) the state {xt} and the coding and control parameters lead to a
stable (positive Harris recurrent) Markov chain, (ii) {xt} is asymptotically stationary
or asymptotically mean stationary (AMS) and satisfies Birkhoff’s sample path ergodic
theorem (see section A for a review of these concepts), and (iii) {xt} is ergodic.

In the remainder of this section, we provide a literature review, first for nonlinear
systems and then briefly for linear systems in the context of the goals of this paper,
and highlight the contributions of the paper. Section 2 develops some supporting
results and a generalization of Bode’s integral formula for nonlinear systems and gen-
eral information channels. Section 3 develops conditions for ergodicity and asymptotic
mean stationarity of the controlled system. Section 4 establishes conditions for sta-
tionarity of the controlled system under structured (stationary) coding and control
policies. Section 5 presents an ergodic construction for a nonlinear system driven
by additive Gaussian noise and controlled over discrete noiseless channels. Section 6
contains some concluding remarks.

1.1. Some notation and preliminaries. Let x be an X-valued random vari-
able, where X is countable. The entropy of x is defined as H(x) = −∑z∈X p(z)
log2(p(z)) , where p is the probability mass function of the random variable x. If x
is an Rn-valued random variable, and the probability measure induced by x is abso-
lutely continuous with respect to the Lebesgue measure, the (differential) entropy of
x is defined by h(x) = −

∫
X p(x) log2(p(x))dx , where p(·) is the probability density

function (pdf) of x.



2846 SERDAR YÜKSEL

The mutual information between a discrete (continuous) random variable x and
another discrete (continuous) random variable y, defined on a common probability
space, is defined as I(x; y) = H(x) − H(x|y) , where H(x) is the entropy of x (dif-
ferential entropy if x is a continuous random variable), and H(x|y) is the conditional
entropy of x given y (h(x|y) is the conditional differential entropy if x is a con-
tinuous random variable). For more general settings including when the random
variables are continuous, discrete, or a mixture of the two, mutual information is
defined as I(x; y) := supQ1,Q2

I(Q1(x);Q2(y)), where Q1 and Q2 are quantizers with
finitely many bins (see Chapter 5 in [16]). An important relevant result is the fol-
lowing. Let x be a random variable and Q be a quantizer applied to x. Then,
H(Q(x)) = I(x;Q(x)) = h(x) − h(x|Q(x)). For a concise overview of relevant infor-
mation theoretic concepts, we refer the reader to Chapter 5 of [67]. For more complete
coverage, see [14] or [8]. When the realization x of a random variable xt needs to be
explicitly mentioned, the event xt = x will be emphasized. We use the conditional
probability (expectation) notation Px(·) (Ex[·])to denote P (·|x0 = x) (E[·|x0 = x]).
Finally, for a square matrix A, |A| denotes the absolute value of its determinant.

Throughout the paper, all the random variables will be defined on a common
probability space (Ω,F , P ).

1.2. Literature review. In the literature, the study of nonlinear systems has
typically considered noise-free controlled systems controlled over discrete noiseless
channels. Many of the studies on control of nonlinear systems over communication
channels have focused on constructive schemes (and not on converse theorems), pri-
marily for noise-free sources and channels; see, e.g., [2], [29], and [46]. For noise-free
systems, it typically suffices to consider only a sufficiently small invariant neighbor-
hood of an equilibrium point to obtain stabilizability conditions.

One important problem which has not yet been addressed to our knowledge is
to obtain converse (or impossibility) theorems: The question of when an open-loop
unstable nonlinear stochastic control system can or cannot be made ergodic or asymp-
totically mean stationary subject to information constraints has not been addressed.

Entropy based arguments (which are crucial in obtaining fundamental bounds in
information theory and ergodic theory) can be used to obtain converse results: The
entropy, as a measure of uncertainty growth, of a dynamical system has two related in-
terpretations: A topological (distribution-free/geometric) one and a measure-theoretic
(probabilistic) one. Although the analysis in this paper is probabilistic, we provide
a short discussion on the topological entropy: The distribution-free entropy notion
(see, e.g., [23]) for a dynamical system taking values in a compact metric space is
concerned with the time-normalized number of distinguishable paths/orbits by some
finite ε > 0 the system’s paths can take values in as the time horizon increases and
ε→ 0. With such a distribution-free setup [41] studied the stabilization of determinis-
tic systems controlled over discrete noiseless finite capacity channels: The topological
entropy gives a measure of the number of distinct control inputs needed to make a
compact set invariant for a noise-free system. Nair et al. [41] extend the notion of
topological entropy to controlled dynamical systems and develop the notion of feed-
back entropy or invariance entropy [7]; see also [6] for related results. Nair et al. [41]
define two notions of invariance for a set K. A set can be made weakly invariant
if there exists t > 0 such that for every x0 ∈ K, there exists a sequence of control
actions so that xt ∈ K ′ ⊂ interior(K). Strong invariance of K requires that x1 ∈ K ′.
With a relaxation of deterministic controls, [52] has studied invariance entropy for
random dynamical systems, and [35] has generalized the topological entropy theoretic
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results to include random dynamical models to obtain an observability condition over
discrete channels. For a comprehensive discussion of such a geometric interpreta-
tion of entropy in controlled systems, see [24]. The results for deterministic systems
pose questions on set stability which are not sufficient to study stochastic setups.
Stochasticity also allows for control over general noisy channels and thus is applica-
ble to establish connections with information theory (we note that a distribution-free
counterpart for such studies requires one to investigate zero-error capacity formula-
tions [35]; however, many practical channels, including erasure channels, have zero
zero-error capacity).

On the other hand, the measure-theoretic (also known as Kolmogorov–Sinai or
metric) entropy is more relevant to information-theoretic as well as random noise-
driven stochastic contexts since in this case, one considers the typical distinguishable
paths/orbits of a dynamical system and not all of the sample paths a dynamical sys-
tem may take (and hence the topological entropy typically provides upper bounds on
the measure-theoretic entropy). Measure-theoretic entropy is crucial in the celebrated
Shannon–McMillan–Breiman theorem [15] as well as the isomorphism theorem [44],
[23]. For further relations between different interpretations of entropy as well as their
computations (such as through Lyapunov exponents as a result of Pesin’s formula),
we refer the reader to [62]. Such an entropy notion has operational practical usage
in identifying fundamental limits on source and channel coding for stationary sources
[51]. However, the findings in the information theory literature have not yet been suc-
cessfully applied to nonlinear networked control systems in general due to the following
reasons: (i) The open-loop system in networked control may be unstable and stabi-
lizable only through a control loop. In the information theory literature, stochastic
stability results for coding schemes have been established primarily for (control-free)
stable sources and, when nonstationary, have involved only linear Gaussian autore-
gressive processes [18]. Moreover, such a control-free analysis does not lead to con-
clusive results for nonlinear controlled sources since nonlinear systems suffer from the
dual-effect: one cannot decouple estimation from control and control from conditional
entropy properties under a stationary probability measure. (ii) The coding schemes
for such studies in information theory are noncausal; in networked control systems,
coding must be causal (that is, real-time or essentially zero-delay [67]).

There have been few studies which have adopted a measure-theoretic entropic
view for the control of nonlinear dynamical systems over communication channels.
Relevant contributions include [36] and [63]: Building on [31] and [69], [36] develops
an entropy analysis for nonlinear system dynamics. A related entropy analysis for
a class of stochastic nonlinear systems has been considered in [63]. Recently [59]
and [58] have considered fading and erasure channels between the controller and the
actuator and have studied ergodicity properties using Lyapunov theoretic arguments
under a class of structures imposed on control policies; these contributions do not
consider finite-rate information and coding restrictions which may arise due to the
presence of a channel. Other important relevant works which consider deterministic
systems are [29] and [28], where stability of zooming schemes, as in [4], have been
considered.

Finally, we note an important related discussion in view of Bode’s integral for-
mula as extended to a class of nonlinear systems in [69] under somewhat restrictive
conditions; see [69, Theorem 9]. Relevant work includes [12], [31], and [43] for linear
systems. For nonlinear systems the entropy and mutual information arguments pro-
vide the appropriate fundamental bounds instead of a sensitivity integral/transfer
function analysis which is commonly used for linear systems as is also advocated in
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[69]. An earlier contribution utilizing measure theoretic entropy for the study and
classification of controlled stochastic systems is [22]. The findings in our paper pro-
vide further generalizations; see Theorem 2.2 and Remark 4.

The stability criteria outlined earlier have been studied extensively for linear
systems of the form

xt+1 = Axt +But +Gwt,(1.2)

where xt ∈ RN is the state at time t, ut ∈ Rm is the control input, and {wt} is a
sequence of i.i.d. Rd-valued random vectors (such as Gaussian). Here, (A,B) and
(A,G) are controllable pairs.

For noise-free linear systems controlled over discrete-noiseless channels, Wong and
Brockett [61], Baillieul [1], and, more generally, Tatikonda and Mitter [56] (see also
[55]) and Nair and Evans [40] have obtained the minimum lower bound needed for
stabilization over a class of communication channels under various assumptions on
the system noise and channels, sometimes referred to as a data-rate theorem. This
theorem states that for stabilizability under information constraints, in the mean-
square sense, a minimum average rate per time stage needed for stabilizability has to
be at least

∑
i:|λi|>1 log2(|λi|), where {λi, 1 ≤ i ≤ N} are the eigenvalues of A.

The particular notion of stochastic stability is crucial in characterizing the con-
ditions on the channels and important extensions have been made in the literature,
notably by Matveev and Savkin [34], [35], Sahai and Mitter [48], [49], and Martins,
Dahleh, and Elia [32]. For a more comprehensive review, see [42], Chapters 5–8 of
[67], [31], and [13]. Reference [39] considered erasure channels and obtained necessary
and sufficient time-varying rate conditions for control over such channels. Reference
[9] considered second moment stability over a class of Markov channels with feedback.
Motivated by such problems, [64] and [68] developed a martingale-method for estab-
lishing stochastic stability, which later led to a random-time state-dependent drift
criterion, leading to the existence of an invariant distribution possibly with moment
constraints; these were utilized to obtain policies leading to strong forms of stochastic
stability, such as ergodicity or positive Harris recurrence [67], for linear systems driven
by additive unbounded noise.

The following definition (see [67, Definition 8.5.1]) will be useful in the analysis
later in the paper.

Definition 1.1. Channels are said to be of Class A type if
• they satisfy the Markov chain condition

q′t ↔ qt, q[0,t−1], q
′
[0,t−1] ↔ {x0, ws, s ≥ 0},(1.3)

that is, almost surely, for all Borel sets B,

P (q′t ∈ B|qt, q[0,t−1], q
′
[0,t−1], x0, ws, s ≥ 0) = P (q′t ∈ B|qt, q[0,t−1], q

′
[0,t−1]),

for all t ≥ 0, and
• their capacity with feedback is given by

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1]),

where the directed mutual information is defined by

I(q[0,T−1] → q′[0,T−1]) =

T−1∑
t=1

I(q[0,t]; q
′
t|q′[0,t−1]) + I(q0; q′0).
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Memoryless channels belong to this class; for such channels, feedback does not
increase the capacity [8]. Such a class also includes finite state stationary Markov
channels which are indecomposable [45] and non-Markov channels which satisfy cer-
tain symmetry properties [10]. Further examples can be found in [57] and in [11].

Theorem 1.1 (see [67], [65]). Consider the multidimensional linear system
(1.2). For such a system controlled over a Class A type noisy channel with feedback,
if the channel capacity satisfies

C <
∑
|λi|>1

log2(|λi|),

(i) there does not exist a stabilizing coding and control scheme with the property
lim infT→∞

1
T h(xT ) ≤ 0; (ii) the system cannot be made AMS or ergodic (see section

A).

For sufficiency, assume that A is a diagonalizable matrix (a sufficient condition
for which is that its eigenvalues are distinct real).

Theorem 1.2 (see [67], [65]). Consider the multidimensional linear system (1.2)
with a diagonalizable matrix A and Gaussian noise, controlled over a discrete memo-
ryless channel. If the Shannon capacity of the channel satisfies

C >
∑
|λi|>1

log2(|λi|),

there exists a stabilizing scheme which makes the process {xt} AMS. If the channel
is noiseless, or is a memoryless erasure channel, or is a Gaussian channel, then the
process {xt} can be made (asymptotically) stationary and ergodic.

1.3. Contributions of the paper. As stated above, stochastic stabilization
of nonlinear systems driven by noise (especially unbounded noise) over communica-
tion channels has not been studied to our knowledge where the goal is to establish
asymptotic (mean) stationarity, ergodicity, or stationarity of the closed-loop system.
We use measure-theoretic entropy analysis and ergodic theoretic tools to arrive at
necessary and sufficient conditions. A by-product of the analysis is a generalization
of Bode’s integral formula to a class of nonlinear systems and arbitrary information
channels with memory. The approach in the paper, although building on our earlier
work on linear systems, contains significant generalizations in the approach due to the
non-linearity of the source. We also consider a construction of a stabilizing coding
and control scheme for multidimensional nonlinear sources driven by unbounded noise
controlled over a discrete noiseless channel.

2. Sublinear entropy growth and a generalization of Bode’s integral
formula for nonlinear systems. In the paper, instead of a general RN -valued
nonlinear state model

xn+1 = f(xn, un, wn),(2.1)

we will consider nonlinear systems of the form

xn+1 = f(xn, wn) +Bun,(2.2)

xn+1 = f(xn) +Bun + wn,(2.3)

xn+1 = f(xn, un) + wn.(2.4)
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We also will have an occasion to discuss nonlinear systems of the form

xn+1 = f(xn, wn) +B(xn)un.(2.5)

In all of the models above, xn is the RN -valued state, wn is the RN -valued noise
variable, un is Rs-valued, and wn is assumed to be an independent noise process with
wn ∼ ν.

We assume throughout that f is measurable and continuously differentiable in
the state variable. For a possibly nonlinear differentiable function f : Rn → Rm, the
Jacobian matrix of f is an n×m matrix function consisting of partial derivatives of
f such that

J(f)(i, j) =
∂(f(x))i
∂xj

, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We will have the following assumption throughout the paper.

Assumption 2.1. In the models considered above f(·, w) : RN → RN is invertible
for every realization of w.

In the following |J(f)| will denote the absolute value of the determinant of the
Jacobian. Furthermore, with fw(x) = f(x,w), we define J(f(x,w)) := J(fw(x)).

Assumption 2.2. There exist M1 ∈ R and L1 ∈ R so that for all x,w

L1 ≤ log2(|J(f(x,w))|) ≤M1.

The following is our first result; it provides conditions for sublinear entropy growth
(in time) which implies quadratic stability. The result will also be used in the next
section and its proof leads to a generalization of Bode’s integral formula as discussed
further below. Let πt(B) = P (xt ∈ B) for all Borel B.

Theorem 2.1. Consider the networked control problem over a Class A channel.
(i) Let f have the form in (2.2), (ii) let Assumptions 2.1 and 2.2 hold, and (iii) let x0

have finite differential entropy. (a) If there is an admissible coding and control policy
such that

lim inf
t→∞

h(xt)/t ≤ 0,

it must be that

C ≥ lim inf
T→∞

1

T

T−1∑
t=0

∫
πt(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
.(2.6)

(b) If there is an admissible coding and control policy such that

lim sup
t→∞

h(xt)/t ≤ 0,

it must be that

C ≥ lim sup
T→∞

1

T

T−1∑
t=0

∫
πt(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
.(2.7)

In either case, if L := infx,w log2 |J(f(x,w))|, then C ≥ L.

Remark 1. The condition lim supt→∞ h(xt)/t ≤ 0 is a weak condition. For ex-
ample, a stochastic process whose second moment grows subexponentially in time

so that lim supT→∞
log(E[x2

T ])
T ≤ 0 satisfies this condition. Hence, quadratic stability

implies this condition.
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Remark 2. In the theorem, we would have obtained the same results if we had re-
placed lim supt→∞ h(xt)/t ≤ 0 with lim supt→∞

1
th(xt|q′[0,t−1])/t ≤ 0. This condition

would be more relevant for state estimation problems, where the goal is not necessarily
to make the state stable but to make the estimation error stable (where ut would be the
state estimate and xt−ut would be the estimation error). Since h(xt|q′[0,t−1]) ≤ h(xt),

it is evident that the condition h(xt)/t ≤ 0 implies that h(xt|q′[0,t−1])/t ≤ 0

Proof of Theorem 2.1. Recall that for channels of the type Class A (which in-
cludes the discrete memoryless channels as a special case), the capacity is given by

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

)}

1

T
I(q[0,T−1] → q′[0,T−1]),

where

I(q[0,T−1] → q′[0,T−1]) =

T−1∑
t=1

I(q[0,t]; q
′
t|q′[0,t−1]) + I(x0; q′0).

Let us define RT = max{P (qt|q[0,t−1],q
′
[0,t−1]

),0≤t≤T−1}
1
T

∑T−1
t=0 I(q′t; q[0,t]|q′[0,t−1]).

Observe that for t > 0,

I(q′t; q[0,t]|q′[0,t−1]) = H(q′t|q′[0,t−1])−H(q′t|q[0,t], q
′
[0,t−1])

= H(q′t|q′[0,t−1])−H(q′t|q[0,t], xt, q
′
[0,t−1])(2.8)

≥ H(q′t|q′[0,t−1])−H(q′t|xt, q′[0,t−1])

= I(xt; q
′
t|q′[0,t−1]).(2.9)

Here, (2.8) follows from the assumption that the channel is of Class A type.
(a) Consider the following:

lim
T→∞

RT ≥ lim sup
T→∞

1

T

( T−1∑
t=1

I(xt; q
′
t|q′[0,t−1])) + I(x0; q′0)

)
(2.10)

= lim sup
T→∞

1

T

( T−1∑
t=1

(
h(xt|q′[0,t−1])− h(xt|q′[0,t])

)
+ I(x0; q′0)

)

= lim sup
T→∞

1

T

T−1∑
t=1

(
h(xt|q′[0,t−1])− h(xt|q′[0,t])

)

= lim sup
T→∞

1

T

T−1∑
t=1

(
h(f(xt−1, wt−1) +But−1|q′[0,t−1])− h(xt|q′[0,t])

)

= lim sup
T→∞

1

T

T−1∑
t=1

(
h(f(xt−1, wt−1)|q′[0,t−1])− h(xt|q′[0,t])

)

= lim sup
T→∞

1

T

T−1∑
t=1

( ∑
ζ[0,t−1]

h(f(xt−1, wt−1)|q′[0,t−1]

= ζ[0,t−1])P (q′[0,t−1] = ζ[0,t−1])− h(xt|q′[0,t])
)

(2.11)
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≥ lim sup
T→∞

1

T

T−1∑
t=1

( ∑
ζ[0,t−1]

h(f(xt−1, wt−1)|q′[0,t−1]

= ζ[0,t−1], wt−1)P (q′[0,t−1] = ζ[0,t−1])

)
− h(xt|q′[0,t])(2.12)

= lim sup
T→∞

1

T

T−1∑
t=1

(( ∑
ζ[0,t−1]

∫
h(f(xt−1, w)|q′[0,t−1] = ζ[0,t−1], wt−1 = w)v(dw)

×P (q′[0,t−1] = ζ[0,t−1])

)
− h(xt|q′[0,t])

)
(2.13)

= lim sup
T→∞

1

T

T−1∑
t=1

( ∑
ζ[0,t−1]

P (q′[0,t−1] = ζ[0,t−1])

×
(∫

ν(dw)

(∫
P (dxt−1|q′[0,t−1] = ζ[0,t−1], wt−1 = w) log2(|J(f(xt−1, w))|)

+h(xt−1|q′[0,t−1] = ζ[0,t−1], wt−1 = w)

))
− h(xt|q′[0,t])

)
(2.14)

= lim sup
T→∞

1

T

T−1∑
t=1

( ∑
ζ[0,t−1]

P (q′[0,t−1] = ζ[0,t−1])

×
(∫

ν(dw)

(∫
P (dxt−1|q′[0,t−1] = ζ[0,t−1]) log2(|J(f(xt−1, w))|)

+h(xt−1|q′[0,t−1] = ζ[0,t−1])

))
− h(xt|q′[0,t])

)
(2.15)

= lim sup
T→∞

1

T

T−1∑
t=1

(( ∑
ζ[0,t−1]

P (q′[0,t−1] = ζ[0,t−1])

∫
P (dxt−1|q′[0,t−1] = ζ[0,t−1])

×
∫
ν(dw) log2(|J(f(xt−1, w))|)

)
+ h(xt−1|q′[0,t−1])− h(xt|q′[0,t])

)
(2.16)

= lim sup
T→∞

1

T

( T−1∑
t=0

∫
πt(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
− h(xT−1|q′[0,T−1])

)

≥ V − lim inf
T→∞

1

T
h(xT−1|q′[0,T−1]).(2.17)

Here,

V := lim inf
T→∞

1

T

T−1∑
t=0

∫
πt(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
.(2.18)

Equations (2.11) and (2.13) follow from the definition of conditional entropy, and
(2.12) follows from conditioning on the random variable wt−1. Equations (2.14)–(2.15)
follow from the fact that xt−1 ↔ q′[0,t−1] ↔ wt−1 is a Markov chain and the following.

For every realization q′[0,t−1] = ζ[0,t−1],
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h(f(xt−1, wt−1)|q′[0,t−1] = ζ[0,t−1], wt−1 = w)

= h(fw(xt−1)|q′[0,t−1] = ζ[0,t−1], wt−1 = w)

=

∫
P (dxt−1|q′[0,t−1] = ζ[0,t−1], wt−1 = w) log2(|J(fw(xt−1))|)

+h(xt−1|q′[0,t−1] = ζ[0,t−1], wt−1 = w)(2.19)

=

∫
P (dxt−1|q′[0,t−1] = ζ[0,t−1]) log2(|J(f(xt−1, w))|) + h(xt−1|q′[0,t−1] = ζ[0,t−1]),

where fw(x) := f(x,w) is an invertible function for every w, and as a result (2.19)
follows from the entropy formula for invertible functions of a random variables (see,
e.g., p. 167 of [54] and Lemma 4 in [69]) and the last line follows from the con-
dition xt−1 ↔ q′[0,t−1] ↔ wt−1. Equation (2.16) follows from Fubini’s theorem by
Assumption 2.2.

By the hypothesis, lim inft→∞
1
th(xt) ≤ 0, it must be that limT→∞RT ≥ V .

Thus, the capacity also needs to satisfy this bound.
In the above derivation, (2.17) follows from the fact that for two sequences an, bn,

lim sup
n→∞

(an + bn) ≥ lim sup
n→∞

an + lim inf
n→∞

bn.(2.20)

(b) If lim supt→∞ h(xt|q′[0,t−1])/t ≤ 0, (2.17) can be modified through (2.20) with
V defined as

lim sup
T→∞

1

T
E

[( T−1∑
t=1

∫
P (dxt|q′[0,t−1])

(∫
ν(dw) log2(|J(f(xt, w))|)

))]
and in (2.17), lim infT→∞

1
T h(xT−1|q′[0,T−1]) being replaced with lim sup of the same

expression.

Remark 3. We note that if the system had been of a model in (2.5), the expres-
sion involving J(f(x,w)) would explicitly depend on the control policy, which would
in turn depend possibly on the entire past channel outputs making the expression
computationally more involved.

2.1. A generalization of Bode’s integral formula for nonlinear systems.
The proof of Theorem 2.1 reveals an interesting connection with and generalization of
Bode’s integral formula (and what is known as the waterbed effect) [38] to nonlinear
systems, which we state formally in the following. The result also suggests that an
appropriate generalization for nonlinear systems is through an information theoretic
approach that partially recovers Bode’s original result for the linear case, as we discuss
further below.

Theorem 2.2. (i) Let f have the form in (2.2), (ii), let Assumptions 2.1 and 2.2
hold, and (iii) let x0 have finite differential entropy. If there is an admissible coding
and control policy with lim supt→∞ h(xt)/t ≤ 0 it must be that

lim sup
T→∞

1

T
I(q[0,T−1] → q′[0,T−1])

≥ lim sup
T→∞

1

T

T−1∑
t=0

∫
πt(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
.(2.21)
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Proof. This follows directly from (2.9), (2.10), and (2.17).

Remark 4 (reduction to Bode’s integral formula for linear systems and Gaussian
noise). If the system considered is linear with all open-loop eigenvalues unstable, the
channel is an additive noise channel so that q′t = qt + vt for some stationary Gaussian
noise, and time-invariant control policies are considered leading to a stable system,
then with the more common notation of yt = q′t, the right-hand side of (2.20) would
be the sum of the unstable eigenvalues of the linear system matrix. For a stationary
Gaussian process (see [8, p. 274]) the entropy rate can be written as

1

2
log(2πe) +

∫ 1/2

−1/2

1

2
log(S(f))df

with S denoting the spectral density of the process. Now, (2.8) becomes

I(q′t; q[0,t]|q′[0,t−1]) = h(q′t|q′[0,t−1])− h(q′t|q[0,t], q
′
[0,t−1]) = h(q′t|q′[0,t−1])− h(vt|v[0,t−1]),

and thus the left-hand side of (2.20) reduces to the difference between the entropy
rate of the process q′t (that is, limt→∞ h(q′t|q[0,t−1])) and that of the stationary noise
process vt (that is, limt→∞ h(vt|v[0,t−1]). Then, the left-hand side of (2.20) equals∫ 1/2

−1/2

1

2
log(

Sy(f)

Sv(f)
)df,

which then is equal to the integral of the log-sensitivity function (corresponding to
the transfer function from the disturbance process vt to the output process q′t). This
leads to the celebrated Bode’s integral formula. In the context of linear systems,
earlier extensions of this formula have been studied in [12] with an information the-
oretic interpretation under the restriction to linear policies (see, e.g., Theorem 4.6 in
[12]), in [31] under more general possibly nonlinear stabilizing control policies which
lead to a stationary process, and in [36] and [69] for a class of nonlinear noise-free
systems.

3. Asymptotic mean stationarity. In the following, we build on but signif-
icantly modify the approaches in [33] and [67] to account for nonlinearity of the
system.

Consider the system (2.3), under some admissible policy, controlled over a channel.

Assumption 3.1. We assume

M := sup
x∈RN

log2 |J(f(x))| <∞,

L := inf
x∈RN

log2 |J(f(x))| > −∞.

Theorem 3.1. Consider the system (2.3) controlled over a Class A type noisy
channel with feedback where h(x0) <∞ and Assumptions 2.1 and 3.1 hold. If C < L,
then under any admissible policy,

lim sup
T→∞

P (|xT | ≤ b(T )) ≤ 1− L− C
M

for all b(T ) > 0 such that limT→∞
1
T log2(b(T )) = 0.
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The proof is in Appendix B. An implication of this result follows.

Theorem 3.2. Consider the system (2.3) controlled over a Class A type noisy
channel with feedback where h(x0) < ∞ and Assumptions 2.1 and 3.1 hold. If under
some causal encoding and controller policy the state process is AMS, the channel
capacity C must satisfy C ≥ L.

We recover the following result for linear systems in [67] as a special case.

Corollary 3.1. For the linear case with f(x) = Ax with eigenvalues |λi| ≥ 1,
C ≥∑k log2(|λi|) is a necessary condition for the AMS property under any admissible
coding and control policy.

Proof of Theorem 3.2. If the process is AMS (see Appendix A), then there exists
a stationary measure P̄ such that

lim
N→∞

1

N

N∑
k=1

P (T−kD) = P̄ (D)(3.1)

for all (cylinder) events D. Let for bB ∈ R+, B ∈ B(RN ) be given by B = {x :
|x| ≤ bB} and Xn(z) = zn be the coordinate function (see Appendix A) where z =
{z0, z1, z2, . . .}.

If by Theorem 3.1

lim sup
T→∞

P (|xT | ≤ bB) ≤ 1− (L− C)

M
< 1(3.2)

holds for all bB ∈ R+, then P̄n(B) < 1 − (L−C)
M for all compact B, where P̄n is the

marginal probability on the nth coordinate defined as

P̄n(B) = P̄

(
x : |Xn(x)| ≤ bB

)
.

But then P̄n, as an individual probability measure, must be tight [3]; therefore, for
every δ > 0 there exists bB < ∞ such that P̄n(B) ≥ 1 − δ. But, by (3.1), this
would imply that lim supt→∞ P (T−tB) = lim supt→∞ P (|xt| ∈ B) ≥ 1 − δ, leading
to a contradiction with (3.2) for δ < L−C

M . Hence, the AMS property cannot be
achieved.

We end this section with a remark.

Remark 5. In information theory, a well-established result is that for noiseless
coding of information stable sources (this includes all finite state stationary and er-
godic sources) over a class of information stable noisy channels (which includes the
channels we consider here), an asymptotically noise-free recovery is possible if the
channel capacity is greater than the source entropy through the use of noncausal
codes; see, e.g., [60] [25]. However, for the problem we consider (i) the source is
nonstationary and open-loop unstable, (ii) the encoding is causal, and (iii) the source
process space is not finite-alphabet. Nonetheless, we see that the invariance properties
of the source process do appear in the rate bounds that we obtain.

4. Stationarity and ergodicity under structured (stationary) policies.
In many applications, one uses a state-space formulation for coding and control poli-
cies. In the following, we will consider stationary update rules which have the form that
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qt = γe(xt,mt),

ut = γd(mt, q
′
t),

mt = η(mt−1, q
′
t−1)(4.1)

for functions γe, γd, and η. In the form above, m is an S-valued memory or quan-
tizer state variable. A large class of adaptive encoding policies have this form. This
includes delta modulation, differential pulse coded modulation, adaptive differential
pulse coded modulation, Goodman–Gersho type adaptive quantizers (see, e.g., [26],
[27]), as well as the coding schemes used for stabilization of networked control systems
under fixed-rate codes [64]. Even further, jointly optimal source and channel codes
for zero-delay coding schemes under infinite horizon optimization criteria also have
the form above (where S is a space of probability measures [30]). We now present a
necessary structural result on the encoders.

4.1. A necessary structural result on the encoders. Let mt, the state
of the encoder, take values in S. Consider (2.3). A stabilizing time-invariant en-
coder/decoder/controller policy given in (4.1), in general, cannot have |S| <∞.

Theorem 4.1. Consider (2.3) with scalar xt and wt with a probability measure
ν such that it has a density positive everywhere and Eν [γ−w0 ] < ∞ for some γ > 1.
Suppose that there exists K > 0 so that

inf
x>K

df

dx
(x) > 1

and df
dx (x) is bounded. Then, a finite cardinality for S under (4.1) leads to a transient

system in the sense that
Px(τS <∞) < 1,

where for some s > 0, S = (−∞, s) is an open set containing the origin, x > s, and
τS := inf(t > 0 : xt ∈ S). A similar result applies for the condition

sup
x<−K

df

dx
(x) < −1

with S = (s,∞) for some s < 0 and x < s.

Proof. Let infx>K
df
dx (x) > ā > 1. It follows from f(x) = f(K) +

∫ x
K

df
dx (s)ds

that for some M < ∞, f(x) ≥ M + āx for x > K. Since both q′t and mt can take
finitely many values, there exists U such that |ut| ≤ U for all t. Let, with γ > 1, a
Lyapunov function be picked as V (x) = γ−x, defined for positive x. Now, it follows
that for sufficiently largex, E[V (xt+1)|xt = x] ≤ V (x), since E[γ−(f(x)+ut+wt)] =
E[γ−f(x)γ−utγ−wt ] ≤ E[γ−(M−U)γ−(āx+wt)] = γ−(M−U)γ−āxE[γ−w], for all x ∈ {x :
γ(ā−1)x > E[γ−w]γ−M+U)}. Due to the additive noise process the source can escape
any bounded interval with a nonzero probability. As a result, by Theorem 6.2.8 in
[67] (see also Theorem 8.4.1 in [37]), transience follows.

Transience prohibits the existence of a stationary probability measure. The dis-
cussion above is parallel to Theorem 7.3.1 in [67] for linear systems. Related to the
discussion above, for linear systems, the unboundedness of second moments in Propo-
sition 5.1 in [40] and the transience of such a controlled state process were established
in Theorem 4.2 in [66]. We also note that [47] studied conditions for stabilization
when the control actions are uniformly bounded, and the controlled multidimensional
system is marginally stable and is driven by noise with unbounded support.
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4.2. Stationarity and ergodicity. In this section, instead of asymptotic mean
stationarity, we will consider the more stringent condition of (asymptotic) stationarity
of the controlled source process. For ease in presentation we will assume that mt takes
values in a countable set, even though the extension to more general spaces is possible.

Lemma 4.1. If the channel is memoryless, the process (xt,mt) is a Markov chain.

Proof. For any t ∈ N,

P (dxt,mt|xs,ms, s ≤ t− 1)

=
∑

P (dxt,mt, q
′
t−1|xs,ms, s ≤ t− 1)

=
∑

P (dxt|xt−1, γ
d(mt−1, q

′
t−1))P (q′t−1|γe(xt−1,mt−1))P (mt|q′t−1,mt−1)

=
∑

P (dxt,mt, q
′
t−1|xt−1,mt−1) = P (dxt,mt|xt−1,mt−1),(4.2)

where we use the fact that the channel is of Class A and (1.3) and (4.1).

In the following, we assume that the channel is memoryless. For the Markov chain
(xt,mt), let πt(B) = P (xt ∈ B) for all Borel B, that is, πt is the marginal occupation
probability for the state process xt.

Theorem 4.2. Suppose that the encoding, control, and memory update laws are
given by (4.1). (i) Let f have the form (2.2), (ii) Assumptions 2.1 and 2.2 hold,
and (iii) h(x0) < ∞. For the positive Harris recurrence of the process xt,mt (which
implies the existence of a unique invariant measure π (and thus ergodicity)), it must
be that

C ≥
∫
π(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
,(4.3)

provided that lim supt→∞
1
th(xt) ≤ 0.

Proof. First note that

C ≥ I(qt, q
′
t) = H(q′t)−H(q′t|qt)

≥ H(q′t|mt)−H(q′t|qt) = H(q′t|mt)−H(q′t|qt, xt,mt)

≥ H(q′t|mt)−H(q′t|xt,mt) = I(q′t;xt|mt).

Hence,

C ≥ lim inf
T→∞

1

T

T−1∑
t=0

I(q′t;xt|mt)

= lim inf
T→∞

1

T

T−1∑
t=0

(
h(xt|mt)− h(xt|mt, q

′
t)

)

= lim inf
T→∞

(
1

T

T−1∑
t=1

(
h

(
f(xt−1, wt−1) +But−1|mt

)
− h(xt|mt, q

′
t)

)
+ I(q′0;x0|m0)

)

= lim inf
T→∞

1

T

T−1∑
t=1

h

(
f(xt−1, wt−1) +But−1)|mt

)
− h(xt|mt, q

′
t)

≥ lim inf
T→∞

1

T

T−1∑
t=1

h

(
f(xt−1, wt−1) +But−1|mt,mt−1, q

′
t−1

)
− h(xt|mt, q

′
t)
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= lim inf
T→∞

1

T

T−1∑
t=1

h

(
f(xt−1, wt−1) +But−1|mt−1, q

′
t−1

)
− h(xt|mt, q

′
t)

≥ lim inf
T→∞

1

T

T−1∑
t=1

h

(
f(xt−1, wt−1) +But−1|wt−1,mt−1, q

′
t−1

)
− h(xt|mt, q

′
t)

= lim inf
T→∞

1

T

T−1∑
t=1

h

(
f(xt−1, wt−1)|wt−1,mt−1, q

′
t−1

)
− h(xt|mt, q

′
t)

= lim inf
T→∞

1

T

T−1∑
t=1

(∫
ν(dw)

(∑
P (mt−1 = m, q′t−1 = q′)

×
∫
P (xt−1 ∈ dx|mt−1 = m, q′t−1 = q′, wt−1 = w) log2(|J(f(x,wt−1))|)

+h(xt−1|mt−1 = m, q′t−1 = q′, wt−1 = w)

)
− h(xt|mt, q

′
t)

)

= lim inf
T→∞

1

T

T−1∑
t=1

(∫
ν(dw)

(∑
P (mt−1 = m, q′t−1 = q′)

×
∫
P (xt−1 ∈ dx|mt−1 = m, q′t−1 = q′) log2(|J(f(x,w))|)

+h(xt−1|mt−1 = m, q′t−1 = q′)

)
− h(xt|mt, q

′
t)

)
(4.4)

= lim inf
T→∞

1

T

T−1∑
t=1

(∫
ν(dw)

(∫
πt−1(dx) log2(|J(f(x,w))|)

+h(xt−1|mt−1, q
′
t−1)

)
− h(xt|mt, q

′
t)

)
(4.5)

= lim inf
T→∞

1

T

( T−1∑
t=1

∫
πt−1(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)

−h(xT−1|mT−1, q
′
T−1)

)
(4.6)

≥ lim inf
T→∞

1

T

( T−1∑
t=1

∫
πt−1(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
− h(xT−1)

)

≥ lim inf
T→∞

1

T

T−1∑
t=1

∫
πt−1(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
−lim sup

T→∞

1

T
h(xT−1)

≥ lim inf
T→∞

1

T

T−1∑
t=1

∫
πt−1(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
(4.7)

= lim inf
T→∞

∫
π0(dx)Ex

[
1

T

T−1∑
t=0

∫
πt−1(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)]
(4.8)
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≥
∫
π0(dx) lim inf

T→∞
Ex

[
1

T

T−1∑
t=0

∫
πt−1(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)]
(4.9)

=

∫
π0(dx)

(∫
π(dz)

(∫
ν(dw) log2(|J(f(z, w))|)

))
(4.10)

=

∫
π(dx)

(∫
ν(dw) log2(|J(f(x,w))|)

)
.(4.11)

In the first lines above, we use the fact that conditioning on a random variable reduces
the entropy and the update laws (4.1). The equality (4.5) holds since for every w, the
map f(., w) is invertible (here J(f(x,wt)) is the Jacobian for the realized value of wt)
and that wt is an independent noise process using the laws of total probability. Here
(4.4) follows due to the independence of wt, (4.6) follows from Fubini’s theorem since
log2(|J(f(x,w))|) is bounded, (4.8) follows from Fatou’s lemma given the assumption
that log2(|J(f(x,w))|) is bounded from below, and (4.9) follows from positive Harris
recurrence (see [20, Theorem 4.3.1]).

Remark 6. If one considers a more general control-affine model such as of the
form (2.5) with xt+1 = f(xt, wt) +B(ut)xt, the condition would read as

C ≥
∫
π(dx,m, q′)

(∫
ν(dw) log2

(∣∣∣∣J(f(x,w) +B(γd(m, q′))x

)∣∣∣∣)),
where π is invariant for the (enlarged) Markov chain (xt,mt, q

′
t).

5. Discrete noiseless channels and a stationary and ergodic construc-
tion. In this section, we provide achievability results and a stabilizing coding/control
policy. As discussed earlier, the study of nonlinear systems has typically consid-
ered noise-free controlled systems, e.g., [2], [29], and [46]. As also noted earlier, for
noise-free systems, it typically suffices to consider only a sufficiently small invariant
neighborhood of an equilibrium point to obtain stabilizability conditions which is not
necessarily the case when the system is driven by an additive noise process. We
consider such an example in the following.

Theorem 5.1. Consider a nonlinear system of the form (2.4), where {wt} is a
sequence of zero-mean Gaussian random vectors and there exists a control function
κ(z) such that |f(x, κ(z))|∞ ≤ |a||x − z|∞ for all x, z ∈ RN , with κ(0) = 0. For
the stationarity and ergodicity of {xt} (and thus with a unique invariant probability
measure), it suffices that C > N log2(|a|) + 1.

Remark 7. It may be possible in general to reduce the rate requirements by the
use of variable-rate encoding schemes; for example, if there exists a compact region
outside of which the constant a can be upper bounded by a smaller number, a region-
dependent quantization rate can be applied which can reduce the average data rate
required for system stability. In this paper, since there is an explicit channel, our
focus has been on fixed-rate coding schemes.

Proof. The proof follows essentially from the approach developed in [64] and [21]
with extension to nonlinear analysis. Consider the case with N = 2. Let ∆ > 0 denote
the bin size for a uniform quantizer and let for each coordinate xi ∈ R, i = 1, 2,

Q∆
K(xi) =


(k − 1

2 (K + 1))∆ if xi ∈ [(k − 1− 1
2K)∆, (k − 1

2K)∆),

( 1
2 (K − 1))∆ if xi = 1

2K∆,

0 if xi 6∈ [− 1
2K∆, 1

2K∆],

(5.1)
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and define Q∆(x) = (Q∆
K(x1), Q∆

K(x2)) if Q∆
K(xi) 6= 0 for i = 1, 2 and Q∆(x) = 0 if

Q∆
K(xi) = 0 for some i. Thus, the number of symbols in the image of Q∆ is K2 + 1

(and not (K + 1)2). The quantizer outputs are transmitted through a memoryless
erasure channel, after being subjected to a bijective mapping, which is performed
by the channel encoder. The channel encoder maps the quantizer output symbols to
corresponding channel inputs q ∈M:={1, 2 . . . ,K2+1}. A channel encoder at time t,
denoted here by Et, maps the quantizer outputs toM such that Et(Qt(xt)) = qt ∈M.
For i = 1, 2, let R′ = log2(K). For t ≥ 0 and with ∆1

0 = ∆2
0 ∈ R, define

hit =
xit

∆i
t2
R′−1

,

and with

x̂t =

[
x̂1
t

x̂2
t

]
consider

ut = −κ(x̂t),[
x̂1
t

x̂2
t

]
=

[
Q

∆1
t

K1
(x1
t )

Q
∆2
t

K2
(x2
t )

]
1{maxi |hi|≤1} +

[
0
0

]
1{maxi |hi|>1},(5.2)

∆1
t+1 = ∆1

t Q̄(|h1
t |, |h2

t |,∆1
t ,∆

2
t ), ∆2

t+1 = ∆2
t Q̄(|h1

t |, |h2
t |,∆1

t ,∆
2
t ),(5.3)

with, for i = 1, 2, δ > 0 α ∈ (0, 1), L > 0, such that

Q̄(x, y,∆1,∆2) = |a|+ δ if |x| > 1, or |y| > 1,

Q̄(x, y,∆1,∆2) = α if |x| ≤ 1, |y| ≤ 1; ∆1 > L,∆2 > L,

Q̄(x, y,∆1,∆2) = 1 if |x| ≤ 1, |y| ≤ 1; ∆1 ≤ L or ∆2 ≤ L.

Note that the above imply ∆i
t ≥ αL. See Figure 2 for a depiction of the quantizer

used at a particular time. To make the state space for the bin size process countable
as in [67], [64], we take that log2(Q̄(·)) take values in integer multiples of s where the
integers taken are relatively prime (that is, they share no common divisors except for
1); see [67, Lemma 7.6.2]. We note the following without proof.

Lemma 5.1. The process (xt,∆t) is a Markov chain.

We define a sequence of stopping times as follows:

T0 = 0, Tz+1 = inf{k > Tz : |hik| ≤ 1, i ∈ {1, 2}}, z ∈ Z+.

By the strong Markov property and the nature of the stopping times, (xTz , hTz )
is also Markov. In the following, we show that there exist b0 > 0, b1 <∞ such that

E[log(∆2
Tz+1

)|∆Tz , hTz ] ≤ log(∆2
Tz )− b0 + b11{|∆Tz |≤F}.(5.4)

We first bound the probability P (Tz+1 − Tz ≥ k|∆Tz , hTz ) from above.

Lemma 5.2. The discrete probability measure P (Tz+1 − Tz = k | xTz ,∆Tz ) has
the upper bound

P (Tz+1 − Tz ≥ k|xTz ,∆Tz ) ≤M(∆Tz )r
−k,

for some r > 1 and lim∆→∞M(∆) = 0.
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Overflow bin
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2 ∆1−K1

2 ∆1

−K2
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2 ∆2

Overflow bin

Bin size ∆1

Bin size ∆2

Fig. 2. The vector quantizer. There is a single overflow bin.

Proof. Observe that for 0 < k < τ1, x̂k = 0 and uk = κ(0) = 0. Let |x| = ‖x‖∞.
Now, for k ≥ 2

P (T1 ≥ k|x0,∆0) ≤ Px0,∆0

(
|xk−1| ≥ (|a|+ δ)k−22R

′−1α∆0

)
≤ Px0,∆0

(
|f(xk−2)|+ |wk−2| ≥ (|a|+ δ)k−22R

′−1α∆0

)
≤ Px0,∆0

(
|a(xk−2)|+ |wk−2| ≥ (|a|+ δ)k−22R

′−1α∆0

)
≤ Px0,∆0

(
|a||xk−2|+ |wk−2| ≥ (|a|+ δ)k−22R

′−1α∆0

)

≤ Px0,∆0

( k−2∑
i=0

|a|−i|wi| ≥
(|a|+ δ)k−22R

′−1α∆0

|a|k−1
− |x0 − x̂0|

)
(5.5)

≤ Px0,∆0

( k−2∑
i=0

|a|−i|wi| ≥
(|a|+ δ)k−22R

′−1α∆0

|a|k−1
−∆0/2

)

= Px0,∆0

( k−2∑
i=0

|a|−i|wi| ≥ ∆0/2

(
(
|a|+ δ

|a| )k−2 2R
′
α

|a| − 1

))
(5.6)

≤ E[
∑∞
i=0 |a|−i|wi|]

∆0/2

(
( |a|+δ|a| )k−2 2R′α

|a| − 1

)(5.7)

≤M(∆0)r−k(5.8)

with

M(∆0) =
KE[

∑∞
i=1 |a|−i|wi|]

( |a|+δ|a| )2∆0( 2R′α
|a| − 1)

<∞
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for some K < ∞ and r ∈ (1, (|a| + δ)/|a|) so that lim∆0→∞M(∆0) = 0. Here, (5.5)
follows from an inductive argument, (5.6) follows from the fact that the term(

2R
′−1(
|a|+ δ

|a| )k−2 α

|a| −
1

2

)
is positive for k ≥ 2 provided that 2R

′
> |a|

α , (5.7) follows from Markov’s inequality,
and (5.8) follows from the fact that wi is Gaussian together with the property |w| ≤
N(1 + |w|2) leading to the finiteness of E[

∑∞
i=1 |a|−i|wi|].

We now invoke [68, Theorem 2.1]: Let X be an X-valued Markov chain (where X
is a standard Borel space) and Tz, z ≥ 0, be a sequence of stopping times measurable
on the filtration generated by the state process with T0 = 0.

Theorem 5.2 (see [68, Theorem 2.1]). Suppose that X is a ϕ-irreducible and
aperiodic Markov chain. Suppose moreover that there are functions V : X → (0,∞),
δ : X→ [1,∞), f : X→ [1,∞), a small set C on which V is bounded, and a constant
b ∈ R, such that the following hold:

(5.9)

E[V (xTz+1) | FTz ] ≤ V (xTz )− δ(xTz ) + b1{xTz∈C},

E
[Tz+1−1∑
k=Tz

f(xk) | FTz
]
≤ δ(xTz ) , z ≥ 0.

Then the following hold:
(i) X is positive Harris recurrent, with unique invariant distribution π.
(ii) π(f) :=

∫
f(x)π(dx) <∞.

(iii) For any function g that is bounded by f , in the sense that supx |g(x)|/f(x) <
∞, we have convergence in the mean, and the law of large numbers holds:

lim
t→∞

Ex[g(xt)] = π(g),

lim
N→∞

1

N

N−1∑
t=0

g(xt) = π(g) a.s. x ∈ X.

By taking f(x) = 1 for all x ∈ X, the following holds.

Theorem 5.3 (see [68]). Suppose that X is a ϕ-irreducible Markov chain with
natural filtration Ft. Suppose moreover that there is a function V :X→ (0,∞), a small
set C on which V is bounded, and a constant b ∈ R, such that the following hold:

(5.10)
E[V (xTz+1) | FTz ] ≤ V (xTz )− 1 + b1{xTz∈C},

sup
z≥0

E[Tz+1 − Tz | FTz ] <∞.

Then X is positive Harris recurrent.

Now, with the candidate Lyapunov function V0(xt,∆t) = log(∆2
t ), for ∆Tz > L,

E[V0(xTz+1
,∆Tz+1

) | xTz ,∆Tz ] = P (Tz+1 − Tz = 1)

(
2 log(α) + log(∆2

Tz )

)
+

∞∑
k=2

log(∆2
Tz+k)P (Tz+1 − Tz = k | xTz ,∆Tz )
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= P (Tz+1 − Tz = 1)

(
2 log(α) + log(∆2

Tz )

)
+

∞∑
k=2

2(log2(α) + (k − 1)(|a|+ δ)M(∆)r−k.

Now, by (5.8), lim∆0→∞ P (Tz+1 − Tz = 1|∆0, x0) = 1 uniformly in |x0| ≤
2R
′−1∆0. As a result, the drift condition of Theorem 5.3 holds. We need to en-

sure, however, the small/petite set [37] property of compact sets to establish positive
Harris recurrence. A sufficiently small compact set for this chain is petite due to the
countability of the values that ∆t takes and the uniform countable additivity property
of the Markov chain due to the presence of the additive Gaussian noise, as on p. 206
of [67] and the continuity of f in x. This argument applies for N -dimensional systems
as well with N > 2. This completes the proof of Theorem 5.1.

Remark 8. The approach adopted in the proof of Theorem 5.1 applies for more
general channels (such as erasure channels or discrete memoryless channels) subject
to more tedious error bounds.

6. Discussion and conclusion. In this paper, conditions on information chan-
nels leading to the stochastic stability of nonlinear systems controlled over noisy chan-
nels have been investigated. Stochastic stability notions considered were asymptotic
mean stationarity, ergodicity, and stationarity. Results for linear systems are recov-
ered as a special case.

In the following we present some future directions and a comparison with the
results involving topological entropy.

6.1. Comparison with invariance entropy and deterministic nonlinear
systems controlled over noiseless channels. As noted earlier, noise-free systems
and noiseless discrete channels have been studied in the literature in the context of
topological entropy and invariance entropy. Here, we establish some connections.

One related result in this literature is with regard to stabilization to a point:
Under the assumptions that (i) f has the form in (2.4) (without noise) with con-
tinuous partial derivatives, (ii) there exists a fixed point (equilibrium) x∗ so that
x∗ = f(x∗, u∗), (iii) a local strong invariability condition is satisfied which relates the
size of an invariant set and the size of a control action set in the sense that for any
ε > 0, there exist ρ > 0 so that for all ε′ ∈ (0, ρ], the set {x : |x− x∗| ≤ ε′} is strongly
invariant with the control action set U = {u : |u− u∗| ≤ ε}, and (iv) the pair (A,B)
is controllable where A,B are the Jacobians of f with respect to state and control
at x∗, u∗, [41] has reported that for convergence to the equilibrium an average rate
R >

∑
|λi|>1 log2(|λi|) is sufficient, where λi are the eigenvalues of the Jacobian at

the equilibrium point.
A further related result in the spirit of our paper is from a case where there exists

an invariant set with a nonempy interior: For continuous-time systems of the form
dx
dt = f(x, u), u ∈ U , Colonius and Kawan [6] establish a lower bound on invariance
entropy as

max

(
0, min
x,u∈Q×U

∑
i

∂fi
∂xi

(x, u)

)
,(6.1)

where Q is a weakly invariant set and fi is the ith coordinate function of f . More
refined bounds are present if further structural properties are imposed: in [53], under
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a uniform hyperbolicity assumption (see [53, Definition 4.4]), Theorem 4.8 states a
similar lower bound by considering the unstable components in an invariant set.

These results can be viewed to be related to Theorems 3.2 and 4.2, as well as
Theorem 5.1, in that the average entropy growth as measured by the eigenvalues of
the Jacobian matrix under the invariant probability measure is lower bounded by a
minimum over the elements in the support set, or is upper bounded by a maximizing
element in the support set. In the stabilization to the point example of [41], the
invariant measure is a delta measure on a single point. In the invariant set example
leading to (6.1), the set Q can be viewed to be the support set of some invariant mea-
sure under the system dynamics if such a measure were to exist. Likewise, [29] and
[28] have obtained conditions for noise-free systems controlled over noiseless channels.
Due to the absence of noise, one could identify an invariant compact set and consider
a bound on the Lipschitz growth parameter for the system over this invariant set to
obtain sufficiency conditions. When the system is (Lebesgue) irreducible, however,
due to the effect of noise, local properties are not descriptive and the invariant prob-
ability measure reflects the rate conditions and entropy growth in the system. In this
case, the local growth integrated under an invariant measure gives a proper bound.

Differential entropy is a useful measure for how much a stochastic system gener-
ates uncertainty; however, our analysis does not distinguish between the stable and
unstable modes of a controlled system and is only able to resemble the classical re-
sults in ergodic theory (Pesin’s formula [62]) for expanding systems and thus with only
positive Lyapunov exponents. In the linear case, the arguments follow by restricting
the state space to those corresponding to the unstable modes. For a general nonlinear
system, however, a careful geometric study needs to be done. On the other hand, for
deterministic systems, under a topological entropy formulation, the rate of growth can
be measured by local Jacobian matrices, but such a topological discussion requires
further geometric analysis with regard to the use of appropriate metrics, as studied
extensively in [24]. Thus, the connection between the differential entropy method and
geometric approaches requires further study.

We note also that recently a metric entropy generalization of some of the results
in [24] have been developed [5].

6.2. Some open directions on stationary coding and control policies
and information theory. It would be interesting to show, for a class of systems,
that stationary coding and control policies can be used to arrive at stability with a
stationary closed-loop process provided that the capacity of the channel satisfies the
entropy growth bound and the channel satisfies certain ergodicity conditions. How-
ever, except for linear Gaussian systems controlled over Gaussian channels and erasure
channels (see [67] for a detailed discussion for both setups), this question has not been
answered even for linear systems controlled over general discrete memoryless chan-
nels (that is, nonstationary coding schemes have been used for more general discrete
memoryless channels). Furthermore, the tightness of the converse results is another
direction. A further direction is the causal coding problem for nonergodic sources: In
the information theory literature, through noncausal codes, a class of source coding
theorems for nonergodic sources exists (see, e.g., [17]); however, the extensions of these
for even control-free nonlinear systems under causal coding require further research.

Appendix A. Stationary, ergodic, and AMS processes. In this appendix,
we review ergodic theory, in the context of information theory (that is, with the
transformations being specific to the shift operation). A comprehensive discussion is
available in Shields [50], Gray [15], Gray and Kieffer [19], and Appendix C in [67].
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Let X be a complete, separable, metric space. Let B(X) denote the Borel sigma-
field of subsets of X. Let Σ = X∞ denote the sequence space of all one-sided or
two-sided infinite sequences drawn from X. Thus, for a two-sided sequence space if
x ∈ Σ, then x = {. . . , x−1, x0, x1, . . . } with xi ∈ X. Let Xn : Σ → X denote the
coordinate function such that Xn(x) = xn. Let T denote the shift operation on Σ,
that is, Xn(Tx) = xn+1. That is, for a one-sided sequence space T (x0, x1, x2, . . . ) =
(x1, x2, x3, . . . ).

Let B(Σ) denote the smallest sigma-field containing all cylinder sets of the form
{x : xi ∈ Bi,m ≤ i ≤ n}, where Bi ∈ B(X), for all integers m,n. Observe that
∩n≥0T

−nB(Σ) is the tail σ-field ∩n≥0σ(xn, xn+1, · · · ), since T−n(A) = {x : Tnx ∈ A}.
Let µ be a stationary measure on (Σ,B(Σ)) in the sense that µ(T−1B) = µ(B) for

all B ∈ B(Σ). Then, the sequence of random variables {xn} defined on the probability
space (Σ,B(Σ), µ) is a stationary process.

Definition A.1. Let µ be the measure on a process. This random process is
ergodic if A = T−1A implies that µ(A) ∈ {0, 1}.

That is, the events that are unchanged with a shift operation are trivial events.
Mixing is a sufficient condition for ergodicity. Thus, a source is ergodic if

limn→∞ P (A ∩ T−nB) = P (A)P (B), since the process forgets its initial condition.
For the special case of Markov sources, we have the following: A positive Harris
recurrent Markov chain is ergodic, since such a process is mixing and stationary.

Definition A.2. A process on a probability space (Ω,F ,P) with process measure
P is asymptotically mean stationary (AMS) if there exists a probability measure P̄
such that

lim
N→∞

1

N

N−1∑
k=0

P (T−kF ) = P̄ (F )

for all events F ∈ B(Σ). Here P̄ is called the stationary mean of P and is a stationary
measure.

Note that P̄ is stationary since by definition P̄ (F ) = P̄ (T−1F ). For the im-
portance of the AMS property, its relations with Birkhoff’s ergodic theorem, some
applications and sufficient conditions, see [15] or [19].

Appendix B. Proof of Theorem 3.1. Define the event for K > 0 so that
P (|x0| < K) > 0 as

SKη = {ω : |x0| ≤ K,w = η, i.e., wk = ηk, ηk ∈ Rp, k ≥ 0}
such that the noise realizations are fixed and deterministic. In the following, we
will drop the subscript and superscripts and let PS or P (·|S) denote the conditional
probabilities given the event SKη . We recall here that {wt, t ≥ 0} and x0 are assumed
to be independent. By Definition 1.1, first note that the capacity expression satisfies

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1])

= lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1]|S),(B.1)

where the conditional directed information is given by

I(q[0,T−1] → q′[0,T−1]|S) =

T−1∑
t=1

I(q[0,t]; q
′
t|q′[0,t−1],S) + I(q0; q′0|S).
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Here, (B.1) is a result of the following: Consider an encoder policy given by

P ∗ = {P ∗(q0), P ∗(q1|q0, q
′
0), · · · , P ∗(qt|q[0,t−1], q

′
[0,t−1]), · · · }.

For any t ∈ N, almost surely the following holds:

P (q′t|q′[0,t−1],S)

=
∑
q[0,t]

P (q′t, q[0,t]|q′[0,t−1],S)

=
∑
q[0,t]

P (q′t|q[0,t], q
′
[0,t−1],S)P (q[0,t]|q′[0,t−1],S)

=
∑
q[0,t]

P (q′t|q[0,t], q
′
[0,t−1])P (q[0,t]|q′[0,t−1],S)(B.2)

=
∑
q[0,t]

P (q′t|q[0,t], q
′
[0,t−1])P

∗(qt|q′[0,t−1], q[0,t−1],S)P (q[0,t−1]|q′[0,t−1],S)

=
∑
q[0,t]

P (q′t|q[0,t], q
′
[0,t−1])P

∗(qt|q′[0,t−1], q[0,t−1])P (q[0,t−1]|q′[0,t−1],S)(B.3)

=
∑
q[0,t]

P (q′t|q[0,t], q
′
[0,t−1])P

∗(qt|q′[0,t−1], q[0,t−1])P (q[0,t−1]|q′[0,t−1])(B.4)

= P (q′t|q′[0,t−1]),(B.5)

where (B.2) follows from Definition 1.1, (B.3) from the structure of a coding policy,
and (B.4) from the following inductive argument. Note that P (q0, q

′
0|S) = P (q0, q

′
0).

If P (q[0,t−1], q
′
[0,t−1]|S) = P (q[0,t−1], q

′
[0,t−1]), it follows that

P (q[0,t], q
′
[0,t]|S)

= P (q′t|q[0,t], q
′
[0,t−1],S)P ∗(qt|q′[0,t−1], q[0,t−1],S)P (q[0,t−1], q

′
[0,t−1]|S)

= P (q′t|q[0,t], q
′
[0,t−1])P

∗(qt|q′[0,t−1], q[0,t−1])P (q[0,t−1], q
′
[0,t−1]|S)

= P (q′t|q[0,t], q
′
[0,t−1])P

∗(qt|q′[0,t−1], q[0,t−1])P (q[0,t−1], q
′
[0,t−1])

= P (q[0,t], q
′
[0,t]).(B.6)

As a result, (B.4) simplifies to (B.5) by eliminating the conditioning on S and (B.1)
holds.

We now use a similar argument as in (2.17) but need to modify the steps due to
the conditioning on S:

lim
T→∞

RT ≥ lim sup
T→∞

1

T

( T−1∑
t=1

I(xt; q
′
t|q′[0,t−1],S) + I(x0; q′0|S)

)

= lim sup
T→∞

1

T

T−1∑
t=1

I(xt; q
′
t|q′[0,t−1],S)

= lim sup
T→∞

1

T

T−1∑
t=1

hS(xt|q′[0,t−1])− hS(xt|q′[0,t])
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= lim sup
T→∞

1

T

T−1∑
t=1

hS(f(xt−1) +But−1 + wt−1|q′[0,t−1])− hS(xt|q′[0,t])

= lim sup
T→∞

1

T

T−1∑
t=1

hS(f(xt−1) +But−1|q′[0,t−1])− hS(xt|q′[0,t])

= lim sup
T→∞

1

T

T−1∑
t=1

hS(f(xt−1)|q′[0,t−1])− hS(xt|q′[0,t])

= lim sup
T→∞

1

T

T−1∑
t=1

(
E

[
PS(dxt−1|q′[0,t−1]) log2(|J(f(xt−1))|)

]
+hS(xt−1|q′[0,t−1])− hS(xt|q′[0,t])

)
(B.7)

≥ VS − lim inf
T→∞

(
1

T
hS(xT−1|q′[0,T−1])

)
(B.8)

Here,

VS = lim inf
T→∞

E

[
1

T

( T−1∑
t=1

PS(dxt−1|q′[0,t−1]) log2(|J(f(xt−1))|)
)]
,(B.9)

and (B.7) follows from the fact that

hS(f(xt−1)|q′[0,t−1]) = E

[ ∫
PS(dxt−1|q′[0,t−1]) log2(|J(f(xt−1))|)

]
+ hS(xt−1|q′[0,t−1]),

where the expectation is over the realizations of q′[0,t−1]. Finally, we use the bound-

edness of h(x0) (and thus h(x0|q′0)) in (B.8). Thus, with VS ≥ L, it follows that

lim inf
T→∞

(
1

T
hS(xT−1|q′[0,T−1])

)
≥ L− C.(B.10)

We now seek to obtain an upper bound on hS(xT−1|q′[0,T−1]). As in [33], note that

hS(xT |q′[0,T ]) ≤ hS(xT ,Y|q′[0,T ]),

where Y is a binary random variable which is 1 if |xT | ≤ b(T ) and 0 otherwise. Let

PS(Y = 1) = PS(|xT | ≤ b(T )) =: pST .

Then,

hS(xT ,Y|q′[0,T ]) = hS(xT |q′[0,T ],Y) +HS(Y|q′[0,T ])

≤ hS(xT |q′[0,T ],Y) + 1,

since Y is binary. We have that

hS(xT |q′[0,T ],Y) ≤ pST
n

2
log2(2πeb2(T ))

+(1− pST )hS

(
xT

∣∣∣∣q′[0,T ], |xT | ≥ b(T )

)
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and

hS

(
xT

∣∣∣∣q′[0,T ], |xT | > b(T )

)
= hS

(
f(xT−1) +BuT−1 + wT−1)

∣∣∣∣q′[0,T ], |xT | > b(T )

)
≤ hS

(
f(xT−1) +BuT−1 + wT−1)

∣∣∣∣q′[0,T−1], |xT | > b(T )

)
(B.11)

= hS

(
f(xT−1) + wT−1)

∣∣∣∣q′[0,T−1], |xT | > b(T )

)
= hS

(
f(xT−1)

∣∣∣∣q′[0,T−1], |xT | > b(T )

)
(B.12)

= E

[ ∫
PS

(
dxT−1

∣∣∣∣q′[0,T−1], |xT | > b(T )

)
log2

(∣∣∣∣J(f(xT−1))

∣∣∣∣)]
+hS

(
xT−1

∣∣∣∣q′[0,T−1], |xT | > b(T )

)
(B.13)

≤M + hS

(
xT−1

∣∣∣∣q′[0,T−1], |xT | > b(T )

)
...

≤MT + hS

(
x0

∣∣∣∣|xT | > b(T )

)
.(B.14)

Here (B.11) follows from that conditioning on a random variable reduces the differen-
tial entropy, and (B.12) follows due to the fact that S determines the noise realizations.
We note that nonlinearity of f adds further technical issues when compared with the
linear setup.1 Here, M is the supremum of log2(|J(f(x))|). In the above derivation
in (B.13), we use the fact that f is invertible.

Thus, by (B.10)–(B.11) and (B.14) we have

lim inf
T→∞

1

T

(
1 + (1− pST )

(
MT + hS(x0

∣∣∣∣|xT | > b(T ))

)
+ pST

n

2
log2(2πeb2(T ))

)
≥ L− C,(B.15)

Because given S, x0 is bounded by K, it follows that hS(x0||xT | > b(T )) ≤ (n/2)
log2(2πeK2), and thus for all K and η

lim sup
T→∞

PSKη (|xT | ≤ b(T )) ≤ M − (L− C)

M

for all b(T ) such that limT→∞ log2(b(T ))/T = 0. But now

1Two technical intricacies here are as follows: For differential entropy (unlike discrete entropy)
the relationship h(x + y) ≤ h(x) + h(y) does not in general hold for random variables x, y; this is
why first a conditioning on S is taken in the proof. Furthermore, we cannot obtain an upper bound
by taking out the conditioning on the event |xT | > b(T ), since conditioning on a single event may
decrease or increase entropy; note that conditioning on a random variable, however, does not increase
the entropy.
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lim sup
T→∞

P (|xT | ≤ b(T ))

≤ lim sup
T→∞

P (|xT | ≤ b(T ), |x0| ≤ K) + lim sup
T→∞

P (|xT | ≤ b(T ), |x0| ≥ K)

≤ lim sup
T→∞

P (|xT | ≤ b(T ), |x0| ≤ K) + P (|x0| ≥ K)

= lim sup
T→∞

∫
P (dη)PSKη (|xT | ≤ b(T )) + P (|x0| ≥ K)

≤
∫
P (dη) lim sup

T→∞
PSKη (|xT | ≤ b(T )) + P (|x0| ≥ K)(B.16)

≤
∫
P (dη)

M − (L− C)

M
+ P (|x0| ≥ K)

=
M − (L− C)

M
+ P (|x0| ≥ K),

where we use Fatou’s lemma in (B.16) and the fact that (B.15) holds for every restric-
tion of the noise realizations η and K values. Since an individual probability measure
is tight, limK→∞ P (|x0| ≥ K) = 0, the right-hand side can be made arbitrarily close

to M−(L−C)
M and the result follows.
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[17] R. M. Gray and L. D. Davisson, Source coding theorems without the ergodic assumption,
IEEE Trans. Inform. Theory, 20 (1974), pp. 502–516.

[18] R. M. Gray and T. Hashimoto, A note on rate-distortion functions for nonstationary Gaus-
sian autoregressive processes, IEEE Trans. Inform. Theory, 54 (2008), pp. 1319–1322.

[19] R. M. Gray and J. C. Kieffer, Asymptotically mean stationary measures, Ann. Probab., 8
(1980), pp. 962–973.

[20] O. Hernandez-Lerma and J. B. Lasserre, Markov Chains and Invariant Probabilities,
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[68] S. Yüksel and S. P. Meyn, Random-time, state-dependent stochastic drift for Markov chains
and application to stochastic stabilization over erasure channels, IEEE Trans. Automat.
Control, 58 (2013), pp. 47–59.

[69] H. Zang and P. A. Iglesias, Nonlinear extension of Bode’s integral based on an information-
theoretic interpretation, Systems Control Lett. 50 (2003), pp. 11–19.


	Introduction
	Some notation and preliminaries
	Literature review
	Contributions of the paper

	Sublinear entropy growth and a generalization of Bode's integral formula for nonlinear systems
	A generalization of Bode's integral formula for nonlinear systems

	Asymptotic mean stationarity
	Stationarity and ergodicity under structured (stationary) policies
	A necessary structural result on the encoders
	Stationarity and ergodicity

	Discrete noiseless channels and a stationary and ergodic construction
	Discussion and conclusion
	Comparison with invariance entropy and deterministic nonlinear systems controlled over noiseless channels
	Some open directions on stationary coding and control policies and information theory

	Appendix A. Stationary, ergodic, and AMS processes
	Appendix B. Proof of Theorem 3.1
	References

