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Abstract. We study stochastic teams (known also as decentralized stochastic control prob-
lems or identical interest stochastic dynamic games) with large or countably infinite num-
bers of decision makers and characterize the existence and structural properties of
(globally) optimal policies. We consider both static and dynamic nonconvex teams where
the cost function and dynamics satisfy an exchangeability condition. To arrive at existence
and structural results for optimal policies, we first introduce a topology on control policies,
which involves various relaxations given the decentralized information structure. This is
then utilized to arrive at a de Finetti–type representation theorem for exchangeable poli-
cies. This leads to a representation theorem for policies that admit an infinite exchangeabil-
ity condition. For a general setup of stochastic team problems with N decision makers,
under exchangeability of observations of decision makers and the cost function, we show
that, without loss of global optimality, the search for optimal policies can be restricted to
those that are N-exchangeable. Then, by extending N-exchangeable policies to infinitely
exchangeable ones, establishing a convergence argument for the induced costs, and using
the presented de Finetti–type theorem, we establish the existence of an optimal decentral-
ized policy for static and dynamic teams with countably infinite numbers of decision mak-
ers, which turns out to be symmetric (i.e., identical) and randomized. In particular, unlike
in prior work, convexity of the cost in policies is not assumed. Finally, we show the near
optimality of symmetric independently randomized policies for finite N-decision-maker
teams and thus establish approximation results for N-decision-maker weakly coupled sto-
chastic teams.

Funding: This workwas supported by Natural Sciences and Engineering Research Council of Canada.

Keywords: stochastic teams • mean-field theory • decentralized stochastic control • exchangeable processes

1. Introduction
Stochastic teams consist of a collection of decision makers (DMs) or agents acting together to optimize a common
cost function, but not necessarily sharing all the available information. At each time stage, each decision maker
only has partial access to the global information, which is defined by the information structure (IS) of the problem
(Witsenhausen [79]). When there is a predefined order according to which the decision makers act, then the team
is called a sequential team. For sequential teams, if each agent’s information depends only on primitive random
variables, the team is static. If at least one agent’s information is affected by an action of another agent, the team
is said to be dynamic.

In this paper, we study stochastic team problems with large but finite and countably infinite numbers of deci-
sion makers. We characterize the existence and structural properties of (globally) optimal policies in such prob-
lems. Although teams can be, at first sight, viewed as a narrow class of (identical interest) stochastic dynamic
games, when viewed as a generalization of classical single-DM stochastic control, they are quite general, with
increasingly common applications involving many areas of applied mathematics, such as decentralized stochas-
tic control (Arrow and Radner [5], Ho [42], Mahajan et al. [60], Sandell et al. [68]), networked control (Hespanha
et al. [40], Ho [42]), communication networks (Hespanha et al. [40]), cooperative systems (Beckmann [10],
Marschak [61], McGuire [63], Radner [65]), large sensor networks (Tsitsiklis [75]), and energy, or, more specifi-
cally, smart grid design (Davison et al. [31], Sandell et al. [68]).
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1.1. Connections to Convex Stochastic Teams
For teams with finitely many decision makers, Marschak [61] studied static teams, and Radner [65] established
connections between person-by-person optimality, stationarity, and team optimality. Radner’s [65] results were
generalized in Krainak et al. [52] by relaxing optimality conditions. A summary of these results is that in the con-
text of static teams, the convexity of the cost function, subject to minor regularity conditions, suffices for the global
optimality of person-by-person-optimal solutions. In the particular case of linear quadratic Gaussian (LQG) static
teams, this result leads to the optimality of linear policies (Radner [65]), which also applies to dynamic LQG prob-
lems under partially nested information structures (Ho and Chu [43]). These results are applicable to static teams
with finitelymanyDMs.

In our paper, the main focus is on teams with infinitely many DMs. In this direction, we note that in our prior
works (Sanjari and Yüksel [69, 70]), we studied static and dynamic teams where, under convexity and symmetry
conditions, global optimality of the limit of the sequence of N-decision-maker optimal policies had been estab-
lished. These works also provided existence and structural results for convex static and dynamic teams with
infinitely many DMs. We also note Mahajan et al. [59], which studied LQG static teams with countably infinite
numbers of DMs and established sufficient conditions for global optimality. In our paper here, convexity is not
imposed.

1.2. Connections with the Literature on Mean-Field Games/Teams
Team problems can be considered games with identical interests. For the case with infinitely many DMs, a related
set of results involves mean-field games: mean-field games (see, e.g., Huang et al. [45, 46], Lasry and Lions [57])
can be viewed as limit models of symmetric non-zero-sum noncooperative finite-player games with a mean-field
interaction. We note that in team problems, person-by-person optimality (Nash equilibrium when viewed as
games) does not in general imply global optimality for teams with N decision makers and teams with countably
infinite numbers of DMs. As we have mentioned, for static teams, a sufficient condition is the convexity of the cost
function, subject to minor regularity conditions (Krainak et al. [52]). However, mean-field teams under decentral-
ized information structures generally correspond to dynamic team problems with nonclassical information struc-
tures (an observation of a decision maker i is affected by the action of a decision maker j where decision maker i
does not have access to the observation of decision maker j); hence, mean-field team problems may be nonconvex
even under the convexity of the cost function due to nonclassical information structures (see Yüksel and Saldi [85,
section 3.3] and the celebrated counterexample of Witsenhausen [77]). Hence, person-by-person optimality is gen-
erally inconclusive for global optimality.

The existence of equilibria for mean-field games was established in Bardi and Fischer [7], Carmona et al. [25],
Lasry and Lions [57], Light and Weintraub [58], and Lacker [53]. Furthermore, person-by-person-optimal solu-
tions may perform arbitrarily poorly. There have also been several studies for mean-field games where the limits
of sequences of Nash equilibria have been investigated as the number of DMs tends to infinity (see, e.g., Arapos-
tathis et al. [4], Bardi and Priuli [8], Fischer [35], Lacker [56], Lasry and Lions [57]).

Related to mean-field games, in the economic theory literature, Mas-Colell [62] and Schmeidler [73] studied
anonymous games and established the existence and characterization of structural properties of Cournot–Nash
equilibria. This Cournot–Nash equilibrium concept corresponds to a mean-field equilibrium for a (one-shot)
static problem (see also Jovanovic and Rosenthal [48] for sequential anonymous games). However, such an equi-
librium does not necessarily imply global optimality in the context of teams because person-by-person optimality
(Nash equilibrium when viewed as game problems) does not in general imply global optimality in the absence
of convexity. Social optima for mean-field linear quadratic Gaussian control problems under both centralized
and restricted decentralized information structures were considered in Arabneydi and Mahajan [3], Huang and
Nguyen [44], Huang et al. [47], and Wang and Zhang [76]. We also note the results in Yu et al. [81], where a class
of mean-field games, entailing two competitive large teams has been studied. Cecchin [27] studied mean field
control problems on a finite state space and showed that the common social optimal expected cost of the N-agent
centralized problem (with the classical information structure) converges with an explicit convergence rate to the
solution of the corresponding McKean–Vlasov control problem. We refer readers to Caines et al. [19] and Car-
mona and Delarue [24] for a literature review and a detailed summary of some recent results on mean-field
games and social optimum problems.

Some relevant studies on the existence and convergence of equilibria from the mean-field games literature are
the following: Cardaliaguet [21], for one-shot mean-field games, under regularity assumptions on the cost func-
tion, shows that mixed Nash strategies of N-player symmetric games converge through a subsequence to a limit
(which is a weak solution of the mean-field limit). Fischer [35], through a concentration of measures argument,
shows that a subsequence of symmetric local approximate Nash equilibria for N-player games converges to a
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solution for the mean-field game under the assumption that the normalized occupational measure converges
weakly to a deterministic measure. Furthermore, using a similar method, Lacker [54] introduces conditions on
equilibrium policies of large-population mean-field symmetric stochastic differential games to allow for conver-
gence of asymmetric approximate Nash equilibria to a weak solution of the mean-field game (Lacker [54, theo-
rem 2.6]) in the presence of common randomness. Using martingale methods and relaxed controls (see also
Carmona et al. [25], Fischer [35], Lacker [53, 54]), an existence result and a limit theory are established for con-
trolled McKean–Vlasov dynamics (Lacker [55]). We note that in Lacker [53, 54, 55] and Carmona et al. [25], it is
assumed that each player has full access to the information available to all players; that is, the controls are func-
tions of all initial states, Wiener processes of all players, and common randomness.

We further note that the existence results for equilibria have been established in Carmona et al. [25], Carmona
and Delarue [24], Fischer [35], and Lacker [54], where strategies of each player are assumed to be progressively
measurable to the filtration generated by initial states and Wiener processes (also called open-loop controllers in
the mean-field games literature (Carmona and Delarue [24], Carmona et al. [25], Fischer [35], Lacker [54]). We
note that in our setup, under these strategies, the information structure corresponds to a static information struc-
ture. The equilibria with respect to closed-loop controllers (in the team problem setup, with respect to a dynamic
information structure) can be completely different because the deviating player can still influence the informa-
tion of the other players, and hence can influence the average of states or actions substantially.

In Lacker [56], under a convexity condition (which was introduced in Filippov [34] and also considered in
Lacker [53, 55]) and under the classical information structure (or full information, i.e., what would be a centralized
problem in the team theoretic setup), convergence of Nash equilibria induced by (path-dependent and feedback
Markovian) closed-loop controllers to a weak (semi-Markov) mean-field equilibrium is established. We also note a
result in Cardaliaguet et al. [23] for the convergence of Markov feedback equilibria, where an infinite-dimensional
partial differential equation referred to as a master equation (obtained as a limit of Hamilton–Jacobi–Bellman equa-
tions) is considered and its unique smooth solution used to show the convergence of empirical measures to the
unique mean-field game equilibrium. We note that the approach in Cardaliaguet et al. [23] requires uniqueness
of the mean-field equilibrium but the one in Lacker [56] applies even if mean-field equilibria are nonunique. In
addition, the notion of a weak (semi-Markov) solution considered in Lacker [56] allows for an additional random-
ization in stochastic flows of measures, but under uniqueness, the limit solution becomes the unique (weak)mean-
field equilibrium, and hence recovers the related convergence results in Cardaliaguet et al. [23]. We also note that
the convergence problem of Markov feedback equilibria for a finite state model with multiple mean-field equili-
bria was studied in Hajek and Livesay [38], Bayraktar and Zhang [9], and Cecchin et al. [28]. Recently, in Campi
and Fischer [20], both a convergence result for all correlated equilibrium solutions of discrete finite state mean-
field games as limits of exchangeable correlated equilibria restricted to Markov open-loop strategies and an
approximation result for N-player correlated equilibria were established. For infinite horizon problems, in Carda-
liaguet and Rainer [22], an example of ergodic differential games with mean-field coupling is constructed such
that limits of sequences of expected costs induced by symmetric Nash equilibria of N-player games capture
expected costs induced by many more Nash-equilibrium policies, including a mean-field equilibrium and social
optimum. In Lacker [56], the classical information structure (a centralized problem) is considered, whereas in Car-
daliaguet and Rainer [22], it is assumed that players have access to the entire history of states of all players but not
controls. (We note that in the team setting with the classical information structure, through using a classical result
of Blackwell [13] in the case where each DM knows all the history of states of all DMs, optimal policies can be real-
ized as the one in the centralized problem, where just the global state is a sufficient statistic for optimality.) As we
see, the information structure aspects can lead to subtle differences in analysis and conclusions.

Furthermore, in the context of stochastic teams with a countably infinite number of DMs, the gap between
person-by-person optimality (Nash equilibrium in the game-theoretic context) and global team optimality is sig-
nificant because a perturbation of finitely many policies fails to deviate the value of the expected cost; thus, per-
son-by-person optimality is a weak condition for such a setup. Hence, without establishing the uniqueness of the
mean-field solution (which may hold under strong monotonicity assumptions; Lasry and Lions [57]), the results
presented in the aforementioned papers may be inconclusive regarding global optimality of the limit equilibrium.
For example, we refer the reader to Bardi and Fischer [7], Cardaliaguet and Rainer [22], and Delarue and Tchuen-
dom [32] for nonuniqueness results and to Hajek and Livesay [38], Bayraktar and Zhang [9] Cecchin et al. [28], and
Lacker [56] for connections between nonuniqueness of mean-field equilibria and convergence of Nash equilibria
of symmetricN-player games asN→∞. For team and social optimum control problems, the analysis has primar-
ily focused on the LQGmodel, where the centralized performance has been shown to be achieved asymptotically
by decentralized controllers (see, e.g., Arabneydi andMahajan [3], Huang et al. [46]).

Sanjari, Saldi, and Yüksel: Symmetric Optimal Policies for Exchangeable Teams
1256 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1254–1285, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

67
.1

93
.1

63
.2

6]
 o

n 
18

 M
ay

 2
02

4,
 a

t 0
7:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



In this paper, we will adopt a different and novel approach. First, under symmetry of information structures
and cost functions, we show that optimal policies are of an exchangeable type for both teams with finite and
countably infinite numbers of DMs. Then, in view of our topology on policies, we develop a de Finetti–type rep-
resentation theorem that characterizes the set of optimal policies as the extreme points of a convex set.

1.3. Connections with Existence Results on Decentralized Stochastic Control
We also note that, compared with the results on the existence of a globally optimal policy for teams with a (finite)
number of DMs, N-DM teams (Gupta et al. [37], Saldi [67], Yüksel [83], Yüksel and Saldi [85]), here we study sto-
chastic teams with a countably infinite number of DMs.

In our approach, we use randomized policies for our analysis, and we introduce a topology on control policies
for decentralized stochastic control problems. A consequence of our analysis is that, in the limit of countably
infinitely many DMs, one can characterize the set of optimal policies as the extreme points of a convex set of poli-
cies, which is, in turn, a subset of decentralized, identical, and independently randomized policies (see Theorems
2 and 3). Such a result is not applicable to teams with finitely many DMs. This geometric representation of the set
of policies is related to the celebrated de Finetti theorem. De Finetti’s theorem implies that infinitely exchange-
able joint probability measures can be represented as mixtures (convex combinations) of identical and independ-
ent probability measures (Aldous et al. [1], Hewitt and Savage [41], Kingman [51]).

There has been related work in the quantum information/mechanics literature. Let us first note, however, that
in Diaconis and Freedman [33], it was shown that a finite number of exchangeable probability measures can be
approximated by a mixture of identical and independent probability measures, and this approximation asymp-
totically becomes more accurate when the number of exchangeable random variables increases. The de Finetti
representation–type results have been extended for quantum systems where conditional probability measures
have been considered (Banica et al. [6], Brandao and Harrow [17], Caves et al. [26], Christandl and Toner [30],
Renner [66]). In fact, for permutation-symmetric conditional probability measures, approximation results have
been obtained, provided that the nonsignaling property holds (a conditional independence property between
local actions and other measurements given local measurement; Banica et al. [6], Brandao and Harrow [17],
Caves et al. [26], Christandl and Toner [30], Renner [66]). We refer readers to Brunner et al. [18] and Popescu [64]
for a review of the connection between the nonsignaling conditional probability measures and the conditional
probability measures with private and common randomness.

We note that de Finetti–type results developed for conditional probability measures in the quantum informa-
tion literature give us a geometric interpretation we require for strategic measures (a geometric connection
between nonsignaling infinitely exchangeable conditional probability measures and conditional probability
measures induced by common and private randomness). However, in the team problem setup, in addition to
showing this geometric connection, one is required to show that the common randomness is independent of the
observations. We address this issue by introducing an appropriate topology on policies and establishing a de
Finetti–type representation theorem on the space of policies, properly defined and metrized.

1.4. Contributions
In view of the above, this paper makes the following contributions:

i. Under symmetry of information structures and exchangeability of the cost function, for teams with N DMs
(N-DM teams), we establish the optimality ofN-exchangeable randomized policies.

ii. We introduce a suitable topology on control policies that facilitates our analysis using a de Finetti–type repre-
sentation theorem for decentralized relaxed policies, that is, for the probability measures induced on actions and
measurements under decentralized information structures. This leads to a representation theorem for decentralized
relaxed policies that admit an infinite exchangeability condition.

iii. By extending N-exchangeable policies to infinitely exchangeable ones, establishing a convergence argument
for the induced costs, and using the presented de Finetti theorem for decentralized relaxed policies, we establish
the structure and also the existence of optimal decentralized policies for static and dynamic teams with a countably
infinite number of DMs, which turns out to be symmetric (i.e., identical) and randomized. Compared with our pre-
vious results for static and dynamic mean-field teams in Sanjari and Yüksel [70, theorem 12 or proposition 1] and
Sanjari and Yüksel [69, theorem 3.4], (i) the cost function is not necessarily convex in actions, (ii) action spaces are
not necessarily convex, and (iii) the mean-field coupling is considered in dynamics, which leads to a nonclassical
information structure (a consequence being that the problem is in general nonconvex in policies).

iv. For N–decision maker symmetric teams with a symmetric information structure, we show that symmetric
(identical) randomized policies of mean-field teams are nearly optimal.
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2. Preliminaries and Statement of Main Results
We begin with Witsenhausen’s intrinsic model for team problems and then provide a description of the main
problems studied in this paper.

2.1. Preliminaries
In this section, we introduce Witsenhausen’s intrinsic model for sequential teams (Witsenhausen [79]):

• There exists a collection ofmeasurable spaces {(Ω,F ), (Ui,U i), (Yi,Yi), i ∈N }, specifying the system’s distinguish-
able events and control andmeasurement spaces. The setN denotes the collection of DMs. The setN can be a finite
set {1, 2, : : : ,N} or a countable set N. The pair (Ω,F ) is a measurable space (on which an underlying probability
may be defined). The pair (Ui,U i) denotes the standard Borel space fromwhich the action ui of DMi is selected. The
pair (Yi,Yi) denotes the standard Borel observation/measurement space for each decisionmaker i (DMi).

• There is ameasurement constraint to establish the connection between the observation variables and the system’s
distinguishable events. The Yi-valued observation variables are given by yi � hi(ω,u[1,i−1]), where u[1,i−1] :� (u1, : : : ,
ui−1), and hi’s are measurable functions.

• The set of admissible control laws γ :� (γi)i∈N , also called designs or policies, are measurable control functions,

so that ui � γi(yi). Let Γi denote the set of all admissible policies for DMi, and let Γ �∏
i∈NΓi. These policies will later

be allowed to be randomized, and, accordingly, the image will be P(Ui), where P(·) denotes the space of probability
measures.

• There is a probability measure P on (Ω,F ) describing the probability space on which the system is defined.
Under this intrinsic model, a sequential team problem is dynamic if the information available to at least one

DM is affected by the action of at least one other DM. A team problem is static if for every DM the information
available is affected only by exogenous disturbances, that is, no other DM can affect the information at any given
DM. Information structures can also be categorized as classical, quasi-classical, or nonclassical. An IS {yi, i ∈N } is
classical if yi contains all of the information available to DMk for k < i. An IS is quasi-classical or partially nested if,
whenever uk, for some k < i, affects yi through the measurement function hi, yi contains yk (i.e., σ(yk) ⊂ σ(yi)). An
IS that is not partially nested is nonclassical.

In the paper, we will also allow for randomized policies, where in addition to yi, each DMi has access to com-
mon and private randomization. This will be made precise later in Section 3.1.

2.2. Problem Statement
We consider stochastic team problems with finite but large and team problems with countably infinite num-
bers of DMs. We address three main problems: the (i) existence and structural results for static teams with a
countably infinite number of DMs (Section 4), (ii) the existence and structural results for dynamic teams with
a countably infinite number of DMs (Section 5), and (iii) approximation results for N-DM static and dynamic
teams (Section 6).

2.2.1. Static Teams. As we consider exchangeable team problems, we let action and observation spaces be identi-
cal across DMs Ui � U ⊆ Rn and Yi � Y ⊆ Rm for all i ∈N , where n and m are positive integers.

Problem (PN). Let N � {1, : : : ,N}. Let γN :� (γ1, : : : ,γN) and ΓN :�∏N
i�1 Γ

i. Let an expected cost function of γN be
given by

JN(γN ) � E
γN c(ω0,uN)[ ] :� E c(ω0,γ1(y1), : : : ,γN(yN))[ ]

, (1)

for some Borel measurable cost function c : Ω0 ×∏N
k�1U→ R+. We define ω0 as the Ω0-valued, cost-function-

relevant, exogenous random variable as ω0 : (Ω,F ,P) → (Ω0,F 0), where Ω0 is a Borel space with its Borel
σ-field F 0. Here, we have the notation uN :� (u1, : : : ,uN).
Definition 1. For a given stochastic team problem (PN) with a given information structure, a policy (strategy)
γ∗
N :� (γ1∗, : : : ,γN∗) ∈ ΓN is (globally) optimal for (PN) if

JN(γ ∗
N) � inf

γN∈ΓN
JN(γN):

Our focus in this paper is on a class of exchangeable team problems satisfying an exchangeability assumption on
the cost function.

Sanjari, Saldi, and Yüksel: Symmetric Optimal Policies for Exchangeable Teams
1258 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1254–1285, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

67
.1

93
.1

63
.2

6]
 o

n 
18

 M
ay

 2
02

4,
 a

t 0
7:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Assumption 1. The cost function is exchangeable with respect to actions for all ω0, that is, for any permutation σ of
{1, : : : ,N}, c(ω0,u1, : : : ,uN) � c(ω0,uσ(1), : : : ,uσ(N)) for all ω0.

In particular, for our main results, we focus on team problems with the following expected cost function
instead of (1):

E
γN 1

N

∑N
i�1

c ω0,ui,
1
N

∑N
p�1

up
( )[ ]

: (2)

Clearly, 1
N
∑N

i�1 c(ω0,ui, 1
N
∑N

p�1 up) satisfies Assumption 1, and the cost function c in (2), in fact, can be made more

general by considering any cost function c : Ω0 × U × Ũ → R+, depending on the empirical measure of the control
actions under mild continuity conditions, that is,

c ω0,ui,Ξ
1
N

∑N
p�1

δup

( )( )
, (3)

where Ξ : P(U) → Ũ is weakly continuous, δ(·) is a Dirac delta measure, and Ũ is a subset of appropriate dimen-
sional Euclidean space. However, for clarity in presentation, we will follow (2).

Next, we introduce a stochastic team problem with a countably infinite number of DMs.

Problem (P‘). Consider a stochastic team with a countably infinite number of DMs, that is, N � N. Let Γ :�∏
i∈N Γi and γ :� (γ1,γ2, : : : ). Let an expected cost of γ be given by

J(γ) � limsup
N→∞

E
γ 1
N

∑N
i�1

c ω0,ui,
1
N

∑N
p�1

up
( )[ ]

, (4)

for some Borel measurable cost function c : Ω0 × U × U→ R+.

Definition 2. For a given stochastic team problem (P∞) with a given information structure, a policy γ∗ :�
(γ1∗,γ2∗, : : : ) ∈ Γ is (globally) optimal for (P∞) if

J(γ∗) � inf
γ∈Γ J(γ):

Later on, we allowDMs to apply randomized policies and provide a description of the problemswithin randomized
policies; see (20) and (21). Our first goal here is to establish the existence of a symmetric (identical) randomized glob-
ally optimal policy for static mean-field team problems (P∞). To this end, we first establish N-exchangeability of
randomized optimal policies for (PN) and symmetry for optimal randomized policies of (P∞). Then, in Theorem 2,
using symmetry, we establish an existence result for (P∞). Our theorems require the following absolute continuity
condition underwhichwe can equivalently view the observations of eachDMas independent and also independent
ofω0 via change ofmeasure argument (due toWitsenhausen [78]).

Assumption 2. Assume that for every N ∈ N ∪ {∞}, there exists a probability measure Qi on Y and a function f i for all
i ∈N such that for all Borel set Bi in Y (with B :� B1 ×⋯× BN),

μ̃N(B |ω0) �
∏N
i�1

∫
Bi
f i(yi,ω0,y1, : : : ,yi−1)Qi(dyi), (5)

where μ̃N is the conditional distribution of observations (y1, : : : ,yN) given ω0.

Remark 1. In particular, if yi takes values from a countable set, Assumption 2 always holds, for example, with
the reference measure taken as Qi(r) �∑

p≥12−p1{r�mp}, where Y � {mp |p ∈ N}, and 1{·} denotes the indicator func-
tion (see Witsenhausen [78]).

The above allows us to introduce a suitable topology under which the space of randomized policies is Borel
(see Section 3.1). In addition, our main Theorem 2 imposes the following assumptions on the observations and
action spaces.
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Assumption 3. Assume the following:
i. (yi)i∈N are independent and identically distributed (i.i.d.), conditioned on ω0;
ii. U is compact.

We note that under Assumptions 2 and 3i, there exists an identical reference probability measure Q and func-
tion f such that the absolute continuity condition (5) holds so that for any Borel set Bi in Y (with
B :� B1 ×⋯× BN),

μ̃N(B |ω0) �
∏N
i�1

μ̂(Bi |ω0)

�∏N
i�1

∫
Bi
f (yi,ω0)Q(dyi),

where μ̂ is the conditional distribution of each observation yi given ω0. We note that the function f and the meas-
ure Q are identical across DMs because observations are identically distributed conditioned on ω0. This change
of measure argument allows us to equivalently rewrite the expected cost function with respect to the underlying
probability measure P as a new cost function c̃ with respect to a probability measure P, where observations are
independent (also independent of ω0; see Witsenhausen [78] and Yüksel [83, section 2.2]):

E
γN

P [c(ω0,u1, : : : ,uN)] � E
γN

Q [c̃(ω0,y1, : : : ,yN,u1, : : : ,uN)], (6)

where Q(A ×∏N
i�1 Bi) :� ∫

A×∏N
i�1Bi

∏N
i�1Q(dyi)P0(dω0) for any Borel set D � A ×∏N

i�1 Bi in Ω0 ×∏N
i�1Y, P

0 is the

distribution of ω0, and c̃ is given by

c̃(ω0,y1, : : : ,yN,u1, : : : ,uN) :� c(ω0,u1, : : : ,uN)
∏N
i�1

f (yi,ω0):

Furthermore, our main Theorem 2 imposes the following continuity assumption on the cost function.

Assumption 4. The cost function in (2), c : Ω0 × U × U→ R+, is continuous in its second and third arguments for all ω0.

For our results in Section 4, we impose Assumptions 1 and 2, but we impose Assumptions 3 and 4 only when
they are needed.

2.2.2. Dynamic Teams. Our second goal here is to establish the existence of a symmetric (identical) randomized
globally optimal policy for mean-field dynamic team problems where DMs are weakly coupled through the
average of states and actions in dynamics and/or the cost function. Again, we consider exchangeable teams, and,
hence, we let action, observation, and state spaces, respectively, be identical across DMs i ∈N and, for simplicity,
also through time; t � 0, : : : ,T − 1, Ui

t � U ⊆ Rn, Yi
t � Y ⊆ Rn′ , Xi

t � X ⊆ Rn′′ for all i ∈N and t � 0, : : : ,T − 1, where
n, n′, and n′′ are positive integers. Define state dynamics and observation dynamics of DMs as follows:

xit+1 � ft xit,u
i
t,
1
N

∑N
p�1

xpt ,
1
N

∑N
p�1

upt ,w
i
t

( )
, (7)

yit � ht xi0:t,u
i
0:t−1,v

i
0:t

( )
, (8)

where functions ft and ht are measurable functions, and vit and wi
t are random vectors representing uncertainties

in state dynamics and observations. We have the notations xi0:t :� (xi0, : : : ,xit), ui0:t−1 :� (ui0, : : : ,uit−1), and vi0:t :�
(vi0, : : : ,vit). Let the admissible policies (γi

0:T−1)i∈N (with γi
0:T−1 :� (γi

0, : : : ,γ
i
T−1)) be measurable control functions so

that uit � γi
t(yit) for all i ∈N and t � 0, : : : ,T − 1. We note that the state dynamics (7) can be made more general by

considering any measurable function ft (for t � 0, : : : ,T− 1), depending on the empirical measures of the states
and control actions under mild continuity conditions, that is,

ft xit,u
i
t,Ξ

x 1
N

∑N
p�1

δxpt

( )
,Ξu 1

N

∑N
p�1

δupt

( )
,wi

t

( )
, (9)
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where Ξu : P(U) → Ũ and Ξx : P(X) → X̃ are weakly continuous, and Ũ and X̃ are subsets of appropriate dimen-
sional Euclidean spaces.

Problem (PN
T ). Consider N-DMmean-field dynamic teams with the expected cost function of γ1:N as

JNT (γ1:N) � E
γ1:N 1

N

∑T−1
t�0

∑N
i�1

c ω0,xit,u
i
t,
1
N

∑N
p�1

upt ,
1
N

∑N
p�1

xpt

( )[ ]
, (10)

where γ1:N :� (γ1
0:T−1, : : : ,γ

N
0:T−1) and γi

0:T−1 :� (γi
0, : : : ,γ

i
T−1). Again, ω0 : (Ω,F ,P) → (Ω0,F 0) is a cost-related ran-

dom variable, whereΩ0 is a Borel space with its Borel σ-field F 0.

Problem (P‘
T ). Consider mean-field dynamic teams with the expected cost function of γ as

J∞T (γ ) � limsup
N→∞

JNT (γ1:N), (11)

where γ :� (γ1
0:T−1,γ

2
0:T−1, : : : ) and γ1:N :� (γ1

0:T−1, : : : ,γ
N
0:T−1).

Again, the cost function c in (10) can be made more general by considering any cost function c as follows:

c ω0, xit, u
i
t,Ξ

u 1
N

∑N
p�1

δupt

( )
,Ξx 1

N

∑N
p�1

δxpt

( )( )
, (12)

where Ξu and Ξx are weakly continuous. Again, for clarity in presentation, we will follow the setting with the
state dynamics (7) and the cost function c in (10). Analogous to Definition 1 and Definition 2, we can define glob-
ally optimal policies for (PN

T ) and (P∞
T ). Again, we allow DMs to apply randomized policies and provide a

description of the problems within randomized policies; see (25) and (26). In Section 5, we establish the existence
of a symmetric (identical across DMs) randomized globally optimal policy for (P∞

T ). Similar to the static case, we
first establish N-exchangeablity of randomized optimal policies for (PN

T ) and symmetry for randomized optimal
policies of (P∞

T ). Then, using symmetry, we establish an existence result for (P∞
T ).

Our solution technique for dynamic problems is similar to that for static ones, which requires more technical
arguments and additional assumptions. Our theorems for the dynamic case impose an absolute continuity condi-
tion (see Assumption 8) that allows us to equip control policies with a suitable topology and facilitates our analy-
sis (our main Theorem 3 requires an additional technical assumption, Assumption 11). Furthermore, our main
Theorem 3 imposes the following.

Assumption 5. Assume the following:
i. For t � 0, : : : ,T− 1, functions ft and ht in (7) and (8) are continuous in the states and actions, and ft’s are bounded.
ii. The cost function in (10), c : Ω0 × X × U × U × X→ R+, is continuous in the second, third, fourth, and fifth arguments.

Assumption 6. Assume the following:
i. (xi0)i∈N are i.i.d. random vectors conditioned on ω0.
ii. For t � 0, : : : ,T− 1, (wi

t)i∈N are i.i.d. random vectors, and for i ∈N , (wi
t)T−1t�0 are mutually independent, and independent

of ω0 and (xi0)i∈N . For t � 0, : : : ,T − 1, (vit)i∈N are i.i.d. random vectors, and for i ∈N , (vit)T−1t�0 are mutually independent, and
independent of ω0, (xi0)i∈N , and wi

t’s for i ∈N and t � 0, : : : ,T − 1.
iii. U is compact.

In view of Assumption 6i, we note that ω0 also introduces a correlation between initial states. For our results in
Section 5, we impose Assumption 8, and we impose Assumptions 11, 5, and 6 only when they are needed.

2.2.3. Approximations. Finally, we establish the following approximations in Section 6. If P∗
π is a (randomized)

symmetric optimal policy for (P∞) ((P∞
T )), then there exist εN ≥ 0, with εN → 0 as N→∞, such that P∗

π |N is εN-
optimal for (PN) ((PN

T )), where P∗
π |N is the restriction of P∗

π to the first N DMs. For this, we use our symmetry
results and analysis for (P∞) ((P∞

T )).

2.3. Discussion of the Main Results
In mean-field team problems, one may be interested in the existence and structure of globally optimal policies. In
particular, one can ask whether there is a globally optimal policy, and whether this optimal policy is symmetric

Sanjari, Saldi, and Yüksel: Symmetric Optimal Policies for Exchangeable Teams
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1254–1285, © 2022 INFORMS 1261

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

67
.1

93
.1

63
.2

6]
 o

n 
18

 M
ay

 2
02

4,
 a

t 0
7:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



for this class of problems (by a symmetric policy, we mean that a policy is identical across DMs). One may also
be interested in the connection between optimal policies for mean-field teams and approximations for optimal
policies of the prelimit N-DM teams, when N is large. The goal of this paper is to address these questions for
mean-field team problems, where the problem can be nonconvex. The nonconvexity of the problem can arise as a
result of nonconvexity of the action space and/or nonconvexity of the cost function in actions. Also, even if the
action space is convex and the cost function is convex in actions, the information structure of the problem may
lead to nonconvexity of the problem in policies (see, e.g., Yüksel and Saldi [85, section 3.3]). A celebrated example
is the counterexample of Witsenhausen [77].

One of the main difficulties in studying nonconvex mean-field teams is to show that a symmetric (identical for
each DM) globally optimal policy exists. This difficulty stems from the observation that, in general, globally opti-
mal policies are not symmetric for nonconvex prelimit N-DM team problems (which can be seen in Example 1).
This is in contrast to convex mean-field teams, where symmetry can be established for both prelimit N-DM and
mean-field team problems (Sanjari and Yüksel [69, 70]). Our approach is as follows:

i. We introduce a topology on control policies that is used to establish a de Finetti representation result for proba-
bility measures on policies identified as randomized policies. In Theorem 1, we show that any infinitely exchange-
able randomized policies can be represented by elements of the set of randomized policies with common and
private independent randomness, where, conditioned on common randomness, randomization of the policies is
independent and identical across DMs.

ii. In Section 4 for static and Section 5 for dynamicN-DM stochastic teams (see Lemma 1 and Lemma 3), we show
that by exchangeability of the cost function and considering symmetric information structures (under a causality
condition for the dynamic case), one can establishN-exchangeability of randomized optimal policies.

iii. In Section 4 for static and Section 5 for dynamic mean-field teams (see Lemma 2 and Lemma 4) under regu-
larity conditions on the cost function and dynamics, by constructing infinitely exchangeable randomized policies
by relabeling N-exchangeable randomized optimal policies, as N goes to infinity, we show the asymptotic opti-
mality of infinitely exchangeable randomized optimal policies. Hence, this, following from our de Finetti–type
theorem (see Theorem 1), establishes asymptotic global optimality of symmetric and conditionally independent
policies.

iv. Using extreme point and lower semicontinuity arguments, we establish the existence of a symmetric optimal
policy (which is privately randomized) for static and dynamic mean-field teams (see Theorem 2 and Theorem 3).

v. In Section 6, using our analysis for mean-field problems, asN goes to infinity, we show that symmetric optimal
policies of mean-field teams are asymptotically optimal for N-DM weakly coupled teams; hence, it establishes
approximation results for this class of problems.

In the following, we first study static teams, and then we study dynamic teams, where the analysis is similar
to that for the static case but is somewhat more technical.

3. Topology on Control Policies and a de Finetti Representation Result
3.1. Topology on Control Policies
In this section, we introduce a topology, using which we can introduce Borel probability measures on policies.
We first consider N-DM static team problems. Following from Witsenhausen [78] and Yüksel [83], Assumption 2
allows us to reduce the problem as a static team problem where now the observation of each DM is independent
of observations of other DMs and also independent of ω0 (because under the measure transformation (5), a prob-
ability measure on the observation of each DM is Qi, which is independent of observations of other DMs and ω0).
Hence, under Assumption 2, we can focus on each DMi separately. Let us define

Θi :� P ∈ P(U × Y)
∣∣∣∣∣P(B) �

∫
B
1{gi(yi)∈dui}Qi(dyi), gi : Y → U, B ∈ B(U × Y)

{ }
, (13)

where P(·) denotes the space of probability measures, and 1{· ∈ A} denotes the indicator function of the set A. The
above set is the set of extreme points of the set of probability measures on U × Y with fixed marginals Qi on Y,
that is,

Ri :� P ∈ P(U × Y)
∣∣∣∣∣P(B) �

∫
B
Πi(dui |yi)Qi(dyi), B ∈ B(U × Y)

{ }
, (14)

where Πi is a stochastic kernel from Y to U. Hence, Θi inherits Borel measurability and topological properties
of the Borel measurable set Ri (Borkar [16]). We note that this set corresponds to Young [80] measures, and this
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representation result is due to Borkar [16]. Now, we identify the set of relaxed policies Γi by Ri, and we define
convergence on policies as γi

n → γi if and only if γi
n(dui |yi)Qi(dyi) → γi(dui |yi)Qi(dyi) (in the weak convergence

topology) as n→∞.
In view of the above standard Borel space formulation for Γi for each i ∈N , we can define the set of Borel prob-

ability measures on admissible policies ΓN :� Γ1 ×⋯× ΓN (which we will refer to as a set of randomized policies)
as LN :� P(ΓN), where Borel σ-field B(Γi) is induced by the topology defined above. Define the set of randomized
policies induced by common and individual randomness as

LNCO :�
{
Pπ ∈ LN

∣∣∣∣∣ for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) �
∫
z∈[0,1]

∏N
i�1

Pi
π(γi ∈ Ai |z)η(dz), η ∈ P([0, 1])

}
,

where η is the distribution of common but independent (from intrinsic exogenous system variables) randomness.
In the above, for every fixed z, Pi

π ∈ P(Γi) indicates an independent randomized policy for each DMi (i � 1, : : : ,N).
Note that, conditioned on a [0, 1]-valued random variable Z, policies are independent. It can be shown that LNCO
and LN are identical (see Theorem A.1 in Appendix A), and hence, the set of randomized policies LN corresponds
to randomized policies induced by individual and common randomness. Because individual and common ran-
domness do not improve the optimal expected cost, the relaxation of the problem to sets of randomized policies
LN is a legitimate relaxation for the team problems with N DMs.

Before we introduce the set of exchangeable randomized policies, we recall the definition of exchangeability for
random vectors.

Definition 3. Random vectors x1,x2, : : : ,xN defined on a common probability space are N-exchangeable if for any
permutation σ of the set {1, : : : ,N},

L xσ(1),xσ(2), : : : ,xσ(N)
( )

� L x1,x2, : : : ,xN
( )

,

whereL denotes the joint distribution of random vectors. Random vectors (x1,x2, : : : ) are infinitely exchangeable if
finite distributions of (x1,x2, : : : ) and (xσ(1),xσ(2), : : : ) are identical for any finite permutation (affecting only finitely
many elements) ofN.

Now, we define the set of exchangeable randomized policies as

LNEX :�
{
Pπ ∈ LN

∣∣∣∣∣ for all Ai ∈ B(Γi) and for all σ ∈ SN :

Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) � Pπ(γσ(1) ∈ A1, : : : ,γσ(N) ∈ AN)
}
, (15)

where SN is the set of all permutations of {1, : : : ,N}. We note that LNEX is a convex subset of LN. We also define the
set LNCO;SYM as the set of identical randomized policies induced by a common and individual randomness:

LNCO;SYM :�
{
Pπ ∈ LN

∣∣∣∣∣ for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) �
∫
z∈[0,1]

∏N
i�1

P̃π(γi ∈ Ai |z)η(dz), η ∈ P([0, 1])
}
,

where for all i ∈N and fixed z, P̃π ∈ P(Γi) indicates an identical independent randomized policy for each DMi

(i � 1, : : : ,N). Also, define the set of randomized policies with only private independent randomness as

LNPR :�
{
Pπ ∈ LN

∣∣∣∣∣ for all Ai ∈ B(Γi) : Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) �
∏N
i�1

Pi
π(γi ∈ Ai), for Pi

π ∈ P(Γi)
}
:
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Finally, define the set of randomized policies with identical and independent randomness as

LNPR;SYM :�
{
Pπ ∈ LN

∣∣∣∣∣ for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) �
∏N
i�1

P̃π(γi ∈ Ai), for P̃π ∈ P(Γi)
}
: (16)

For a team with a countably infinite number of DMs, we define sets of randomized policies L,LEX,LCO,LCO;SYM,
LPR,LPR;SYM similarly using the Ionescu Tulcea extension theorem through the sequential formulation re-
viewed in Section 2.1, by iteratively adding new coordinates for our probability measure (see, e.g., Aliprantis
and Border [2], Hernández-Lerma and Lasserre [39]). We define the set of randomized policies L on the infin-
ite product Borel spaces Γ :�∏

i∈N Γi as L :� P(Γ). Now, let the set of all infinitely exchangeable randomized
policies be given by

LEX :�
{
Pπ ∈ L

∣∣∣∣∣ for all Ai ∈ B(Γi) and for all N ∈ N, and for all σ ∈ SN :

Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) � Pπ(γσ(1) ∈ A1, : : : ,γσ(N) ∈ AN)
}
,

and let the set of all randomized policies with common and independent randomness be given by

LCO :�
{
Pπ ∈ L

∣∣∣∣∣ for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1,γ2 ∈ A2, : : : ) �
∫
z∈[0,1]

∏
i∈N

Pi
π(γi ∈ Ai |z)η(dz), η ∈ P([0, 1])

}
:

Note that LCO is a convex subset of L, and its extreme points are in the set of randomized policies with private
independent randomness:

LPR :�
{
Pπ ∈ L

∣∣∣∣∣ for all Ai ∈ B(Γi) : Pπ(γ1 ∈ A1,γ2 ∈ A2, : : : ) �
∏
i∈N

Pi
π(γi ∈ Ai), for Pi

π ∈ P(Γi)
}
:

Also, we define

LCO;SYM :�
{
Pπ ∈ L

∣∣∣∣∣ for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1,γ2 ∈ A2, : : : ) �
∫
z∈[0,1]

∏
i∈N

P̃π(γi ∈ Ai |z)η(dz), η ∈ P([0, 1])
}
,

and

LPR;SYM :�
{
Pπ ∈ L

∣∣∣∣∣ for all Ai ∈ B(Γi) : Pπ(γ1 ∈ A1,γ2 ∈ A2, : : : ) �
∏
i∈N

P̃π(γi ∈ Ai), for P̃π ∈ P(Γi)
}
:

3.2. A de Finetti Theorem for Admissible Team Policies
In view of the introduced topology and sets of Borel probability measures on policies (sets of randomized pol-
icies), we now establish a connection between LEX and LCO;SYM using the classical de Finetti theorem; that is,
infinitely exchangeable randomized policies are a mixture of i.i.d. randomized policies.
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Theorem 1. Any infinitely exchangeable randomized policy Pπ ∈ LEX is in the set of randomized policies LCO;SYM

(Pπ ∈ LCO;SYM); that is, for any Pπ ∈ LEX, there exists a [0, 1]-valued random variable Z such that for any Ai ∈ B(Γi),

Pπ(γ1 ∈ A1,γ2 ∈ A2, : : : ) �
∫
z∈[0,1]

∏
i∈N

P̃π(γi ∈ Ai |z)η(dz), η ∈ P([0, 1]), (17)

where for every fixed z, P̃π ∈ P(Γi).
Proof. In view of the introduced weak convergence topology on Γi (using Borel measurable sets (14) and (13)),
we have that Γi is a closed subset of the Borel space P(U × Y), and, hence, Γi is Borel for i ∈ N. The proof follows
from Kallenberg [50, theorem 1.1] because Γ �∏∞

i�1 Γ
i is Borel. We note that the de Finetti representation in Kal-

lenberg [50, theorem 1.1] is of the form Pπ(γ1 ∈ A1,γ2 ∈ A2, : : : ) �
∫

P(Γi)
∏∞

i�1m(Ai)η̂(dm) for η̂ ∈ P(P(Γi)), which

can be written as in (17). That is because P(Γi) is an (uncountable) Borel space (Bertsekas and Shreve [12, corol-
lary 7.25.1]), and, hence, by the Borel-isomorphism theorem (see, e.g., Bertsekas and Shreve [12, proposition
7.16]), it is Borel isomorphic to [0, 1]. w

4. Existence and Structure of Optimal Policies for Symmetric Static Team Problems
with Infinitely Many DMs

In this section, we consider static stochastic team problems where we impose Assumptions 1 and 2. All the
proofs for this section are presented in Appendix B. Based on the definitions of randomized policies, we redefine
the expected cost in (PN) of a randomized policy Pπ ∈ LN as

JπN(γN) :�
∫

Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0)

:�
∫ ∫

c(ω0,u1, : : : ,uN)
∏N
k�1

γk(duk |yk)
( )

Pπ(dγ1, : : : ,dγN)μN(dω0,dy1, : : : ,dyN), (18)

where cN(γ,y,ω0) :�
∫
c(ω0,u1, : : : ,uN)∏N

k�1 γ
k(duk |yk), and μN is the joint probability measure on measurements

(y1, : : : ,yN) and ω0. In the following, we characterize team problems in which the search for a randomized opti-
mal policy can be restricted to policies in LNEX without losing global optimality.

Assumption 7. Assume (y1, : : : ,yN) are exchangeable, conditioned on ω0.

Note that Assumption 7 is weaker than Assumption 3i.

Lemma 1. For a fixed N, consider an N-DM static team. Assume L̄N is an arbitrary convex subset of LN. If Assumption 7
holds, then

inf
Pπ∈L̄N

∫
Pπ(dγ )μN(dω0,dy)cN(γ,y,ω0) � inf

Pπ∈L̄N∩LNEX

∫
Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0): (19)

In the following, we present an existence result on globally optimal policies for static mean-field teams with
infinitely many DMs. First, we restate the mean-field team problem and its prelimit under randomized policies.

Problem ðPNÞ. Consider an N-DM static team with the following expected cost of a randomized policy PN
π ∈ LN:∫

PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) :�

∫ ∫
1
N

∑N
i�1

c ω0,ui,
1
N

∑N
p�1

up
( )∏N

k�1
γk(duk |yk)

( )

× PN
π (dγ1, : : : ,dγN)μN(dω0,dy1, : : : ,dyN): (20)

The above problem is considered as a prelimit problem for our infinite-DM team problem. This problem is a spe-
cial case of (PN) defined in the previous section because we have a special structure for the cost function cN

which satisfies Assumption 1.
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Problem ðP‘Þ. Consider a infinite-DM static teamwith the following expected cost of a randomized policy Pπ ∈ L:

limsup
N→∞

∫
Pπ,N(dγ)μN(dω0,dy)cN(γ,y,ω0), (21)

where Pπ,N is the marginal of the Pπ ∈ L to the first N components, and μN is the marginal of the fixed probability
measure on (ω0,y1,y2, : : : ) to the firstN + 1 components.

In the following, we present a key result required for our main theorem. Under mild conditions, we show that
the optimal expected costs induced by LNEX and LEX are equal as N goes to infinity. Hence, by Lemma 1, under
symmetry, this allows us to show that, without loss of global optimality, optimal policies of static mean-field
teams with a countably infinite number of DMs can be considered to be of an infinitely exchangeable type.

Lemma 2. Suppose that Assumptions 3 and 4 hold. Assume further that the cost function is bounded. Then

limsup
N→∞

inf
PN
π ∈LNEX

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0)

� limsup
N→∞

inf
Pπ∈LEX

∫
Pπ,N(dγ)μN(dω0,dy)cN(γ,y,ω0), (22)

where Pπ,N is the marginal of the Pπ ∈ LEX to the first N components.

In the following, we establish the existence of a randomized optimal policy for (P∞).

Theorem 2. Consider a static team problem (P∞) where Assumptions 3 and 4 hold. Then, there exists a randomized opti-
mal policy P∗

π for (P∞) that is in LPR;SYM:

inf
Pπ∈LPR;SYM

limsup
N→∞

∫
Pπ,N(dγ)μN(dω0,dy)cN(γ,y,ω0)

� limsup
N→∞

∫
P∗
π,N(dγ)μN(dω0,dy)cN(γ,y,ω0)

� inf
Pπ∈LPR

limsup
N→∞

∫
Pπ,N(dγ)μN(dω0,dy)cN(γ,y,ω0):

Remark 2. We note that Lemma 1, Lemma 2, and Theorem 2 apply even if the more general cost function (3) is
considered. Lemma 1 applies using an argument identical to that used in the proof of Lemma 1 because the cost
function (3) satisfies Assumption 1, and Lemma 2 applies by an argument identical to that used in the proof of
Lemma 2 (by (weak) continuity of Ξ, we can establish a counterpart of (B.10), and hence, Step 2 in the proof of
Lemma 2 follows identically). Theorem 2 applies by an argument identical to that used in the proof of Theorem
2, using (weak) continuity of Ξ.

In the following, we present an example where Theorem 2 can be applied but the existence result of Sanjari
and Yüksel [70, theorem 12] cannot be applied because the assumption that U is convex in Sanjari and Yüksel
[70, theorem 12] is violated.

Example 1. Consider a team problem with the following expected cost function:

J(γ ) � limsup
N→∞

E
γ 1

N

∑N
i�1

ui
( )

− 1
2

( )2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where σ-field σ(yi) � {∅,Ω} (this corresponds to a team setup where DMs have no measurement, hence measura-
ble functions (policies) are constant functions). Let Ui � {0, 1} for each DM. Clearly, an optimal policy that
achieves zero is the one where there is a matching partition (such as even numbers versus odd numbers) among
DMs picking ui � 0 and ui � 1, because the cost function is nonnegative. One can see that there is an optimal pol-
icy in LPR,SYM because each DM can choose independently an action zero or one with probability one-half, and
this achieves the expected cost of zero; however, there is no identically deterministic policy that achieves zero
expected cost. We note also that since the action sets are not convex, the results in Sanjari and Yüksel [70, theo-
rem 12 or proposition 1] are not applicable and hence can not guarantee the existence of a symmetric randomized
optimal policy, in particular, the action sets are not convex.

Sanjari, Saldi, and Yüksel: Symmetric Optimal Policies for Exchangeable Teams
1266 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1254–1285, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

67
.1

93
.1

63
.2

6]
 o

n 
18

 M
ay

 2
02

4,
 a

t 0
7:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



5. Finite Horizon Dynamic Team Problems with a Symmetric Information Structure
In this section, we study dynamic stochastic teams. All the proofs for this section are presented in Appendix C.
As for the static case, we first introduce the intrinsic model for general dynamic teams, and then we introduce a
topology on control policies. Finally, we establish our main results for dynamic problems.

5.1. A Revised Intrinsic Model for Dynamic Team Problems
Under the intrinsic model (see Section 2.1), every DM acts separately. However, depending on the information
structure, it may be convenient to consider a collection of DMs as a single DM acting at different time instances.
In fact, in the classical stochastic control problem, this is the standard approach. In this subsection, we introduce
the general (multistage) dynamic teams using the intrinsic model under deterministic policies. In the next subsec-
tions, we allow randomization equipped with a suitable topology.

According to the discussion above, by considering a collection of DMs as a single DM (i � 1, : : : ,N) acting at
different time instances (t � 0, : : : ,T − 1), we revise the intrinsic mode for (multistage) dynamic teams with (NT)
DMs as a team with N DMs (forN ∈ N ∪ {∞}):

i. Let the observation and action spaces be standard Borel spaces and be identical for each DM (i � 1, : : : ,N) with
Yi :� Y �∏T−1

t�0 Yt, Ui :�U �∏T−1
t�0 Ut, respectively. (Later on, for simplicity of our notation and analysis, we assume

that action and observation spaces are also identical through time.) For each DMi, the set of all admissible policies
is denoted by Γi :�∏T−1

t�0 Γt. Later on, these policies will be allowed to be randomized and, accordingly, the image
will be P(U).

ii. For i � 1, : : : ,N, yit :� hit(x1:N0 ,ζ1:N0:t ,u
1:N
0:t−1) represents the observation of DMi at time t (hit’s are Borel measura-

ble functions). Let νNt be a stochastic kernel characterizing the joint distribution of observations y1:Nt :�
(y1t , : : : ,yNt ) at time t induced by hit’s given the available information, and let (ζ1:N) :� (ζ1, : : : ,ζN), where ζi :�
(xi0,ζi0:T−1) denotes all the uncertainty associated with DMi, including his or her initial states. We assume that
each ζi takes a value in Ωζ (where at each time instance t, it takes a value in Ωζt ). Let μ

N denote the joint distri-
bution of random variables ζ1:N. To be consistent with our notations in our analysis of the static case, we use
the same notation μN for the fixed probability measures on observations, and ω0 for the static case. However,
we note that in the dynamic case, the probability measures on uncertainties ζ1:N are fixed, but probability
measures on observations are not fixed.

5.2. Topology on Dynamic Control Policies
Similar to Section 3.1, here, we allow randomization in policies, but first we introduce two reduction conditions
(independent and nested reduction) that enable us to define sets of Borel probability measures on randomized
policies for dynamic teams with different information structures.

Assumption 8. One of the following conditions holds:
i. Independent reduction: For every N ∈ N ∪ {∞} and for i � 1, : : : ,N and t � 0, : : : ,T− 1, there exists a probability meas-

ure τit on Yt and a function ψi
t : Y

t ×Ω0 ×∏N
p�1

∏t−1
k�0Ωζk ×∏t−1

k�0(Uk × Yk)
( )

→ R+ such that for all Borel sets Ai on Yt

(with A � A1 ×⋯× AN),

νNt A |ω0,x1:N0 ,ζ1:N0:t−1,y
1:N
0:t−1,u

1:N
0:t−1

( )
�∏N

i�1

∫
Ai
ψi
t y

i
t,ω0,x1:N0 ,ζ1:N0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
τit dy

i
t

( )
:

ii. Nested reduction: For every N ∈ N ∪ {∞} and for i � 1, : : : ,N and t � 0, : : : ,T − 1, there exists a probability measure ηit
on Yt and a function φi

t such that for all Borel sets A
i on Yt (with A � A1 ×⋯× AN),

νNt A |ω0,x1:N0 ,ζ1:N0:t−1,y
1:N
0:t−1,u

1:N
0:t−1

( )

�∏N
i�1

∫
Ai
φi
t y

i
t,ω0,x−i0 ,ζ

−i
0:t−1,y

−i
0:t−1,u

−i
0:t−1

( )
ηit dy

i
t |xi0,ζi0:t−1,yi0:t−1,ui0:t−1

( )
,

and for each DMi through time (t � 0, : : : ,T − 1), there exists a static reduction with the classical information structure (i.e.,
under the reduction, the information structure of each DM through time is expanding such that σ(yit) ⊂ σ(yit+1) for
t � 0, : : : ,T − 1).

Sanjari, Saldi, and Yüksel: Symmetric Optimal Policies for Exchangeable Teams
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1254–1285, © 2022 INFORMS 1267

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

67
.1

93
.1

63
.2

6]
 o

n 
18

 M
ay

 2
02

4,
 a

t 0
7:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



We note that Assumption 8i allows us to obtain independent measurement reductions both across DMs and
through time, t � 0, : : : ,T − 1 (see Appendix C, Section C.1). Assumption 8ii holds if an independent static reduc-
tion exists across DMs and there exists a nested static reduction for each DM through time; that is, under the
reduction, the information is expanding for each DM through time (see Appendix C, Section C.1). In view of the
above reduction conditions, we introduce a suitable topology for randomized policies. Similar to Section 3.1,
under Assumption 8i, we define convergence on policies as

γi
n−→
n→∞

γi if and only if γi
t,n(duit |yit)τit(dyit) −→n→∞

weakly
γi
t(duit |yit)τit(dyit) ∀t � 0, : : : ,T− 1:

Under Assumption 8ii, we define convergence on policies as

γi
n−→
n→∞

γi if and only if γi
t,n(duit |yi0:t)ηit(dyi0:t) −→n→∞

weakly
γi
t(duit |yi0:t)ηit(dyi0:t) ∀t � 0, : : : ,T− 1:

Hence, under Assumption 8, we can define all the sets of randomized policies introduced in Section 3.1 for
dynamic teams by considering γi.

Remark 3. We note that our first reduction condition, independent reduction, is essentially a version of Girsanov’s
[36] transformation (Beneš [11]), which was considered first inWitsenhausen [78, equation (4.2)], and later utilized
in Yüksel S, Başar [84, p. 114] and Yüksel [83, section 2.2]. (For discrete-time partially observed stochastic control,
similar arguments have been presented, for example, by Borkar [14, 15].)We refer the reader to Charalambous [29]
for relations with the classical continuous-time stochastic control, where the relation with Girsanov’s [36] classical
measure transformation (Beneš [11]) is recognized. Our second reduction condition, nested reduction, holds when
there exists a reduction for DMs through time under which each DM has perfect recall of a private history of
information.

Now, we provide examples under which either one of the conditions in Assumption 8 holds.

Example 2. For each i � 1, : : : ,N and t � 0, : : : ,T− 1, let xit+1 � f it (x1:N0:t ,u1:N0:t ,wi
t) and yit � hit(ω0,x1:N0:t ,ζ

1:N
0:t−1,u1:N0:t−1) + vit,

where ζit :� (wi
t,v

i
t), and vit admits zero-mean Gaussian density function θi

t with positive-definite covariance.
Then,

i. if the information structure for each DM at time t is described as Iit :� {yit} for all i � 1, : : : ,N and t � 0, : : : ,T − 1,
then Assumption 8i holds;

ii. if Iit :� {yi0:t,ui0:t−1} for all i � 1, : : : ,N and t � 0, : : : ,T− 1 (or, equivalently, Iit :� {ỹit} with ỹit :� h̃
i
t(ω0,x1:N0:t ,ζ

1:N
0:t−1,

u1:N0:t−1,vi0:t) for some function h̃
i
t and σ(ỹit) ⊂ σ(ỹit+1) and σ(uit) ⊂ σ(ỹit+1) for some function h̄t), then Assumption 8ii

holds.
Part i is true because for all t � 0, : : : ,T− 1 and i � 1, : : : ,N, we have

yit � hit ω0,x1:N0:t ,ζ
1:N
0:t−1,u

1:N
0:t−1

( )
+ vit � κi

t ω0,x1:N0 ,ζ1:N0:t−1,u
1:N
0:t−1

( )
+ vit,

for some functions κi
t, and hence, we can define

ψi
t y

i
t,ω0,x1:N0 ,ζ1:N0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
:�

θi
t y

i
t − κi

t ω0,x1:N0 ,ζ1:N0:t−1,u1:N0:t−1
( )( )

θi
t(yit)

, τit(dyit) :� θi
t(yit)dyit,

where dyit is with respect to the Lebesgue measure. Part ii can be shown similarly by first applying the independ-
ent reduction as above among DMs, and then considering the nested information structure through time for
each DM.

Example 3. Consider the following two information structures:
i. (Open-loop information structure) For each i � 1, : : : ,N and t � 0, : : : ,T− 1, let xit+1 � f it (x1:N0:t ,u1:N0:t ,wi

t) and yit �
hit(ζi0:t−1,vit) such that σ(yit) ⊂ σ(yit+1), where (ζit)t :� (wi

t,v
i
t)t denotes the disturbances of DMi (which are independent

of disturbances of other DMs and independent of ω0). If Iit :� {yit} for all i � 1, : : : ,N and t � 0, : : : ,T − 1, then
Assumption 8ii holds.

ii. For each i � 1, : : : ,N and t � 0, : : : ,T− 1, let xit+1 � f it (ω0,x1:N0:t ,u
1:N
0:t ) +wi

t, where wi
t admits zero-mean Gaussian

density function θi
t with positive-definite covariance, and let yit � hit(xi0:t,yi0:t−1,vi0:t) such that σ(yit) ⊂ σ(yit+1), where
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(vit)t are independent of disturbances of other DMs and independent of ω0. If Iit :� {yit} for all i � 1, : : : ,N and
t � 0, : : : ,T − 1, then Assumption 8ii holds.

Part i follows from the fact that the information structure is open-loop and nested for each DM, and, hence,
under this information structure, the problem is static with the classical information structure through time for
each DM. Part ii is true because for all t � 0, : : : ,T− 1 and i � 1, : : : ,N,

φ̂
i
t x

i
t,ω0,x1:N0:t−1,u

1:N
0:t−1

( )
:� θi

t x
i
t − f it ω0,x1:N0:t−1,u1:N0:t−1

( )( )
θi
t(xit)

, η̂i
t(dxit) :� θi

t(xit)dxit,

and because the information structure is nested through time for each DM.

5.3. Existence and Structure of Optimal Policies for Symmetric Dynamic Teams with Infinitely
Many DMs

In the following, we study the existence and structure of globally optimal policies for dynamic teams with
a symmetric information structure (that are not necessarily partially nested) and with a finite but large and
also infinitely many DMs. We note that a related result is given in Sanjari and Yüksel [69], where convex
mean-field teams are studied under the assumption that the action space is convex for each DM and the cost
function is convex in policies. We note that even if the cost function is convex in actions when there is a mean-
field coupling in dynamics, convexity rarely holds because the information structure under a decentralized
setup is nonclassical, and that may lead to the nonconvexity of the team problem in policies (see, e.g., Yüksel
and Saldi [85, section 3.3]). In the following, convexity is not imposed. Again, for our results in this subsec-
tion, we impose Assumption 8.

5.3.1. Exchangeability of Optimal Policies for Symmetric Dynamic Teams with a Finite but Large Number of DMs.
In this subsection, we focus on symmetric dynamic teams with N DMs, and we establish a structural result for
optimal policies of this class of problems (which is more general than the prelimit mean-field model (PN

T )). In the
next subsection, we use this result to establish the existence and structural properties of globally randomized
optimal policies for mean-field dynamic team problems.

Now, we recall the definition of the symmetric information structure from Sanjari and Yüksel [69] (note that
symmetric information structures can be classical, partially nested, or nonclassical). Several examples as well as a
graph interpretation of dynamic teams with symmetric information structures are presented in Sanjari and
Yüksel [69, section 4]. In particular, prelimit mean-field and mean-field dynamic teams (PN

T ) and (P∞
T ), intro-

duced in Section 2.2, have a symmetric information structure.

Definition 4 (Sanjari and Y€uksel [69]). Let the information of DMi acting at time t be described as Iit :� {yit}. The
information structure of a sequential N-DM team problem is symmetric if yit � ht(xi0,x−i0 ,ζi0:t,ζ−i0:t,ui0:t−1,u−i0:t−1), where
ht is identical for all i � 1, : : : ,N (note that the arguments of the function depend on i) and b−i � (b1, : : : ,bi−1,
bi+1, : : : ,bN) for b � x0,ζ0:t,u0:t−1.

We note that the above definition can be generalized to be applicable for teamswith a countably infinite number
of DMs. Before we present the result for dynamic mean-field teams, we characterize team problems with symmet-
ric information structures in which the search for an optimal policy can be restricted to policies in LNEX without
losing global optimality. To this end, we focus on a more general setup of team problems within randomized poli-
cies Pπ ∈ LN as

JπN(γ1:N) :�
∫

Pπ(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

:�
∫ ∫

c(ω0,ζ1:N,u1, : : : ,uN)∏N
i�1

γi(dui |yi)
( )

Pπ(dγ1, : : : ,dγN)μN(dω0,dζ1:N)

×∏T−1
t�0

νNt dy1:Nt |ω0,x1:N0 ,ζ1:N0:t−1,y
1:N
0:t−1,u

1:N
0:t−1

( )
, (23)

where cN(ζ,γ,y,ω0) :�
∫
c(ω0,ζ1:N,u1, : : : ,uN)∏N

i�1 γi(dui |yi) and the following assumptions hold.
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Assumption 9. For any permutation σ of the set {1, : : : ,N}, we have, for all ω0,

c ω0, (ζσ)1:N, (uσ)1:N
( )

� c ω0,ζ1:N,u1:N
( )

, (24)

where (ζσ)1:N :� (ζσ(1), : : : ,ζσ(N)) and (uσ)1:N :� (uσ(1), : : : ,uσ(N)).
Assumption 10. Assume the following:

i. (ζ1, : : : ,ζN) are exchangeable conditioned on ω0;
ii. for all t � 0, : : : ,T− 1, and all Borel sets Ai on Yt (with A � A1 ×⋯× AN),

νNt A
∣∣∣ω0,x1:N0 ,ζ1:N0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
�∏N

i�1
νit A

i
∣∣∣ω0,xi0,ζ

i
0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
,

where νit is a stochastic kernel of the observation DMi at time t, yit, induced by ht (which is identical for each DM).

We note that dynamic mean-field team problems introduced in Section 2.2.2, with the cost function as (10),
state dynamics as (7), and observations as (8), under Assumption 6 satisfy Assumptions 9 and 10.

Lemma 3. Consider a dynamic team with a symmetric information structure. Let Assumptions 9 and 10 hold. Suppose fur-

ther that L̄
N
is an arbitrary nonempty convex subset of LN. Then

inf
Pπ∈L̄N

∫
Pπ(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

� inf
Pπ∈L̄N∩LNEX

∫
Pπ(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0):

5.3.2. Existence and Structure of Optimal Policies for Mean-Field Dynamic Teams. In the following, we establish
the existence of a globally randomized optimal policy for dynamic mean-field teams with infinitely many DMs.
Define state dynamics and observations as (7) and (8), respectively. The information structure of DMi at time t is
Iit � {yit}, and ζit :� (wi

t,v
i
t) (with ζi0 :� (xi0,wi

0,v
i
0)) denotes the uncertainty corresponding to dynamics and observa-

tions at time t for DMi, which are exogenous random vectors in standard Borel spaces. First, we reformulate the
mean-field team problem and its prelimit within randomized policies.

Problem (PN
T ). Consider an N-DM dynamic team with the expected cost of a randomized policy PN

π ∈ LN as∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

:�
∫ ∫

1
N

∑T−1
t�0

∑N
i�1

c ω0,xit,u
i
t,
1
N

∑N
p�1

upt (ypt ),
1
N

∑N
p�1

xpt

( )∏N
k�1

γk(duk |yk)
( )

× PN
π (dγ1, : : : ,dγN)μN(dω0,dζ1:N)

∏T−1
t�0

νNt dy1:Nt |ω0,x1:N0 ,ζ1:N0:t−1,y
1:N
0:t−1,u

1:N
0:t−1

( )
, (25)

where

cN(ζ ,γ,y,ω0) :�
∫

1
N

∑T−1
t�0

∑N
i�1

c ω0,xit,u
i
t,
1
N

∑N
p�1

upt (ypt ),
1
N

∑N
p�1

xpt

( )∏N
k�1

γk(duk |yk):

The above problem is considered as a prelimit problem for the mean-field team problem. We note that (PN
T ) is a

special case of (23) because we have a special structure for the cost function cN and observations, which satisfy
Assumption 9 and Definition 4, respectively.
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Remark 4. Our analysis below also allows more general observations for each DM, where the observations of
each DM at time t can be explicitly functions of averages of previous states and actions as

yit � ht xi0:t,u
i
0:t−1,

1
N

∑N
p�1

xp0:t−1,
1
N

∑N
p�1

up0:t−1,v
i
0:t

( )
:

However, to simplify the presentations of theorems and proofs and emphasize the decentralization of the opti-
mal policy, for this rest of the paper, we consider (8).

Problem (P‘
T ). Consider an infinite-DM static team with the following expected cost of a randomized policy

Pπ ∈ L:

limsup
N→∞

∫
Pπ,N(dγ )μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0), (26)

where Pπ,N is the restriction of Pπ ∈ L to its first N components, and μN is the marginal of the fixed probability
measure on (ω0,ζ1,ζ2, : : : ) to the firstN + 1 components.

Assumption 11. Assumption 8 holds with functions ψi
t and φ

i
t of the following forms for every i ∈N and t � 0, : : : ,T − 1:

ψi
t y

i
t,ω0,xi0,ζ

i
0:t−1,y

i
0:t−1,u

i
0:t−1,

1
N

∑N
p�1

up0:t−1,
1
N

∑N
p�1

xp0:t

( )
,

φi
t y

i
t,ω0,

1
N

∑N
p�1

up0:t−1,
1
N

∑N
p�1

xp0:t

( )
,

where ψi
t is continuous in the last three arguments (actions and the empirical means of actions and states), and φi

t is contin-
uous in the last two arguments (the empirical means of actions and states).

Before presenting our main result for dynamic mean-field teams, we introduce sufficient conditions under
which the expected cost function induced by randomized optimal policies in LNEX and LEX are equal as N goes to
infinity, and hence, following from Lemma 3, under symmetry, this shows that without loss of global optimality,
optimal policies of dynamic mean-field teams can be considered to be of an infinitely exchangeable type.

Lemma 4. Consider the team problem (PN
T ), where Assumption 11, Assumption 5, and Assumption 6 hold. Assume further

that the cost function is bounded. Then

limsup
N→∞

inf
PN
π ∈LNEX

∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

� limsup
N→∞

inf
Pπ∈LEX

∫
Pπ,N(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0), (27)

where Pπ,N is the restriction of Pπ ∈ LEX to its first N components, and μN is the marginal of the fixed probability measure
on (ω0,ζ1,ζ2, : : : ) to the first N + 1 components.

In the following, we establish an existence and structural result for a randomized optimal policy of (P∞
T ).

Theorem 3. Consider a mean-field team (P∞
T ) with (PN

T ) having a symmetric information structure for every N. Let
Assumption 11, Assumption 5, and Assumption 6 hold. Then, there exists a randomized optimal policy P∗

π for (P∞
T ) that is

in LPR;SYM,

inf
Pπ∈LPR;SYM

limsup
N→∞

∫
Pπ,N(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

:� limsup
N→∞

∫
P∗
π,N(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

� inf
Pπ∈L

limsup
N→∞

∫
Pπ,N(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0):
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Remark 5. Similar to Remark 2 for the static teams, we can show that for dynamic teams, Lemma 3, Lemma 4,
and Theorem 3 apply for a more general setting described by the state dynamics as (9) and the cost function
as (12).

6. Approximations of Optimal Policies for Symmetric N-DM Stochastic Teams
In this section, we present approximation results for optimal policies of N-DM teams. We show that for large N,
symmetric policies are nearly optimal, and the restriction of the optimal infinite solution is nearly optimal for the
finite team when N is large. Proofs of the theorems in this section are provided in Appendix D. We first consider
the static case. To present ideas more effectively, we first introduce the following set of probability measures on
policies:

LND :� Pπ ∈ LN
∣∣∣∣∣ for all Ai ∈ B(Γi) : Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) �

∏N
i�1

1{γ̃ i∈Ai}, for γ̃i ∈ Γi

{ }
,

where the above set corresponds to Dirac delta measures in LNPR.

Theorem 4. Consider a static team (PN) (see (20)), where Assumption 4 and Assumption 3 hold. Suppose further that the
cost function is bounded. Then,

i.

inf
PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dy)cN(γ ,y,ω0) ≤ inf

PN
π ∈LNCO

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) + εN, (28)

and

inf
PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dy)cN(γ ,y,ω0) ≤ inf

PN
π ∈LND

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) + εN, (29)

where εN → 0 as N goes to infinity;
ii. if P∗

π ∈ LPR;SYM is a randomized optimal policy of (P∞), then there exist ε̄N ≥ 0 where ε̄N → 0 as N goes to infinity and∫
P∗
π,N(dγ)μN(dω0,dy)cN(γ,y,ω0) ≤ inf

PN
π ∈LND

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) + εN + ε̄N, (30)

where P∗
π,N is the restriction of P∗

π to the first N components.

The main idea for establishing part i is to use Lemmas 1 and 2 to provide an approximation of optimal
expected cost by restricting the search for randomized policies to those that are restrictions of randomized poli-
cies in LEX to the N first components. We note that because the set of policies LND is not a convex subset of the set
of randomized policies LN, (28) does not immediately imply (29) using Lemma 1; however, the result can be
established using an extreme point argument and the fact that policies in LND are optimal among all randomized
policies LNPR for N-DM teams (thanks to Blackwell’s [13] irrelevant information theorem). Part ii follows from part
i and Theorem 2, using the fact that a randomized optimal policy P∗

π ∈ LPR;SYM of (P∞) provides an approximation
for the optimal expected cost when the search for randomized optimal policy for N-DM teams is restricted to
those in LNPR;SYM.

Similarly, we present approximation results for optimal policies of symmetric dynamic N-DM teams.

Theorem 5. Consider a dynamic team (PN
T ) (see (10)). Let Assumption 11, Assumption 5, and Assumption 6 hold. If the

cost function is bounded, then
i.

inf
PN
π ∈LNPR, SYM

∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

≤ inf
PN
π ∈LNCO

∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0) + εN, (31)
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and

inf
PN
π ∈LNPR, SYM

∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

≤ inf
PN
π ∈LND

∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0) + εN, (32)

where εN → 0 as N goes to infinity;
ii. if P∗

π ∈ LPR;SYM is a randomized optimal policy for (P∞
T ), then there exist ε̄N ≥ 0 where ε̄N → 0 as N goes to infinity and∫

P∗
π,N(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

≤ inf
PN
π ∈LND

∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0) + εN + ε̄N,

where P∗
π,N is the restriction of P∗

π to the first N components.

Proof. The proof follows from steps similar to those used in the proof of Theorem 4 by using the results of
Lemma 4 and Theorem 3. w

Appendix A. Connection Between LN
CO and LN in Section 3.1

In following theorem, we show that sets of randomized policies LNCO and LN are identical.

Theorem A.1. The set of randomized policies LN is identical to the set of randomized policies LNCO.

Proof. Clearly, we have LNCO ⊆ LN. In the following, we show that LN ⊆ LNCO. Following from Borkar [16], for each
i � 1, : : : ,N, the set of marginals on each coordinate Γi of randomized policies belonging to LN is a convex combination of
its extreme points which is a subset of the set of Dirac delta measures of elements in Γi. Hence, we have

Extreme(LN) ⊆ Pπ ∈ LN
∣∣∣∣∣ for all Ai ∈ B(Γi) : Pπ(γ1 ∈ A1, : : : ,γN ∈ AN) �

∏N
i�1

1{γ̃ i∈Ai}, for γ̃i ∈ Γi

{ }
,

where Extreme(LN) denotes the set of extreme points of the convex set LN. Hence, Extreme(LN) ⊆ LNCO. Because LN and LNCO
are convex, we have that LN ⊆ LNCO, and this completes the proof. w

Appendix B. Proofs from Section 4
B.1. Proof of Lemma 1
For any permutation σ ∈ SN, we define a randomized policy Pσ

π ∈ L̄
N as a permutation, σ, of arguments of a randomized

policy Pπ ∈ L̄
N; that is, for Ai ∈ B(Γi),

Pσ
π(γ1 ∈ A1, : : : ,γ2 ∈ AN) :� Pπ(γσ(1) ∈ A1, : : : ,γσ(N) ∈ AN): (B.1)

We have ∫
Pσ
π(dγ)μN(dω0,dy)cN(γ,y,ω0)

�
∫

c(ω0,u1, : : : ,uN)
∏N
k�1

γk(duk |yk)μ̃N(dy1, : : : ,dyN |ω0)Pσ
π(dγ1, : : : ,dγN)P0(dω0)

�
∫

c(ω0,u1, : : : ,uN))
∏N
k�1

γk(duk |yk)μ̃N(dy1, : : : ,dyN |ω0)Pπ(dγσ(1), : : : ,dγσ(N))P0(dω0) (B.2)

�
∫

c(ω0,uσ(1), : : : ,uσ(N)))∏N
k�1

γσ(k)(duσ(k) |yσ(k))μ̃N(dyσ(1), : : : ,dyσ(N) |ω0)Pπ(dγ1, : : : ,dγN)P0(dω0) (B.3)

�
∫

c(ω0,u1, : : : ,uN)
∏N
k�1

γk(duk |yk)μ̃N(dy1, : : : ,dyN |ω0)Pπ(dγ1, : : : ,dγN)P0(dω0)

�
∫

Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0),
(B.4)
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where μ̃N is the joint distribution of observations (y1, : : : ,yN), conditioned on ω0. Equality (B.2) follows from (B.1), and
(B.3) follows from relabeling uσ(i),yσ(i) with ui, yi for all i � 1, : : : ,N. Equality (B.4) follows from Assumptions 1 and 7.

Let ε ≥ 0. Consider a randomized policy P∗
π,ε ∈ L̄

N such that∫
P∗
π,ε(dγ )μN(dω0,dy)cN(γ,y,ω0) ≤ inf

Pπ∈L̄N

∫
Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0) + ε: (B.5)

Consider P̃π,ε as a convex combination of all possible permutations of P∗
π,ε by averaging them. Because L̄

N is convex, we

have P̃π,ε ∈ L̄N. Also, we have that P̃π,ε ∈ LNEX because for any permutation σ ∈ SN,

P̃π,ε(dγ1, : : : ,dγN) :� ∑
σ∈SN

1
|SN |P

∗,σ
π,ε(dγ1, : : : ,dγN)

� P̃
σ

π,ε(dγ1, : : : ,dγN),
where |SN | denotes the cardinality of the set SN, and the second equality follows from the fact that the sum is over all

permutations σ by taking average of them. Therefore, a randomized policy P̃π,ε is in L̄N ∩ LNEX. We have∫
P̃π,ε(dγ)μN(dω0,dy)cN(γ,y,ω0) :�

∫ ∑
σ∈SN

1
|SN |P

∗,σ
π,ε

( )
(dγ)μN(dω0,dy)cN(γ,y,ω0)

� ∑
σ∈SN

1
|SN |

∫
P∗,σ
π,ε(dγ)μN(dω0,dy)cN(γ,y,ω0)

� ∑
σ∈SN

1
|SN |

∫
P∗
π,ε(dγ)μN(dω0,dy)cN(γ,y,ω0)

≤ inf
Pπ∈L̄N

∫
Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0) + ε,

where the second equality is true because the map Pπ �→ ∫
Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0) is linear. The third equality fol-

lows from (B.4), and the inequality follows from (B.5). Because P̃π,ε ∈ L̄N ∩ LNEX, we have∫
P̃π,ε(dγ)μN(dω0,dy)cN(γ ,y,ω0) ≥ inf

Pπ∈L̄N∩LNEX

∫
Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0):

Hence, we have

inf
Pπ∈L̄N∩LNEX

∫
Pπ(dγ)μN(dω0,dy)cN(γ ,y,ω0) ≤ inf

Pπ∈L̄N

∫
Pπ(dγ)μN(dω0,dy)cN(γ,y,ω0) + ε:

This completes the proof because ε is arbitrary. w

B.2. Proof of Lemma 2
To prove Lemma 2, we use two following results by Diaconis and Friedman [33, theorem 13] and Aldous et al. [1, propo-
sition 7.20] (see also Kallenberg [49] for more general results), which we recall for reader’s convenience.

Theorem B.1 (Diaconis and Freedman [33, Theorem 13]). Let Y � (Y1, : : : ,Yn) be an n-exchangeable and Z � (Z1,Z2, : : : ) an
infinitely exchangeable sequence of random variables with L(Z1, : : : ,Zk) � L(YI1 , : : : ,YIk ) for all k ≥ 1, where the indices (I1, I2, : : : )
are i.i.d. random variables with the uniform distribution on the set {1, : : : ,n}. Then, for all m � 1, : : : ,n,

L(Y1,: : : ,Ym) −L(Z1,: : : ,Zm)| || |TV ≤m(m− 1)
2n

, (B.6)

where L(·) denotes the law of random variables, and ‖ · ‖TV is the total variation norm.

Theorem B.2 (Aldous et al. [1, Proposition 7.20]). Let X :� (X1,X2, : : : ) be an infinitely exchangeable sequence of random varia-
bles taking values in a Polish space X and directed by a random measure α (i.e., α is a P(X)-valued random variable, and
Pr(X ∈ A) � ∫

P(X)
∏∞

i�1 ξ(Ai)Pr(α ∈ dξ), where Ai ∈ B(X) and (A � A1 × A2 × : : : ); see Aldous et al. [1, definition 2.6]). Suppose

that, for each n, either
1. X(n) � (X(n)

1 ,X(n)
2 , : : : ) is infinitely exchangeable directed by αn or

2. X(n) � (X(n)
1 , : : : ,X(n)

n ) is n-exchangeable with empirical measure αn.
Then, X(n) converges in distribution to X (X(n)→d

n→∞X) if and only if αn→dn→∞α.
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We note that by convergence in distribution to an infinite exchangeable sequence, we mean the following: X(n)→d
n→∞X if

and only if (X(n)
1 , : : : ,X(n)

m )→d
n→∞(X1, : : : ,Xm) for each m ≥ 1 (Aldous et al. [1, p. 55]).

Using the above theorems, we now complete the proof of Lemma 2. Because the action space U is compact and obser-
vations are i.i.d. with a fixed marginal (under Assumption 2, via a change of measure argument, observations can be
viewed to be independent of ω0), the set of probability measures LN is tight. Furthermore, by Yüksel [83, theorem 5.1],
LN is closed under the topology of weak convergence, and hence LN is compact. Using the argument in Yüksel [83, theo-
rem 5.1] under Assumption 4, the expected cost function is lower semicontinuous in policies PN ∈ LN. Hence, there exists
an optimal policy for (PN), and by Lemma 1, this optimal policy can be assumed to be in LNEX. Consider a sequence of N-
exchangeable randomized policies {P∗,N

π }N, where for every N ≥ 1, P∗,N
π ∈ LNEX and∫

P∗,N
π (dγ)μN(dω0,dy)cN(γ ,y,ω0) � inf

PN
π ∈LNEX

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0): (B.7)

In the following, we show (22) in two steps. In the first step, for every N, we use Theorem B.1 to construct an infinitely
exchangeable randomized policy P∗,∞

π,N ∈ LEX using the N-exchangeable randomized policy P∗,N
π ∈ LNEX, by considering the

indices as a sequence of i.i.d. random variables with uniform distribution on the set {1, : : : ,N}, and then we show that
there exists a subsequence of joint measures, converging weakly in the first coordinate, observations, and the average of
induced actions of randomized policies P∗,∞

π,N ∈ LEX. In the second step, we show that the expected cost function induced
by the N-exchangeable randomized policy P∗,N

π ∈ LNEX converges through a subsequence to a limit induced by an infinitely
exchangeable randomized policy P∗,∞

π,N.

Step 1. Let (I1, I2, : : : ) be i.i.d. random variables with uniform distribution on the set {1, : : : ,N}. For a fixed N and for any
N-exchangeable randomized policy P∗,N

π ∈ LNEX, we construct an infinitely exchangeable randomized policy P∗,∞
π,N ∈ LEX as

follows: for every N and m and for all Ai ∈ B(Γi),
P∗,∞
π,N(γ1 ∈ A1, : : : ,γm ∈ Am) :� P∗,N

π (γI1 ∈ A1, : : : ,γIm ∈ Am):

where P∗,∞
π,N is the restriction of P∗,∞

π,PN
π
∈ LEX to the first N components. We note that P∗,∞

π,N ∈ LEX because we use i.i.d. sequence

(I1, I2, : : : ) for indexing probability measures on the space of policies. Hence, for every fixedN andN-exchangeable randomized
policy P∗,N

π , a randomized policy P∗,∞
π,N is i.i.d across DMs, and hence, it is infinitely exchangeable.

Let u∗,iN be the control action induced by γi
N, where random variables (γ1

N, : : : ,γ
N
N) are determined by N-exchangeable

randomized policy P∗,N
π ∈ LNEX. Let u

∗,i
∞,N be the control action induced by γi

N,∞, where random variables (γ1
N,∞, : : : ,γ

N
N,∞) are

determined by infinitely exchangeable randomized policy P∗,∞
π,N ∈ LEX. Because under the reduction (Assumption 2), obser-

vations are i.i.d. and also independent of ω0, following from Theorem B.1, we have, for every m ≥ 1,

L(γ1
N, : : : ,γ

m
N,y

1, : : : ,ym) −L(γ1
N,∞, : : : ,γ

m
N,∞,y

1, : : : ,ym)
∣∣∣ ∣∣∣∣∣∣ ∣∣∣
� L(γ1

N ,: : : ,γm
N)
∏m
i�1

L(yi) −L(γ1
N,∞ ,: : : ,γm

N,∞)
∏m
i�1

L(yi)
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
TV

−→
N→∞0, (B.8)

where (B.8) follows from the fact that (γ1
N, : : : ,γ

N
N) and (γ1

N,∞, : : : ,γ
N
N,∞) are random variables with joint probability meas-

ures P∗,N
π ∈ LNEX and P∗,∞

π,N ∈ LEX |N, respectively. The set LEX |N corresponds to the set of N-DM randomized policies that are
the restrictions of policies in LEX to the N first components.

Because U is compact, the marginal of probability measures on U is tight. Because the probability measure on Y is
fixed, the marginal on Y is also tight. Because marginals are tight, the collection of all measures on U × Y with these tight
marginals is also tight (see, e.g., Yüksel [82, proof of theorem 2.4]), and hence, the set Γi is tight for each i ∈ N. Hence,
{L(γi

∞,N)}N is tight for each DM, and by exchangeablity, L(γi
∞,N) � L(γ1

∞,N) for all i ∈ N. Hence, there exists a subsequence
(denoted by the index l) such that L(γi

∞,l) →l→∞L(γi
∞) for all i ∈ N. Because marginals of {L(γ1

∞,l,: : : ,γ
m
∞,l)}l are tight, for each

m ≥ 1, there exists a further subsequence denoted by index n such that

L(γ1
∞,n, : : : ,γ

m
∞,n) −→n→∞L(γ1

∞, : : : ,γ
m
∞),

where (γ1
∞,γ

2
∞, : : : ) is infinitely exchangeable and induced by an infinitely exchangeable randomized policy P∗,∞

π ∈ LEX
because LEX is closed under the weak convergence topology, where by weak convergence for an infinite sequence, we
mean weak convergence of finite restrictions. That is because, if Pσ,∗,∞

π is the limit in the weak convergence topology of
the sequence of randomized policies {Pσ,∗,∞

π,n }n as n→∞, where for Ai ∈ B(Γi) and for all N ∈ N and all finite permutations
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σ ∈ SN,

Pσ,∗,∞
π,n (γ1 ∈ A1,γ2 ∈ A2, : : : ) :� P∗,∞

π,n (γσ(1) ∈ A1,γσ(2) ∈ A2, : : : ),

then, following from exchangeability, because sequences {P∗,∞
π,n}n and {Pσ,∗,∞

π,n }n are identical, the limits in the weak conver-
gence topology of both randomized policies P∗,∞

π and Pσ,∗,∞
π are also identical, and hence, the limit P∗,∞

π is infinitely
exchangeable, P∗,∞

π ∈ LEX. Hence, following from (B.8), for each m ≥ 1,

L(γ1
n, : : : ,γ

m
n ) −→n→∞L(γ1

∞, : : : ,γ
m
∞):

By construction of random variables u∗,in and u∗,i∞ and because random variables γi
n are independent of yis, we have, for

each m ≥ 1,

(u∗,1n , : : : ,u∗,mn ) −→d
n→∞(u

1
∞, : : : ,u

m
∞),

where (u1∞,u2∞, : : : ) is induced by an infinitely exchangeable policy P∗,∞
π ∈ LEX. Following from Theorem B.2, we have, for

all A ∈ U and P-almost surely,

Fn(A) :� Fωn (A) :� 1
n

∑n
i�1

δu∗,in (ω)(A) −→
d

n→∞αω(A), (B.9)

where ω denotes the sample path dependency, and α is the directing measure of infinitely exchangeable random variables
(u1∞,u2∞, : : : ) (that is, α(ω,A) � Pr(u∗,i∞ ∈ A |H) almost surely for all A ∈ U , where H is the σ-field generated by P(U)-valued
random variable α; Aldous et al. [1]). Following from (B.9), because the action space U is compact, we have, P-almost
surely,

F̄n :� F̄ω

n :� 1
n

∑n
i�1

u∗,in (ω) �
∫
U

uFn(du) −→d
n→∞ F̄ :�

∫
U

uαω(du): (B.10)

Define P̃
∗,n

as the joint probability measure of (u∗,1n , F̄n,y) where marginals on y :� (y1,y2, : : : ) are fixed to be
∏∞

i�1Q(dyi).
Because marginals on (u∗,1n , F̄n) are tight and marginals on y are fixed, {P̃∗,n}n is tight. Hence, there exists a sub-subsequence

{P̃∗,k}k that converges weakly to P̃
∗
as k goes to infinity. This implies that the marginals {P̃∗,k}k on (u∗,1k , F̄k) converge to the mar-

ginals of P̃
∗
on (u∗,1, F̄), and hence, P̃

∗
is induced by (u1∞,u2∞, : : : ), which is infinitely exchangeable and is induced by an infin-

itely exchangeable randomized policy in LEX.

Step 2. We have

limsup
N→∞

∫
P∗,N
π (dγ)μN(dω0,dy)cN(γ,y,ω0)

� limsup
N→∞

1
N

∑N
i�1

∫
c ω0,ui,

1
N

∑N
p�1

up
( )∏N

k�1
γk(duk |yk)P∗,N

π (dγ1, : : : ,dγN)∏N
i�1

μ̂(dyi |ω0)P0(dω0)

� limsup
N→∞

1
N

∑N
i�1

∫
c ω0,ui,

1
N

∑N
p�1

up
( )∏N

k�1
γk(duk |yk)P∗,N

π (dγ1, : : : ,dγN)∏N
i�1

f (ω0,yi)Q(dyi)P0(dω0) (B.11)

� limsup
N→∞

∫ ∫∏∞
i�N+1Y

c(ω0,u1, F̄N)P̃∗,N(du1,dF̄N,dy )
∏∞
i�1

f (ω0,yi)P0(dω0) (B.12)

≥ lim
k→∞

∫ ∫∏∞
i�k+1Y

c(ω0,u1, F̄k)P̃∗,k(du1,dF̄k,dy )
∏∞
i�1

f (ω0,yi)P0(dω0) (B.13)

�
∫

c(ω0,u1, F̄)P̃∗(du1,dF̄,dy )∏∞
i�1

f (ω0,yi)P0(dω0) (B.14)

≥ limsup
N→∞

inf
Pπ∈LEX

∫
Pπ,N(dγ )μN(dω0,dy)cN(γ,y,ω0), (B.15)

where μ̂ is the conditional distribution of each observation yi given ω0. Under Assumption 3i and Assumption 2, using a
change of measure argument as in (6), we can rewrite the expected cost function with respect to P equivalently as a new
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expected cost function c ω0,ui, 1
N
∑N

p�1 up
( )∏N

i�1 f (ω0,yi) with respect to a reference measure Q, under which observations are

i.i.d. and independent of ω0. Hence, (B.11) follows from Assumption 3i and Assumption 2, and (B.12) follows from inte-
grating over the set

∏∞
i�N+1Y and because (u∗,1N , : : : ,u∗,NN ) is N-exchangeable. Inequality (B.13) follows from the assumption

that the cost function is bounded and limsup is the greatest subsequential limit where k is the index of the subsequence
considered in Step 1. Equality (B.14) follows from the dominated convergence theorem (by Assumption 4) and by Step 1

because {P̃∗,k}k converges weakly to P̃
∗
as k goes to infinity. Inequality (B.15) follows from the fact that P̃

∗
is the joint

measure with the first coordinate (u1∞,u2∞, : : : ) that is infinitely exchangeable, and it is induced by an infinitely exchange-
able randomized policy in LEX. The above inequalities become equalities because the opposite direction is true as well (i.e.,
because LEX |N ⊂ LNEX). This completes the proof. w

B.3. Proof of Theorem 2
We complete the proof in four steps.

Step 1. Similar to the proof of Lemma 2, using Yüksel [83, theorem 5.1], we can show that there exists a randomized
optimal policy for (PN), belonging to the set LN, and by Lemma 1, this randomized optimal policy can be assumed to be
in the set of N-exchangeable randomized policies LNEX. Consider a sequence of N-exchangeable randomized policies
{P∗,N

π }N, where, for every N ≥ 1, P∗,N
π ∈ LNEX and satisfies (B.7).

Step 2. In this step, we show that to establish an existence result, it is sufficient to show the convergence of the expected
cost induced by a randomized optimal policy in LNPR;SYM of N-DM teams to the expected cost induced by a randomized
policy LPR;SYM of mean-field teams through a subsequence as N goes to infinity. We first lift the space of randomized
admissible policies, and we represent any admissible randomized policy as a probability measure in L (which is convex)
and LEX ⊂ L. We have

inf
Pπ∈L

limsup
N→∞

∫
Pπ,N(dγ)μN(dω0,dy)cN(γ,y,ω0)

≥ limsup
N→∞

inf
PN
π ∈LN

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) (B.16)

� limsup
N→∞

inf
PN
π ∈LNEX

∫
PN
π (dγ )μN(dω0,dy)cN(γ,y,ω0) (B.17)

≥ lim
M→∞ limsup

N→∞
inf

PN
π ∈LNEX

∫
PN
π (dγ )μN(dω0,dy)min{M, cN(γ,y,ω0)} (B.18)

� lim
M→∞ limsup

N→∞
inf

Pπ∈LEX

∫
Pπ,N(dγ )μN(dω0,dy)min{M, cN(γ,y,ω0)} (B.19)

� lim
M→∞ limsup

N→∞
inf

PN
π ∈LNCO;SYM

∫
PN
π (dγ )μN(dω0,dy)min{M, cN(γ,y,ω0)} (B.20)

� lim
M→∞ limsup

N→∞
inf

PN
π ∈LNPR;SYM

∫
PN
π (dγ )μN(dω0,dy)min{M, cN(γ,y,ω0)} (B.21)

≥ inf
Pπ∈LPR;SYM

limsup
N→∞

∫
Pπ,N(dγ )μN(dω0,dy)cN(γ,y,ω0) (B.22)

≥ inf
Pπ∈LCO;SYM

limsup
N→∞

∫
Pπ,N(dγ )μN(dω0,dy)cN(γ,y,ω0) (B.23)

≥ inf
Pπ∈L

limsup
N→∞

∫
Pπ,N(dγ )μN(dω0,dy)cN(γ,y,ω0), (B.24)

where (B.16) follows from exchanging limsup with inf and the fact that Pπ,N ∈ LN is the restriction to N-first coordinate for
any randomized policy Pπ ∈ L, and (B.17) follows from Lemma 1. Inequality (B.18) follows from min{M, cN(γ,y,ω0)}
≤ cN(γ,y,ω0). Equality (B.19) follows from Lemma 2, and (B.20) follows from Theorem 1. The set of extreme points of the

convex set LNCO;SYM is in LNPR;SYM (that is because LNCO;SYM corresponds to the randomized policies with common and indi-
vidual independent randomness, where each DM selects an identical randomized policy); hence, (B.21) is true because
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LNCO;SYM is convex, and the map
∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) : LNCO;SYM → R is linear. Inequalities (B.23) and (B.24) follow

from the fact that LPR;SYM ⊂ LCO;SYM ⊂ L. Hence, by (B.24), this chain of inequalities must be a chain of equalities.
In the next two steps, we justify (B.22) through showing that there exists a subsequence of policies induced by

symmetric/identical private randomization whose weak limit achieves (B.22). First, we establish compactness of the
set of randomized policies LNPR;SYM, and then we show a lower semicontinuity of the induced expected cost that justifies
(B.22).

Step 3. Consider the set of randomized policies LNPR;SYM. For each DM, we can equivalently represent any randomized
policy as a probability measure on U × Y, where the marginal on observations is fixed. Because the team is static, this
decouples the policy spaces from the policies of the previous DMs. Following from symmetry, we can represent each
DM’s privately randomized policy space as {P ∈ P(U × Y) |P(B) � ∫

B
Π(dui |yi)Q(dyi)}, where B ∈ B(U × Y), and Π is an iden-

tical randomized policy from the set of stochastic kernels from the space of observations to the space of actions for each
DM. Because U is compact, the marginals on U are tight. Because the marginals are tight, the collection of all measures
with these tight marginals is also tight (see, e.g., Yüksel [82, proof of theorem 2.4]), and, hence, the randomized policy
space is tight. Following from symmetry, the set of individual randomized policies for each DM is closed under product
topology where each coordinate converges in the weak convergence topology. Hence, this step concludes that there exists
a subsequence of (symmetric) individually randomized policies for each DM that converges weakly to the limit that is
identical for each DM. In Step 4, we show that the limit randomized policy is optimal by showing a lower semicontinuity
of the induced expected cost.

Step 4. Define the empirical measure on actions and observations as follows:

ΛN(B) :� 1
N

∑N
i�1

δβiN (B), (B.25)

where for each N, βiN :� (ui,∗N ,yi), B ∈ Z :� U × Y, and ui,∗N is the action induced by the randomized policy Π∗
N of Step 3.

Now, we have

lim
M→∞ limsup

N→∞
inf

PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dy)min{M, cN(γ,y,ω0)}

� lim
M→∞ limsup

N→∞

∫ ∫
min M, c ω0,u,

∫
U

uΛN(du × Y)
( ){ }

ΛN(du,dy)
( )∏∞

i�1
P∗,ω0
N (dui,dyi)P0(dω0) (B.26)

≥ lim
M→∞ lim

n→∞

∫ ∫
min M, c ω0,u,

∫
U

uΛn(du × Y)
( ){ }

Λn(du,dy)
( )∏∞

i�1
P∗,ω0
n (dui,dyi)P0(dω0) (B.27)

� lim
M→∞

∫
lim
n→∞

∫ ∫
min M, c ω0,u,

∫
U

uΛn(du × Y)
( ){ }

Λn(du,dy)
( )∏∞

i�1
P∗,ω0
n (dui,dyi)P0(dω0) (B.28)

≥ lim
M→∞

∫ ∫ ∫
min M, c ω0,u,

∫
U

uΛ(du × Y)
( ){ }

Λ(du,dy)
( )∏∞

i�1
P∗,ω0 (dui,dyi)P0(dω0) (B.29)

� limsup
N→∞

∫
1
N

∑N
i�1

c ω0,ui,
1
N

∑N
p�1

up
( )∏N

i�1
P∗,ω0 (dui,dyi)P0(dω0) (B.30)

≥ inf
Pπ∈LPR;SYM

limsup
N→N

∫
Pπ,N(dγ )μN(dω0,dy)cN(γ,y,ω0), (B.31)

where P∗,ω0
N (dui,dyi) :�Π∗

N(dui |dyi)μ̂(dyi |ω0) �Π∗
N(dui |yi)f (ω0,yi)Q(dyi). Equality (B.26) follows from (B.25), Assumption 3i,

and symmetry of the optimal policies (because every DM applies an identical policy), and because the set of policies can
be extended to an infinite product space by considering the expected cost by integrating over

∏∞
i�N(U × Y). Inequality

(B.27) follows from the fact that limsup is the greatest convergent subsequential limit for a bounded sequence, where we
denoted the convergent subsequence of coordinates of policies in Step 3 by the index n ∈ I ⊂ N. Equality (B.28) follows
from the law of total expectation and the dominated convergence theorem.

Fix the convergent subsequence indexed by n. Following from symmetry and Assumptions 2 and 3i, we have that βin �
(u∗,in ,yi) are i.i.d. Now, using an argument similar to the one used in Sanjari and Yüksel [70, proof of theorem 8], through
choosing a suitable sub-subsequence and using the strong law of large numbers, we can show that for any continuous
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bounded function g ∈ Cb(Z),

P ω ∈Ω : lim
n→∞

1
n

∑n
i�1

g(βin) −E(g(βi∞))
∣∣∣∣∣

∣∣∣∣∣ � 0

{ }( )
� 1: (B.32)

By considering a countable family of measure-determining functions T ⊂ Cb(Z), (B.32) implies that the empirical measures
{Λn}n converge weakly to Λ � L(βi∞) P-almost surely, and Λ is induced by the limiting randomized policy P∗,ω0 . We equip the
above set of probability measures onΩ0 × U × Ywith the w-s topology, that is, the coarsest topology on P(Ω0 × U × Y) under
which

∫
f̂ (ω0,u,y)κ(dω0,du,dy) : P(Ω0 × U × Y) → R is continuous for every measurable and bounded f̂ that is continuous in

u but need not be continuous in y and ω0 (see, e.g., Schäl [72] and Yüksel [83, theorem 5.6]). Following from Assumption 5
and Assumption 3ii, and because actions induced by identical policies are i.i.d. (thanks to symmetry), we have, P-almost
surely,

fn :�min M, c ω0, · ,
∫
U

uΛn(du × Y)
( ){ }

−→cont f :�min M, c ω0, · ,
∫
U

uΛ(du × Y)
( ){ }

,

where we recall that the sequence fn converges continuously to f ( fn→cont f ) if and only if fn(an) → f (a) whenever an → a as
n→∞. Now, (B.29) follows from the generalized dominated convergence theorem for varying measures in Serfozo [74,
theorem 3.5]. Equality (B.30) follows from the monotone convergence theorem and an analysis similar to that established
in (B.29) using the fact that P∗,ω0 does not depend on N and is symmetric across DMs. Inequality (B.31) follows from the
fact that P∗,ω0 (dui,dyi) :�Π∗(dui |yi)f (ω0,yi)Q(dyi), achieving (B.30), belongs to LPR;SYM. That is because, following from Step
3, for each DM, the set of randomized policies is closed under the product topology, where each coordinate converges
weakly, and hence, the limiting policy is also a randomized policy induced by a subsequence of N-DM optimal policies
(which are symmetric across DMs). This implies that (B.31) holds, which implies (B.22) and completes the proof. w

Appendix C. Proofs from Section 5
C.1. Independent Measurement Reduction Under Assumption 8
Under Assumption 8i, we can represent the expected cost for deterministic policies as

JN(γ1:N) :�
∫

c(ω0,u10:T−1, : : : ,u
N
0:T−1)μN(dω0,dζ1:N)

×∏N
i�1

∏T−1
t�0

1{γi
t(yit)∈duit}ν

i
t dy

i
t |ω0,x1:N0 ,ζ1:N0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
�
∫

c(ω0,u10:T−1, : : : ,u
N
0:T−1)μN(dω0,dζ1:N)

×∏N
i�1

∏T−1
t�0

1{γi
t(yit)∈duit}ψ

i
t y

i
t,ω0,x1:N0 ,ζ1:N0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
τit(dyit)

�
∫

cs ω0,ζ1:N,u1:N0:T−1,y
1:N
0:T−1

( )
μN(dω0,dζ1:N)

∏N
i�1

∏T−1
t�0

1{γi
t(yit)∈duit}τ

i
t(dyit), (C.1)

where the new (equivalent) cost function is defined as

cs ω0,ζ1:N,u1:N0:T−1,y
1:N
0:T−1

( )
:� c ω0,u1:N0:T−1

( )∏N
i�1

∏T−1
t�0

ψi
t y

i
t,ω0,x1:N0 ,ζ1:N0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
,

and (C.1) follows from Assumption 8i. Similarly, we can define the new (equivalent) cost function under Assumption 8ii.
We note that in the above, we considered control actions induced by deterministic policies; however, the above analysis
can be extended to randomized policies by just replacing

∏N
i�1

∏T−1
t�0 1{γi

t(yit)∈duit} with
∏N

i�1
∏T−1

t�0 γi
t(duit |yit).

C.2. Proof of Lemma 3

We follow the steps of the proof of Lemma 1. For any permutation σ ∈ SN, we define a randomized policy Pσ
π ∈ L̄

N as a

permutation σ of arguments of a randomized policy Pπ ∈ L̄
N; that is, for Ai ∈ B(Γi),

Pσ
π(γ1 ∈ A1, : : : ,γ2 ∈ AN) :� Pπ(γσ(1) ∈ A1, : : : ,γσ(N) ∈ AN): (C.2)
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We have ∫
Pσ
π(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

�
∫

c(ω0,u1, : : : ,uN)∏N
k�1

γk(duk |yk)Pπ(dγσ(1), : : : ,dγσ(N))μ̃N(dζ1:N |ω0)P0(dω0)

×∏T−1
t�0

∏N
i�1

νit dy
i
t |ω0,xi0,ζ

i
0:t−1,y

1:N
0:t−1,u

1:N
t−1

( )
(C.3)

�
∫

c(ω0,uσ(1), : : : ,uσ(N))∏N
k�1

γσ(k)(duσ(k) |yσ(k))Pπ(dγ1, : : : ,dγN)μ̃N(d(ζσ)1:N |ω0)P0(dω0)

×∏T−1
t�0

∏N
i�1

νit dy
σ(i)
t

∣∣∣ω0,x
σ(i)
0 ,ζσ(i)0:t−1, (yσ0:t−1)1:N, (uσ0:t−1)1:N

( ) (C.4)

�
∫

c(ω0,u1, : : : ,uN)∏N
k�1

γk(duk |yk)Pπ(dγ1, : : : ,dγN)μ̃N(dζ1:N |ω0)P0(dω0)

×∏T−1
t�0

∏N
i�1

νit dy
i
t

∣∣∣ω0,xi0,ζ
i
0:t−1,y

1:N
0:t−1,u

1:N
0:t−1

( )
�
∫

Pπ(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0), (C.5)

where μ̃N is the conditional distribution of uncertainties ζ1:N given ω0. Equality (C.3) follows from Assumption 10ii
and (C.2), and (C.4) follows from relabeling uσ(i),yσ(i),ζσ(i) with ui,yi,ζi for all i � 1, : : : ,N and the fact that yit � ht(xi0,x−i0 ,

ζi0:t,ζ
−i
0:t,u

i
0:t−1,u−i0:t−1). Equality (C.5) follows from Assumption 10i, Assumption 9, and the hypothesis that the information

structure is symmetric. The rest of the proof follows from steps similar to those used in the proof of Lemma 1. w

C.3. Proof of Lemma 4
We follow steps similar to those used in the proof of Lemma 2. In the following, we present only a sketch of the proof
(for the complete proof, please see Sanjari et al. [71, proof of lemma 5.3]).

Under Assumption 11 and Assumption 5, for every finite N, there exists an optimal policy in LNEX. Consider a sequence
{P∗,N

π }N, where, for every N ≥ 1, P∗,N
π ∈ LNEX and∫

P∗,N
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0)

� inf
PN
π ∈LNEX

∫
PN
π (dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0): (C.6)

Step 1. Suppose that random variables u∗,it,N are induced by γi
t,N, where (γ1

t,N, : : : ,γ
N
t,N) for all t � 0, : : : ,T− 1 are determined

by the randomized policy P∗,N
π ∈ LNEX. Suppose further that random variables u∗,it,∞,N are induced by γi

t,∞,N, where
(γ1

t,∞,N, : : : ,γ
N
t,∞,N) are determined by the randomized policy P∗,∞

π,N ∈ LEX. Let γi
N :� (γi

0,N, : : : ,γ
i
T−1,N), γi

N,∞ :� (γi
0,∞,N, : : : ,

γi
T−1,∞,N),ui

N :� (ui0,N, : : : ,uiT−1,N) and ui
N,∞ :� (ui0,∞,N, : : : ,u

i
T−1,∞,N) for each DM. Because, under Assumption 8, observations

are i.i.d. across DMs and also independent of ω0, similar to the proof of Lemma 2, we can show that there exist a subse-
quence (denoted by n) such that for each m ≥ 1,

(u ∗,1
n , : : : ,u∗,m

n ) −→d
n→∞(u

1
∞, : : : ,u

m
∞),

where (u1∞,u2∞, : : : ) is induced by an infinitely exchangeable randomized policy P∗,∞
π ∈ LEX. Following from Theorem B.2,

for all A ∈ U, we have, P-almost surely,

Fn,t(A) :� Fωn,t(A) :� 1
n

∑n
i�1

δu∗,it,n(ω)(A) −→
d

n→∞αu,ω
t (A), (C.7)

where αu
t is the directing random measure of infinitely exchangeable random variables (u1∞,t,u

2∞,t, : : : ). By (C.7), because
the action space U is compact, we have, for all t � 0, : : : ,T− 1 and P-almost surely,

μu
n,t :� μu,ω

n,t :� 1
n

∑n
i�1

u∗,it,n �
∫
U

uFn,t(du) −→d
n→∞μu

t :�
∫
U

uαu,ω
t (du): (C.8)
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Step 2. Let x∗,it,n be the state of DMi at time t under u∗,i0:t−1,n :� (u∗,i0,n, : : : ,u∗,it−1,n), evolving by the following dynamics:

x∗,it+1,n � ft x∗,it,n,u
∗,i
t,n,

1
n

∑n
p�1

x∗,pt,n,
1
n

∑n
p�1

u∗,pt,n,w
i
t

( )
: (C.9)

Let t � 1. Because initial states are conditionally i.i.d. by continuity of the function f0 in actions and states, we have that
x∗,i1,n →dn→∞ x∗,i1,∞ for all DMs. Hence, (x∗,11,n, : : : ,x∗,m1,n ) is tight, and for each m ≥ 1, there exists a sub-subsequence (x∗,11,k, : : : ,x∗,m1,k ) →dk→∞

(x∗,11,∞, : : : ,x∗,m1,∞). Following from Theorem B.2, because f0 is bounded, we have, P-almost surely,

μx
k,1 :�

1
n

∑n
i�1

x∗,i1,k � μx,ω
k,1 �

∫
X

xd
1
k

∑k
i�1

δx∗,i1,k

( )
−→d
k→∞

μx
1 :�

∫
X

xαx,ω
1 (dx), (C.10)

where αx
1 is the directing measure for (x∗,11,∞,x∗,21,∞, : : : ). By induction, for each m ≥ 1, there exists a further sub-subsequence n

(which we indicate by n to omit a further sub-subscript) such that (x∗,1n , : : : ,x∗,mn ) →d
nl→∞ (x∗,1∞ , : : : ,x∗,m∞ ) and μx

nl ,t
→d
n→∞ μx

t for all

t � 0, : : : ,T− 1.
The rest of the proof is similar to (Step 2 of) the proof of Lemma 2 (see Sanjari et al. [71, proof of lemma 5.3]) with the

difference that in addition to actions and observations, we need to consider states and disturbances in our analysis. w

C.4. Proof of Theorem 3
We complete the proof using steps similar to those used in the proof of Theorem 2. In the following, we present only a
sketch of the proof (for the complete proof, please see Sanjari et al. [71, proof of theorem 5.4]).

Step 1. Under Assumptions 5 and 11, by Lemma 3, for every finite N, there exists a randomized optimal policy in LNEX.
Consider a sequence {P∗,N

π }N, where for every N ≥ 1, P∗,N
π ∈ LNEX and satisfies (C.6).

Step 2. Similar to Step 2 of the proof of Theorem 2 using Lemma 4 and Theorem 1, to complete the proof, it is sufficient
to show that

lim
M→∞ limsup

N→∞
inf

PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dζ)min{M, cN(ζ,γ,y,ω0)}νN(dy |ζ,γ,ω0)

≥ inf
Pπ∈LPR;SYM

limsup
N→∞

∫
Pπ,N(dγ)μN(dω0,dζ)cN(ζ,γ,y,ω0)νN(dy |ζ,γ,ω0): (C.11)

In the next two steps, we justify (C.11) through showing that there exists a subsequence of randomized policies induced
by symmetric/identical private randomization whose weak subsequential limit achieves the right-hand side of (C.11).

Step 3. Consider the set of randomized policies LNPR;SYM. Under a symmetric information structure and Assumption 8,
and because each DM applies an identical policy, yi are i.i.d. across DMs and also independent of ω0. Hence, following
from the information structure, the randomized policy spaces of each DM can be separated from the policies of the other
DMs. Thus, we can equivalently represent any privately randomized policy for each DM acting through time separately
as probability measures induced by symmetric (identical randomized) policies, that is, as probability measures q on
U × Y, where randomized policies for each DM and for every t � 0, : : : ,T− 1 satisfy the following equality:∫

g ω0,xi0,ζ
i
0:t−1,y

i
0:t,u

i
0:t

( )
q dyi0:t,du

i
0:t |ω0,xi0,ζ

i
0:t−1

( )
�
∫

g ω0,xi0,ζ
i
0:t−1,y

i
0:t,u

i
0:t

( )∏t
k�0

ΠN
k (duik |yik)ηk dyik |ω0,xi0,ζ

i
0:k−1,y

i
0:k−1,u

i
0:k−1

( )
,

for all bounded functions g continuous in actions and observations and measurable in other arguments, and for some sto-
chastic kernels ΠN

k , representing a randomized policy of DMs at time k (which is identical across DMs).
Because U is compact, the marginals on U are tight under the weak convergence topology. Hence, the collection of all

probability measures with these tight marginals is also tight (see, e.g., Yüksel [82, proof of theorem 2.4]). Because every
DM applies an identical policy and because observations are i.i.d., the randomized policy space is tight, and hence, there
exists a subsequence of randomized policies {q̃n}n ⊆ P

∏
i(Y ×U)( ) that converges weakly (each coordinate converges

weakly) to a limit q̃ (as an infinite product of policies of DMs), where n is the index of the subsequence, and n goes to
infinity. Now, we show that the randomized policy spaces are closed under the weak convergence topology. Suppose
that {q̂n}n ⊆ P(Y ×U) (induced by identical randomized policies Πn

t for each DM at time t � 0, : : : ,T− 1) converges weakly
to q̂. If Assumption 8i (under the structure of Assumption 11) holds, then there exists an independent static reduction for
each DM over time, and hence, following from the discussion in the proof of Yüksel [83, theorem 5.2], each coordinate of
policy spaces corresponds to DMi at time t is closed under the weak convergence topology. Also, if Assumption 8ii
(under the structure of Assumption 11) holds, then Yüksel [83, theorem 5.6] leads to the same conclusion. Hence, this
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implies that for {q̃∗N}N ⊆ P
∏N

i�1(Y ×U)( )
, induced by optimal randomized policies Π∗,N

t for each DM at time t, there exists
a subsequence {q̃∗n}n ⊆ P

∏∞
i�1(Y ×U)( )

(as an infinite product of policies Π∗,n
t ) that converges weakly (each coordinate con-

verges weakly) to a limit q̃∗. This limit belongs to LPR;SYM and is induced by a randomized policy Π∗,∞
t for each DM at

time t.

Step 4. An argument similar to the one used in Step 4 of the proof of Theorem 2 can be used to show that (C.11) holds,
and this completes the proof. w

Appendix D. Proof from Section 6
D.1. Proof of Theorem 4
To prove part i, we first show that (28) holds. We have

inf
PN
π ∈LNCO

∫
PN
π (dγ )μN(dω0,dy)cN(γ,y,ω0) ≥ inf

PN
π ∈LNCO∩LEX |N

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) − εN (D.1)

� inf
PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) − εN, (D.2)

where LEX |N denotes the set of N-DM randomized policies that are the restrictions of policies in LEX to the N first compo-
nents. By Lemma 1, because LNCO is convex, without losing global optimality, we can optimize over LNCO ∩ LNEX. Let ε > 0.
Consider P∗,N

π,ε ∈ LNCO ∩ LNEX such that

inf
PN
π ∈LNCO∩LNEX

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) ≥

∫
P∗,N
π,ε(dγ)μN(dω0,dy)cN(γ,y,ω0) − ε: (D.3)

Following from the proof of Lemma 2, using randomized policies P∗,N
π,ε ∈ LNCO ∩ LNEX, by considering the indexes as a

sequence of i.i.d. random variables with uniform distribution on the set {1, : : : ,N}, we can construct an infinitely
exchangeable policy P∗,∞

π,ε , where the restriction of an infinitely exchangeable policy to the N first components,
P∗,∞
π,N,ε ∈ LNCO ∩ LEX |N, satisfies∫

P∗,∞
π,N,ε(dγ )μN(dω0,dy)cN(γ,y,ω0)

∫
P∗,N
π,ε(dγ)μN(dω0,dy)cN(γ,y,ω0) + εN: (D.4)

Hence, (D.3) and (D.4) imply that

inf
PN
π ∈LNCO∩LNEX

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0)

≥ inf
PN
π ∈LNCO∩LEX |N

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) − ε− εN:

Because ε is arbitrary, this implies (D.1). By Theorem 1, without losing optimality, we can optimize over LNCO;SYM. Equal-

ity (D.2) is true because LNCO;SYM is convex with extreme points in LNPR;SYM, and the map
∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) :

LNCO;SYM → R is linear.
Now, we show that (29) holds. We have

inf
PN
π ∈LND

∫
PN
π (dγ )μN(dω0,dy)cN(γ,y,ω0) � inf

PN
π ∈LNPR

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) (D.5)

≥ inf
PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) − εN, (D.6)

where (D.5) follows from Blackwell’s [13] irrelevant information theorem because LNCO is convex with extreme points in
LNPR, and because the map

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) : LNCO → R is linear, and hence, without losing optimality, we can

optimize over LNCO. Inequality (D.6) follows from (28), and this completes the proof of part i.
To prove part ii, let P∗

π ∈ LPR;SYM be an optimal policy for (P∞), and P∗
π,N is the restriction of P∗

π to the first N compo-
nents. Define, for all N ∈ N,

aN :�
∫

P∗
π,N(dγ)μN(dω0,dy)cN(γ,y,ω0),

bN :� inf
PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0):
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Following from Step 4 of the proof of Theorem 2, because the cost function is bounded, we have

limsup
N→∞

∫
P∗
π,N(dγ)μN(dω0,dy)cN(γ,y,ω0) � limsup

N→∞
inf

PN
π ∈LNPR;SYM

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0): (D.7)

Hence, limsupN→∞ aN � limsupN→∞bN. Following from Step 4 of the proof of Theorem 2 and symmetry, limN→∞ aN �
a <∞, and also there exists a subsequence such that limk→∞ bNk � a <∞. On the other hand, because aN ≥ bN for all N ∈ N,
we can find ε̃N ≥ 0 such that aN � bN + ε̃N. Taking limit as k goes to infinity from both sides, we have a � limk→∞(bNk

+εNk ) � a+ limk→∞ εNk . Hence, limk→∞ εNk � 0 because ε̃N ≥ 0. This implies that there exists ε̄N ≥ 0 where ε̄N → 0 as N goes
to infinity such that ∫

P∗
π,N(dγ)μN(dω0,dy)cN(γ,y,ω0) ≤ inf

PN
π ∈LND

∫
PN
π (dγ)μN(dω0,dy)cN(γ,y,ω0) + εN + ε̄N, (D.8)

where (D.8) follows from (29). This completes the proof of part ii. w
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