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Asymptotic Optimality and Rates of Convergence of Quantized
Stationary Policies in Stochastic Control

Naci Saldi, Tamás Linder, and Serdar Yüksel

Abstract—We consider the discrete approximation of stationary
policies for a discrete-time Markov decision process with Polish
state and action spaces under total, discounted, and average cost
criteria. Deterministic stationary quantizer policies are introduced
and shown to be able to approximate optimal deterministic sta-
tionary policies with arbitrary precision under mild technical
conditions, thus demonstrating that one can search for ε-optimal
policies within the class of quantized control policies. We also
derive explicit bounds on the approximation error in terms of the
quantization rate.

Index Terms—Approximation, Markov decision processes,
quantization, stationary policies, stochastic control.

I. INTRODUCTION

In the theory of Markov decision processes (MDPs), control policies
induced by measurable mappings from the state space to the action
space are called stationary. For a large class of infinite horizon opti-
mization problems, the set of stationary policies is the smallest struc-
tured set of control policies in which one can find a globally optimal
policy. However, computing an optimal policy even in this class is
in general computationally prohibitive for non-finite Polish (that is,
complete and separable metric) state and action spaces. Furthermore,
in applications to networked control, the transmission of such control
actions to an actuator is not realistic when there is an information
transmission constraint (imposed by the presence of a communication
channel) between a plant, a controller, or an actuator.

Hence, it is of interest to study the approximation of optimal
stationary policies. Several approaches have been developed in the
literature to tackle this problem, most of which assume finite or
countable state spaces, see [2]–[4], [17]. In this technical note, we
study the following question: for infinite Borel state and action spaces,
how much is lost in performance if optimal policy is represented with
a finite number of bits? This formulation appears to be new in the
networked control literature, where stability properties of quantized
control actions have been studied extensively, but the optimization of
quantized control actions has not been studied as much in the context
of cost minimization.

This technical note contains two main contributions: (i) We establish
conditions under which quantized control policies are asymptotically
optimal; that is, as the accuracy of quantization increases, the optimal
cost is achieved as the limit of the cost of quantized policies. (ii) We
establish rates of convergence under further conditions; that is, we
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obtain bounds on the approximation loss due to quantization. These
findings are somewhat analogous to results in optimal quantization
theory [21].

Organization: In Section II we review the definition of dis-
crete time Markov decision processes (MDP) in our setting. In
Section III-A we tackle the approximation problem for the total and
discounted cost cases using strategic measures. In Section III-B an
analogous approximation result is obtained for the average cost case
using ergodic invariant probability measures of the induced Markov
chains. In Section IV we derive quantitative bounds on the approxima-
tion error in terms of the rate of the approximating quantizers for both
discounted and average costs.

II. MARKOV DECISION PROCESSES

For a metric space E, let B(E) denote its Borel σ-algebra. Unless
otherwise specified, the term “measurable” will refer to Borel measur-
ability. We denote by P(E) the set of all probability measures on E.

Consider a discrete time Markov decision process (MDP) with state
space X and action space A, where X and A are complete, separable
metric (Polish) spaces equipped with their Borel σ-algebras B(X)
and B(A), respectively. For all x ∈ X, we assume that the set of
admissible actions is A. Let the stochastic kernel p(·|x, a) denote the
transition probability of the next state given that previous state-action
pair is (x, a) [6]. The probability measure μ over X denotes the initial
distribution.

Define the history spaces Hn = (X× A)n × X, n = 0, 1, 2, . . .
endowed with their product Borel σ-algebras generated by B(X) and
B(A). A policy is a sequence π = {πn}n≥0 of stochastic kernels on A
givenHn. A policy π is said to be deterministic if the stochastic kernels
πn are realized by a sequence of measurable functions {fn} from Hn

to A, i.e., πn(·|hn) = δfn(hn)(·) where fn : Hn → A is measurable.
A policy π is called stationary if the stochastic kernels πn depend
only on the current state; that is, πn = πm (m,n ≥ 0) and πn is a
stochastic kernel on A given X. A policy π that is both deterministic
and stationary is called deterministic stationary. Hence, deterministic
stationary policies are defined by a measurable function f : X → A.
We denote by S the set of deterministic stationary policies.

According to the Ionescu Tulcea theorem [6], an initial distribu-
tion μ on X and a policy π define a unique probability measure
Pπ
μ on H∞ = (X× A)∞, which is called a strategic measure [5].

The expectation with respect to Pπ
μ is denoted by Eπ

μ . If μ = δx
for some x ∈ X, we write Pπ

x and Eπ
x instead of Pπ

δx
and Eπ

δx
,

respectively.
Let c and cn, n = 0, 1, 2, . . ., be measurable functions from X×

A to [0,∞). The cost functions w considered in this technical
note are expected total cost i.e., wt(π, μ) := Eπ

μ [
∑∞

n=0
cn(xn, an)],

expected discounted cost i.e., wβ(π, μ) := Eπ
μ [
∑∞

n=0
βnc(xn, an)]

for some β ∈ (0, 1), and expected average cost, i.e., wA(π, μ) :=

lim supN→∞(1/N)Eπ
μ [
∑N−1

n=0
c(xn, an)]. Note that the expected

discounted cost is a special case of the expected total cost.
We write w(π, μ) to denote the cost function (either i), ii), or

iii)) of the policy π for the initial distribution μ. If μ = δx, we
write w(π, x) instead of w(π, δx). A policy π∗ is called optimal if
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w(π∗, μ) = infπ w(π, μ) for all μ ∈ P(X). It is well known that the
set of deterministic stationary policies contains optimal policies for a
large class of infinite horizon discounted cost problems (see, e.g., [6],
[14]) and average cost optimal control problems (see, e.g., [1], [14]).

Throughout the technical note, the initial distribution μ is assumed
to be an arbitrary fixed distribution unless otherwise specified.

A. Notation and Conventions

The set of all bounded measurable real functions and bounded
continuous real functions on a metric spaceE are denoted by B(E) and
Cb(E), respectively. For any ν ∈ P(E) and measurable real function
g on E, define ν(g) :=

∫
gdν. Let En =

∏n

i=1
Ei (2 ≤ n ≤ ∞) be a

finite or a infinite product space. By an abuse of notation, any function
g on

∏im
j=i1

Ej , where {i1, . . . , im} ⊆ {1, . . . , n} (m ≤ n), is also
treated as a function on En by identifying it with its natural extension
to En. For any π and initial distribution μ, let λπ,μ

n , λπ,μ
(n) , and γπ,μ

n , re-
spectively, denote the law of xn, (x0, . . . , xn) and (xn, an) for all n ≥
0. Hence, for instance, we may write λπ,μ

(n+1)(h) = λπ,μ
(n) (λ

π,xn

(1) (h))

where h ∈ B(Xn+2). Let F denote the set of all measurable func-
tions from X to A. For any g ∈ B(Hn) (n ≥ 1) and f ∈ F, de-
fine gf (x0, . . . , xn) := g(x0, f(x0), . . . , f(xn−1), xn). Hence, when
c ∈ B(X× A), cf (xn) = c(xn, f(xn)) since c ∈ B(Hn+1) by our
conventions.

B. Problem Formulation

In this section we give a formal definition of the problems consid-
ered in this technical note. To this end, we first give the definition of a
quantizer.

Definition 2.1: A measurable function q : X → A is called a quan-
tizer from X to A if the range of q, i.e., q(X) = {q(x) ∈ A : x ∈ X},
is finite.

The elements of q(X) (i.e., the possible values of q) are called the
levels of q. The rate R of a quantizer q is defined as the logarithm of
the number of its levels: R = log2 |q(X)|. Note that R (approximately)
represents the number of bits needed to losslessly encode the output
levels of q using binary codewords of equal length. Let Q denote the
set of all quantizers from X to A. In this technical note we introduce a
new type of policy called a deterministic stationary quantizer policy.
Such a policy is a constant sequence π = {πn} of stochastic kernels on
A given X such that πn(·|x) = δq(x)(·) for all n for some q ∈ Q. For
any finite set Λ ⊂ A, let Q(Λ) denote the set of all quantizers having
range Λ and let SQ(Λ) denote the set of all deterministic stationary
quantizer policies induced by Q(Λ).

The principal goal in this technical note is to determine conditions
such that there exists a sequence of finite subsets {Λk}k≥1 of A for
which the following statements hold:

(P1) For any π ∈ S there exists an approximating sequence {πk}
satisfying limk→∞ w(πk, μ) = w(π, μ), where πk ∈ SQ(Λk)
(k ≥ 1).

(P2) For any π ∈ S the approximating sequence {πk} in (P1) is such
that |w(π, μ)− w(πk, μ)| can be explicitly upper bounded by a
term depending on the cardinality of Λk.

Thus (P1) implies the existence of a sequence of stationary quan-
tizer policies converging to an optimal stationary policy, while (P2)
implies that the approximation error can be explicitly controlled.

III. APPROXIMATION OF DETERMINISTIC STATIONARY POLICIES

A sequence {μn} of measures on a measurable space (E, E) is
said to converge setwise [7] to a measure μ if μn(B) → μ(B) for all

B ∈ E , or equivalently, μn(g) → μ(g) for all g ∈ B(E). In this sec-
tion, we will impose the following assumptions:

(a) The stochastic kernel p(·|x, a) is setwise continuous in a ∈
A, i.e., if an → a, then p(·|x, an) → p(·|x, a) setwise for all
x ∈ X.

(b) A is compact.

Remark 3.1: Note that if X is countable, then B(X) = Cb(X)
which implies the equivalence of setwise convergence and weak
convergence. Hence, results developed in this technical note are appli-
cable to the MDPs having weakly continuous, in the action variable,
transition probabilities when the state space is countable.

Remark 3.2: Note that any MDP can be modeled by a discrete
time dynamical system of the form xn+1 = F (xn, an, vn), where
the vn’s are independent and identically distributed (i.i.d.) random
variables with values in some space V and common distribution ν.
In many applications, the function F has a well behaved structure and
is in the form F (x, a, v) = H(x, a)G(v) or F (x, a, v) = H(x, a) +
G(v), e.g., the fisheries management model [6, p. 5], the cash balance
model [15], and the Pacific halibut fisheries management model [18].
In these systems, assumption (a) holds for common noise processes.
For instance, if ν admits a continuous density, which is often the case
in practice, then assumption (a) usually holds. We refer the reader
to [15, Section 4] for a discussion on the relevance of the setwise
continuity assumption on inventory control problems. In addition,
the widely studied and practically important case of the additive
noise system in our Example 3.1 in the next section also satisfies
assumption (a).

We now define the ws∞ topology on P(H∞) which was first
introduced by Schäl in [8]. Let C(H0) = B(X) and let C(Hn) (n ≥ 1)
be the set of real valued functions g on Hn such that g ∈ B(Hn)
and g(x0, ·, x1, ·, . . . , xn−1, ·, xn) ∈ Cb(An) for all (x0, . . . , xn) ∈
Xn+1. The ws∞ topology on P(H∞) is defined as the smallest
topology which renders all mappings P 	→ P (g), g ∈

⋃∞
n=0

C(Hn),
continuous.

Let dA denote the metric on A. Since the action space A is compact
and thus totally bounded, one can find a sequence of finite sets
({ai}mk

i=1)k≥1
such that for all k, mini∈{1,...,mk} dA(a, ai) < 1/k

for all a ∈ A. In other words, {ai}mk
i=1 is a 1/k-net in A. Let Λk :=

{a1, . . . , amk
} and for any f ∈ F define the sequence {qk} by letting

qk(x) := argmin
a∈Λk

dA (f(x), a) (1)

where ties are broken so that qk are measurable. Note that, qk ∈
Q(Λk) for all k and qk converges uniformly to f as k → ∞. Let π ∈ S
and πk ∈ SQ(Λk) be induced by f and qk, respectively. We call each
πk a quantized approximation of π. In the rest of this technical note,
we assume that the sequence {Λk}, as defined above, is fixed.

A. Expected Total and Discounted Costs

Recall that wt and wβ denote the expected total and discounted
costs, respectively. We impose the following assumptions in addition
to assumptions (a) and (b):

(c) c and cn (n ≥ 1) are non-negative, bounded functions satisfying
c(x, ·), cn(x, ·) ∈ Cb(A) for all x ∈ X.

(d) supπ̃∈S

∑∞
n=N+1

γπ̃,μ
n (cn) → 0 as N → ∞.

Remark 3.3: We note that all the results in this technical note remain
valid if it is only assumed that c and cn (n ≥ 0) are bounded and
satisfies c(x, ·), cn(x, ·) ∈ Cb(A) for all x ∈ X.

Since the one-stage cost functions cn are non-negative, assumption
(d) is equivalent to Condition (C) in [8, pg. 349]. Clearly, the expected
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discounted cost satisfies assumption (d) under assumption (c). We now
state our main theorem in this subsection.

Theorem 3.1: Suppose assumptions (a), (b), (c) hold. Let π ∈ S
and {πk} be the quantized approximations of π. Then, wβ(π

k, μ) →
wβ(π, μ) as k → ∞. The same statement is true for wt if we further
impose assumption (d).

The proof of Theorem 3.1 requires the following proposition which
is proved in Appendix V-A.

Proposition 3.1: Suppose assumptions (a) and (b) hold. Then for
any π ∈ S, the strategic measures {Pπk

μ } induced by the quantized
approximations {πk} of π converge to the strategic measure Pπ

μ of π

in the ws∞ topology. Hence, γπk,μ
n (cn) → γπ,μ

n (cn) as k → ∞ under
assumption (c).

Proof of Theorem 3.1: Since wβ is a special case of wt and
satisfies (d) under assumption (c), it is enough to prove the theorem
for wt. By Proposition 3.1, γπk,μ

n (cn) → γπ,μ
n (cn) as k → ∞ for all

n. Then, we have

lim sup
k→∞

∣∣wt(π
k, μ)− wt(π, μ)

∣∣

≤ lim sup
k→∞

∞∑
n=0

∣∣∣γπk,μ
n (cn)− γπ,μ

n (cn)
∣∣∣

≤ lim
k→∞

N∑
n=0

∣∣∣γπk,μ
n (cn)−γπ,μ

n (cn)

∣∣∣+2 sup
π̃∈S

∞∑
n=N+1

γπ̃,μ
n (cn). (2)

Since the first and second terms in the last expression converge to zero
as N → ∞ by Proposition 3.1 and assumption (d), respectively, the
proof is complete. �

Remark 3.4: Notice that this proof implicitly shows that wt and wβ

are sequentially continuous with respect to the strategic measures in
the ws∞ topology.

The following is a generic example frequently considered in the
theory of Markov decision processes (see [12]).

Example 3.1: Let us consider an additive-noise system given by

xn+1 = F (xn, an) + vn, n = 0, 1, 2, . . .

whereX = R
n and the vn’s are independent and identically distributed

(i.i.d.) random vectors whose common distribution has a continuous,
bounded, and strictly positive probability density function. A non-
degenerate Gaussian distribution satisfies this condition. We assume
that the action space A is a compact subset of Rd for some d ≥ 1, the
one stage cost functions c and cn (n ≥ 1) satisfy assumption (c), and
F (x, ·) is continuous for all x ∈ X. It is straightforward to show that
assumption (a) holds under these conditions. Hence, under assumption
(d) on the cost functions cn, Theorem 3.1 holds for this system.

B. Expected Average Cost

We are still assuming (a), (b), and (c). In contrast to the expected
total and discounted cost criteria, the expected average cost is in gen-
eral not sequentially continuous with respect to strategic measures for
the ws∞ topology under practical assumptions. Instead, we develop
an approach based on the convergence of the sequence of invariant
probability measures under quantized stationary policies.

Recall that wA denotes the expected average cost. Observe that any
deterministic stationary policy π, induced by f , defines a stochastic
kernel on X given X via

Qπ(·|x) := λπ,x
1 (·) = p (·|x, f(x)) . (3)

Let us write Qπg(x) := λπ,x
1 (g). If Qπ admits an ergodic invariant

probability measure νπ , then by Theorem 2.3.4 and Proposition 2.4.2

in [7], there exists an invariant set with full νπ measure such that for
all x in that set we have

wA(π, x) = lim sup
N→∞

1

N

N−1∑
n=0

γπ,μ
n (c)

= lim
N→∞

1

N

N−1∑
n=0

λπ,x
n (cf ) = νπ(cf ). (4)

Let Mπ ∈ B(X) be the set of all x ∈ X such that convergence in (4)
holds. Hence, νπ(Mπ) = 1 if νπ exists. The following assumptions
will be imposed in the main theorem of this section.

(e) For any π ∈ S, Qπ has a unique invariant probability measure νπ .
(f1) The set ΓS := {ν ∈ P(X) : νQπ = ν for some π ∈ S} is rela-

tively sequentially compact in the setwise topology.
(f2) There exists x ∈ X such that for all B ∈ B(X), λπ,x

n (B) →
νπ(B) uniformly in π ∈ S.

(g) M :=
⋂

π∈S
Mπ 
= ∅.

Theorem 3.2: Let the initial distribution μ be concentrated on some
x ∈ M. Let π ∈ S and {πk} be the quantized approximations of π.
Then, wA(π

k, μ) → wA(π, μ) under the assumptions (e), (f1) or (f2),
and (g).

Proof: See Appendix V-B. �
In the rest of this section we will derive conditions under which

assumptions (e), (f1), (f2), and (g) hold. To begin with, assumptions
(e), (f2), and (g) are satisfied under any of the conditions Ri, i ∈
{0, 1, 1(a), 1(b), 2, . . . , 6} in [10]. Moreover, M = X in (g) if at least
one of the above conditions holds. The next step is to find sufficient
conditions for assumptions (e), (f1), and (g) to hold.

Observe that the stochastic kernel p on X given X× A can be
written as a measurable mapping from X× A to P(X) if P(X) is
equipped with its Borel σ-algebra generated by the weak topology [7],
i.e., p(·|x, a) : X× A → P(X). We impose the following assumption:

(e1) p(·|x, a) ≤ ζ(·) for all x ∈ X, a ∈ A for some finite measure
ζ on X.

Proposition 3.2: Suppose (e1) holds. Then, for any π ∈ S induced
by f , Qπ has an invariant probability measure νπ . Furthermore, ΓS

is sequentially relatively compact in the setwise topology. Hence, (e1)
implies assumption (f1). In addition, if these invariant measures are
unique, then assumptions (e) and (g) also hold with M = X in (g).

Proof: For any π ∈ S, define Q
(N)
π,x (·) := (1/N)

∑N−1

n=0
λπ,x
n (·)

for some x ∈ X. Clearly, Q
(N)
π,x ≤ ζ for all N . Hence, by

[7, Corollary 1.4.5] there exists a subsequence {Q(Nk)
π,x } which con-

verges to some probability measure νπ setwise. Following the same
steps in [11, Theorem 4.17] one can show that νπ(g) = νπ(Qπg), for
all g ∈ B(X). Hence, νπ is an invariant probability measure for Qπ .

Furthermore, assumption (e1) implies νπ ≤ ζ for all νπ ∈ Γs. Thus,
Γs is relatively sequentially compact in the setwise topology by again
[7, Corollary 1.4.5].

Finally, for any π, if the invariant measure νπ is unique, then
every setwise convergent subsequence of the relatively sequentially
compact sequence {Q(N)

π,x } must converge to νπ . Hence, Q(N)
π,x → νπ

setwise which implies that wA(π, x)=lim supN→∞ Q
(N)
π,x (cf )=

limN→∞ Q
(N)
π,x (cf )=νπ(cf ) for all x ∈ X since cf ∈ B(X). Thus,

M = X in (g). �
Example 3.2: Let us consider an additive-noise system in

Example 3.1 with the same assumptions. Furthermore, we assume F
is bounded. Observe that for any π ∈ S, if Qπ has an invariant prob-
ability measure, then it has to be unique [7, Lemma 2.2.3] since there
cannot exist disjoint invariant sets due to the positivity of probability
density function. Since this system satisfies (e1) and R1(a) in [10]
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due to the boundedness of F , assumptions (e), (f1), (f2), and (g) hold
with M = X. This means that Theorem 3.2 holds for an additive noise
system under the above conditions.

IV. RATES OF CONVERGENCE

Let ‖ · ‖TV [7] denote the total variation distance between mea-
sures. We will impose a new set of assumptions in this section:

(h) A is an infinite compact subset of Rd for some d ≥ 1.
(j) c is bounded and |c(x, ã)− c(x, a)| ≤ K1dA(ã, a) for all x, and

some K1 ≥ 0.
(k) ‖p(· |x, ã)−p(·|x, a)‖TV ≤K2dA(ã, a) for allx, and someK2≥0.
(l) There exists positive constants C and κ ∈ (0, 1) such that for all

π ∈ S, there is a (necessarily unique) probability measure νπ ∈
P(X) satisfying ‖λπ,x

n − νπ‖TV ≤Cκn for all x∈X and n≥1.
Assumption (l) implies that for any policy π ∈ S, the stochastic ker-

nel Qπ , defined in (3), has a unique invariant probability measure νπ
and satisfies geometric ergodicity [7]. Note that (l) holds under any of
the conditions Ri, i ∈ {0, 1, 1(a), 1(b), 2, . . . , 5} in [10]. Moreover,
one can explicitly compute the constants C and κ for certain systems.
For instance, consider an additive-noise system in Example 3.1 with
Gaussian noise. Let X = R. Assume F has a bounded range so that
F (R) ⊂ [−L,L] for some L > 0. Then, assumption (l) holds with
C = 2 and κ = 1− εL, where ε = (1/σ

√
2π) exp−(2L)2/2σ2

. For
further conditions that imply (l) we refer the reader to [7], [10].

The following example gives the sufficient conditions for the addi-
tive noise system under which (j), (k), and (l) hold.

Example 4.3: Consider the additive-noise system in Example 3.1.
In addition to the assumptions there, suppose F (x, ·) is Lipschitz
uniformly in x ∈ X and the common density g of the vn is Lipschitz on
all compact subsets of X. Note that a Gaussian density has these prop-
erties. Let c(x, a) := ‖x− a‖2. Under these conditions, assumptions
(j) and (k) hold for the additive noise system. If we further assume that
F is bounded, then assumption (l) holds as well.

The following result is a consequence of the fact that if A
is a compact subset of R

d then there exist a constant α > 0
and finite subsets Λk ⊂ A with cardinality |Λk| = k such that
maxx∈A miny∈Λk

dA(x, y) ≤ α(1/k)1/d for all k, where dA is the
Euclidean distance on A inherited from R

d.
Lemma 4.1: Let A ⊂ R

d be compact. Then for any measurable
function f : X → A we can construct a sequence of quantizers {qk}
from X to A which satisfy supx∈X dA(qk(x), f(x)) ≤ α(1/k)1/d for
some constant α.

The following proposition is the key result in this section. It is
proved in Appendix V-C.

Proposition 4.3: Let π ∈ S and {πk} be the quantized approxima-
tions of π. For any initial distribution μ we have

∥∥λπ,μ
n − λπk,μ

n

∥∥
TV

≤ αK2(2n− 1)
(
1

k

) 1
d

(5)

for all n ≥ 1 under assumptions (h), (j), and (k).

A. Expected Discounted Cost

The proof of the following theorem essentially follows from
Proposition 4.3. The proof is given in Appendix V-D.

Theorem 4.1: Let π ∈ S and {πk} be the quantized approximations
of π. For any initial distribution μ, we have

∣∣wβ(π, μ)− wβ(π
k, μ)

∣∣ ≤ K
(
1

k

) 1
d

(6)

where K = α/(1− β)(K1 − βK2M + (2βMK2/(1− β))) with
M := sup(x,a)∈X×A |c(x, a)| under assumptions (h), (j), and (k).

B. Expected Average Cost

Note that for any π ∈ S, induced by f , assumption (l) implies
that νπ is a unique invariant probability measure for Qπ and that
wA(π, x) = νπ(cf ) for all x when c is as in the assumption (c).
The following theorem basically follows from Proposition 4.3 and
assumption (l). It is proved in Appendix V-E.

Theorem 4.2: Let π ∈ S and {πk} be the quantized approximations
of π. Under assumptions (h), (j), (k), and (l), for any x ∈ X we have

∣∣wA(π, x)− wA(π
k, x)

∣∣ ≤ 2MCκn +Kn

(
1

k

) 1
d

(7)

for all n ≥ 0, where Kn = ((2n− 1)K2αM +K1α) and M :=
sup(x,a)∈X×A |c(x, a)|.

Observe that depending on the values of C and κ, we can first make
the first term in the upper bound small enough by choosing sufficiently
large n, and then for this n we can choose k large enough such that the
second term in the upper bound is small.

Order Optimality: The following example demonstrates that the
order of approximation errors in Theorems 4.2 and 4.1 cannot be
better than O((1/k)1/d). More precisely, we exhibit a simple standard
example where we can lower bound the approximation errors for the
optimal stationary policy by L(1/k)1/d, for some positive constant L.

In what follows h(·) and h(·|·) denote differential and conditional
differential entropies, respectively [19].

Example 4.4: Consider the linear system

xn+1 = Axn +Ban + vn, n = 0, 1, 2, . . .

where X = A = R
d and the vn’s are i.i.d. random vectors whose

common distribution has density g. For simplicity suppose that the
initial distribution μ has the same density g. It is assumed that the
differential entropy h(g) := −

∫
X
g(x) log g(x)dx is finite. Let the one

stage cost function be c(x, a) := ‖x− a‖. Clearly, the optimal station-
ary policy π∗ is induced by the identity f(x) = x, having the optimal
cost wi(π, μ) = 0, where i ∈ {β,A}. Let {πk} be the quantized
approximations of π∗. Fix any k and define Dn := Eπk

μ [c(xn, an)]
for all n. Then, by the Shannon lower bound (SLB) [20, p. 12] we
have for n ≥ 1

log k ≥R(Dn) ≥ h(xn) + θ(Dn)

=h(Axn−1 +Ban−1 + vn−1) + θ(Dn)

≥h(Axn−1 +Ban−1 + vn−1|xn−1, an−1) + θ(Dn)

=h(vn−1) + θ(Dn) (8)

where θ(Dn) = −d+ log((1/(dVdΓ(d))))(d/Dn)
d), R(Dn) is the

rate-distortion function of xn, Vd is the volume of the unit sphere
Sd = {x : ‖x‖ ≤ 1}, and Γ is the gamma function. Here, (8) follows
from the independence of vn−1 and the pair (xn−1, an−1). Note
that h(vn−1) = h(g) for all n. Hence, we obtain Dn ≥ L(1/k)1/d,

where L := (d/2)(2h(g)/(dVdΓ(d)))
1/d

. This gives |wβ(π
∗, μ)−

wβ(π
k, μ)| ≥ L/(1− β)(1/k)1/d and |wA(π

∗, μ)− wA(π
k, μ)| ≥

L(1/k)1/d.

V. DISCUSSION

Motivated by the fact that deterministic stationary policies may not
be optimal in constrained MDPs even for the discounted cost (see, e.g.,
[16]), these approximation results are extended to randomized policies
in [22]. One direction for future work is to establish similar results for
approximations where the set of admissible quantizers has a certain
structure, such as the set of quantizers having convex codecells [13],
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which may give rise to practical design methods. As a final remark,
since setwise continuity assumption might be too restrictive in certain
important cases, it is of interest to study a version of this problem
where the setwise continuity assumption is replaced with the weak
continuity in the state-action variables.

APPENDIX

A. Proof of Proposition 3.1

Suppose g ∈ C(Hn) for some n. Then we have Pπk

μ (g) =

λπk,μ
(n) (gqk ) and Pπ

μ (g) = λπ,μ
(n) (gf ). Since g is continuous in the “a”

terms by definition and qk converges to f , we have gqk → gf . Hence,

by [9, Theorem 2.4] it is enough to prove that λπk,μ
(n) → λπ,μ

(n) setwise
as k → ∞.

We will prove this by induction. Clearly, λπk,μ
(1) → λπ,μ

(1) setwise
by assumption (a). Assume the claim is true for some n ≥ 1. For

any h ∈ B(Xn+2) we can write λπk,μ
(n+1)(h) = λπk,μ

(n) (λπk,xn

(1) (h)) and

λπ,μ
(n+1)

(h) = λπ,μ
(n)

(λπ,xn

(1)
(h)). Since λπk,xn

(1)
(h) → λπ,xn

(1)
(h) for all

(x0, . . . , xn) ∈ Xn+1 by assumption (a) and λπk,μ
(n) → λπ,μ

(n) setwise,

we have λπk,μ
(n+1)(h) → λπ,μ

(n+1)(h) by [9, Theorem 2.4] which com-
pletes the proof.

B. Proof of Theorem 3.2

Let Qπ and Qπk be the stochastic kernels, respectively, for π
and {πk} defined in (3). By assumption (e), Qπ and Qπk (k ≥
1) have unique, and so ergodic, invariant probability measures νπ
and νπk , respectively. Since μ is concentrated on some x ∈ M, we
have wA(π

k, μ) = νπk (cqk ) and wA(π, μ) = νπ(cf ). Observe that
cqk (x) → cf (x) for all x by assumption (c). Hence, if we prove
νπk → νπ setwise, then by [9, Theorem 2.4] we have J(πk, μ) →
J(π, μ). We prove this first under (f1) and then under (f2).

1) Proof Under Assumption (f1): We show that every setwise
convergent subsequence {νπkl } of {νπk} must converge to νπ .
Then, since Γs is relatively sequentially compact in the setwise topol-
ogy, there is at least one setwise convergent subsequence {νπkl } of
{νπk}, which implies the result.

Let νπkl → ν setwise for some ν ∈ P(X). We will show that ν =
νπ or equivalently ν is an invariant probability measure of Qπ . For
simplicity, we write {νπl} instead of {νπkl }. Let g ∈ B(X). Then
by assumption (e) we have νπl(g) = νπl(Qπlg). Since Qπlg(x) →
Qπg(x) for all x by assumption (a) and νπl → ν setwise, we have
νπl(Qπlg) → νπ(Qπg) by [9, Theorem 2.4]. On the other hand since
νπl → ν setwise we have νπl(g) → ν(g). Thus ν(g) = ν(Qπg).
Since g is arbitrary, ν is an invariant probability measure for Qπ .

2) Proof Under Assumption (f2): Observe that for all x ∈ X and
n, λπk,x

n → λπ,x
n setwise as k → ∞ since Pπk

x → Pπ
x in the ws∞

topology (see Proposition 3.1). Let B ∈ B(X) be given and fix some
ε > 0. By assumption (f2) we can choose N large enough such
that |λπ̃,x

N (B)− νπ̃(B)| < ε/3 for all π̃ ∈ {π, π1, π2, · · ·}. For this

N , choose K large enough such that |λπk,x
N (B)− λπ,x

N (B)| < ε/3
for all k ≥ K. Thus, for all k ≥ K we have |νπk (B)− νπ(B)| ≤
|νπk(B)−λπk,x

N (B)|+|λπk,x
N (B)−λπ,x

N (B)|+|λπ,x
N (B)−νπ(B)|<

ε. Since ε is arbitrary, we obtain νπk (B) → νπ(B), which completes
the proof.

C. Proof of Proposition 4.3

We will prove this result by induction. Let μ be an arbitrary initial
distribution and fix k. For n = 1 the claim holds by the following

argument:

∥∥λπ,μ
1 − λπk,μ

1

∥∥
TV

= 2 sup
B∈B(X)

|μ (λπ,x
1 (B))− μ

(
λπk,x
1 (B)

)
|

≤ μ
(∥∥λπ,x

1 − λπk,x
1

∥∥
TV

)
≤ μ (K2dA (f(x), qk(x))) (by assumption(k))

≤sup
x∈X

K2dA (f(x), qk(x))≤
(
1

k

) 1
d

K2α (by Lemma 4.1).

Observe that the bound αK2(2n− 1)(1/k)1/d is independent of the
choice of initial distribution μ for n = 1. Assume the claim is true for
n ≥ 1. Then we have

∥∥λπ,μ
n+1 − λπk,μ

n+1

∥∥
TV

= 2 sup
B∈B(X)

∣∣λπ,μ
1

(
λπ,x1
n (B)

)
− λπk,μ

1

(
λπk,x1
n (B)

)∣∣
= 2 sup

B∈B(X)

∣∣λπ,μ
1

(
λπ,x1
n (B)

)
− λπ,μ

1

(
λπk,x1
n (B)

)

+ λπ,μ
1

(
λπk,x1
n (B)

)
− λπk,μ

1

(
λπk,x1
n (B)

)∣∣
≤ λπ,μ

1

(∥∥λπ,x1
n −λπk,x1

n

∥∥
TV

)
+2

∥∥λπ,μ
1 −λπk,μ

1

∥∥
TV

(9)

≤
(
1

k

) 1
d

(2n− 1)K2α+ 2
(
1

k

) 1
d

K2α

= αK2 (2(n+ 1)− 1)
(
1

k

) 1
d

α. (10)

Here (9) follows since |μ(h)− η(h)| ≤ ‖μ− η‖TV supx∈X |h(x)|
and (10) follows since the bound λK2(2n− 1)(1/k)1/d is indepen-
dent of the initial distribution.

D. Proof of Theorem 4.1

For any fixed k we have

∣∣wβ(π)− wβ(π
k)
∣∣

=

∣∣∣∣∣
∞∑

n=0

βnλπ,μ
n (cf )−

∞∑
n=0

βnλπk,μ
n (cqk )

∣∣∣∣∣
≤

∞∑
n=0

βn
(∣∣λπ,μ

n (cf )−λπ,μ
n (cqk )

∣∣+∣∣λπ,μ
n (cqk )−λπk,μ

n (cqk )
∣∣)

≤
∞∑

n=0

βn

(
sup
xn∈X

|cf − cqk |+
∥∥λπ,μ

n − λπ,μ
n

∥∥
TV

M

)

≤
∞∑

n=0

βn

(
sup
xn∈X

dA(f(xn),qk(xn))K1+‖λπ,μ
n −λπ,μ

n ‖TV M

)

≤
∞∑

n=0

βn

((
1

k

) 1
d

αK1

)
+

∞∑
n=1

βn

((
1

k

) 1
d

(2n−1)K2αM

)

=
(
1

k

) 1
d α

1− β

(
K1 − βK2M +

2βMK2

1− β

)
. (11)

Here (11) follows from Assumption (j), Proposition 4.3, and
Lemma 4.1, completing the proof.
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E. Proof of Theorem 4.2

For any k and x ∈ X, we have∣∣wA(π, x)− wA(π
k, x)

∣∣ = ∣∣νπ(cf )− νπk (cqk )
∣∣

≤
∣∣νπ(cf )− νπ(cqk )

∣∣+ ∣∣νπ(cqk )− νπk (cqk )
∣∣

≤ sup
x∈X

K1dA (f(x), qk(x)) + ‖νπ − νπk‖TV M (by (j))

≤
(
1

k

) 1
d

K1α+
(
‖νπ − λπ,x

n ‖TV +
∥∥λπ,x

n − λπk,x
n

∥∥
TV

+
∥∥λπk,x

n − νπk

∥∥
TV

)
M

≤
(
1

k

) 1
d

K1α+

(
2Cκn +

(
1

k

) 1
d

(2n− 1)K2α

)
M

= 2MCκn + ((2n− 1)K2αM +K1α)
(
1

k

) 1
d

(12)

where (12) follows from assumption (l) and Proposition 4.3.
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