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This paper studies the approximation of optimal control policies by quantized 
(discretized) policies for a very general class of Markov decision processes 
(MDPs). The problem is motivated by applications in networked control systems, 
computational methods for MDPs, and learning algorithms for MDPs. We consider 
the finite-action approximation of stationary policies for a discrete-time Markov 
decision process with discounted and average costs under a weak continuity 
assumption on the transition probability, which is a significant relaxation of 
conditions required in earlier literature. The discretization is constructive, and 
quantized policies are shown to approximate optimal deterministic stationary 
policies with arbitrary precision. The results are applied to the fully observed 
reduction of a partially observed Markov decision process, where weak continuity is 
a much more reasonable assumption than more stringent conditions such as strong 
continuity or continuity in total variation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the finite-action approximation of optimal control policies for a discrete time 
Markov decision process (MDP) with Borel state and action spaces, under discounted and average cost 
criteria. Various stochastic control problems may benefit from such an investigation.

The optimal information transmission problem in networked control systems is one such example. In 
many applications to networked control, the perfect transmission of the control actions to an actuator is 
infeasible when there is a communication channel of finite capacity between a controller and an actuator. 
Hence, the actions of the controller must be quantized to facilitate reliable transmission to an actuator. 
Although, the problem of optimal information transmission from a plant/sensor to a controller has been 
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studied extensively [25], much less is known about the problem of transmitting actions from a controller 
to an actuator. Such transmission schemes usually require a simple encoding/decoding rule since an ac-
tuator does not have the computational/intelligence capability of a controller to use complex algorithms. 
Therefore, time-invariant uniform quantization is a practically useful encoding rule for controller–actuator 
communication.

The investigation of the finite-action approximation problem is also useful in computing near optimal 
policies and learning algorithms for MDPs. In a recent work [22], we consider the development of finite-state
approximations for obtaining near optimal policies. However, to establish constructive control schemes, one 
needs to quantize the action space as well. Thus, results on approximate optimality of finite-action models 
pave the way for practical computation algorithms which are commonly used for finite-state/action MDPs. 
One other application regarding approximation problems is on learning a controlled Markov chain using 
simulations. If one can ensure that learning a control model with only finitely many control actions is 
sufficient for approximate optimality, then it is easier to develop efficient learning algorithms which allow 
for the approximate computation of finitely many transition probabilities. In particular, results developed 
in the learning and information theory literature for conditional kernel estimations [11] (with control-free 
models) can be applied to transition probability estimation for MDPs.

Motivated as above, in this paper we investigate the following approximation problem: For uncountable 
Borel state and action spaces, under what conditions can the optimal performance (achieved by some 
optimal stationary policy) be arbitrarily well approximated if the controller action set is restricted to be 
finite? We show that quantized stationary policies obtained by uniform quantization of the action space 
can approximate optimal policies with arbitrary precision for an MDP with an unbounded one-stage cost 
function, under a weak continuity assumption on the transition probability.

Various approximation results, which are somewhat related to our work, have been established for MDPs 
with Borel state and action spaces in the literature along the theme of computation of near optimal policies. 
For rather complete surveys of these techniques, we refer the reader to [1,5–7,16–19,24] and the references
therein. With the exception of [17], these works assume in general restrictive continuity conditions on the 
transition probability. In [17], the authors considered an approximation problem in which all the components 
of the original model are allowed to vary in the reduced model (varying only the action space corresponds 
to the setup considered in this paper). Under weak continuity of the transition probability, [17] established 
the convergence of the reduced models to the original model for the discounted cost when the one-stage cost 
function is bounded. In this paper we allow the one-stage cost function to be unbounded. In addition, we also 
study the approximation problem for the challenging average cost case. Hence, our results can be applied 
to a wider range of stochastic systems. However, analogous with [17], the price we pay for imposing weaker 
assumptions is that we do not obtain explicit performance bounds in terms of the rate of the quantizer used 
in the approximations.

In [21] we solved a variant of this problem for the discounted cost under the following assumptions: 
(i) the action space is compact, (ii) the transition probability is setwise continuous in the action variable, 
and (iii) the one stage cost function is bounded and continuous in the action variable. The average cost was 
also considered under some additional restrictions on the ergodicity properties of Markov chains induced by 
deterministic stationary policies. In this paper we consider a similar problem for systems where the transition 
probability is weakly continuous in the state-action variables. An important motivation for considering these 
conditions comes from the fact that for the fully observed reduction of a partially observed MDP (POMDP), 
the setwise continuity of the transition probability in the action variable is a prohibitive condition even for 
simple systems such as the one described in Example 2.1 in the next section.

Organization: In Section 2 we give definitions and the problem formulation. The main result for discounted 
cost is stated and proved in Section 3. In Section 4 an analogous approximation result is obtained for the 
average cost criterion. In Section 5 the results for the discounted cost are applied to the fully observed 
reduction of POMDPs via appealing to results by Feinberg et al. [9]. Section 6 concludes the paper.
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2. Markov decision processes

For a metric space E, the Borel σ-algebra is denoted by B(E). Given any Borel measurable function 
w : E → [1, ∞) and any real valued Borel measurable function u on E, we define w-norm of u as

‖u‖w := sup
e∈E

|u(e)|
w(e) .

Let Cw(E) and Bw(E) denote the space of all real valued continuous and Borel measurable functions on E with 
finite w-norm, respectively [14]. Let P(E) denote the set of all probability measures on E. A sequence {μn} of 
measures on E is said to converge weakly (resp., setwise) [15] to a measure μ if 

∫
E g(e)μn(de) →

∫
E g(e)μ(de)

for all bounded and continuous real functions g on E (resp., for all bounded and Borel measurable real 
functions g on E). Unless otherwise specified, the term “measurable” will refer to Borel measurability.

We consider a discrete-time Markov decision process (MDP) with state space Z and action space A, where 
Z and A are Borel spaces. In this paper, we assume that the set of admissible actions for any z ∈ Z is A. 
Let the stochastic kernel η( · |z, a) be the transition probability of the next state given that the previous 
state-action pair is (z, a) [13]. The one-stage cost function c is a measurable function from Z ×A to [0, ∞). 
The probability measure ξ over Z denotes the initial distribution of the state process.

Define the history spaces H0 = Z and Ht = (Z × A)t × Z, t = 1, 2, . . . endowed with their product 
Borel σ-algebras generated by B(Z) and B(A). A policy is a sequence ϕ = {ϕt} of stochastic kernels on A
given Ht. The set of all policies is denoted by Φ. A deterministic policy is a sequence ϕ = {ϕt} of stochastic 
kernels on A given Ht which are realized by a sequence of measurable functions {ft} from Ht to A, i.e., 
ϕt( · |ht) = δft(ht)( · ), where δz is the point mass at z. Let F denote the set of all measurable functions f
from Z to A. A deterministic stationary policy is a constant sequence of stochastic kernels ϕ = {ϕt} on A
given Z such that ϕt( · |z) = δf(z)( · ) for all t for some f ∈ F. The set of deterministic stationary policies is 
identified with the set F.

According to the Ionescu Tulcea theorem [13], an initial distribution ξ on Z and a policy ϕ define a 
unique probability measure Pϕ

ξ on H∞ = (Z × A)∞. The expectation with respect to Pϕ
ξ is denoted by Eϕ

ξ . 
If ξ = δz, we write Pϕ

z and Eϕ
z instead of Pϕ

δz
and Eϕ

δz
. The cost functions to be minimized in this paper are 

the discounted cost with a discount factor β ∈ (0, 1) and the average cost, respectively:

J(ϕ, ξ) = E
ϕ
ξ

[ ∞∑
t=0

βtc(zt, at)
]
,

V (ϕ, ξ) = lim sup
T→∞

1
T
E
ϕ
ξ

[T−1∑
t=0

c(zt, at)
]
.

A policy ϕ∗ is called optimal if J(ϕ∗, z) = infϕ∈Φ J(ϕ, z) (or V (ϕ∗, z) = infϕ∈Φ V (ϕ, z) for the average 
cost) for all z ∈ Z. It is well known that the set F of deterministic stationary policies contains an optimal 
policy for a large class of infinite horizon discounted cost (see, e.g., [8,13]) and average cost optimal control 
problems (see, e.g., [4,8]). In this case we say that F is an optimal class.

2.1. Problem formulation

To give a precise definition of the problem we study in this paper, we first give the definition of a quantizer 
from the state to the action space.

Definition 2.1. A measurable function q : Z → A is called a quantizer from Z to A if the range of q, i.e., 
q(Z) = {q(z) ∈ A : z ∈ Z}, is finite.
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The elements of q(Z) (the possible values of q) are called the levels of q. The rate R = log2 |q(Z)| of a 
quantizer q (approximately) represents the number of bits needed to losslessly encode the output levels of q
using binary codewords of equal length. Let Q denote the set of all quantizers from Z to A. A deterministic 
stationary quantizer policy is a constant sequence ϕ = {ϕt} of stochastic kernels on A given Z such that 
ϕt( · |z) = δq(z)( · ) for all t for some q ∈ Q. For any finite set Λ ⊂ A, let Q(Λ) denote the set of all elements 
in Q having range Λ. Analogous with F, the set of all deterministic stationary quantizer policies induced by 
Q(Λ) will be identified with the set Q(Λ).

Our main objective is to find conditions on the components of the MDP under which there exists a 
sequence of finite subsets {Λn}n≥1 of A for which the following holds:

(P) For any initial point z we have limn→∞ minq∈Q(Λn) J(q, z) = minf∈F J(f, z) (or limn→∞
minq∈Q(Λn) V (q, z) = minf∈F V (f, z) for the average cost), provided that the set F of deterministic sta-
tionary policies is an optimal class for the MDP.

Letting MDPn be defined as the Markov decision process having the components 
{
Z, Λn, η, c

}
, (P) is 

equivalent to stating that optimal cost of MDPn converges to the optimal cost of the original MDP.

2.2. Setwise continuity versus weak continuity

Requiring that the transition probability of the system be weakly continuous in state-action variables is 
indeed a fairly mild assumption compared to the setwise continuity in the action variable. Indeed, the latter 
condition is even prohibitive for certain stochastic systems. In this section we consider two examples, the 
fully observed reduction of a POMDP and the additive noise model, in order to more explicitly highlight 
this. We refer the reader to [12, Chapter 4] and Section 5 of this paper for the basics of POMDPs.

Example 2.1. Consider the system dynamics

xt+1 = xt + at,

yt = xt + vt,

where xt ∈ X, yt ∈ Y and at ∈ A, and where X, Y and A are the state, observation and action spaces, 
respectively. Here, we assume that X = Y = A = R+ and the ‘noise’ {vt} is a sequence of i.i.d. random 
variables uniformly distributed on [0, 1]. It is easy to see that the transition probability is weakly continuous 
(with respect to state-action variables) and the observation channel that gives the conditional distribution 
of the current observation given the current state is continuous in total variation (with respect to state 
variable) for this POMDP. Hence, by [9, Theorem 3.7] the transition probability η of the fully observed 
reduction of the POMDP is weakly continuous in the state-action variables. However, the same conclusion 
cannot be drawn for the setwise continuity of η with respect to the action variable as shown below.

Let z denote the generic state variable for the fully observed reduced MDP, where the state variables are 
elements of P(X) which is equipped with the Borel σ-algebra generated by the topology of weak convergence. 
If we define the function F (z, a, y) := Pr{xt+1 ∈ · |zt = z, at = a, yt+1 = y} from P(X) ×A ×Y to P(X) and 
the stochastic kernel H( · |z, a) := Pr{yt+1 ∈ · |zt = z, at = a} on Y given P(X) × A, then η can be written 
as

η( · |z, a) =
∫
Y

1{F (z,a,y)∈ · }H(dy|z, a),

where 1D denotes the indicator function of an event D and zt denotes the posterior distribution of the state 
xt given the past observations, i.e.,

zt( · ) := Pr{xt ∈ · |y0, . . . , yt, a0, . . . , at−1}.
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Let us set z = δ0 (point mass at 0 ∈ X), {ak} = { 1
k}, and a = 0. Hence, ak → a. We show that 

η( · |z, ak) � η( · |z, a) setwise.
Observe that for all k and y ∈ Y, we have F (z, ak, y) = δ 1

k
and F (z, a, y) = δ0. Define the open set O

with respect to the weak topology in P(X) as

O :=
{
z ∈ P(X) :

∣∣∫
X

g(x)δ1(dx) −
∫
X

g(x)z(dx)
∣∣ < 1

}
,

where g is the symmetric triangular function on [−1, 1] with g(0) = 1 and g(−1) = g(1) = 0. Observe that 
we have F (z, ak, y) ∈ O for all k and y, but F (z, a, y) /∈ O for all y. Hence,

η(O|z, ak) :=
∫
Y

1{F (z,ak,y)∈O}H(dy|z, ak) = 1,

but

η(O|z, a) :=
∫
Y

1{F (z,a,y)∈O}H(dy|z, a) = 0

implying that η( · |z, ak) does not converge to η( · |z, a) setwise. Hence, η does not satisfy the setwise conti-
nuity assumption.

Example 2.2. In this example we consider an additive-noise system given by

zt+1 = F (zt, at) + vt, t = 0, 1, 2, . . .

where Z = R
n and A = R

m for some n, m ≥ 1. The noise process {vt} is a sequence of independent and 
identically distributed (i.i.d.) random vectors. In such a system, the continuity of F in (z, a) (which holds 
for most practical systems) is sufficient to imply the weak continuity of the transition probability, and 
no assumptions are needed on the noise process (not even the existence of a density is required). Hence, 
weak continuity does not restrict the noise model and is satisfied by almost all systems in the applications, 
whereas other conditions, such as strong continuity or continuity in total variation distance, hold only if the 
noise is well behaved in addition to the continuity of F . For example, for setwise continuity, it is usually 
required that F is continuous in a for every z, the noise admits a density, and this density is continuous 
[13, Example C.8].

3. Near optimality of quantized policies with discounted cost

In this section we consider the problem (P) for the discounted cost. The following assumptions will be 
imposed for both the discounted cost and the average cost. We note that these assumptions are often used in 
the literature for studying discounted Markov decision processes with unbounded one-stage cost and weakly 
continuous transition probability.

Assumption 3.1.

(a) The one stage cost function c is nonnegative and continuous.
(b) The stochastic kernel η( · |z, a) is weakly continuous in (z, a) ∈ Z × A, i.e., if (zk, ak) → (z, a), then 

η( · |zk, ak) → η( · |z, a) weakly.
(c) A is compact.
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(d) There exist nonnegative real numbers M and α ∈ [1, 1β ), and a continuous weight function w : Z → [1, ∞)
such that for each z ∈ Z, we have

sup
a∈A

c(z, a) ≤ Mw(z), (1)

sup
a∈A

∫
Z

w(y)η(dy|z, a) ≤ αw(z), (2)

and 
∫
Z w(y)η(dy|z, a) is continuous in (z, a).

Let dA denote the metric on A. Since A is compact and thus totally bounded, one can find a sequence of 
finite sets Λn = {an,1, . . . , an,kn

} ⊂ A such that for all n,

min
i∈{1,...,kn}

dA(a, an,i) < 1/n for all a ∈ A. (3)

In other words, Λn is a 1/n-net in A. In the rest of this paper, we assume that the sequence {Λn}n≥1 is 
fixed. To ease the notation in the sequel, let us define the mapping Υn : F → Q(Λn) by

Υn(f)(z) = arg min
a∈Λn

dA(f(z), a). (4)

Hence, for all f ∈ F, we have

sup
z∈Z

dA
(
Υn(f)(z), f(z)

)
< 1/n. (5)

Define the operator T on the set of real-valued measurable functions on Z by

Tu(z) := min
a∈A

[
c(z, a) + β

∫
Z

u(y)η(dy|z, a)
]
. (6)

In the literature T is called the Bellman optimality operator.

Lemma 3.1. For any u ∈ Cw(Z) the function lu(z, a) :=
∫
Z u(y)η(dy|z, a) is continuous in (z, a).

Proof. For any nonnegative continuous function g on Z, the function lg(z, a) =
∫
Z g(y)η(dy|z, a) is lower 

semi-continuous in (z, a), if η is weakly continuous (see, e.g., [13, Proposition E.2]). Define the nonnegative 
continuous function g by letting g = bw + u, where b = ‖u‖w. Then lg is lower semi-continuous. Since 
lu = lg − blw and lw is continuous by Assumption 3.1-(d), lu is lower semi-continuous. Analogously, define 
the nonnegative continuous function v by letting v = −u + bw. Then lv is lower semi-continuous. Since 
lu = blw − lv and lw is continuous by Assumption 3.1-(d), lu is also upper semi-continuous. Therefore, lu is 
continuous. �
Lemma 3.2. Let Y be any of the compact sets A or Λn. Define the operator TY on Bw(Z) by letting

TYu(z) := min
a∈Y

[
c(z, a) + β

∫
Z

u(y)η(dy|z, a)
]
.

Then TY maps Cw(Z) into itself. Moreover, Cw(Z) is closed with respect to the w-norm.
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Proof. Note that TYu(z) = mina∈Y
(
c(z, a) + βlu(z, a)

)
. The function lu is continuous by Lemma 3.1, and 

therefore, TYu is also continuous by [2, Proposition 7.32]. Since TY maps Bw(Z) into itself, TYu ∈ Cw(Z).
For the second statement, let un converge to u in w-norm in Cw(Z). It is sufficient to prove that u is 

continuous. Let zk → z0. Since B := {z0, z1, z2, . . .} is compact, w is bounded on B. Therefore, un → u

uniformly on B which implies that limk→∞ u(zk) = u(z0). This completes the proof. �
Lemma 3.2 implies that T maps Cw(Z) into itself. It can also be proved that T is a contraction operator 

with modulus σ := βα (see [14, Lemma 8.5.5]); that is,

‖Tu− Tv‖w ≤ σ‖u− v‖w for all u, v ∈ Cw(Z).

Define the discounted value function J∗ by

J∗(z) := inf
ϕ∈Φ

J(ϕ, z).

The following theorem is a known result in the theory of Markov decision processes (see e.g., [14, Section 8.5, 
p. 65]).

Theorem 3.1. Suppose Assumption 3.1 holds. Then, the value function J∗ is the unique fixed point in Cw(Z)
of the contraction operator T , i.e.,

J∗ = TJ∗. (7)

Furthermore, a deterministic stationary policy f∗ is optimal if and only if

J∗(z) = c(z, f∗(z)) + β

∫
Z

J∗(y)η(dy|z, f∗(z)). (8)

Finally, there exists a deterministic stationary policy f∗ which is optimal, so it satisfies (8).

Define, for all n ≥ 1, the operator Tn (which will be used to approximate T ) by

Tnu(z) := min
a∈Λn

[
c(z, a) + β

∫
Z

u(y)η(dy|z, a)
]
. (9)

Note that Tn is the Bellman optimality operator for MDPn having components 
{
Z, Λn, η, c

}
. Analogous 

with T , it can be shown that Tn is a contraction operator with modulus σ = αβ mapping Cw(Z) into itself. 
Let J∗

n ∈ Cw(Z) (discounted value function of MDPn) denote the fixed point of Tn.
The following theorem is the main result of this section which states that the discounted value function 

of MDPn converges to the discounted value function of the original MDP.

Theorem 3.2. For any compact set K ⊂ Z we have

lim
n→∞

sup
z∈K

|J∗
n(z) − J∗(z)| = 0. (10)

Therefore,

lim
n→∞

|J∗
n(z) − J∗(z)| = 0 for all z ∈ Z.
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To prove Theorem 3.2, we need following results.

Lemma 3.3. For any compact subset K of Z and for any ε > 0, there exists a compact subset Kε of Z such 
that

sup
(z,a)∈K×A

∫
Kc

ε

w(y)η(dy|z, a) < ε. (11)

Proof. Let us define the set of measures Ξ on Z as

Ξ :=
{
Q( · |z, a) : Q(D|z, a) =

∫
D

w(y)η(dy|z, a), (z, a) ∈ K × A
}
.

Note that Ξ is uniformly bounded since

sup
(z,a)∈K×A

∫
Z

w(y)η(dy|z, a) ≤ α sup
z∈K

w(z) < ∞.

If the mapping Q : K × A 	 (z, a) 
→ Q( · |z, a) ∈ Ξ is continuous with respect to the weak topology on Ξ, 
then Ξ (being a continuous image of the compact set K×A) is compact with respect to the weak topology. 
Then, by an extension of Prohorov’s theorem to non-probability measures [3, Theorem 8.6.2], Ξ is tight, 
completing the proof. Hence, we only need to prove the continuity of the mapping Q.

By Lemma 3.1, for any u ∈ Cw(Z), 
∫
Z u(y)η(dy|z, a) is continuous in (z, a). Let (zk, ak) → (z, a) in K×A. 

Note that for any g ∈ Cb(Z), gw ∈ Cw(Z). Therefore, we have

lim
k→∞

∫
Z

g(y)Q(dy|zk, ak) = lim
k→∞

∫
Z

g(y)w(y)η(dy|zk, ak)

=
∫
Z

g(y)w(y)η(dy|z, a) =
∫
Z

g(y)Q(dy|z, a)

proving that Q( · |zk, ak) → Q( · |z, a) weakly. �
Lemma 3.4. Let {un} be a sequence in Cw(Z) with supn ‖un‖w := L < ∞. If un converges to u ∈ Cw(Z)
uniformly on each compact subset of Z, then for any f ∈ F and compact subset K of Z we have

lim
n→∞

sup
z∈K

∣∣∣∣
∫
Z

un(y)η(dy|z, fn(z)) −
∫
Z

u(y)η(dy|z, f(z))
∣∣∣∣ = 0,

where fn = Υn(f) (see (4)).

Proof. Fix a compact subset K of Z. Then for Kε as in Lemma 3.3,

sup
z∈K

∣∣∣∣
∫
Z

un(y)η(dy|z, fn(z)) −
∫
Z

u(y)η(dy|z, f(z))
∣∣∣∣

≤ sup
z∈K

∣∣∣∣
∫

un(y)η(dy|z, fn(z)) −
∫

u(y)η(dy|z, fn(z))
∣∣∣∣
Z Z
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+ sup
z∈K

∣∣∣∣
∫
Z

u(y)η(dy|z, fn(z)) −
∫
Z

u(y)η(dy|z, f(z))
∣∣∣∣

≤ sup
z∈K

∣∣∣∣
∫
Kε

un(y)η(dy|z, fn(z)) −
∫
Kε

u(y)η(dy|z, fn(z))
∣∣∣∣

+ sup
z∈K

∣∣∣∣
∫
Kc

ε

un(y)η(dy|z, fn(z)) −
∫
Kc

ε

u(y)η(dy|z, fn(z))
∣∣∣∣

+ sup
z∈K

∣∣∣∣
∫
Z

u(y)η(dy|z, fn(z)) −
∫
Z

u(y)η(dy|z, f(z))
∣∣∣∣

≤ sup
y∈Kε

|un(y) − u(y)| + 2Lε + sup
z∈K

∣∣∣∣
∫
Z

u(y)η(dy|z, fn(z)) −
∫
Z

u(y)η(dy|z, f(z))
∣∣∣∣.

Let us define l(z, a) :=
∫
Z u(y)η(dy|z, a). Since u ∈ Cw(Z), by Lemma 3.1 l is continuous, and therefore, 

uniformly continuous on K × A. Note that in the last expression as n → ∞: (i) the first term goes to zero 
since un → u uniformly on Kε and (ii) the last term goes to zero since l is uniformly continuous on K × A
and fn → f uniformly. Then the result follows by observing that ε is arbitrary. �

Let us define v0 = v0
n = 0, and vt+1 = Tvt and vt+1

n = Tnv
t
n for t ≥ 1; that is, {vt}t≥1 and {vtn}t≥1 are 

successive approximations to the discounted value functions of the original MDP and MDPn, respectively. 
Lemma 3.2 implies that vt and vtn are in Cw(Z) for all t and n. By [14, Theorem 8.3.6, p. 47], [14, (8.3.34), 
p. 52] and [14, Section 8.5, p. 65] we have

vt(z) ≤ J∗(z) ≤ M
w(z)
1 − σ

, (12)

‖vt − J∗‖w ≤ M
σt

1 − σ
, (13)

and

vtn(z) ≤ J∗
n(z) ≤ M

w(z)
1 − σ

, (14)

‖vtn − J∗
n‖w ≤ M

σt

1 − σ
. (15)

Since for each n and u, Tu ≤ Tnu, we also have vt ≤ vtn for all t ≥ 1 and J∗ ≤ J∗
n.

Lemma 3.5. For any compact set K ⊂ Z and t ≥ 1, we have

lim
n→∞

sup
z∈K

|vtn(z) − vt(z)| = 0. (16)

Proof. We prove (16) by induction. For t = 1, the claim holds since v0 = v0
n = 0, and c is uniformly 

continuous on K×A for any compact subset K of Z. Assume the claim is true for t ≥ 1. We fix any compact 
set K. Let f∗

t denote the selector of Tvt = vt+1; that is,

vt+1(z) = Tvt(z) = c(z, f∗
t (z)) + β

∫
Z

vt(y)η(dy|z, f∗
t (z)),

and let f∗
t,n := Υn(f∗

t ) (see (4)). By (12) and (14) we have
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vt(z) ≤ M
w(z)
1 − σ

(17)

vtn(z) ≤ M
w(z)
1 − σ

, (18)

for all t and n. For each n ≥ 1, we have

sup
z∈K

∣∣vt+1
n (z) − vt+1(z)

∣∣
= sup

z∈K

(
vt+1
n (z) − vt+1(z)

)
(as vt+1 ≤ vt+1

n )

= sup
z∈K

(
min
Λn

[
c(z, a) + β

∫
Z

vtn(y)η(dy|z, a)
]
− min

A

[
c(z, a) + β

∫
Z

vt(y)η(dy|z, a)
])

≤ sup
z∈K

([
c(z, f∗

t,n(z)) + β

∫
Z

vtn(y)η(dy|z, f∗
t,n(z))

]
−

[
c(z, f∗

t (z)) + β

∫
Z

vt(y)η(dy|z, f∗
t (z))

])

≤ sup
z∈K

∣∣c(z, f∗
t,n(z)) − c(z, f∗

t (z))
∣∣ + β sup

z∈K

∣∣∣∣
∫
Z

vtn(y)η(dy|z, f∗
t,n(z)) −

∫
Z

vt(y)η(dy|z, f∗
t (z))

∣∣∣∣.

Note that in the last expression, as n → ∞ the first term goes to zero since c is uniformly continuous on 
K × A and f∗

t,n → f∗
t uniformly, and the second term goes to zero by Lemma 3.4, (17), and (18). �

Now, using Lemma 3.5 we prove Theorem 3.2.

Proof of Theorem 3.2. Let us fix any compact set K ⊂ Z. Since w is bounded on K, it is enough to prove 
limn→∞ supz∈K

|J∗
n(z)−J∗(z)|

w(z) = 0. We have

sup
z∈K

|J∗
n(z) − J∗(z)|

w(z) ≤ sup
z∈K

|J∗
n(z) − vtn(z)|

w(z) + sup
z∈K

|vtn(z) − vt(z)|
w(z) + sup

z∈K

|vt(z) − J∗(z)|
w(z)

≤ 2M σt

1 − σ
+ sup

z∈K

|vtn(z) − vt(z)|
w(z) (by (13) and (15)).

Since w ≥ 1, supz∈K
|vt

n(z)−vt(z)|
w(z) → 0 as n → ∞ for all t by Lemma 3.5. Hence, the last expression can be 

made arbitrarily small since t ≥ 1 is arbitrary and σ ∈ (0, 1), this completes the proof. �
4. Near optimality of quantized policies with average cost

In this section we consider the problem (P) for the average cost. We prove an approximation result 
analogous to Theorem 3.2. To do this, some new assumptions are needed on the components of the original 
MDP in addition to the conditions in Assumption 3.1. A version of these assumptions were used in [23] and 
[10] to study the existence of the solution to the Average Cost Optimality Equality (ACOE) and Inequality 
(ACOI). For any probability measure ϑ and measurable function h on Z, let ϑ(h) :=

∫
Z h(z)ϑ(dz).

Assumption 4.1. Suppose Assumption 3.1 holds with (2) replaced by condition (e) below. Moreover, suppose 
there exist a probability measure λ on Z and a continuous function φ : Z × A → [0, ∞) such that

(e)
∫
Z w(y)η(dy|z, a) ≤ αw(z) + λ(w)φ(z, a) for all (z, a) ∈ Z × A, where α ∈ (0, 1).

(f) η(D|z, a) ≥ λ(D)φ(z, a) for all (z, a) ∈ Z × A and D ∈ B(Z).
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(g) The weight function w is λ-integrable.
(h)

∫
Z φ(z, f(z))λ(dz) > 0 for all f ∈ F.

Any f ∈ F gives rise to a time-homogeneous Markov chain {zt}∞t=1 (state process) with the transition 
probability η( · |z, f(z)) on Z given Z. For any t ≥ 1, let ηt( · |z, f(z)) denote the t-step transition probability 
of this Markov chain given the initial point z. Hence, ηt( · |z, f(z)) is recursively given by

ηt+1( · |z, f(z)) =
∫
Z

η( · |y, f(y))ηt(dy|z, f(z)).

For any z ∈ Z, let

V ∗(z) := inf
ϕ∈Φ

V (ϕ, z).

V ∗ is called the average cost value function of the MDP. The following theorem is a consequence of [23, 
Theorems 3.3 and 3.6].

Theorem 4.1. Under Assumption 4.1 the following holds.

(i) For each f ∈ F, the stochastic kernel η( · |z, f(z)) is positive Harris recurrent with unique invariant 
probability measure νf . Furthermore, w is νf -integrable, and therefore, ρf :=

∫
Z c(z, f(z))νf (dz) < ∞.

(ii) There exist f∗ ∈ F and h∗ ∈ Cw(Z) such that the triple (h∗, f∗, ρf∗) satisfies the average cost optimality 
equality (ACOE), i.e.,

ρf∗ + h∗(z) = min
a∈A

[
c(z, a) +

∫
Z

h∗(y)η(dy|z, a)
]

= c(z, f∗(z)) +
∫
Z

h∗(y)η(dy|z, f∗(z)),

and therefore,

V ∗(z) = ρf∗ ,

for all z ∈ Z.

Proof. The only statement that does not directly follow from [23, Theorems 3.3 and 3.6] is the fact: h∗ ∈
Cw(Z). Hence, we only prove this.

By [23, Theorem 3.5], h∗ is the unique fixed point of the following contraction operator with modulus α

Fu(z) := min
a∈A

[
c(z, a) +

∫
Z

u(y)η(dy|z, a) − λ(u)φ(z, a)
]
.

Since φ is continuous, by Lemma 3.1 the function inside the minimization is continuous in (z, a) if u ∈ Cw(Z). 
Then by Lemma 3.2, F maps Cw(Z) into itself. Therefore, h∗ ∈ Cw(Z). �

This theorem implies that for each f ∈ F, the average cost is given by V (f, z) =
∫
Z c(y, f(y))νf (dy) for 

all z ∈ Z (instead of νf -a.e.).



332 N. Saldi et al. / J. Math. Anal. Appl. 435 (2016) 321–337
Remark 4.1. If the state space Z is compact and the transition probability η( · |z, a) has a strictly pos-
itive density g(y|z, a) with respect to some probability measure ϑ which is continuous in (y, z, a), then 
Assumption 4.1 holds for w = 1, λ = ϑ, and φ(z, a) = miny∈Z g(y|z, a).

Note that all the statements in Theorem 4.1 are also valid for MDPn with an optimal policy f∗
n and 

a canonical triplet (h∗
n, f

∗
n, ρf∗

n
). Analogous with F , define the contraction operator Fn (with modulus α) 

corresponding to MDPn as

Fnu(z) := min
a∈Λn

[
c(z, a) +

∫
Z

u(y)η(dy|z, a) − λ(u)φ(z, a)
]
,

and therefore, h∗
n ∈ Cw(Z) is its fixed point.

The next theorem is the main result of this section which states that the average cost value function, 
denoted as V ∗

n , of MDPn converges to the average cost value function V ∗ of the original MDP.

Theorem 4.2. We have

lim
n→∞

|V ∗
n − V ∗| = 0,

where V ∗
n and V ∗ are both constants.

Let us define u0 = u0
n = 0, and ut+1 = Fut and ut+1

n = Fnu
t
n for t ≥ 1; that is, {ut}t≥1 and {ut

n}t≥1 are 
successive approximations to h∗ and h∗

n, respectively. Lemma 3.2 implies that ut and ut
n are in Cw(Z) for 

all t and n.

Lemma 4.1. For all u, v ∈ Cw(Z) and n ≥ 1, the following results hold: (i) if u ≤ v, then Fu ≤ Fv and 
Fnu ≤ Fnv; (ii) Fu ≤ Fnu.

Proof. Define the sub-stochastic kernel η̂ by letting

η̂( · |z, a) := η( · |z, a) − λ( · )φ(z, a).

Using η̂, F and Fn can be written as

Fu(z) := min
a∈A

[
c(z, a) +

∫
Z

u(y)η̂(dy|z, a)
]
,

Fnu(z) := min
a∈Λn

[
c(z, a) +

∫
Z

u(y)η̂(dy|z, a)
]
.

Then the results follow from the fact that η̂( · |z, a) ≥ 0 by Assumption 4.1-(f). �
Lemma 4.1 implies that u0 ≤ u1 ≤ u2 ≤ . . . ≤ h∗ and u0

n ≤ u1
n ≤ u2

n ≤ . . . ≤ h∗
n. Note that 

‖u1‖w, ‖u1
n‖w ≤ M by Assumption 3.1-(d). Since

‖h∗‖w ≤ ‖h∗ − u1‖w + ‖u1‖w = ‖Fh∗ − Fu0‖w + ‖u1‖w ≤ α‖h∗‖w + ‖u1‖w
‖h∗

n‖w ≤ ‖h∗
n − u1

n‖w + ‖u1
n‖w = ‖Fnh

∗
n − Fnu

0
n‖w + ‖u1

n‖w ≤ α‖h∗
n‖w + ‖u1

n‖w,

we have
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ut(z) ≤ h∗(z) ≤ M
w(z)
1 − α

,

and

ut
n(z) ≤ h∗

n(z) ≤ M
w(z)
1 − α

.

By inequalities above and the facts ‖ut − h∗‖w ≤ αt‖h‖w and ‖ut
n − h∗

n‖w ≤ αt‖hn‖w, we also have

‖ut − h∗‖w ≤ M
αt

1 − α
,

and

‖ut
n − h∗

n‖w ≤ M
αt

1 − α
.

By Lemma 4.1, for each n and v ∈ Cw(Z), we have Fv ≤ Fnv. Therefore, by the monotonicity of F and the 
fact u0 = u0

n = 0, we have

ut ≤ ut
n

h∗ ≤ h∗
n, (19)

for all t and n.

Lemma 4.2. For any compact set K ⊂ Z and t ≥ 1, we have

lim
n→∞

sup
z∈K

|ut
n(z) − ut(z)| = 0. (20)

Proof. Note that for each t ≥ 1, by the dominated convergence theorem and λ(w) < ∞, we have λ(ut
n) →

λ(ut) if ut
n → ut pointwise. The proof can be finished using the same arguments as in the proof of Lemma 3.5

and so we omit the details. �
Lemma 4.3. For any compact set K ⊂ Z, we have

lim
n→∞

sup
z∈K

|h∗
n(z) − h∗(z)| = 0.

Proof. The lemma can be proved using the same arguments as in the proof of Theorem 3.2. �
Now, using Lemma 4.3 we prove Theorem 4.2.

Proof of Theorem 4.2. Recall that V ∗ = ρf∗ and V ∗
n = ρf∗

n
, and they satisfy the following ACOEs:

h∗(z) + ρf∗ = min
a∈A

[
c(z, a) +

∫
Z

h∗(y)η(dy|z, a)
]

= c(z, f∗(z)) +
∫
Z

h∗(y)η(dy|z, f∗(z))

h∗
n(z) + ρf∗

n
= min

a∈Λn

[
c(z, a) +

∫
Z

h∗
n(y)η(dy|z, a)

]
= c(z, f∗

n(z)) +
∫
Z

h∗
n(y)η(dy|z, f∗

n(z)).

Note that h∗
n ≥ h∗ (see (19)) and ρf∗ ≥ ρf∗ . For each n, let fn := Υn(f∗). Then for any z ∈ Z we have
n
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lim sup
n→∞

(
h∗
n(z) + ρf∗

n

)
= lim sup

n→∞

(
min
a∈Λn

[
c(z, a) +

∫
Z

h∗
n(y)η(dy|z, a)

])

= lim sup
n→∞

(
c(z, f∗

n(z)) +
∫
Z

h∗
n(y)η(dy|z, f∗

n(z))
)

≤ lim sup
n→∞

(
c(z, fn(z)) +

∫
Z

h∗
n(y)η(dy|z, fn(z))

)

= c(z, f∗(z)) +
∫
Z

h∗(y)η(dy|z, f∗(z)) (21)

= h∗(z) + ρf∗

≤ lim inf
n→∞

(
h∗
n(z) + ρf∗

n

)
,

where (21) follows from Lemma 3.4 and the fact that h∗
n converges to h∗ uniformly on any compact subset 

K of Z and supn ‖h∗
n‖w ≤ M

1−α . Since limn→∞ h∗
n(z) = h∗(z) by Lemma 4.3, we have limn→∞ ρf∗

n
= ρf∗ . 

This completes the proof. �
5. Application to partially observed MDPs

In this section we apply the result obtained in Section 3 to partially observed Markov decision processes 
(POMDPs). Consider a discrete time POMDP with state space X, action space A, and observation space Y, 
all Borel spaces. Let p( · |x, a) denote the transition probability of the next state given the current state-action 
pair is (x, a), and let r( · |x) denote the transition probability of the current observation given the current 
state variable x. The one-stage cost function, denoted by c̃, is again a measurable function from X × A to 
[0, ∞).

Define the history spaces H̃t = (Y × A)t × Y, t = 0, 1, 2, . . . endowed with their product Borel σ-algebras 
generated by B(Y) and B(A). A policy π = {πt} is a sequence of stochastic kernels on A given H̃t. We denote 
by Π the set of all policies. Hence, for any initial distribution μ and policy π we can think of POMDP 
as a stochastic process 

{
xt, yt, at

}
t≥0 defined on a probability space 

(
Ω, B(Ω), Pπ

μ

)
where Ω = H̃∞ × X∞, 

xt is a X-valued random variable, yt is a Y-valued random variable, at is a A-valued random variable, and 
Pπ
μ -almost surely they satisfy

Pπ
μ (x0 ∈ · ) = μ( · )

Pπ
μ(xt ∈ · |x[0,t−1], y[0,t−1], a[0,t−1]) = Pπ

μ (xt ∈ · |xt−1, at−1) = p( · |xt−1, at−1)

Pπ
μ (yt ∈ · |x[0,t], y[0,t−1], a[0,t−1]) = Pπ

μ (yt ∈ · |xt) = r( · |xt)

Pπ
μ (at ∈ · |x[0,t], y[0,t], a[0,t−1]) = πt( · |y[0,t], a[0,t−1])

where x[0,t] = (x0, . . . , xt), y[0,t] = (y0, . . . , yt), and a[0,t] = (a0, . . . , at) (t ≥ 1). Let J̃(π, μ) denote the 
discounted cost function of the policy π ∈ Π with initial distribution μ of the POMDP.

It is known that any POMDP can be reduced to a (completely observable) MDP [20,26], whose states 
are the posterior state distributions or beliefs of the observer; that is, the state at time t is

Pr{xt ∈ · |y0, . . . , yt, a0, . . . , at−1} ∈ P(X).

We call this equivalent MDP the belief-MDP. The belief-MDP has state space Z = P(X) and action space A. 
The transition probability η of the belief-MDP can be constructed as in Example 2.1 (see also [12])
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η( · |z, a) =
∫
Y

1{F (z,a,y)∈ · }H(dy|z, a),

where F (z, a, y) := Pr{xt+1 ∈ · |zt = z, at = a, yt+1 = y}, H( · |z, a) := Pr{yt+1 ∈ · |zt = z, at = a}, and zt
denotes the posterior distribution of the state xt given the past observations. The one-stage cost function c
of the belief-MDP is given by

c(z, a) :=
∫
X

c̃(x, a)z(dx). (22)

Hence, the belief-MDP is a Markov decision process with the components (Z, A, η, c).
For the belief-MDP define the history spaces Ht = (Z × A)t × Z, t = 0, 1, 2, . . . as in Section 2. Again, 

Φ denotes the set of all policies for the belief-MDP, where the policies are defined in an usual manner. Let 
J(ϕ, ξ) denote the discounted cost function of policy ϕ ∈ Φ for initial distribution ξ of the belief-MDP.

Notice that any history vector ht = (z0, . . . , zt, a0, . . . , at−1) of the belief-MDP is a function of the history 
vector h̃t = (y0, . . . , yt, a0, . . . , at−1) of the POMDP. Let us write this relation as i(h̃t) = ht. Hence, for a 
policy ϕ = {ϕt} ∈ Φ, we can define a policy πϕ = {πϕ

t } ∈ Π as

πϕ
t ( · |h̃t) := ϕt( · |i(h̃t)).

Let us write this as a mapping from Φ to Π: Φ 	 ϕ 
→ i(ϕ) = πϕ ∈ Π. It is straightforward to show that 
the cost functions J(ϕ, ξ) and J̃(πϕ, μ) are the same. One can also prove that (see [20,26])

inf
ϕ∈Φ

J(ϕ, ξ) = inf
π∈Π

J̃(π, μ) (23)

and furthermore, that if ϕ is an optimal policy for belief-MDP, then πϕ is optimal for the POMDP as well. 
Hence, the POMDP and the corresponding belief-MDP are equivalent in the sense of cost minimization. 
We will impose the following assumptions on the components of the original POMDP.

Assumption 5.1.

(a) The one stage cost function c̃ is continuous and bounded.
(b) The stochastic kernel p( · |x, a) is weakly continuous in (x, a) ∈ X × A.
(c) The stochastic kernel r( · |x) is continuous in total variation, i.e., if xk → x, then r( · |xk) → r( · |x) in 

total variation.
(d) A is compact.

We refer the reader to [9, Section 8] for examples satisfying Assumption 5.1-(c). Note that by [2, Proposi-
tion 7.30], the one stage cost function c, which is defined in (22), is in Cb(Z ×A) under Assumption 5.1-(a), (b). 
Hence, the belief-MDP satisfies the conditions in Theorem 3.2 for w = 1 if η is weakly continuous. The 
following theorem is a consequence of [9, Theorem 3.7, Example 4.1] and Example 2.1.

Theorem 5.1.

(i) Under Assumption 5.1-(b), (c), the stochastic kernel η for belief-MDP is weakly continuous in (z, a).
(ii) If we relax the continuity of the observation channel in total variation to setwise or weak continuity, 

then η may not be weakly continuous even if the transition probability p of POMDP is continuous in 
total variation.



336 N. Saldi et al. / J. Math. Anal. Appl. 435 (2016) 321–337
(iii) Finally, η may not be setwise continuous in a, even if the observation channel is continuous in total 
variation.

Part (i) of Theorem 5.1 implies that belief-MDP satisfies conditions in Theorem 3.2. However, note that 
continuity of the observation channel in total variation in Assumption 5.1 cannot be relaxed to weak or 
setwise continuity. On the other hand, the continuity of the observation channel in total variation is not 
enough for the setwise continuity of η. Hence, results in [21] cannot be applied to the POMDP we consider 
even though we put a fairly strong condition on the observation channel.

Theorem 5.2. Suppose Assumption 5.1 holds for the POMDP. Then we have

lim
n→∞

|J∗
n(z) − J∗(z)| = 0 for all z ∈ Z,

where J∗
n is the discounted value function of the belief-MDP with the components 

{
Z, Λn, η, c

}
and J∗ is the 

discounted value function of the belief-MDP with the components 
{
Z, A, η, c

}
.

The significance of Theorem 5.2 is reinforced by the following observation. If we define DΠQ(Λn) as the 
set of deterministic policies in Π taking values in Λn, then the above theorem implies that for any given 
ε > 0 there exists n ≥ 1 and π∗ ∈ DΠQ(Λn) such that

J̃(π∗, μ) < min
π∈Π

J̃(π, μ) + ε,

where π∗ = πϕ∗ . This means that even when is an information transmission constraint from the controller 
to the plant, one might get ε-close to the value function for any small ε by quantizing the controller’s actions 
and sending the encoded levels.

6. Discussion

In this paper, we considered the finite-action approximation of stationary policies for a discrete-time 
Markov decision process with either discounted or average costs. Under mild weak continuity assumptions 
it was shown that if one uses a sufficiently large number of points to discretize the action space, then 
the resulting finite-action MDP can approximate the original model with arbitrary precision. The results 
obtained for the discounted cost were also applied to the finite-action approximation problem for POMDPs.

One direction for future work is to further investigate the problem (P) for the average cost under specific 
conditions for POMDPs, so that the results obtained for the average cost can be applicable to the belief-
MDPs. In this case, a possible solution methodology is to investigate conditions on the POMDP under 
which the Markov chain arising from the belief-MDP with a stationary policy is ergodic and hence has a 
unique invariant measure.
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