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Abstract—We consider finite model approximations of
a large class of static and dynamic team problems where
these models are constructed through uniform quantiza-
tion of the observation and action spaces of the agents. The
strategies obtained from these finite models are shown to
approximate the optimal cost with arbitrary precision under
mild technical assumptions. In particular, quantized team
policies are asymptotically optimal. This result is then ap-
plied to Witsenhausen’s celebrated counterexample and the
Gaussian relay channel problem. For Witsenhausen’s coun-
terexample, our approximation approach provides, to our
knowledge, the first rigorously established result that one
can construct an ε-optimal strategy for any ε > 0 through a
solution of a simpler problem.

Index Terms—Approximation methods, decentralized
stochastic control, quantization, team decision theory.

I. INTRODUCTION

T EAM decision theory has its roots in control theory and
economics. Marschak [1] was perhaps the first to intro-

duce the basic elements of teams and to provide the first steps
toward the development of a team theory. Radner [2] provided
foundational results for static teams, establishing connections
between person-by-person optimality, stationarity, and team-
optimality. Witsenhausen’s contributions [3]–[7] to dynamic
teams and characterization of information structures have been
crucial in the progress of our understanding of dynamic teams.
Detailed discussions on the design of information structures
in the context of team theory and economics applications are
given in [8], [9] and [15], in addition to a rich collection of other
sources not listed here.

Establishing the existence and structure of optimal policies is
a challenging problem. Existence of optimal policies for static
teams and a class of sequential dynamic teams has been studied
recently in [10]. More specific setups and nonexistence results
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have been studied in [11], [12]. For a class of teams which are
convex, one can reduce the search space to a smaller parametric
class of policies (see [2], [13], [14], and for a comprehensive
review, see [15]).

In this paper, our aim is to study the approximation of static
and dynamic team problems using finite models which are ob-
tained through the uniform discretization, on a finite grid, of the
observation and action spaces of agents. In particular, we are
interested in the asymptotic optimality of quantized policies.

In the literature, relatively few results are available on ap-
proximating static or dynamic team problems. We can only refer
the reader to [16], [17]–[19], [22]–[24], and a few references
therein. With the exception of [22]–[24], these works in general
study a specific setup (Witsenhausen’s counterexample) and are
mostly experimental, and as such, they do not rigorously prove
the convergence of approximate solutions.

In [22], [24], a class of static team problems is considered
and the existence of smooth optimal strategies is studied. Under
fairly strong assumptions, the existence of an optimal strategy
with Lipschitz continuous partial derivatives up to some order is
proved. By using this result, an error bound on the accuracy of
near optimal solutions is established, where near optimal strate-
gies are expressed as linear combinations of basis functions with
adjustable parameters. In [23], the same authors investigated
the approximation problem for Witsenhausen’s counterexam-
ple, which does not satisfy the conditions in [22] and [24]; in
particular, an analogous error bound on the accuracy of the near
optimal solutions is derived. In this result, both the error bound
and the near optimal solutions depend on the knowledge of
the optimal strategy for Witsenhausen’s counterexample. More-
over, the method devised in [23] implicitly corresponds to the
discretization of only the action spaces of the agents. Therefore,
it involves only the approximation with regard to the action
space, and does not correspond to a tractable approximation for
the set of policies/strategies.

Particular attention has been paid in the literature to Witsen-
hausen’s counterexample. This problem has puzzled the control
community for more than 40 years with its philosophical impact
demonstrating the challenges that arise due to a nonclassical in-
formation structure, and its formidable difficulty in obtaining an
optimal or suboptimal solution. In fact, optimal policies and their
value are still unknown, even though the existence of an optimal
policy has been established using various methods [10]–[12].
Some relevant results on obtaining approximate solutions can
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be found in [16]–[21], [23], [25], [26]. Certain lower bounds,
that are not tight, building on information theoretic approaches
are available in [27], see also [28]. In this paper, we show that
finite models obtained through the uniform quantization of the
observation and action spaces lead to a sequence of policies
whose cost values converge to the optimal cost. Thus, with high
enough computation power, one could guarantee that for any
ε > 0, an ε-optimal policy can be constructed.

We note that the operation of quantization has typically been
the method to show that a nonlinear policy can perform better
than an optimal linear policy, both for Witsenhausen’s coun-
terexample [17], [26] and another interesting model known as
the Gaussian relay channel problem [29], [30]. Our findings
show that for a large class of problems, quantized policies not
only may perform better than linear policies, but that they are
actually almost optimal.

We finally note that although finding optimal solutions for
finite models as the ones constructed in this paper was shown
to be NP-complete in [31], the task is still computationally less
demanding than the method used in [23]. Loosely speaking, to
obtain a near optimal solution using the method in [23], one
has to compute the optimal partitions of the observation spaces
and the optimal representation points in the action spaces.
In contrast, the partitions of the observation spaces and the
available representation points in the action spaces used by
our method are known a priori. We also note that if one can
establish smoothness properties of optimal policies such as
differentiability or Lipschitz continuity (e.g., as in [24]), the
methods developed in our paper can be used to provide rates
of convergence for the sequence of finite solutions as the finite
models are successively refined.

Contributions: (i) We establish that finite models asymptot-
ically represent the true models in the sense that the solutions
obtained by solving such finite models lead to cost values that
converge to the optimal cost of the original model. Thus, our
approach can be viewed to be constructive; even though the
computational complexity is typically at least exponential in the
cardinality of the finite model. (ii) Our approximation approach
provides, to our knowledge, the first rigorously established re-
sult showing that one can construct an ε-optimal strategy for
any ε > 0 through an explicit solution of a simpler problem for
a large class of static and dynamic team problems, in particular
for the Witsenhausen’s celebrated counterexample.

The rest of the paper is organized as follows. In Section II
we review the definition of Witsenhausen’s intrinsic model for
sequential team problems. In Section III-A, we consider fi-
nite observation approximations of static team problems with
compact observation spaces and bounded cost, and prove the
asymptotic optimality of strategies obtained from finite mod-
els. In Section III-B, an analogous approximation result is ob-
tained for static team problems with noncompact observation
spaces and unbounded cost functions. In Section IV, we con-
sider finite observation approximations of dynamic team prob-
lems via the static reduction method. In Sections V and VI we
apply the results derived in Section IV to study finite observa-
tion space approximations of Witsenhausen’s counterexample
and the Gaussian relay channel. Discretization of the action

spaces is considered in Section VII. Section VIII concludes the
paper.

II. SEQUENTIAL TEAMS AND CHARACTERIZATION OF

INFORMATION STRUCTURES

In this section, we introduce the model as laid out by Wit-
senhausen, called the Intrinsic Model [4]. We refer to [15] for
a more comprehensive overview and further characterizations
and classifications of information structures. In this model, any
action applied at any given time is regarded as being applied
by an individual agent, who acts only once. One advantage of
this model, in addition to its generality, is that the definitions
regarding information structures can be compactly described.

Suppose that in a decentralized system there is a pre-defined
order in which the agents act. Such a system is called sequential
(for nonsequential teams, we refer the reader to [32], [33] and
[34], in addition to [7]). In the following, all spaces are assumed
to be Borel spaces (i.e., Borel subsets of complete and separable
metric spaces) endowed with Borel σ-algebras. In the context
of a sequential system, the Intrinsic Model has the following
components:

1) A collection of measurable spaces I :=
{
(X,

X ), (Ui ,U i), (Yi ,Y i), i = 1, . . . , N
}

, specifying
the system’s distinguishable events, and the action and
measurement spaces. Here N is the number of actions
taken, and each of these actions is supposed to be taken
by an individual agent (hence, an agent with perfect
recall can also be regarded as a separate decision maker
every time it acts). Here X is a space on which an
underlying probability can be defined. The space Ui

denotes the ith action space from which the action
ui of Agent i is selected. The space Yi denotes the
measurement (or observation) space of Agent i.

2) A measurement constraint which establishes the con-
nection between the observation variables and the sys-
tem’s distinguishable events. The Yi-valued observa-
tion variables are given by yi ∼ ηi( · |x,ui−1), where
ui−1 = (u1 , . . . , ui−1), ηi is a stochastic kernel on Yi

given X × ∏i−1
j=1 Uj [38], and uk denotes the action of

Agent k.
3) A design constraint, which restricts the set of admissi-

ble N -tuple control strategies γ = (γ1 , γ2 , . . . , γN ), also
called policies, to the set of all measurable functions, so
that ui = γi(yi), where γi is a measurable function. Let
Γi denote the set of all admissible policies for Agent i
and let Γ =

∏
k Γk .

4) A probability measure P on (X,X ) which describes the
measures on the random events in the model.

We note that the intrinsic model of Witsenhausen uses a set-
theoretic characterization; however, for Borel spaces, the model
above is equivalent to the intrinsic model for sequential team
problems.

Under this intrinsic model, a sequential team problem is dy-
namic if the information yi available to at least one agent i is
affected by the action of at least one other agent k �= i. A decen-
tralized problem is static, if the information available at every
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decision maker is only affected by state of the nature; that is,
no other decision maker can affect the information at any given
decision maker.

Information structures (ISs) can also be classified as classical,
quasi-classical, and nonclassical. An IS is classical if yi contains
all of the information available to Agent k for all k < i. An IS
is quasi-classical or partially nested, if whenever uk (for some
k < i) affects yi , Agent i has access to yk . An IS which is not
partially nested is nonclassical.

For any γ = (γ1 , · · · , γN ), we let the (expected) cost of the
team problem be defined by

J(γ) := E[c(x,y,u)]

for some measurable cost function c : X × ∏
i Yi × ∏

i Ui →
R, where u := (u1 , . . . , uN ) = γ(y) and y := (y1 , . . . , yN ).

Definition 1: For a given stochastic team problem, a pol-
icy (strategy) γ∗ := (γ1∗, . . . , γN ∗) ∈ Γ is an optimal team
decision rule if

J(γ∗) = inf
γ∈Γ

J(γ) =: J∗.

The cost level J∗ achieved by this strategy is the optimal team
cost.

Definition 2: For a given stochastic team problem, a pol-
icy γ∗ := (γ1∗, . . . , γN ∗) constitutes a Nash equilibrium (or a
person-by-person optimal solution) if, for all β ∈ Γi and all
i ∈ N , the following inequalities hold:

J∗ := J(γ∗) ≤ J(γ−i∗, β),

where we have adopted the notation

(γ−i∗, β) := (γ1∗, . . . , γi−1∗, β, γi+1∗, . . . , γN ∗
).

Unless otherwise specified, the term ‘measurable’ will refer to
Borel measurability in the rest of the paper. In what follows, the
terms policy, measurement, and agent are used synonymously
with strategy, observation, and decision maker, respectively.

A. Auxiliary Results

Here we restate some well-known results in measure theory
and functional analysis that will be frequently used in the paper.

The first result is Lusin’s theorem which roughly states that
any measurable function is almost continuous.

Theorem 1: (Lusin’s Theorem [35, Theorem 7.5.2]) Let E1
and E2 be two Borel spaces and let μ be a probability measure
on E1 . Assume f : E1 → E2 is measurable. Then, for any ε > 0
there is a closed set F ⊂ E1 such that μ(E1 \ F ) < ε and the
restriction of f to F is continuous.

The second theorem is the Dugundji extension theorem which
is a generalization of the Tietze extension theorem [35].

Theorem 2: (Dugundji Extension Theorem [36, Theorem
7.4]) Let E1 be a Borel space and let F be a closed subset
of E1 . Let E2 be a convex subset of some locally convex vec-
tor space. Then any continuous f : F → E2 has a continuous
extension to E1 .

The next theorem originally states that the closed convex
hull of a compact subset in a locally convex vector space E is

compact if the vector space is completely metrizable (i.e., there
exists a metric d on E such that (E, d) is a complete metric
space). Since a closed subset of a compact set is compact, we
can state the theorem in the following form.

Theorem 3: [37, Theorem 5.35] In a completely metrizable
locally convex vector space E, the closed convex hull of a com-
pact set is compact. The same statement also holds when E is
replaced with any of its closed and convex subsets.

III. APPROXIMATION OF STATIC TEAM PROBLEMS

In this section, we consider the finite observation approxi-
mation of static team problems. We consider an N -agent static
team problem in which Agent i, i = 1, . . . , N , observes a ran-
dom variable yi and takes an action ui , where yi takes values in
a Borel space Yi and ui takes values in a Borel space Ui . Given
any state realization x, the random variable yi has a distribution
Wi( · |x); that is, Wi( · |x) is a stochastic kernel on Yi given X.

The team cost function c is a nonnegative function of the state,
observations, and actions; that is, c : X × Y × U → [0,∞),
where Y :=

∏N
i=1 Yi and U :=

∏N
i=1 Ui . For Agent i, the set of

strategies Γi is given by

Γi :=
{
γi : Yi → Ui , γi is measurable

}
.

Recall that Γ =
∏N

i=1 Γi . Then, J : Γ → [0,∞), the cost of the
team, is given by

J(γ) =
∫

X×Y
c(x,y,u)P (dx, dy)

where u = γ(y). Here, with an abuse of notation, P (dx, dy) :=
P (dx)

∏N
i=1 Wi(dyi |x) denotes the joint distribution of the

state and observations. Therefore, we have

J∗ = inf
γ∈Γ

J(γ).

We first consider the case where the observation spaces are
compact and the cost function is bounded. Then, teams with
noncompact observation spaces and unbounded cost function
will be studied.

A. Approximation of Static Teams With Compact
Observation Spaces and Bounded Cost

We impose the following assumptions on the components of
the model.

Assumption 1:
1) The cost function c is bounded. In addition, it is continu-

ous in (u,y) for any fixed x.
2) For each i, Ui is a convex subset of a locally convex

vector space.
3) For each i, Yi is compact.

We first prove that the minimum cost achievable by continu-
ous strategies is equal to the optimal cost J∗. To this end, we de-
fine Γi

c :=
{
γi ∈ Γi : γi is continuous

}
and Γc :=

∏N
i=1 Γi

c

for all i = 1, . . . , N .
Proposition 1: We have

inf
γ∈Γc

J(γ) = J∗.
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Proof: Let γ ∈ Γ be arbitrary. We prove that there exists a
sequence

{
γ

k

}
k≥1 ∈ Γc such that J(γ

k
) → J(γ) as k → ∞,

which implies the proposition. Let μi denote the distribution of
yi .

For each k ≥ 1, by Lusin’s theorem, there are closed sets
Fk,i ⊂ Yi such that μi

(
Yi \ Fk,i

)
< 1/k and the restriction of

γi to Fk,i is continuous. Define πi
k = γi

∣
∣
Fk , i

so that πi
k : Fk,i →

Ui is continuous. By the Dugundji extension theorem, there
exists a continuous extension γi

k : Yi → Ui of πi
k . Therefore,

γ
k

= (γ1
k , . . . , γN

k ) ∈ Γc and Fk :=
∏N

i=1 Fk,i satisfies

∣
∣J(γ) − J(γ

k
)
∣
∣ =

∣
∣
∣
∣

∫

X×Y

[
c(x,y, γ) − c(x,y, γ

k
)
]
P (dx, dy)

∣
∣
∣
∣

≤
∫

X×(Y\Fk )

∣
∣c(x,y, γ) − c(x,y, γ

k
)
∣
∣ P (dx, dy)

≤ 2‖c‖P
(
X × (Y \ Fk )

)
,

where ‖c‖ is the maximum absolute value that c takes.
Since P

(
X × (Y \ Fk )

) ≤ ∑N
i=1 μi

(
Yi \ Fk,i

) ≤ N/k, we
have limk→∞ J(γ

k
) = J(γ). This completes the proof. �

Let di denote the metric on Yi . Since Yi is compact, there
exist finite sets Yi

n :=
{
yi,1 , . . . , yi,in

} ⊂ Yi such that each Yi
n

is an 1/n-net in Yi ; that is, for any y ∈ Yi , we have

min
z∈Yi

n

di(y, z) <
1
n

.

Define function qi
n mapping Yi to Yi

n by

qi
n (y) := arg min

z∈Yi
n

di(y, z),

where ties are broken so that qi
n is measurable. In the literature,

qi
n is called the nearest neighborhood quantizer [39]. If Yi =

[−M,M ] for some M ∈ R+ , one can choose Yi
n such that

qi
n becomes a uniform quantizer. For any γi ∈ Γi , we let γn,i

denote the strategy γi ◦ qi
n . Define

Γi
n := Γi ◦ qi

n

and let Γn :=
∏N

i=1 Γi
n . The following theorem states that an

optimal (or almost optimal) policy can be approximated with
arbitrarily small approximation error for the induced costs by
policies in Γn if n is sufficiently large.

Theorem 4: We have

lim
n→∞ inf

γ∈Γn

J(γ) = J∗.

Proof: For any ε, let γ
ε

= (γ1
ε , . . . , γN

ε ) ∈ Γc denote an ε-
optimal continuous strategy. The existence of such a strategy
follows from Proposition 1. Then we have

inf
γ∈Γn

J(γ) − J∗ = inf
γ∈Γn

J(γ) − inf
γ∈Γc

J(γ) (by Proposition 1)

≤ J(γ
ε,n

) − inf
γ∈Γc

J(γ)

≤ ε +
(
J(γ

ε,n
) − J(γ

ε
)
)

where γ
ε,n

= (γn,1
ε , . . . , γn,N

ε ). Note that c(x,y, γ
ε,n

(y)) →
c(x,y, γ

ε
(y)) as n → ∞, for all (x,y) ∈ X × Y since c is con-

tinuous in u and γ
ε
∈ Γc . Hence, by the dominated convergence

theorem the second term in the last expression converges to zero
as n → ∞. Since ε is arbitrary, this completes the proof. �

For each n, define stochastic kernels Wi
n ( · |x) on Yi

n given
X as follows:

Wi
n ( · |x) :=

in∑

j=1

W (Sn
i,j |x)δyi , j

( · )

whereSn
i,j :=

{
y ∈ Yi : qi

n (y) = yi,j

}
. Let Πi

n :=
{
πi : Yi

n →
Ui , πi measurable

}
and Πn :=

∏N
i=1 Πi

n . Define Jn : Πn →
[0,∞) as

Jn (π) :=
∫

X×Yn

c(x,y,u)Pn (dx, dy),

where π = (π1 , . . . , πN ), u = π(y), Yn =
∏N

i=1 Yi
n , and

Pn (dx, dy) = P (dx)
∏N

i=1 Wi
n (dyi |x).

Lemma 1: Let {πn} be a sequence of strategies such that
πn ∈ Πn . For each n, define γ

n
:= πn ◦ qn , where qn :=

(q1
n , . . . , qN

n ). Then, we have

lim
n→∞ |Jn (πn ) − J(γ

n
)| = 0.

Proof: We have

|Jn (πn ) − J(γ
n
)|

=
∣
∣
∣
∣

∫

X×Y
c(x, qn (y), γ

n
) dP −

∫

X×Y
c(x,y, γ

n
) dP

∣
∣
∣
∣

which converges to zero as n → ∞ by dominated convergence
theorem and the fact that c is bounded and continuous in y. �

The following theorem, a consequence of Theorem 4, is the
main result of this section. It states that to compute a near
optimal strategy for the original team problem, it is sufficient
to compute an optimal strategy (or almost optimal strategy if
an optimal one does not exist) for the team problem with finite
observation space described above.

Theorem 5: For any ε > 0, there exists a sufficiently large n
such that the optimal (or almost optimal) policy π∗ ∈ Πn for
the cost Jn is ε-optimal for the original team problem when
π∗ = (π1∗, . . . , πN ∗) is extended to Y via γi = πi∗ ◦ qi

n .
Proof: Fix any ε > 0. By Theorem 4, there exists a sequence

of strategies {γ
n
} such that γ

n
∈ Γn and limn→∞ J(γ

n
) = J∗.

Define πn as the restriction of γ
n

to the set Yn . Then, we have

J∗ = lim
n→∞ J(γ

n
)

= lim
n→∞ Jn (πn ) (by Lemma 1)

≥ lim sup
n→∞

inf
π∈Πn

Jn (π).

For the reverse inequality, for each n ≥ 1, let πn ∈ Πn be such
that Jn (πn ) < infπ∈Πn

Jn (π) + 1/n. Define γ
n

:= πn ◦ qn .
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Then, we have

lim inf
n→∞ inf

π∈Πn

Jn (π) = lim inf
n→∞ Jn (πn )

= lim inf
n→∞ J(γ

n
) (by Lemma 1)

≥ J∗.

This completes the proof. �

B. Approximation of Static Teams With Noncompact
Observation Spaces and Unbounded Cost

In this section, we consider the finite observation approxi-
mation of static team problems with noncompact observation
spaces and unbounded cost function. We impose the following
assumptions on the components of the model.

Assumption 2:
1) The cost function c is continuous in (u,y) for any fixed

x. In addition, it is bounded on any compact subset of
X × Y × U.

2) For each i, Ui is a closed and convex subset of a com-
pletely metrizable locally convex vector space.

3) For each i, Yi is locally compact.
4) For any subset G of U, the function wG (x,y) :=

supu∈G c(x,y,u) is integrable with respect to
P (dx, dy), for any compact subset G of U of the form
G =

∏N
i=1 Gi .

5) For any γ ∈ Γ with J(γ) < ∞ and each i, there ex-

ists ui,∗ ∈ Ui such that J(γ−i , γi
ui , ∗) < ∞, where γi

ui , ∗ ≡
ui,∗.

Remark 1: Note that Assumption 2-(d), (e) hold if the cost
function is bounded. Therefore, if the static team problem sat-
isfies Assumption 1, then Assumption 2 (except (b)) holds as
well. Hence, the results derived in this section almost include
the results proved in Section III-A as a particular case. How-
ever, since the analysis in this section is somewhat involved, we
present the compact and bounded case separately.

Our approach can be summarized as follows: (i) first, we show
that there exists a near optimal policy whose range is convex and
compact (and thus bounded); (ii) we prove that the near optimal
policy in step (i) can be taken to be continuous; (iii) we construct
a near optimal policy which only uses quantized observations;
(iv) under one additional assumption, we prove that optimal
policies for the finite models constructed using components of
the original model can approximate an optimal policy for the
original model with arbitrary precision.

The following result states that there exists a near optimal
strategy whose range is convex and compact. In what follows,
for any subset G of U, we let

ΓG :=
{
γ ∈ Γ : γ(Y) ⊂ G

}
.

Lemma 2: Suppose Assumption 2-(a), (b), (c), (e) hold.
Then, for any ε > 0 there exists a compact subset G of U of
the form G =

∏N
i=1 Gi , where each Gi is convex and compact,

such that

inf
γ∈ΓG

J(γ) < J∗ + ε.

Proof: Fix any ε > 0. Let γ ∈ Γ with J(γ) < J∗ + ε/2. We
construct the desired G iteratively.

By Assumption 2-(e) there exists u1,∗ ∈ U1 such that
J(γ−1 , γ1

u1 , ∗) < ∞. Let G1 ⊂ U1 be a compact set containing
u1,∗. We define

γ̃(y1) =

{
γ1(y1), if γ1(y1) ∈ G1

u1,∗, otherwise.

Define also γ
1

:= (γ̃1 , γ2 , . . . , γN ), M1 :=
{
y1 ∈ Y1 :

γ1(y1) ∈ G1
}

, and ũ1 = γ̃(y1). Then, we have

|J(γ) − J(γ
1
)|

=
∣
∣
∣
∣E

[
c(x,y,u)1{y 1 ∈M 1 }

]
+ E

[
c(x,y,u)1{y 1 /∈M 1 }

]

− E
[
c(x,y,u−1 , ũ1)1{y 1 ∈M 1 }

]

− E
[
c(x,y,u−1 , ũ1)1{y 1 /∈M 1 }

]
∣
∣
∣
∣

≤ E
[
c(x,y,u)1{y 1 /∈M 1 }

]
+ E

[
c(x,y,u−1 , ũ1)1{y 1 /∈M 1 }

]

=
∫

X×Y×U−1 ×(G1 )c

c(x,y,u) δγ (du) P (dx, dy)

+
∫

X×Y×U−1 ×(G1 )c

c(x,y,u) δ(γ−1 ,γ 1
u 1 , ∗ )

(du) P (dx, dy)

where Dc denotes the complement of the set D, δz de-
notes the point mass at z, and U−1 =

∏N
i=2 Ui . Recall that

J(γ−1 , γ1
u1 , ∗) < ∞ by Assumption 2-(e). Hence, the last ex-

pression can be made smaller than ε
2N by properly choosing G1

since U1 is a Borel space [40, Theorem 3.2]. Since the closed
convex hull of the set G1 is compact by Theorem 3, we can
indeed assume that G1 is convex without loss of generality. By
replacing γ with γ

1
and applying the same method as above, we

can obtain γ
2
, and a convex and compact G2 ⊂ U2 such that

|J(γ
1
) − J(γ

2
)| ≤ ε

2N and γ2(Y2) ⊂ G2 .

Continuing this way, we obtain G =
∏N

i=1 Gi and γ
N

∈ ΓG

such that
∣
∣J(γ) − J(γ

N
)
∣
∣ < ε/2, where Gi is convex and com-

pact for all i = 1, . . . , N . Hence, we have J(γ
N

) < J∗ + ε,
completing the proof. �

Recall that Γc denotes the set of continuous strategies. For
any G ⊂ U, we define Γc,G := Γc ∩ ΓG ; that is, Γc,G is the set
of continuous strategies having range in G.

Proposition 2: Suppose Assumption 2 holds. Then, for any
ε > 0 there exists a compact subset G of U of the form G =∏N

i=1 Gi , where each Gi is convex and compact, such that

inf
γ∈Γc , G

J(γ) < J∗ + ε.

Proof: Fix any ε > 0. By Lemma 2, there exists a compact
subset G =

∏N
i=1 Gi of U, where Gi is convex and compact,

and γ ∈ ΓG such that

J(γ) < J∗ +
ε

2
.

Recall that μi denotes the distribution of yi .
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Let δ > 0 which will be specified later. Analogous to the proof
of Proposition 1, we construct a continuous strategy γ̃ which
is almost equal to γ. For each i, Lusin’s theorem implies the

existence of a closed set Fi,δ ⊂ Yi such that μi
(
Yi \ Fi,δ

)
< δ

and the restriction, denoted by πi , of γi on Fi,δ is continuous.
By the Dugundji extension theorem there exists a continuous
extension γ̃i : Yi → Gi of πi . Therefore, γ̃ = (γ̃1 , . . . , γ̃N ) ∈
Γc,G . Let Fδ :=

∏N
i=1 Fi,δ . Then, we have

P
(
X × (Y \ Fδ )

) ≤
N∑

i=1

P
(
X × Y−i × (Yi \ Fi,δ )

)

≤
N∑

i=1

δ = Nδ.

Recalling the definition of wG in Assumption 2-(d), we have

∣
∣J(γ) − J(γ̃)

∣
∣ =

∣
∣
∣
∣

∫

X×Y

[
c(x,y, γ) − c(x,y, γ̃)

]
P (dx, dy)

∣
∣
∣
∣

≤
∫

X×(Y\Fδ )

[
c(x,y, γ) + c(x,y, γ̃)

]
P (dx, dy)

≤ 2
∫

X×(Y\Fδ )
wG (x,y) P (dx, dy).

By Assumption 2-(d) wG is P -integrable so that the measure
wG (x,y)P (dx, dy) is absolutely continuous with respect to P .
Since P

(
X × (Y \ Fδ )

) → 0 as δ → 0, we obtain
∫

X×(Y\Fδ )
wG (x,y) P (dx, dy) → 0 as δ → 0.

Since J(γ) < J∗ + ε
2 , there exists a sufficiently small δ > 0

such that J(γ̃) < J∗ + ε. This completes the proof. �
Since each Yi is a locally compact separable metric space,

there exists a nested sequence of compact sets {Ki
l} such that

Ki
l ⊂ int Ki

l+1 and Yi =
⋃∞

l=1 Ki
l [37, Lemma 2.76], where

int D denotes the interior of the set D.
Recall that di denotes the metric on Yi . For each l ≥ 1, let

Yi
l,n :=

{
yi,1 , . . . , yi,il , n

} ⊂ Ki
l be an 1/n-net in Ki

l . Recall that
if Yi

l,n is an 1/n-net in Ki
l , then for any y ∈ Ki

l we have

min
z∈Yi

l , n

di(y, z) <
1
n

.

For each l and n, let qi
l,n : Ki

l → Yi
l,n be a nearest neighborhood

quantizer given by

qi
l,n (y) = arg min

z∈Yi
l , n

di(y, z),

where ties are broken so that qi
l,n is measurable. If Ki

l =
[−M,M ] ⊂ Yi = R for some M ∈ R+ , the finite set Yi

l,n can
be chosen such that qi

l,n becomes a uniform quantizer. We let

Qi
l,n : Yi → Yi

l,n denote the extension of qi
l,n to Yi given by

Qi
l,n (y) :=

{
qi
l,n (y), if y ∈ Ki

l ,

yi,0 , otherwise

where yi,0 ∈ Yi is some auxiliary element. Define Γi
l,n = Γi ◦

Qi
l,n ⊂ Γi ; that is, Γi

l,n is defined to be the set of all strategies
γ̃i ∈ Γi of the form γ̃i = γi ◦ Qi

l,n , where γi ∈ Γi . Define also

Γl,n :=
∏N

i=1 Γi
l,n ⊂ Γ. The following theorem states that an

optimal (or almost optimal) policy can be approximated with
arbitrarily small approximation error for the induced costs by
policies in Γl,n for sufficiently large l and n.

Theorem 6: For any ε > 0, there exist (l, n(l)) and γ ∈
Γl,n(l) such that

J(γ) < J∗ + ε.

Proof: By Proposition 2, there exists γ ∈ Γc,G such that

J(γ) < J∗ + ε/4, where G =
∏N

i=1 Gi and each Gi is convex
and compact. For each l and n, we define γi

l,n := γi ◦ Qi
l,n and

γ
l,n

= (γ1
l,n , . . . , γN

l,n ). Define also ui,∗ := γi(yi,0) ∈ Gi .
Let N∗ denote the collection of all subsets of N except the

empty set. For any s ∈ N∗, we define

us,∗ :=
(
ui,∗)

i∈s
, γ

us , ∗ :=
(
γi

ui , ∗
)
i∈s

, γ−s :=
(
γi

)
i /∈s

and

Ks
l :=

∏

i∈s

(
Ki

l

)c ×
∏

i /∈s

Ki
l .

Recall that γi
ui , ∗ is the strategy which maps any yi ∈ Yi to ui,∗.

Let Kl =
∏N

i=1 Ki
l and observe that

(X × Kl)c = X ×
⋃

s∈N∗
Ks

l .

Note that since the range of the strategy (γ−s , γ
us , ∗) is contained

in G, we have J(γ−s , γ
us , ∗) ≤

∫
X×Y wG (x,y)P (dx, dy) < ∞

for all s ∈ N∗ by Assumption 2-(d). Hence, there exists l suffi-
ciently large such that

∣
∣
∣
∣J(γ) −

∫

X×Kl

c(x,y, γ)P (dx, dy)
∣
∣
∣
∣≤

ε

4
,

and∫

X×Ks
l

c(x,y, γ−s , γ
us , ∗)P (dx, dy) ≤ ε

2N +1 , for all s ∈ N∗.

Let q−s
l,n =

(
qi
l,n

)
i /∈s

. Then, we have

lim sup
n→∞

|J(γ) − J(γ
l,n

)| ≤
∣
∣
∣
∣J(γ) −

∫

X×Kl

c(x,y, γ) dP

∣
∣
∣
∣

+ lim sup
n→∞

∣
∣
∣
∣

∫

X×Kl

c(x,y, γ) dP −
∫

X×Kl

c(x,y, γ
l,n

) dP

∣
∣
∣
∣

+
∑

s∈N∗
lim sup

n→∞

∫

X×Ks
l

c(x,y, γ−s ◦ q−s
l,n , γ

us , ∗) dP

≤ ε

4
+ lim sup

n→∞

∣
∣
∣
∣

∫

X×Kl

c(x,y, γ) dP −
∫

X×Kl

c(x,y, γ
l,n

) dP

∣
∣
∣
∣

+
∑

s∈N∗
lim sup

n→∞

∣
∣
∣
∣

∫

X×Ks
l

c(x,y, γ−s ◦ q−s
l,n , γ

us , ∗) dP
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−
∫

X×Ks
l

c(x,y, γ−s , γ
us , ∗) dP

∣
∣
∣
∣

+
∑

s∈N∗

∫

X×Ks
l

c(x,y, γ−s , γ
us , ∗) dP

≤ ε

4
+

∑

s∈N∗

ε

2N +1

+ lim sup
n→∞

∣
∣
∣
∣

∫

X×Kl

c(x,y, γ) dP −
∫

X×Kl

c(x,y, γ
l,n

) dP

∣
∣
∣
∣

+
∑

s∈N∗
lim sup

n→∞

∣
∣
∣
∣

∫

X×Ks
l

c(x,y, γ−s ◦ q−s
l,n , γ

us , ∗) dP

−
∫

X×Ks
l

c(x,y, γ−s , γ
us , ∗) dP

∣
∣
∣
∣.

Note that in the last expression, the integrands in the third and
fourth terms are upper bounded by wG . Since wG is P -integrable
by Assumption 2-(d), γi ◦ qi

l,n → γi on Ki
l as n → ∞ (recall

that γi is continuous), and c is continuous in u, the third and
fourth terms in the last expression converge to zero as n →
∞ by dominated convergence theorem. Hence, there exists a
sufficiently large n(l) such that the last expression becomes
less than 3ε/4. Therefore, J(γ

l,n(l)
) < J∗ + ε, completing the

proof. �
The above result implies that to compute a near optimal policy

for the team problem it is sufficient to choose a strategy based on
the quantized observations

(
Q1

l,n (y1), . . . , QN
l,n (yN )

)
for suffi-

ciently large l and n. Furthermore, this nearly optimal strategy
can have a compact range of the form G =

∏N
i=1 Gi , where

Gi is convex and compact for each i = 1, . . . , N . However, to
obtain a result analogous to the Theorem 5, we need to impose a
further assumption. To this end, we first introduce a finite obser-
vation model. For each (l, n), let Zi

l,n := {yi,0 , yi,1 , . . . , yi,il , n
}

(i.e., the output levels of Qi
l,n ) and define the stochastic kernels

Wi
l,n ( · |x) on Zi

l,n given X as follows:

Wi
l,n ( · |x) :=

il , n∑

j=0

W (S l,n
i,j |x)δyi , j

( · )

where S l,n
i,j :=

{
y ∈ Yi : Qi

l,n (y) = yi,j

}
. Let Πi

n,l :=
{
πi :

Zi
l,n → Ui , πi measurable

}
and Πl,n :=

∏N
i=1 Πi

l,n . Define
Jl,n : Πl,n → [0,∞) as

Jl,n (π) :=
∫

X×Zl , n

c(x,y,u)Pl,n (dx, dy),

where π = (π1 , . . . , πN ), u = π(y), Zl,n =
∏N

i=1 Zi
l,n , and

Pl,n (dx, dy) = P (dx)
∏N

i=1 Wi
l,n (dyi |x). Note that the prob-

ability measure Pl,n can also be treated as a measure on X × Y.
In this case, it is not difficult to prove that Pl,n converges to P
weakly as l, n → ∞. For any compact subset G of U, we also
define ΠG

l,n := {π ∈ Πl,n : π(Zl,n ) ⊂ G}.
Assumption 3: For any compact subset G of U of the form

G =
∏N

i=1 Gi , we assume that the function wG is uniformly

integrable with respect to the measures {Pl,n}; that is,

lim
R→∞

sup
l,n

∫

{wG >R}
wG (x,y) dPl,n = 0.

Lemma 3: Let {πl,n} be a sequence of strategies such that

πl,n ∈ ΠG
l,n , where G =

∏N
i=1 Gi and each Gi is convex and

compact. For each l and n, define γ
l,n

:= πl,n ◦ Ql,n , where

Ql,n := (Q1
l,n , . . . , QN

l,n ). Then, we have

lim
l,n→∞

|Jl,n (πl,n ) − J(γ
l,n

)| = 0.

Proof: Let us introduce the following finite measures on
X × Y:

μG (S) :=
∫

S

wG (x,y) dP ,

μl,n
G (S) :=

∫

S

wG (x,y) dPl,n .

Since Pl,n converges to P weakly, by [43, Theorem 3.5] and
Assumption 3 we have μl,n

G → μG weakly as l, n → ∞. Hence,
the sequence {μl,n

G } is tight. Therefore, there exists a compact
subset K of X × Y such that μG (Kc) < ε/2 and μl,n

G (Kc) <
ε/2 for all l, n. Then, we have

|Jl,n (πl,n ) − J(γ
l,n

)|

=
∣
∣
∣
∣

∫

X×Y
c(x,Ql,n (y), γ

l,n
) dP −

∫

X×Y
c(x,y, γ

l,n
) dP

∣
∣
∣
∣

≤
∫

K

∣
∣c(x,Ql,n (y), γ

l,n
) − c(x,y, γ

l,n
)
∣
∣ dP

+
∫

K c

wG (x,y) dP +
∫

K c

wG (x,y) dPl,n .

The first term in the last expression goes to zero as l, n → ∞ by
dominated convergence theorem and the fact that c is bounded
and continuous in y. The second term is less than ε. Since ε is
arbitrary, this completes the proof. �

The following theorem, which is a consequence of Theorem 6,
is the main result of this section. It states that to compute a near
optimal strategy for the original team problem, it is sufficient to
compute an optimal (or an almost optimal) policy for the team
problem described above.

Theorem 7: Suppose Assumptions 2 and 3 hold. Then, for
any ε > 0, there exists a pair (l, n(l)) and a compact subset
G =

∏N
i=1 Gi of U such that an optimal (or almost optimal)

policy π∗ in the set ΠG
l,n(l) for the cost Jl,n(l) is ε-optimal for the

original team problem when π∗ = (π1∗, . . . , πN ∗) is extended
to Y via γi = πi∗ ◦ Qi

l,n(l) .
Proof: Fix any ε > 0. By Lemma 2 and Theorem 6, there

exists compact subset G of U of the form G =
∏N

i=1 Gi such
that

lim
l,n→∞

inf
γ∈Γ l , n ∩ΓG

J(γ) − J∗ < ε.

For each l, n ≥ 1, let γ
l,n

∈ Γl,n ∩ ΓG be such that J(γ
l,n

) <

infγ∈Γ l , n ∩ΓG
J(γ) + 1/(n + l). Define πl,n as the restriction of
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γ
l,n

to the set Zl,n . Then, we have

J∗ + ε ≥ lim
l,n→∞

J(γ
l,n

)

= lim
l,n→∞

Jl,n (πl,n ) (by Lemma 3)

≥ lim sup
l,n→∞

inf
π∈ΠG

l , n

Jl,n (π).

For the reverse inequality, for each l, n ≥ 1, let πl,n ∈ ΠG
l,n

be such that Jl,n (πl,n ) < infπ∈ΠG
l , n

Jl,n (π) + 1/(n + l). De-
fine γ

l,n
:= πl,n ◦ Ql,n . Then, we have

lim inf
l,n→∞

inf
π∈ΠG

l , n

Jl,n (π) = lim inf
l,n→∞

Jl,n (πl,n )

= lim inf
l,n→∞

J(γ
l,n

) (by Lemma 3)

≥ J∗.

This completes the proof. �

IV. APPROXIMATION OF DYNAMIC TEAM PROBLEMS

The results for the static case apply also to the dynamic case
through a static reduction.

A. Static Reduction of Sequential Dynamic Teams and
Witsenhausen’s Equivalent Model

First we review the equivalence between sequential dynamic
teams and their static reduction (this is called the equivalent
model [5]). Consider a dynamic team setting according to the
intrinsic model where there are N decision epochs, and Agent i
observes yi ∼ ηi( · |x,ui−1), and the decisions are generated as
ui = γi(yi). The resulting cost under a given team policy γ is

J(γ) = E[c(x,y,u)].

This dynamic team can be converted to a static team provided
that the following absolute continuity condition holds.

Assumption 4: For every i = 1, . . . , N , there exists a func-
tion fi : X × Ui−1

1 × Yi → [0,∞), where Ui−1
1 :=

∏i−1
j=1 Ui ,

and a probability measure Qi on Yi such that for all S ∈ Y i

we have

ηi(S|x,ui−1) =
∫

S

fi(x,ui−1 , yi)Qi(dyi).

Therefore, for a fixed choice of γ, the joint distribution of
(x,y) is given by

P (dx, dy) = P (dx)
N∏

i=1

fi(x,ui−1 , yi)Qi(dyi),

where ui−1 =
(
γ1(y1), . . . , γi−1(yi−1)

)
. The cost function

J(γ) can then be written as

J(γ) =
∫

X×Y
c(x,y,u)P (dx)

N∏

i=1

fi(x,ui−1 , yi)Qi(dyi)

=
∫

X×Y
c̃(x,y,u)P̃ (dx, dy)

where c̃(x,y,u) := c(x,y,u)
∏N

i=1 fi(x,ui−1 , yi) and
P̃ (dx, dy) := P (dx)

∏N
i=1 Qi(dyi). The observations now can

be regarded as independent, and by incorporating the fi terms
into c, we can obtain an equivalent static team problem. Hence,
the essential step is to appropriately adjust the probability space
and the cost function.

Remark 2: Note that in the static reduction method some
nice properties (such as continuity and boundedness) of the cost
function c of the original dynamic team problem can be lost if
the fi functions in Assumption 4 are not well-behaved. How-
ever, the observation channels between w and the yi are quite
well-behaved for most of the practical models (i.e, the additive
Gaussian channel) admitting static reduction. This usually im-
plies that most nice properties of the cost function are preserved
for these practical models.

B. Approximation Results for Nonclassical Dynamic
Teams Admitting a Static Reduction

The next theorem is the main result of this section. It states
that for a class of dynamic team problems, finite models can
approximate an optimal policy with arbitrary precision. In what
follows, P̃l,n denotes the distribution of state and observations
in the finite model approximation of the static reduction.

Theorem 8: Suppose Assumptions 2-(a), (b), (c), (e) and
4 hold. In addition, assume that for each i = 1, . . . , N,
fi(x,ui−1 , yi) is continuous in ui−1 and yi , and

sup
u∈G

c(x,y,u)
N∏

i=1

fi(x,ui−1 , yi) is P̃l,n

− uniformly integrable

for all compact G ⊂ U of the form G =
∏N

i=1 Gi . Then,
the static reduction of the dynamic team model satisfies
Assumptions 2 and 3. Therefore, Theorems 6 and 7 hold for
the dynamic team problem. In particular, Theorems 6 and 7
hold for the dynamic team problems satisfying Assumptions 2,
3 and 4, if fi is bounded and continuous in ui−1 and yi for each
i = 1, . . . , N .

C. Approximation of Partially Nested Dynamic Teams

An important dynamic information structure is the partially
nested information structure. An IS is partially nested if when-
ever uk affects yi for some k < i, Agent i has access to yk ;
that is, there exists a measurable function fi,k : Yi → Yk such
that fi,k (yi) = yk for all γ ∈ Γ and all realizations of x. For
such team problems, one talks about precedence relationships
among agents: Agent k is precedent to Agent i (or Agent k com-
municates to Agent i), if the former agent’s actions affect the
information of the latter, in which case (to be partially nested)
Agent i has to have the information based on which the action-
generating policy of Agent k was constructed.

For such partially nested (or quasi-classical) information
structures, a static reduction was studied by Ho and Chu in
the context of LQG systems [41] and for a class of nonlinear
systems satisfying restrictive invertibility properties [42]. For
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Fig. 1. Witsenhausen’s counterexample.

these dynamic teams, the cost function does not change as a
result of the static reduction, unlike in the case of static reduc-
tion in Section IV-A. Therefore, if the partially nested dynamic
team satisfies Assumptions 2 and 3, then its static reduction also
satisfies it. Hence, Theorems 6 and 7 hold for such problems.

Before proceeding to the next section, we prove an auxiliary
result which will be used in the next two sections.

Lemma 4: Let f and g be nonnegative real functions defined
on metric spaces E1 and E2 , respectively. Suppose

lim
R→∞

sup
n≥1

∫

{f >R}
f dμn = 0

lim
R→∞

sup
n≥1

∫

{g>R}
g dνn = 0

for some sequence of probability measures {μn} and {νn}.
Then, we have

lim
R→∞

sup
n≥1

∫

{f g>R}
f(e1)g(e2) dμn ⊗ dνn = 0.

Proof: Let En [f ] :=
∫

fdμn and Ên [g] :=
∫

gdνn . Clearly
supn En [f ] =: a < ∞ and supn Ên [g] =: b < ∞. Note that
{fg > R} ⊂ {f >

√
R} ∪ {g >

√
R}. Hence

∫

{f g>R}
f(e1)g(e2) dμn ⊗ dνn

≤
∫

{f >
√

R}
fg dμn ⊗ dνn +

∫

{g>
√

R}
fg dμn ⊗ dνn

= Ên [g]
∫

{f >
√

R}
f dμn + En [f ]

∫

{g>
√

R}
g dνn

≤ b

∫

{f >
√

R}
f dμn + a

∫

{g>
√

R}
g dνn .

Since the last term converges to zero as R → ∞ by assumption,
this completes the proof. �

V. APPROXIMATION OF WITSENHAUSEN’S COUNTEREXAMPLE

AND ASYMPTOTIC OPTIMALITY OF QUANTIZED POLICIES

A. Witsenhausen’s Counterexample and Its
Static Reduction

In Witsenhausen’s celebrated counterexample [12], depicted
in Fig. 1, there are two decision makers: Agent 1 observes a
zero mean and unit variance Gaussian random variable y1 and
decides its strategy u1 . Agent 2 observes y2 := u1 + v, where
v is standard (zero mean and unit variance) Gaussian noise
independent of y1 , and decides its strategy u2 .

The cost function of the team is given by

c(y1 , u1 , u2) = l(u1 − y1)2 + (u2 − u1)2 ,

where l ∈ R + . In this decentralized system, the state of the
nature x can be regarded as a degenerate (constant) random
variable. Let g(y) := 1√

2π
exp {−y2/2}. Then we have

P (y2 ∈ S|u1) =
∫

S

g(y2 − u1)m(dy2)

where m denotes the Lebesgue measure. Let

f(u1 , y2) := exp
{
− (u1)2 − 2y2u1

2

}
(1)

so that g(y2 − u1) = f(u1 , y2) 1√
2π

exp {−(y2)2/2}. The static
reduction proceeds as follows: for any policy γ, we have

J(γ) =
∫

c(y1 , u1 , u2)P (dy2 |u1)δγ 1 (y 1 )(du1)Pg(dy1)

=
∫

c(y1 , u1 , u2)f(u1 , y2)Pg(dy2)Pg(dy1)

where Pg denotes the standard Gaussian distribution. Hence,
by defining c̃(y1 , y2 , u1 , u2) = c(y1 , u1 , u2)f(u1 , y2) and
P̃ (dy1 , dy2) = Pg(dy1)Pg(dy2), we can write J(γ) as

J(γ) =
∫

c̃(y1 , y2 , u1 , u2)P̃ (dy1 , dy2). (2)

Therefore, in the static reduction of Witsenhausen’s counterex-
ample, the agents observe independent zero mean and unit vari-
ance Gaussian random variables.

B. Approximation of Witsenhausen’s Counterexample

To tackle the approximation problem for Witsenhausen’s
counterexample, we show that the conditions in Theorem 8
hold and hence Theorems 6 and 7 can be applied.

The cost function of the static reduction is given by

c̃(y1 , y2 , u1 , u2) =
(
l(u1 − y1)2 + (u2 − u1)2)f(u1 , y2),

where f(u1 , y2) is given in (1). Note that the strategy spaces of
the original problem and its static reduction are identical, and
same strategies induce the same team costs.

Lemma 5: For any (γ1 , γ2) ∈ Γ1 × Γ2 with J(γ1 , γ2) <
∞, we have E

[
γi(yi)2

]
< ∞.

Proof: To prove the lemma, we use the original problem
setup instead of its static reduction. Fix any strategy (γ1 , γ2)
with finite cost. Since E

[
(u1 − y1)2

]
< ∞ and u1 = (u1 −

y1) + y1 , we have E
[
(u1)2

]
< ∞. We also have E

[
(u2)2

]
<

∞ since E
[
(u1 − u2)2

]
< ∞, completing the proof. �

For any l ∈ R+ , let L := [−l, l] and let ql,n denote the uni-
form quantizer on L having n output levels; that is,

ql,n : L → {y1 , . . . , yn} ⊂ L

where yj = −l + (j − 1
2 )Δ, j = 1, . . . , n, and

q−1(yj ) =
[
yj − Δ

2
, yj +

Δ
2

)
,

where Δ = 2l
n . Let us extend ql,n to R by mapping R \ L to

y0 = 0. For each (l, n), let Zl,n := {y0 , y1 , . . . , yn} (i.e., output
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levels of the extended ql,n ) and define the probability measure
Pl,n on Zl,n as

Pl,n (yi) = Pg(q−1
l,n (yi)).

Moreover, let Πi
l,n := {πi : Zl,n → Ui , πi measurable} and de-

fine

Jl,n (π1 , π2) :=
n∑

j,i=0

c̃(yi, yj , π
1(yi), π2(yj ))Pl,n (yi)Pl,n (yj ).

With the help of Lemma 5, we now prove the following result.
Proposition 3: Witsenhausen’s counterexample satisfies

conditions in Theorem 8.
Proof: Assumption 2-(a), (b), (c) and Assumption 4 clearly

hold. To prove Assumption 2-(e), we introduce the follow-
ing notation. For any strategy (γ1 , γ2), we let Eγ 1 ,γ 2 denote
the corresponding expectation operation. Pick (γ1 , γ2) with
J(γ1 , γ2) < ∞. Since

Eγ 1 ,γ 2

[
Eγ 1 ,γ 2

[
(
u1 − u2)2

∣
∣
∣
∣u

1
]]

= Eγ 1 ,γ 2

[
(
u1 − u2)2

]

by the law of total expectation, there exists u1,∗ ∈ U1 such
that Eγ 1 ,γ 2

[(
u1 − u2

)2∣∣u1 = u1,∗] < ∞. Let u2,∗ = 0. Then
we have

J(γ1 , γ2
u2 , ∗) = Eγ 1 ,γ 2

u 2 , ∗

[
l
(
u1 − y1)2 +

(
u1)2

]

= Eγ 1 ,γ 2

[
l
(
u1 − y1)2 +

(
u1)2

]

< ∞ (by Lemma 5)

and

J(γ1
u1 , ∗ , γ2) = Eγ 1

u 1 , ∗ ,γ 2

[
l
(
u1 − y1)2 +

(
u1 − u2)2

]

= Eγ 1 ,γ 2

[
l
(
u1,∗ − y1)2

]

+ Eγ 1 ,γ 2

[
(
u1 − u2)2

∣
∣
∣
∣u

1 = u1,∗
]

< ∞.

Therefore, Assumption 2-(e) holds.
Note that for the Pl,n ⊗ Pl,n -uniform integrability condition,

it is sufficient to consider compact sets of the form [−M,M ]2

for M ∈ R+ . Accordingly

w1(y1) := sup
(u1 ,u2 )∈[−M,M ]2

l(u1 − y1)2 + (u2 − u1)2

= l
(
M + |y1 |)2 + 4M 2

and

w2(y2) : = sup
(u1 ,u2 )∈[−M,M ]2

f(u1 , y2)

≤ sup
(u1 ,u2 )∈[−M,M ]2

exp {y2u1}

= exp {M |y2 |}.

Fig. 2. Gaussian relay channel.

Therefore, we have

lim
R→∞

sup
n,l

∫

{w 1 (y 1 )>R}
w1(y1) dPl,n

= lim
R→∞

sup
n,l

∫

{w 1 (y 1 )>R}
w1(ql,n (y1)) dPg

≤ lim
R→∞

∫

{w 1 (y 1 )>R}

[
l
(
M + (|y1 | + 1)2) + 4M 2

]
dPg

= 0 (3)

and

lim
R→∞

sup
n,l

∫

{w 2 (y 2 )>R}
w2(y2) dPl,n

= lim
R→∞

sup
n,l

∫

{w 2 (y 2 )>R}
w2(ql,n (y2)) dPg

≤ lim
R→∞

∫

{w 2 (y 2 )>R}
expM(|y2 | + 1) dPg = 0 (4)

where (3) and (4) follow from the fact that ql,n (R \ L) = 0
and the integrability of w1 and w2 with respect to the Pg.
By Lemma 4, the product w1w2 is Pl,n ⊗ Pl,n -uniformly inte-
grable. Therefore, sup(u1 ,u2 )∈[−M,M ]2 c̃(y1 , y2 , u1 , u2) is also
Pl,n ⊗ Pl,n -uniformly integrable. Since M is arbitrary, this
completes the proof. �

Proposition 3 and Theorem 8 imply that Theorems 6 and 7
are applicable to Witsenhausen’s counterexample. The theorem
below is the main result of this section. It states that to compute
a near optimal strategy for Witsenhausen’s counterexample, it is
sufficient to compute an optimal strategy for the problem with
finite observations obtained through uniform quantization of the
observation spaces.

Theorem 9: For any ε > 0, there exists (l, n(l)) and m ∈ R+

such that an optimal policy (π1∗, π2∗) in the set Π1,M
l,n(l) × Π2,M

l,n(l)
for the cost Jl,n(l) is ε-optimal for Witsenhausen’s counterex-
ample when (π1∗, π2∗) is extended to Y1 × Y2 via γi = πi∗ ◦
ql,n(l) , i = 1, 2, where M := [−m,m] and Πi,M

l,n(l) := {πi ∈
Πi

l,n(l) : πi(Zl,n ) ⊂ M}.

VI. THE GAUSSIAN RELAY CHANNEL PROBLEM AND

ASYMPTOTIC OPTIMALITY OF QUANTIZED POLICIES

A. The Gaussian Relay Channel Problem and Its
Static Reduction

An important dynamic team problem which has attracted in-
terest is the Gaussian relay channel problem [29], [30] depicted
in Fig. 2. Here, Agent 1 observes a noisy version of the state
x which has Gaussian distribution with zero mean and vari-
ance σ2

x ; that is, y1 := x + v0 where v0 is a zero mean and
variance σ2

0 Gaussian noise independent of x. Agent 1 decides
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its strategy u1 based on y1 . For i = 2, . . . , N , Agent i receives
yi := ui−1 + vi−1 (a noisy version of the decision ui−1 of Agent
i − 1), where vi−1 is zero mean and variance σ2

i−1 Gaussian
noise independent of {x, v1 , . . . , vi−2 , vi , . . . , vN −1}, and de-
cides its strategy ui .

The cost function of the team is given by

c(x,u) :=
(
uN − x

)2 +
N −1∑

i=1

li
(
ui

)2
,

where li ∈ R+ for all i = 1, . . . , N − 1. To ease the notation,
we simply take σx = σ0 = σ1 = . . . = σN −1 = 1. Recall that
g(y) := 1√

2π
exp {−y2/2}. Then we have

P (y1 ∈ S|x) =
∫

S

g(y1 − x)m(dy1)

P (yi ∈ S|ui−1) =
∫

S

g(yi − ui−1)m(dyi), for i = 2, . . . , N.

Recall also that g(y − u) = f(u, y) 1√
2π

exp {−(y)2/2}, where
f(u, y) is defined in (1). Then, for any policy γ, we have

J(γ) =
∫

X×Y
c(x,u)P (dx, dy)

=
∫

X×Y
c(x,u)

[
f(x, y1)

N∏

i=2

f(ui−1 , yi)
]

× PN +1
g (dx, dy),

where PN +1
g denotes the product of N + 1 zero mean and

unit variance Gaussian distributions. Therefore, in the static
reduction of Gaussian relay channel, we have the com-
ponents c̃(x,y,u) := c(x,u)

[
f(x, y1)

∏N
i=2 f(ui−1 , yi)

]
and

P̃ (dx, dy) = PN +1
g (dx, dy). Analogous to Witsenhausen’s

counterexample, the agents observe independent zero mean and
unit variance Gaussian random variables.

B. Approximation of the Gaussian Relay
Channel Problem

In this section, the approximation problem for the Gaussian
relay channel is considered using the static reduction formula-
tion. Analogous to Section V, we prove that the conditions of
Theorem 8 hold for Gaussian relay channel, and so Theorems 6
and 7 can be applied.

The cost function of the static reduction is given by

c̃(x,y,u) := c(x,u)
[
f(x, y1)

N∏

i=2

f(ui−1 , yi)
]

where f(u, y) is given in (1).
Recall the uniform quantizer ql,n on L := [l,−l] having n

output levels from Section V. We extend ql,n to R by mapping
R \ L to y0 = 0. Recall also the set Zl,n := {y0 , y1 , . . . , yn}
and the probability measure Pl,n on Zl,n given by

Pl,n (yi) = Pg(q−1
l,n (yi)).

Define Πi
l,n := {πi : Zl,n → Ui , πi measurable} and

Jl,n (π) :=
∫

X

∑

y∈∏N
i = 1 Zl , n

c̃(x,y, π(y))
N∏

i=1

Pl,n (yi)Pg(dx)

where π := (π1 , . . . , πN ). Define P̃l,n (dx, dy) :=
∏N

i=1
Pl,n (dyi)Pg(dx).

Proposition 4: The Gaussian relay channel problem satisfies
the conditions in Theorem 8.

Proof: It is clear that Assumption 2-(a), (b), (c) and
Assumption 4 hold. For any strategy γ, let Eγ denote the cor-
responding expectation operation. To prove Assumption 2-(e),
pick γ with J(γ) < ∞. Analogous to Lemma 5, one can prove

that Eγ

[(
uN

)2]
< ∞. For any i = 1, . . . , N , by the law of total

expectation we can write

J(γ) = Eγ

[
Eγ

[
c(x,u)

∣
∣ui

]
]

and

Eγ

[
(
uN

)2
]

= Eγ

[
Eγ

[(
uN

)2∣∣ui
]
]
.

Therefore, for each i = 1, . . . , N , there exists ui,∗ ∈ Ui such
that Eγ

[
c(x,u)

∣
∣ui = ui,∗] < ∞ and Eγ

[(
uN

)2∣∣ui = ui,∗] <
∞. Then we have

J(γ−i , γi
ui , ∗) = Eγ−i ,γ i

u i , ∗

[
(
uN − x

)2 +
N −1∑

j=1

lj
(
uj

)2
]

≤ Eγ−i ,γ i
u i , ∗

[
2x2 + 2

(
uN

)2 +
N −1∑

j=1

lj
(
uj

)2
]

= Eγ

[ i−1∑

j=1

lj
(
uj

)2 + 2x2
]

+ Eγ

[
2
(
uN

)2 +
N −1∑

j=i

lj
(
uj

)2
∣
∣
∣
∣u

i = ui,∗
]

< ∞.

Therefore, Assumption 2-(e) holds.
Analogous to the proof of Proposition 3, for the P̃l,n -

uniform integrability condition it is sufficient to consider com-
pact sets of the form [−M,M ]N for M ∈ R+ . In this case, we
have

w1(x) : = sup
u∈[−M,M ]N

(
uN − x

)2 +
N −1∑

i=1

li
(
ui

)2

=
(
M + x)2 +

N −1∑

i=1

liM
2
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and

N∏

i=2

wi,2(yi) := sup
u∈[−M,M ]N

N∏

i=2

f(ui−1 , yi)

≤ sup
u∈[−M,M ]N

N∏

i=2

exp {yiui−1}

=
N∏

i=2

exp {M |yi |}.

It can be shown as in the proof of Proposition 3 that
each wi,2 is Pl,n -uniformly integrable. Letting w̃1(x, y1) :=
w1(x)f(x, y1), we have
∫

X×Y1
w̃1(x, y1) exp {|x|}dP 2

g =
∫

X
w1(x) exp {|x|}dPg < ∞

and therefore

lim
R→∞

sup
l,n

∫

{w̃ 1 >R}
w̃1(x, y1) dPl,n dPg

= lim
R→∞

sup
l,n

∫

{w̃ 1 >R}
w̃1(x, ql,n (y1)) dP 2

g

≤ lim
R→∞

∫

{w̃ 1 >R}
w1(x) exp

{−x2 + 2xy1 + 2|x|
2

}
dP 2

g

= lim
R→∞

∫

{w̃ 1 >R}
w̃1(x, y1) exp {|x|} dP 2

g = 0.

Hence, by Lemma 4, the product w̃1
∏N

i=2 wi,2 is P̃l,n -
uniformly integrable. Therefore, supu∈[−M,M ]N c̃(x,y,u) is

also P̃l,n -uniformly integrable. Since M is arbitrary, this com-
pletes the proof. �

The preceding proposition and Theorem 8 imply, via
Theorems 6 and 7, that an optimal strategy for Gaussian re-
lay channel can be approximated by strategies obtained from
finite models. The following theorem is the main result of this
section.

Theorem 10: For any ε > 0, there exists (l, n(l)) and m ∈
R+ such that an optimal policy π∗ in the set

∏N
i=1 Πi,M

l,n(l) for
the cost Jl,n(l) is ε-optimal for Gaussian relay channel when
π∗ is extended to Y via γi = πi∗ ◦ ql,n(l) , i = 1, . . . , N , where

M := [−m,m] and Πi,M
l,n(l) := {πi ∈ Πi

l,n(l) : πi(Zl,n ) ⊂ M}.

VII. DISCRETIZATION OF THE ACTION SPACES AND

ASYMPTOTIC OPTIMALITY OF FINITE MODEL

REPRESENTATIONS FOR TEAM PROBLEMS

For computing near optimal strategies for static team prob-
lems using numerical algorithms, the action spaces Ui must be
finite. In this section, we show that the action spaces can be
taken to be finite in finite observation models if a sufficiently
large number of points are used for accurate approximation.
In this section, we consider the most general case studied in
Section III-B.

We note that the results derived in this section can be ap-
plied to dynamic teams which admit static reduction and satisfy
conditions in Theorem 8.

Recall the finite observation models constructed in
Section III-B. For each (l, n), the finite model has the follow-
ing components:

{
X, Zi

l,n , Ui ,W i
l,n ( · |x), c, P , i = 1, . . . , N

}
,

where X is the state space, Zi
l,n is the observation space for Agent

i,Ui is the action space for Agent i,W i
l,n ( · |x) observation chan-

nel from state to the observation of Agent i, c is the cost function,
and P is the distribution of the state. Furthermore, the strategy
spaces are defined as Πi

n,l :=
{
πi : Zi

l,n → Ui , πi measurable
}

and Πl,n :=
∏N

i=1 Πi
l,n . Then the cost function Jl,n : Πl,n →

[0,∞) is given by

Jl,n (π) :=
∫

X×Zl , n

c(x,y,u)Pl,n (dx, dy),

where π = (π1 , . . . , πN ), u = π(y), Zl,n =
∏N

i=1 Zi
l,n , and

Pl,n (dx, dy) = P (dx)
∏N

i=1 Wi
l,n (dyi |x).

The theorem below is the main result of this section which
states that one can approximate optimal strategy in Πl,n by
strategies taking values in a finite set.

Theorem 11: Suppose that original static team problem sat-
isfies Assumptions 2 and 3. Then, for each (l, n) and for any
ε > 0, there exist finite sets Ui

ε ⊂ Ui for i = 1, . . . , N such that

inf
π∈Π ε

l , n

Jl,n (π) < J∗
l,n + ε,

where Πε
l,n :=

{
π ∈ Πl,n : πi(Zi

l,n ) ⊂ Ui
ε , i ∈ N}

.
Proof: Fix any (l, n) and ε. Let us choose πε ∈ Πl,n such

that

Jl,n (πε) < inf
π∈Π l , n

Jl,n (π) +
ε

2
.

Note that for any i = 1, . . . , N , the range of πi,ε is a finite subset
of Ui and so, is contained in some compact and convex subset
Gi of Ui . Define G =

∏N
i=1 Gi .

Let ρi denote the metric on Ui . Since Gi is compact, one
can find a finite set Ui

k := {ui,1 , . . . , ui,ik
} ⊂ Gi which is a

1/k-net in Gi . Define Πi
k :=

{
πi ∈ ΠGi

l,n : πi(Zi
l,n ) ⊂ Ui

k

}
and

Πk =
∏N

i=1 Πi
k . For πi,ε , we let

πi,ε
k (y) := arg min

u∈Ui
k

ρi(πi,ε(y), u).

Hence

sup
y∈Zi

l , n

ρi(πi,ε(y), πi,ε
k (y)) < 1/k. (5)

We define πε
k = (π1,ε

k , . . . , πN,ε
k ). Then we have

inf
π∈Πk

Jl,n (π) − inf
π∈Π l , n

Jl,n (π) < inf
π∈Πk

Jl,n (π) − Jl,n (πε)

+
ε

2

≤ Jl,n (πε
k ) − Jl,n (πε) +

ε

2

≤
∫

X×Zl , n

∣
∣c(x,y, πε

k ) − c(x,y, πε)
∣
∣ dPl,n +

ε

2
.
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The last integral converges to zero as k → ∞ by the dominated
convergence theorem since (i) c(x,y, πε

k ) → c(x,y, πε) as k →
∞ by (5) and Assumption 2-(a), (ii) c(x,y, πε

k ), c(x,y, πε) ≤
wG (x,y) for all (x,y) ∈ X × Zl,n , and (iii) wG is Pl,n -
integrable. Therefore, there exists k0 sufficiently large such that
the last expression is less than ε. By choosing Ui

ε = Ui
k0

, for
i = 1, . . . , N , the proof is complete. �

Consider the finite observation models introduced in
Section V that approximate the Witsenhausen’s counterex-
ample. For any m ∈ R+ and k ∈ R+ , let qm,k : M →
{u1 , . . . , uk} denote the uniform quantizer with k output lev-
els (recall that M := [−m,m]). Note that qm,k is a quantizer
applied to subsets of action spaces Ui = R, i = 1, 2 (not to be
confused with ql,n in Section V). The preceding theorem im-
plies that for each (l, n) and ε > 0, there exists a m ∈ R+ and
k ∈ R+ such that

inf
π∈Πm , k

l , n

Jl,n (π) < J∗
l,n + ε,

where Πm,k
l,n :=

{
π ∈ Πl,n : πi(Zi

l,n ) ⊂ Um,k , i = 1, 2
}

and
Um,k = {u1 , . . . , uk} is the set of output levels of qm,k .

Therefore, to compute a near optimal strategy for Witsen-
hausen’s counterexample, it is sufficient to compute an optimal
strategy for the finite model that is obtained through uniform
quantization of observation and action spaces (i.e., R) on fi-
nite grids when the number of grid points is sufficiently large.
In particular, through constructing the uniform quantization so
that both the granular region and the granularity of the quantiz-
ers are successively refined (that is, the partitions generated by
the quantizers are successively nested), we have the following
proposition which lends itself to a numerical algorithm.

Theorem 12: There exists a sequence of finite models ob-
tained through a successive refinement of the measurement and
action set partitions generated by uniform quantizers whose
optimal costs will converge to the cost of the Witsenhausen’s
counterexample.

VIII. CONCLUSION

Approximation of both static and dynamic team problems
by finite models was considered. Under mild technical condi-
tions, we showed that the finite model obtained by quantizing
uniformly the observation and action spaces on finite grids pro-
vides a near optimal strategy if the number of grid points is suffi-
ciently large. Using this result, analogous approximation results
were also established for the well-known counterexample of
Witsenhausen and Gaussian relay channel. Our approximation
approach to Witsenhausen’s counterexample thus provides, to
our knowledge, the first rigorously established result that for
any ε > 0, one can construct an ε optimal strategy through an
explicit solution of a conceptually simpler problem.

One future direction is studying rates of convergence, i.e, the
quantitative relation between ε > 0 and the size of the approx-
imating grid. If one can a priori restrict the set of admissible
policies to those that are sufficiently smooth (as in e.g., [22],
[24]), then such bounds can be obtained using the methods de-
veloped in this paper.

Finally, we note that in general one may need very large com-
putational power for an exhaustive method to find optimal solu-
tions for a given finite model [31]. Nonetheless, the specifics of a
given problem may significantly reduce the computational com-
plexity. In the context of Witsenhausen’s counterexample, for
numerical implementation one could further enhance the con-
struction. Observe that Agent 2 will always run a conditional
estimator for Agent 1’s action; that is, an optimal policy is al-
ways given by γ2(y2) = E[u1 |y2 ]. Furthermore, Witsenhausen
[12] has shown that an optimal policy for Agent 1 is monotone
nondecreasing. These facts suggest that while searching over
quantized policies, one can only focus on Agent 1, and apply
quantized policies which satisfy a monotone behavior. Numeri-
cal results suggest that through such an approach one can obtain
results that are quite competitive with those that exist in the
literature. Furthermore, other iterative methods can be applied
as in, e.g., [19], [21]. The findings in our paper validate such
efforts and show that solutions obtained through carefully de-
signed approximation methods are guaranteed to converge to
optimal solutions.
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[10] A. Gupta, S. Yüksel, T. Basar, and C. Langbort, “On the existence of
optimal policies for a class of static and sequential dynamic teams,” SIAM
J. Control Optim., vol. 53, no. 3, pp. 1681–1712, 2015.
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