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Asymptotic Optimality of Finite Model
Approximations for Partially Observed Markov

Decision Processes with Discounted Cost
Naci Saldi, Serdar Yüksel, Tamás Linder

Abstract—We consider finite model approximations of discrete-
time partially observed Markov decision processes (POMDPs)
under the discounted cost criterion. After converting the original
partially observed stochastic control problem to a fully observed
one on the belief space, the finite models are obtained through the
uniform quantization of the state and action spaces of the belief
space Markov decision process (MDP). Under mild assumptions
on the components of the original model, it is established that the
policies obtained from these finite models are nearly optimal for
the belief space MDP, and so, for the original partially observed
problem. The assumptions essentially require that the belief space
MDP satisfies a mild weak continuity condition. We provide an
example and introduce explicit approximation procedures for the
quantization of the set of probability measures on the state space
of POMDP (i.e., belief space).

I. INTRODUCTION

In POMDP theory, existence of optimal policies have in
general been established via converting the original partially
observed stochastic control problem to a fully observed one on
the belief space, leading to a belief-MDP. However, computing
an optimal policy for this fully observed model, and so for
the original POMDP, using well known dynamic programming
algorithms is challenging even if the original system has finite
state and action spaces, since the state space of the fully
observed model is always uncountable. One way to overcome
this difficulty is to compute an approximately optimal policy
instead of a true optimal policy by constructing a reduced
model for the fully observed system for which one can apply
well known algorithms such as policy iteration, value iteration,
and Q-learning etc. to obtain the optimal policy.

In MDP theory, various methods have been developed
to compute near optimal policies by reducing the original
problem into a simpler one. A partial list of these techniques is
as follows: approximate dynamic programming, approximate
value or policy iteration, simulation-based techniques, neuro-
dynamic programming (or reinforcement learning), state ag-
gregation, etc. We refer the reader to [1]–[9] and references
therein. However, existing works mostly study systems with
discrete (i.e., finite or countable) state and action spaces [1],
[5], [6], [10]) or those that consider general state and action
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spaces (see, e.g., [7]–[9], [11], [12]) assume in general Lip-
schitz type continuity conditions on the transition probability
and the one-stage cost function in order to provide a rate of
convergence analysis for the approximation error. However,
for the fully observed reduction of POMDP, a Lipschitz type
regularity condition on the transition probability is in general
prohibitive. Indeed, demonstrating even the arguably most
relaxed regularity condition on the transition probability (i.e.,
weak continuity in state-action variable), is a challenging
problem as was recently demonstrated in [13] for general
state and action spaces (see also [14], [15] for a control-
free setup). Therefore, results developed in prior literature
cannot in general be applied to compute approximately optimal
policies for fully observed reduction of POMDP, and so, for
the original POMDP.

In [16], [17] we investigated finite action and state ap-
proximations of fully observed stochastic control problems
with general state and action spaces under the discounted cost
and average cost optimality criteria. For the discounted cost
case, we showed that optimal policies obtained from these
finite models asymptotically achieve the optimal cost for the
original problem under the weak continuity assumption on the
transition probability. Here, we apply and properly generalize
the results in these papers to obtain approximation results for
fully observed reduction of POMDPs, and so, for POMDPs.
The versatility of approximation results under weak continuity
conditions become particularly evident while investigating the
applicability of these results to the partially observed case.

In the literature there exist various, mostly numerical and
computational, results for obtaining approximately optimal
policies for POMDPs. In the following, we list a number
of such related results and comparisons with our paper: (i)
Reference [18] develops a computational algorithm, utilizing
structural convexity properties of the value function of belief-
MDPs, for the solutions of POMDPs when the state space is
continuous and action and measurements are discrete, and with
further extensions to continuous action and measurements.
Reference [19] provides an algorithm which may be regarded
as a quantization of the belief space. However, no rigorous
convergence results are given regarding this computational
algorithm. (ii) References [20] and [21] present quantization
based algorithms for the belief state, where the state, mea-
surement, and the action sets are finite. (iii) References [22]
and [23] provide an explicit quantization method for the set
of probability measures containing the belief states, where
the state space, unlike in many other contributions in the
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literature, is continuous. The quantization is done through the
approximations as measured by Kullback-Leibler divergence:
Kullback-Leibler divergence (or relative entropy) is a very
strong pseudo-distance measure which is even stronger than
total variation (by Pinsker’s inequality [24]), which in turn
is stronger than weak convergence. In particular, being able
to quantize the space of probability measures with finitely
many balls as defined by such a distance measure requires
very strict assumptions on the allowable beliefs and it in
particular requires, typically equicontinuity conditions (see
e.g. [25, Lemma 4.3]). (iv) In [26] the authors consider the
near optimality of finite-state controllers that are finite-state
probabilistic automatons taking observations as inputs and
producing controls as the outputs. A special case for these
type of controllers are the ones that only use finite observation
history. A similar finite memory approximation is developed in
[27]. (v) In [28] the authors establish finite state approximation
schemes for the belief-MDPs under both discounted cost
and average cost criteria using concavity properties of the
corresponding value function and show that approximate costs
can be used as lower bounds for the optimal cost function.
A similar finite state approximation is considered in [29],
[30] using concavity and convexity properties of the value
function for the discounted cost criterion. We refer the reader
to the survey papers [31], [32] and the book [33] for further
algorithmic and computational procedures for approximating
POMDPs.

Contributions of the paper. (i) We show that finite models
asymptotically approximate the original partially observed
Markov decision process (POMDP) in the sense that the
true costs of the policies obtained from these finite models
converge to the optimal cost of the original model. The finite
models are constructed by discretizing both the state and
action spaces of the equivalent fully-observed belief space
formulation of the POMDP. We establish the result for models
with general state and action spaces under mild conditions on
the system components. (ii) We provide systematic procedures
for the quantization of the set of probability measures on the
state space of POMDPs which is the state space of belief-
MDPs. By choosing an appropriate metric for the weak con-
vergence topology, any probability measure on the state space
can be approximated by the set of probability measures with
fixed finite support. Then, one can use the existing methods
in the literature for discretizing the probability simplex to
obtain finite-state approximations of the belief space. (iii) Our
rigorous results can be used to justify the novel quantization
techniques presented in [19]–[21] as well as a more relaxed
version for the results presented in [22] and [23]. In particular,
there do not exist approximation results of the generality pre-
sented in our paper with asymptotic performance guarantees.
We show that provided that the belief space is quantized
according to balls generated through metrics that metrize the
weak convergence topology (such as Prokhorov, bounded-
Lipschitz, or stronger ones such as the Wasserstein metric),
and provided that the action sets are quantized in a uniform
fashion, under very weak conditions on the controlled Markov
chain (namely the weak continuity of the kernel and total
variation continuity of the measurement channel), asymptotic

optimality is guaranteed. (iv) Our approach also highlights the
difficulties of obtaining explicit rates of convergence results for
approximation methods for POMDPs. Even in fully observed
models, for obtaining explicit rates of convergence, one needs
strong continuity conditions of the Lipschitz type, e.g.; [17,
Theorem 5.1]. As Theorem 1 shows, this is impossible under
even quite strong conditions for POMDPs.

The rest of the paper is organized as follows. In Section II
we introduce the partially observed stochastic control model
and construct the belief space formulation. In Section III we
establish the continuity properties that are satisfied by the
transition probability of the belief space MDP. In Section IV
we construct the finite model approximations and state approx-
imation results. In Section V we provide explicit methods to
quantize the set of probability measures on the state space. In
Section VI we illustrate our results by considering a numerical
example. Section VII concludes the paper.

II. PARTIALLY OBSERVED MARKOV DECISION PROCESSES

A discrete-time partially observed Markov decision process
(POMDP) has the following components: (i) State space X,
action space A, and observation space Y, all Borel spaces, (ii)
p( · |x, a) is the transition probability of the next state given the
current state-action pair is (x, a), (iii) r( · |x) is the observation
channel giving the probability of the current observation given
the current state variable x, and (iv) the one-stage cost function
c : X× A→ [0,∞).

To complete the description of the partially observed control
model, we must specify how the controller designs its control
law at each time step. To this end, define the history spaces
H0 = Y and Ht = (Y × A)t × Y, t = 1, 2, . . . endowed with
their product Borel σ-algebras generated by B(Y) and B(A).
A policy π = {πt} is a sequence of stochastic kernels on A
given Ht. We denote by Π the set of all policies.

According to the Ionescu Tulcea theorem [34], an initial
distribution µ on X and a policy π define a unique probability
measure Pπµ on H∞ × X∞. The expectation with respect
to Pπµ is denoted by Eπµ. For any initial distribution µ and
policy π we can think of the POMDP as a stochastic process{
xt, yt, at

}
t≥0

defined on the probability space
(
Ω,F , Pπµ

)
,

where Ω = H∞ ×X∞, the xt are X-valued random variables,
the yt are Y-valued random variables, the at are A-valued
random variables, and they satisfy for all t ≥ 1

Pπµ (x0 ∈ · ) = µ( · )
Pπµ (xt ∈ · |x{0,t−1}, y{0,t−1}, a{0,t−1})

= Pπµ (xt ∈ · |xt−1, at−1) = p( · |xt−1, at−1)

Pπµ (yt ∈ · |x{0,t}, y{0,t−1}, a{0,t−1})

= Pπµ (yt ∈ · |xt) = r( · |xt)
Pπµ (at ∈ · |x{0,t}, y{0,t}, a{0,t−1}) = πt( · |y{0,t}, a{0,t−1})

where x{0,t} = (x0, . . . , xt), y{0,t} = (y0, . . . , yt), and
a{0,t} = (a0, . . . , at). We denote by J(π, µ) the discounted
cost function of the policy π ∈ Π with initial distribution µ,
which is given by

J(π, µ) := Eπµ
[ ∞∑
t=0

βtc(xt, at)

]
,
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where β ∈ (0, 1) is the discount factor.
With this notation, the discounted value function of the

control problem is defined as

J∗(µ) := inf
π∈Π

J(π, µ).

A policy π∗ is said to be optimal if J(π∗, µ) = J∗(µ).
In POMDPs, since the information available to the de-

cision maker is a noisy version of the state, one cannot
apply the dynamic programming principle directly as the
one-stage cost function depends on the exact state informa-
tion. A canonical way to overcome this difficulty is con-
verting the original partially observed control problem to a
fully observed one by taking the posterior state distributions
Pr{xt ∈ · |y0, . . . , yt, a0, . . . , at−1} ∈ P(X) (’beliefs‘ of
the observer) as the new state variable and the function
c̃ : P(X)× A→ [0,∞), defined by

c̃(z, a) :=

∫
X

c(x, a)z(dx)

as the new one-stage cost function. This fully-observed MDP
is called the belief-MDP and is equivalent to the original
POMDP in the sense that for any optimal policy for the belief-
MDP, one can construct a policy for the belief-MDP which is
optimal. Therefore, finite-model approximation results devel-
oped for fully-observed MDPs can be applied to the belief-
MDP and so to the POMDP.

III. CONTINUITY PROPERTIES OF BELIEF-MDPS

In this section, we first discuss the continuity properties that
are satisfied by or prohibitive for the transition probability of
the belief-MDP. Then, we derive the conditions satisfied by
the components of the belief-MDP.

A. On the Convergence of Probability Measures

Let E be a Borel space and let P(E) denote the family of
all probability measure on (E,B(E)). A sequence {µn} is said
to converge to µ ∈ P(E) weakly (resp., setwise) if∫

E

g(e)µn(de)→
∫
E

g(e)µ(de)

for all continuous and bounded real function g (resp., for all
measurable and bounded real function g).

For any µ, ν ∈ P(E), the total variation norm is given by

‖µ− ν‖TV := 2 sup
B∈B(E)

|µ(B)− ν(B)|

= sup
f : ‖f‖∞≤1

∣∣∣∣ ∫
E

f(e)µ(de)−
∫
E

f(e)ν(de)

∣∣∣∣,
where the supremum is over all measurable real f such that
‖f‖∞ = supe∈E |f(e)| ≤ 1. A sequence {µn} is said to
converge to µ ∈ P(E) in total variation if ‖µn − µ‖TV → 0.
As it is clear from the definitions, total variation convergence
implies setwise convergence, which in turn implies weak
convergence.

The total variation metric leads to a stringent notion for
convergence. For example a sequence of discrete probability

measures on a finite-dimensional Euclidean space never con-
verges in total variation to a probability measure which admits
a density function with respect to the Lebesgue measure.
Setwise convergence also induces a topology which is not
easy to work with since the space under this convergence is
not metrizable [35, p. 59]. However, the space of probability
measures on a Borel space endowed with the topology of
weak convergence is itself a Borel space [36]. The bounded-
Lipschitz metric ρBL [37, p.109], for example, can be used to
metrize this space:

ρBL(µ, ν) := sup
‖f‖BL≤1

∣∣∣∣∫
E

f(e)µ(de)−
∫
E

f(e)ν(de)

∣∣∣∣, (1)

where

‖f‖BL := ‖f‖∞ + sup
e6=e′

f(e)− f(e′)

dE(e, e′)
,

and dE is the metric on E. Finally, the Wasserstein metric of
order 1, W1, can also be used for compact E (see [37, Theorem
6.9]):

W1(µ, ν) = inf
η∈H(µ,ν)

∫
E×E

dE(e, e′)η(de, de′),

whereH(µ, ν) denotes the set of probability measures on E×E
with first marginal µ and second marginal ν. Indeed, W1 can
also be used as an upper bound to ρBL for non-compact E
since W1 can equivalently be written as [37, Remark 6.5]:

W1(µ, ν) := sup
‖f‖Lip≤1

∣∣∣∣∫
E

f(e)µ(de)−
∫
E

f(e)ν(de)

∣∣∣∣,
where

‖f‖Lip := sup
e6=e′

f(e)− f(e′)

dE(e, e′)
.

Comparing this with (1), it follows that

ρBL ≤W1. (2)

This observation will be utilized for the quantization algo-
rithms on the set of probability measures later in the paper.

B. Belief Space Formulation of POMDPs

As indicated in Section II, any POMDP can be reduced to
a (completely observable) MDP [38], [39], whose states are
the posterior state distributions or beliefs of the observer; that
is, the state at time t is

zt := Pr{xt ∈ · |y0, . . . , yt, a0, . . . , at−1} ∈ P(X).

In this section, we construct the components of this belief-
MDP under some assumptions on the components of the
POMDP. Later, we establish the conditions satisfied by the
components of the belief-MDP, under which we can apply
approximation results in our earlier work [16], [17] to the
belief-MDP, and so, to the original POMDP.

To this end, let v : X → [0,∞) be a continuous moment
function in the sense that there exists an increasing sequence
of compact subsets {Kn}n≥1 of X such that

lim
n→∞

inf
x∈X\Kn

v(x) =∞.
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The following assumptions will be imposed on the components
of the POMDP.

Assumption 1.
(a) The one-stage cost function c is continuous and bounded.
(b) We have one of the following:

(1) the stochastic kernel p( · |x, a) is weakly continuous
in (x, a) ∈ X × A, i.e., if (xk, ak) → (x, a), then
p( · |xk, ak) → p( · |x, a) weakly. The observation chan-
nel r( · |x) is continuous in total variation, i.e., if xk → x,
then r( · |xk)→ r( · |x) in total variation.

(2) the stochastic kernel p( · |x, a) is total variation contin-
uous in (x, a) ∈ X × A, i.e., if (xk, ak) → (x, a), then
p( · |xk, ak)→ p( · |x, a) in total variation.

(c) A is compact.
(d) There exists a constant λ ≥ 0 such that

sup
a∈A

∫
X

v(y)p(dy|x, a) ≤ λv(x).

(e) The initial probability measure µ satisfies∫
X

v(x)µ(dx) <∞.

We let

Pv(X) :=

{
µ ∈ P(X) :

∫
X

v(x)µ(dx) <∞
}
.

Note that since the probability law of xt is in Pv(X), by
Assumption 1-(d),(e), under any policy we have Pr{xt ∈
· |y0, . . . , yt, a0, . . . , at−1} ∈ Pv(X) almost everywhere.
Therefore, the belief-MDP has state space Z = Pv(X) instead
of P(X), where Z is equipped with the Borel σ-algebra
generated by the topology of weak convergence. The transition
probability η of the belief-MDP can be constructed as follows
(see also [40]). Let z denote the generic state variable for the
belief-MDP. First consider the transition probability on X×Y
given Z× A

R(x ∈ A, y ∈ B|z, a) :=

∫
X

κ(A,B|x′, a)z(dx′),

where κ(dx, dy|x′, a) := r(dy|x)p(dx|x′, a). Let us disinte-
grate R as

R(dx, dy|z, a) = H(dy|z, a)F (dx|z, a, y).

Then, we define the mapping F : Z× A× Y → Z as

F (z, a, y) = F ( · |z, a, y). (3)

In the literature, (3) is called the ‘nonlinear filtering equation’
[40]. Note that, for each t ≥ 0, we indeed have

F (z, a, y)( · ) = Pr{xt+1 ∈ · |zt = z, at = a, yt+1 = y}

and

H( · |z, a) = Pr{Yt+1 ∈ · |zt = z, at = a}.

Then, η can be written as

η( · |z, a) =

∫
Y

δF (z,a,y)( · ) H(dy|z, a),

where δz denotes the Dirac-delta measure at point z; that is,
δz(D) = 1 if z ∈ D and otherwise it is zero. Recall that the
initial point for the belief-MDP is µ; that is, z0 ∼ δµ, and the
one-stage cost function c̃ of the belief-MDP is given by

c̃(z, a) :=

∫
X

c(x, a)z(dx). (4)

Hence, the belief-MDP is a fully-observed Markov decision
process with the components

(
Z,A, η, c̃

)
. For the belief-MDP

define the history spaces H̃0 = Z and H̃t = (Z × A)t × Z,
t = 1, 2, . . . and let Π̃ denote the set of all policies for the
belief-MDP, where the policies are defined in a usual manner.
Let J̃(π̃, ξ) denote the discounted cost function of policy π̃ ∈
Π̃ for initial distribution ξ of the belief-MDP.

Notice that any history vector h̃t =
(z0, . . . , zt, a0, . . . , at−1) of the belief-MDP is a function
of the history vector ht = (y0, . . . , yt, a0, . . . , at−1) of the
POMDP. Let us write this relation as i(ht) = h̃t. Hence, for
a policy π̃ = {π̃t} ∈ Π̃, we can define ππ̃ = {ππ̃t } ∈ Π as

ππ̃t ( · |ht) := π̃t( · |i(ht)). (5)

Let us write this as a mapping from Π̃ to Π: Π̃ 3 π̃ 7→ i(π̃) =
ππ̃ ∈ Π. It is straightforward to show that the cost functions
J̃(π̃, ξ) and J(ππ̃, µ) are the same, where ξ = δµ. One can
also prove that (see [38], [39])

inf
π̃∈Π̃

J̃(π̃, ξ) = inf
π∈Π

J(π, µ) (6)

and furthermore, that if π̃ is an optimal policy for the belief-
MDP, then ππ̃ is optimal for the POMDP as well. Hence,
the POMDP and the corresponding belief-MDP are equivalent
in the sense of cost minimization. Therefore, approximation
results developed for MDPs in [16], [17] can be applied to
the belief-MDP and so, to the POMDP.

C. Strong and Weak Continuity Properties of the Belief MDP

The stochastic kernel η is said to be weakly continuous if
η( · |zk, ak)→ η( · |z, a) weakly, whenever (zk, ak)→ (z, a).
The kernel is said to be strongly continuous if, for any z ∈ Z,
η( · |z, ak) → η( · |z, a) setwise, whevener ak → a. For
the fully observed reduction of a partially observed MDP
(POMDP), requiring strong continuity of the transition prob-
ability is in general too strong condition. This is illustrated
through the simple example [16, Example 2.1]. The following
theorem is a consequence of [41, Theorem 3.7], [53, Theorem
2] and [16, Example 2.1].

Theorem 1.
(i) Under Assumption 1-(b), the stochastic kernel η for belief-
MDP is weakly continuous in (z, a).

(ii) The stochastic kernel η may not be setwise continuous in
action variable a even if the observation channel is continuous
in total variation.

Part (i) of Theorem 1 implies that the transition probability η
of the belief-MDP is weakly continuous under Assumption 1.
On the other hand, the continuity of the observation channel
in total variation is not enough for the setwise continuity of
η.
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The above suggest that our earlier results in [16] and
[17], which only require weak continuity conditions on the
transition kernel of a given MDP, are particularly suitable
in developing approximation methods for POMDPs (through
their MDP reduction), in both quantizing the action spaces as
well as state spaces.
Remark 1. We refer the reader to [41, Theorem 3.2(c)],
[53, Section 4] for more general conditions implying weak
continuity of the transition probability η. We also note that, in
the uncontrolled setting, [42] and [14] have established similar
weak continuity conditions (i.e., the weak-Feller property)
of the non-linear filter process (i.e., the belief process) in
continuous time and discrete time, respectively.
Remark 2. Our aim in this paper is to show the asymptotic
optimality of finite model approximations under very gen-
eral conditions. Establishing general regularity conditions that
produce an explicit error bound on the approximation as a
function of the number of bins in the quantization, and thus
obtaining rates of convergence to optimality, is in general
prohibitive. To obtain explicit rates of convergence even for
fully observed systems, one needs strong continuity conditions
of the Lipschitz type on the components of the fully observed
reduction of the POMDP, see for example Theorem 5.2 in [17].
In view of Theorem 1, this does not seem possible under mild
conditions since even setwise continuity does not hold. Indeed,
establishing conditions that result in a Lipschitz type regularity
behaviour (for the belief-MDP) on the components of the fully
observed transition kernel and the measurement models is an
interesting future research topic. Theorem 1 suggests that these
conditions should be quite restrictive.
Example 1. In this example we consider the following partially
observed model

xt+1 = F (xt, at, vt),

yt = H(xt, wt), t = 0, 1, 2, . . . (7)

where X = Rn, A ⊂ Rm, and Y ⊂ Rd for some n,m, d ≥ 1.
The noise processes {vt} and {wt} are sequences of indepen-
dent and identically distributed (i.i.d.) random vectors taking
values in V = Rp and W = Rl, respectively, for some p, l ≥ 1,
and they are also independent of each other. In this system,
the continuity of F in (x, a) is sufficient to imply the weak
continuity of the transition probability p, and no assumptions
are needed on the noise process (not even the existence of a
density is required). On the other hand, the continuity of the
observation channel r in total variation holds, if for any x ∈ X,
the probability measure r( · |x) has a density g(y, x), which
is continuous in x, with respect to some reference probability
measure m on Y. This follows from Scheffé’s theorem (see,
e.g., [43, Theorem 16.2]). For instance, this density condition
holds for the following type of models:
(i) In the first model, we have Y = W = Rd, H(x,w) =

H(x) + w, H is continuous, and w has a continuous
density gw with respect to Lebesgue measure.

(ii) In the second case, Y is countable and r(y|x) is con-
tinuous in x for all y ∈ Y. Therefore, the transition
probability η of the belief space MDP, corresponding to
the model in (7), is weakly continuous.

Next, we derive conditions satisfied by the components of
the belief-MDP under Assumption 1. Note first that Z =⋃
m≥1 Fm, where

Fm :=

{
µ ∈ Pv(X) :

∫
X

v(x)µ(dx) ≤ m
}
.

Since v is a moment function, each Fm is tight [34, Proposition
E.8]. Moreover, each Fm is also closed since v is continuous.
Therefore, each Fm is compact with respect to the weak
topology. This implies that Z is a σ-compact Borel space. Note
that by [44, Proposition 7.30], the one-stage cost function c̃ of
the belief-MDP, which is defined in (4), is in Cb(Z×A) under
Assumption 1-(a). Therefore, the belief-MDP satisfies the
following conditions under Assumption 1, which we formally
state as a separate assumption.
Assumption 2.

(i) The one-stage cost function c̃ is bounded and continuous.
(ii) The stochastic kernel η is weakly continuous.
(iii) A is compact and Z is σ-compact.

IV. FINITE MODEL APPROXIMATIONS

A. Finite-Action Approximation

In this section, we consider finite-action approximation of
the belief-MDP and so, the POMDP. For these equivalent
models, we obtain an approximate finite-action model as
follows. Let dA denote the metric on A. Since A is assumed
compact and thus totally bounded, there exists a sequence of
finite sets Λn = {an,1, . . . , an,kn} ⊂ A such that for each n,

min
i∈{1,...,kn}

dA(a, an,i) < 1/n for all a ∈ A.

In other words, Λn is a 1/n-net in A. The sequence {Λn}n≥1

is used by the finite-action model to approximate the belief-
MDP and the POMDP.

In [16], for MDPs with Borel state and action spaces, we
studied the problem of approximating an uncountable action
set with a finite one and had established the asymptotic opti-
mality of finite action models for such fully observed MDPs
that satisfy a number of technical conditions, in particular,
the weak continuity condition of the transition kernel in state
and action variables. Given the belief-MDP reduction, [16,
Theorem 3.2] implies the following result.
Theorem 2. Suppose Assumption 1 (and thus Assumption 2)
holds for the POMDP. Then we have

lim
n→∞

|J̃∗n(z)− J̃∗(z)| = 0 for all z ∈ Z,

where J̃∗n is the discounted cost value function of the belief-
MDPn with the components

(
Z,Λn, η, c̃

)
and J̃∗ is the dis-

counted cost value function of the belief-MDP with compo-
nents

(
Z,A, η, c̃

)
.

The significance of Theorem 2 is reinforced by the follow-
ing observation. If we let Π(Λn) to be the set of deterministic
policies of the POMDP taking values in Λn, then the theorem
implies that for any given ε > 0 there exists n ≥ 1 and
π∗ ∈ Π(Λn) such that

J(π∗ε , µ) < min
π∈Π

J(π, µ) + ε,
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where π∗ε = πf̃
∗
n (see (5)) and f̃∗n is the optimal deterministic

stationary policy for the belief-MDPn.

B. Finite-State Approximation

The finite-state model for the belief-MDP is obtained as in
[17], by quantizing the set of probability measures Z = Pv(X);
that is, for each m, we quantize compact set Fm similar to the
quantization of A and represent the rest of the points Z \ Fm
by some pseudo-state.

If Z is compact, in the following, the index m can be fixed
to m = 1.

We let dZ denote a metric on Z which metrizes the weak
topology. For each m ≥ 1, since Fm is compact and thus
totally bounded, there exists a sequence

(
{z(m)
n,i }

k(m)
n
i=1

)
n≥1

of
finite grids in Fm such that for all n ≥ 1,

min
i∈{1,...,k(m)

n }
dZ(z, z

(m)
n,i ) < 1/n for all z ∈ Fm. (8)

Let {S(m)
n,i }

k(m)
n
i=1 be a partition of Fm such that z(m)

n,i ∈ S
(m)
n,i

and

max
z∈S(m)

n,i

dZ(z, z
(m)
n,i ) < 1/n (9)

for all i = 1, . . . , k
(m)
n . Choose any z

(m)

n,k
(m)
n +1

∈ Z \ Fm
which is a so-called pseudo-state and set S

n,k
(m)
n +1

= Z\Fm.

Let Z(m)
n := {z(m)

n,1 , . . . , z
(m)
n,kn

, z
(m)

n,k
(m)
n +1

} and define function

Q
(m)
n : Z→ Z

(m)
n by

Q(m)
n (z) = z

(m)
n,i when z ∈ S(m)

n,i .

Here Q
(m)
n (z) maps z to the representative element of the

partition it belongs to.
Remark 3.
(a) Note that given {z(m)

n,i }
k(m)
n
i=1 ⊂ Fm that satisfies (8), one

way to obtain the corresponding partition {S(m)
n,i }

k(m)
n
i=1 of

Fm satisfying (9) as follows. Let us define function Qnear :

Fm → {z(m)
n,1 , . . . , z

(m)

n,k
(m)
n

} as

Qnear(z) = arg min
z
(m)
n,i

dZ(z, z
(m)
n,i ),

where ties are broken so that Qnear is measurable. In
the literature, Qnear is often called a nearest neighbor
quantizer with respect to ’distortion measure‘ dZ [45].
Then, Qnear induces a partition {S(m)

n,i }
k(m)
n
i=1 of the space

Fm given by

S(m)
n,i = {z ∈ Fm : Q(m)

n (z) = z
(m)
n,i },

and which satisfies (9). Although one can construct, in
theory, the partition using nearest neighbor sense, it is
computationally difficult to find these regions when the
original state space X is uncountable.

(b) The index n indicates the resolution of the quantizer that
is applied to discretize the compact set Fm and index
m emphasizes the size of the compact set Fm for which
quantization is applied.

Let {ν(m)
n } be a sequence of probability measures on Z

satisfying

ν(m)
n (S(m)

n,i ) > 0 for all i, n,m. (10)

One possible choice for ν(m)
n is

ν(m)
n ( · ) =

k(m)
n +1∑
i=1

δ
z
(m)
n,i

( · ).

We let ν(m)
n,i be the restriction of ν(m)

n to S(m)
n,i defined by

ν
(m)
n,i ( · ) :=

ν
(m)
n ( · )

ν
(m)
n (S(m)

n,i )
.

The measures ν(m)
n,i will be used to define a sequence of finite-

state belief MDPs, denoted as MDP(m)
n , which approximate

the belief-MDP. To this end, for each n and m define the
one-stage cost function c

(m)
n : Z

(m)
n × A → [0,∞) and the

transition probability p(m)
n on Z

(m)
n given Z

(m)
n × A by

c(m)
n (z

(m)
n,i , a) :=

∫
S(m)
n,i

c(z, a)ν
(m)
n,i (dz),

p(m)
n ( · |z(m)

n,i , a) :=

∫
S(m)
n,i

Q(m)
n ∗ p( · |z, a)ν

(m)
n,i (dz), (11)

where Q(m)
n ∗ p( · |z, a) ∈ P(Z

(m)
n ) is the pushforward of the

measure p( · |z, a) with respect to Q(m)
n ; that is,

Q(m)
n ∗ p(y|z, a) = p

(
{z ∈ Z : Q(m)

n (z) = y}|z, a
)
,

for all y ∈ Z
(m)
n . For each n and m, we define MDP(m)

n as a
Markov decision process with the following components: Z(m)

n

is the state space, A is the action space, p(m)
n is the transition

probability, and c(m)
n is the one-stage cost function.

Given the belief-MDP, [17, Theorem 3.2]1 implies the
following.

Theorem 3. Suppose Assumption 1 (and thus Assumption 2)
holds for the POMDP. Then we have

lim
n,m→∞

|J̃(f (m)
n , µ)− J̃∗(µ)| = 0,

where f
(m)
n is obtained by extending the optimal policy of

the MDP(m)
n to Z. Hence, by the equivalence of POMDPs and

belief-MDPs, we also have

lim
n,m→∞

|J(πf
(m)
n , µ)− J∗(µ)| = 0.

Theorem 3 implies that to find a near optimal policy for the
POMDP, it is sufficient to compute an optimal policy for the
finite-state belief-MDP with sufficiently many states, extend
this policy to the original state space of the belief-MDP, and
then construct the corresponding policy for the POMDP. Next,
we discuss explicit methods to quantize the set of probability
measures on X, that is, the belief-space Z.

1Although Theorem 3.2 in [17] is proved under the assumption that the
state space is locally compact, a careful examination of the proof reveals that
σ-compactness of the state space is also sufficient to establish the result.
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V. QUANTIZATION OF THE BELIEF-SPACE

An explicit construction for an application requires a prop-
erly defined metric on Z. As stated in Section III-A, one
can metrize the set of probability measures defined on a
Borel space under the weak topology using various distance
measures. Building on this fact, in the following we present
explicit methods for the quantization of Z for the cases where
X is finite, a compact subset of a finite dimensional Euclidean
space, or the finite-dimensional Euclidean space itself, and
p( · |a) is independent of the state variable x.

A. Construction with Finite X

If the state space is finite with |X| = m, then Z = Pv(X) =
P(X), and Z is a simplex in Rm. In this case, Euclidean
distance can be used to metrize Z. Indeed, one can make use
of the algorithm in [46] (see also [47]) to quantize Z in a
nearest neighbor manner. To this end, for each n ≥ 1, define

Zn :=

{
(p1, . . . , pm) ∈ Qm : pi =

ki
n
,
m∑
i=1

ki = n

}
, (12)

where Q is the set of rational numbers and
n, k1, . . . , km ∈ Z+. The set Zn is called type lattice
by analogy with the concept of types in information theory
[48, Chp. 12]. Then, the algorithm that computes the nearest
neighbor levels can be described as follows:

Algorithm. Given z ∈ Z, find nearest y ∈ Zn :

(1) Compute values (i = 1, . . . ,m)

k′i =

⌊
nzi +

1

2

⌋
and n′ =

m∑
i=1

k′i.

(2) If n′ = n the nearest y is given by (
k′1
n , . . . ,

k′m
n ).

Otherwise, compute the errors

δi = k′i − nzi,

and sort them
−1

2
≤ δi1 ≤δi2 ≤ . . . ≤ δim ≤

1

2
.

(3) Let ∆ = n′ − n. If ∆ > 0, set

kij =

{
k′ij if j = 1, . . . ,m−∆− 1

k′ij − 1 if j = m−∆, . . . ,m.

If ∆ < 0, set

kij =

{
k′ij + 1 if j = 1, . . . , |∆|
k′ij if j = |∆|+ 1, . . . ,m.

Then, the nearest y is given by (k1n , . . . ,
km
n ).

One can also compute the maximum radius of the quantization
regions for this algorithm. To this end, let d∞ and dp denote
respectively the metrics induced by L∞ and Lp (p ≥ 1) norms
on Rm, which metrizes the weak topology on Z. Then, we have
[46, Proposition 2]

b∞ := max
z∈Z

min
y∈Zn

d∞(z, y) =
1

n

(
1− 1

m

)
,

b2 := max
z∈Z

min
y∈Zn

d2(z, y) =
1

n

√
a(m− a)

m
,

b1 := max
z∈Z

min
y∈Zn

d1(z, y) =
1

n

2a(m− a)

m
,

where a = bm/2c. Hence, for each n ≥ 1, the set Zn is an
bj-net in Z with respect to dj metric, where j ∈ {∞, 2, 1}.

B. Construction with Compact X

The analysis in the previous subsection shows that a finitely
supported measure can be approximated through type lattices.
Thus, if compactly supported probability measures can be
approximated with those having finite support, the analysis
in Section V-A yields approximately optimal policies. In the
following, we assume that X is a compact subset of Rd for
some d ≥ 1. Then Z := Pv(X) = P(X) is also compact
(under the weak convergence topology) and can be metrized
using the Wasserstein metric W1 (here, in defining W1, we
use the metric on X induced by the Euclidean norm ‖ · ‖) as
discussed in Section III-A.

For each n ≥ 1, let Qn be some lattice quantizer [45] on X
such that ‖x−Qn(x)‖ < 1/n for all x ∈ X. Set Xn = Qn(X),
i.e., the output levels of Qn (note that Xn is finite since X is
compact). Then, one can approximate any probability measure
in Z with probability measures in

P(Xn) :=

{
µ ∈ P(X) : µ(Xn) = 1

}
.

Indeed, for any µ ∈ Z, we have [49, Theorem 2.6]

inf
µ′∈P(Xn)

W1(µ, µ′) ≤ inf
Q:X→Xn

∫
X

‖x−Q(x)‖µ(dx)

≤
∫
X

‖x−Qn(x)‖µ(dx) ≤ 1

n
.

Once this is obtained, we can further approximate the proba-
bility measure induced by Qn via the algorithm introduced in
Section V-A with asymptotic performance guarantees. Thus,
through a sequence of type lattices Zmn

as given in (12) with a
successively refined support set so that Xn ⊂ Xn+1 for n ∈ N
with mn = |Xn|, one can quantize Z to obtain a sequence of
finite state-action MDPs through (11) leading to Theorem 3.

For some related properties of approximations of probability
measures with those with finite support, and the relation to
optimal quantization, we refer the reader to [49].

C. Construction with Non-compact X

Here we assume that X = Rd for some d ≥ 1 and that
Assumption 1 holds for v(x) = ‖x‖2. In this case, Z := Pv(X)
becomes the set of probability measures with finite second
moment and Fm is the set of probability measures with
finite second moments bounded by m. We endow here Z
with the bounded-Lipschitz metric ρBL, which metrizes weak
convergence (see Section III-A).

We first describe the discretization procedure for Fm. For
each n ≥ 1, set Kn := [−n, n]d and let qn denote a lattice
quantizer on Kn satisfying

sup
x∈K
‖x− qn(x)‖ < 1/n.
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Let Xn denote the set of output levels of qn; that is, Xn =
qn(Kn). Define

Qn(x) =

{
qn(x) if x ∈ K
0 if x ∈ Kc,

Then, any measure in Fm can be approximated by proba-
bility measures in

P(Xn) :=

{
µ ∈ P(X) : µ(Xn) = 1

}
.

Indeed, for any µ ∈ Fm, we have

inf
µ′∈P(Xn)

ρBL(µ, µ′) ≤ inf
µ′∈P(Xn)

W1(µ, µ′) (13)

≤ inf
Q:X→Xn

∫
X

‖x−Q(x)‖µ(dx)

≤
∫
X

‖x−Qn(x)‖µ(dx)

=

∫
K

‖x−Qn(x)‖µ(dx) +

∫
Kc

‖x‖µ(dx)

≤ 1

n
+

∫
{‖x‖>n}

‖x‖2µ(dx)
1

n

≤ (1 +m)

n
(14)

In the derivation above, (13) follows from (2). Thus, µ in Fm
can be approximated by the µn ∈ P(Xn), which is induced
by the quantizer Qn, with a bound ρBL(µ, µn) ≤ (1 +m)/n.
Then, similar to Section V-B, we can further approximate
probability measure µn via the algorithm introduced in Sec-
tion V-A with again asymptotic performance guarantees by
Theorem 3. Thus, analogous to compact case, using a sequence
of type lattices Zmn

as given in (12) with a successively refined
support set Xn ⊂ Xn+1 for n ∈ N with mn = |Xn|, one can
quantize Z to obtain a sequence of finite state-action MDPs
through (11).
Remark 4. Note that the complexity of the quantization
algorithm scales with the dimension of the space on which
it is applied. Therefore, quantizing a belief space when the
underlying state space is continuous (compact or noncompact)
is in general computationally very demanding since, in this
case, the quantized space is infinite dimensional. One way to
overcome this issue is to (approximately or exactly) parame-
terize the reachable beliefs with a low dimensional parameter
as will be discussed in detail in the next section.

D. Construction for Special Models leading to Quantized
Beliefs with Continuous Support

So far, we have obtained quantized beliefs where each such
quantized belief measure was supported on a finite set. For
some applications, this may not be efficient and it may be more
desirable to quantize the measurement space appropriately.
For some further applications, a parametric representation of
the set of reachable beliefs may be present and the con-
struction of bins may be more immediate through quantizing
the parameters in a parametric class. What is essential in
such models is that the bins designed to construct the finite
belief-MDP correspond to balls which are small under the

metrics that metrize the weak convergence as discussed in
Section III-A. Therefore, although the belief space is originally
infinite dimensional in such models, because of the special
parametrization of the reachable beliefs, the complexity of the
finite model approximation algorithm can be reduced to the
complexity of the quantization of the parameter space. This
drastically decreases the complexity of the algorithm as can be
seen in the numerical example in Section VI-B. For instance, if
we obtain the discretized states by quantizing the observation
space (which can be done if the transition probability only
depends on the actions as discussed in the next section), then
the complexity of the finite model approximation algorithm
scales with the dimension of the observation space. Hence,
exact or approximate parametrization of reachable beliefs can
drastically reduce the complexity of the algorithm. This is a
very efficient way to overcome the curse-of-dimensionality in
approximation of POMDPs.

1) Quantized Measures Through Quantized Measurements:
For this section, we assume that transition probability p( · |a)
is independent of the state variable x, Y ⊂ Rp for some p ≥ 1,
and Assumption 1 holds for some v. In the view of Theorem 2,
as a pre-processing set-up, we quantize the action space A,
where the finite set Aq represents the output levels of this
quantizer. Hence, in the sequel, we assume that the action
space is Aq .

Since κ(dx, dy|a) := r(dy|x)⊗ p(dx|a), we have

R(x ∈ A, y ∈ B|z, a) =

∫
X

κ(A,B|a)z(dx′)

= κ(A,B|a),

and so, the disintegration of R becomes

R(dx, dy|a) = H(dy|a)⊗ F (dx|a, y).

Then, η is given by

η( · |a) =

∫
Y

δF ( · |a,y)( · ) H(dy|a).

This implies that we can take the following set as the state
space Z of the fully-observed model instead of Pv(X):

Z =

{
F ( · |a, y) : (a, y) ∈ Aq × Y

}
.

We endow Z with the bounded-Lipschitz metric ρBL. For each
n ≥ 1, set Ln := [−n, n]p and let ln denote a lattice quantizer
on Ln satisfying

sup
y∈Ln

‖y − ln(y)‖ < 1/n.

Let Yn denote the set of output levels of ln; that is, Yn =
ln(Ln). Define

qn(y) =

{
ln(y) if y ∈ Ln
0 if y ∈ Lcn.

Then, finite set Zn ⊂ Z, which is used to quantize Z, is given
by

Zn =

{
F ( · |a, y) : (a, y) ∈ Aq × Yn

}
,



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2907172, IEEE
Transactions on Automatic Control

9

and the corresponding quantizer Qn : Z → Zn is defined as
follows: given z = F ( · |a, y), we define

Qn(z) = F ( · |a, qn(y)).

Note that to use Qn for constructing finite models, we have
to obtain an upper bound on the ρBL-distance between z and
Qn(z). This can be achieved under various assumptions on the
system components. One such assumption is the following:
(i) X = Rd for some d ≥ 1, (ii) Y is compact, (ii)
p(dx|a) = gp(x|a)m(dx) and r(dy|x) = gr(y|x)m(dy), (iv)
gr is Lipschitz continuous with Lipschitz constant Kr, gr > θ
for some θ > 0, and sup{(y,x)∈Y×X} |gr(y, x)| =: ‖gr‖ < ∞.
Since Y is compact, there exists ε(n) for each n such that
ε(n) → 0 as n → ∞ and ‖y − qn(y)‖ ≤ ε(n) for all y ∈ Y.
Under the above assumptions, we have

F (dx|a, y) = f(x|a, y)m(dx),

where

f(x|a, y) =
gr(y|x)gp(x|a)∫

X
gr(y|x)gp(x|a)m(dx)

.

Since the bounded-Lipschitz metric ρBL is upper bounded by
the total variation distance, we obtain

ρBL(z,Qn(z)) ≤ ‖z −Qn(z)‖TV

=

∫
X

∣∣f(x|a, y)− f(x|a, qn(y))
∣∣m(dx)

≤ 2‖gr‖Kr

θ2
‖y − qn(y)‖ ≤ 2‖gr‖Kr

θ2
ε(n).

Hence, Qn is a legitimate quantizer for constructing the finite
models. Section VI-B exhibits another example where we have
such an upper bound.

2) Construction from a Parametrically Represented Class:
For some applications, the set of belief measures can be
first approximated by some parametric class of measures,
where parameters belong to some low-dimensional space [23],
[50], [51]. For instance, in [23], densities of belief measures
are projected onto exponential family of densities using the
Kullback-Leibler (KL) divergence, where it was assumed that
projected beliefs are close enough to true beliefs in terms
of cost functions. In [51], densities are parameterized by
unimodal Gaussian distributions and parameterized MDP are
solved through Monte Carlo simulation based method. In
[50], densities are represented by sufficient statistics, and
in particular represented by Gaussian distributions, and the
parameterized MDP is solved through fitted value iteration
algorithm. However, among these works, only the [23] develop
rigorous error bounds for their algorithms using the KL diver-
gence and the other works do not specify distance measures
to quantify parametric representation approximations.

In these methods, if the parameterized beliefs are good
enough to represent true beliefs as it was shown in [23], then
the method presented in the earlier sections (of first quantizing
the state space, and then quantizing the beliefs on the state
space) may not be necessary and one can, by quantizing the
parameters for the class of beliefs considered, directly con-
struct the finite belief-MDP. As noted earlier, what is essential
in such methods is that the bins designed to construct the

finite belief-MDP correspond to balls which are small under
the metrics that metrize the weak convergence as discussed in
Section III-A. This possible if the projected beliefs are proved
to be close to the true beliefs with respect to some metric
that generates the weak topology or with respect to some
(pseudo) distance which is stronger than weak topology. For
instance, since convergence in KL-divergence is stronger than
weak convergence, the projected beliefs constructed in [23]
indeed satisfies this requirement. Hence, one can apply our
results to conclude the convergence of the reduced model to
the original model in [23]. As noted earlier, relative entropy is
a very strong pseudo-distance measure which is even stronger
than total variation (by Pinsker’s inequality [24]) and for being
able to quantize a set of probability measures with finitely
many balls as defined by such a distance measure requires
very strict assumptions on the allowable beliefs and it in
particular requires, typically equicontinuity conditions (see e.g.
[25, Lemma 4.3]). In turn, it is in general necessary to assume
that transition probability and observation channel have very
strong regularity conditions.

VI. NUMERICAL EXAMPLES

A. Example with Finite X

We consider a machine repair problem in order to illustrate
our results numerically for finite state POMDPs. In this
model, we have X = A = Y = {0, 1} with the following
interpretation:

xt =

{
1 machine is working at time t
0 machine is not working at time t,

at =

{
1 machine is being repaired at time t
0 machine is not being repaired at time t,

Below κ is the probability that the machine repair was suc-
cessful given an initial ‘not working’ state:

Pr{xt+1 = 1|xt = 0, at = 1} = κ.

Finally, the probability that the machine does not break down
in one time step is denoted by α:

Pr{xt+1 = 0|xt = 1, at = 0} = α.

The probability that the measured state is not the true state is
given by ε; that is,

Pr{yt = 0|xt = 1} = Pr{yt = 1|xt = 0} = ε.

The one-stage cost function for this model is given by:

c(x, a) =


R+ E x = 0 and a = 1

E x = 0 and a = 0

0 x = 1 and a = 0

R x = 1 and a = 1,

where R is defined to be the cost of repair and E is the
cost incurred by a broken machine. The cost function to be
minimized is the discounted cost function with a discount
factor β. In order to find the approximately optimal policies,
we first construct the belief space formulation of the above
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model. Note that the state space of the belief space model is
the interval [0, 1]. Hence, we can use uniform quantization on
[0, 1] to obtain the finite model. For the numerical results, we
use the following parameters: ε = 0.17, κ = 0.9, α = 0.9545,
and β = 0.3. We selected 20 different values for the number
n of grid points to discretize [0, 1]: n = 10, 20, 30, . . . , 200.
The grid points are chosen uniformly. For each n, the finite
state models are constructed as in [17, Section 2].

Figure 1 shows the graph of the value functions of the finite
models corresponding to the different values of n (number of
grid points), when the initial state is x = 1. The resulting
graph suggest convergence of the value functions (to the
value function of the original model). Note that the rigorous
justification of eventual convergence is given in the paper; see
Theorems 2 and 3.
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Figure 1. Optimal costs of the finite models when the initial state is x = 1

B. Example with Compact X
In this example we consider the following model:

xt+1 = exp{−θ1at + vt}, t = 0, 1, 2, . . . (15)
yt = xt + ξt, t = 0, 1, 2, . . . (16)

where θ1 ∈ R+, xt is the state at t, and at is the action at
t. The one-stage ‘reward’ function is u(xt − at), where u is
some utility function. In this model, the goal is to maximize
the discounted reward. This model is the modified and partially
observed version of the population growth model in [34,
Section 1.3].

The state and action spaces are X = A = [0, L], for some
L ∈ R+, and the observation space is Y = [0,K] for some
K ∈ R+. Since θ1 is merely a constant, by taking [0, Lθ1 ] as
our new action space, instead of dynamics in equation (15)
we can write the dynamics of the state as

xt+1 = exp{−at + vt}, t = 0, 1, 2 . . . .

The noise processes {vt} and {ξt} are sequences of inde-
pendent and identically distributed (i.i.d.) random variables
which have common densities gv supported on [0, λ] and
gξ supported on [0, τ ], respectively. Therefore, the transition
probability p( · |x, a) is given by

p
(
D|x, a

)
=

∫
D

gv
(
log(v) + a

)1

v
m(dv),

for all D ∈ B(R) and the observation kernel r( · |x) is given
by

r
(
B|x, a

)
=

∫
B

gξ(ξ − x)m(dξ),

for all B ∈ B(R). To make the model consistent, we must
have exp{−a + v} ∈ [0, L] for all (a, v) ∈ [0, L] × [0, λ].
We assume that gv and gξ are uniform probability density
functions; that is, gv = 1

λ on [0, λ] and gξ = 1
τ on [0, τ ].

Hence, Assumption 1 holds for this model with v(x) = 1.
In the view of Theorem 2, as a pre-processing set-up,

we quantize the action space A, where the finite set Aq =
{a1, a2, . . . , aq} represents the output levels of this quantizer
with 0 < a1 < a2 < . . . < aq . In the remainder of this
example we assume that the action space is Aq .

We now obtain the stochastic kernels H( · |z, a) and
F ( · |z, a, y) that describe the transition probability η of the
reduced MDP. Indeed, we have H(dy|z, a) = h(y|a)m(dy)
where h(y|a) is given by

h(y|a) =

∫
X

gξ(y − x)gv(log(x) + a)
1

x
m(dx).

Similarly, we have F (dx|z, a, y) = f(dx|a, y)m(dx) where
f(x|z, a, y) is given by

f(x|a, y) =
gξ(y − x)gv(log(x) + a) 1

x∫
X
gξ(y − x)gv(log(x) + a) 1

xm(dx)
(17)

Hence, for any (z, a), the transition probability η( · |z, a) has
a support on the set of probability measures on X having
densities given by (17). This implies that we can take the
following set as the state space Z of the fully-observed model
instead of P(X):

Z =

{
f(x|a, y)m(dx) : (a, y) ∈ A× Y and f as in (17)

}
.

For each n, let qn denote the uniform quantizer on Y having
n output levels; that is, qn : Y → {y1, . . . , yn} =: Yn ⊂ Y
where yj = (j − 1

2 )∆n, j = 1, . . . , n, and

q−1
n (yj) =

[
yj −

∆n

2
, yj +

∆n

2

)
,

where ∆n = K
n . We define

Zn :=

{
f(x|a, y)m(dx) ∈ Z : (a, y) ∈ Aq × Yn

}
.

Then, the quantizer Qn : Z → Zn, which is used to
construct the finite model, is defined as follows: given z =
f(x|a, y)m(dx), we define Qn(z) = f(x|a, qn(y))m(dx).

To be able to use Qn for constructing finite models, we
need to obtain an upper bound on the ρBL-distance between
z and Qn(z). Indeed, one can prove that

ρBL(z,Qn(z)) ≤ ‖z −Qn(z)‖TV ≤M∆n, (18)

for some constant M . The utility function u is taken to be
quadratic function; i.e., u(t) = t2

For the numerical results, we use the parameters as: λ =
1, τ = 0.5, β = 0.2. As a pre-processing set-up, we
uniformly discretize the action space A by using 20 grid points.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2907172, IEEE
Transactions on Automatic Control

11

Then, we select 99 different values for the number n of grid
points to discretize the state space Z using the quantizer Qn,
where n varies from 29 to 1436.

We use the value iteration algorithm to compute the value
functions of the finite models. Since the components of
the transition matrices and the cost function matrix can be
computed analytically in this example, complexity of con-
structing these matrices is polynomial in the size of the action
space (i.e. |Aq|) and state space (i.e. |Zn|). In addition, it
is known that the computation of an optimal policy using
value iteration algorithm is also polynomial in |Aq|, |Zn|, 1

1−β ,
and the maximum number of bits B needed to represent any
numerator or denominator of β or one of the components of
the transition matrices or cost function matrix [52]. Therefore,
the computation of an optimal policy for any finite model with
n grid points is polynomial in |Aq|, |Zn|, 1

1−β , and B.
The simulation was implemented by using MATLAB and

it took 411.75 seconds using an HP EliteDesk 800G2 SFF
desktop computer with CPU Intel Core i7-6700 3.4 GHz 4-
core. Figure 2 displays the graph of the value functions corre-
sponding to the different values for the number of grid points
when the initial state is x = 2. The resulting graph suggest
convergence of the value functions; the rigorous justification
of convergence is given in Theorems 2 and 3.
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Figure 2. Optimal rewards of the finite models when the initial state is x = 2

VII. CONCLUDING REMARKS

We studied the approximation of discrete-time partially
observed Markov decision processes under the discounted
cost criterion. An essential observation was that establishing
strong continuity properties for the reduced (belief) model is
quite difficult for general state and action models, whereas
weak continuity can be established under fairly mild con-
ditions on the transition kernel of the original model and
the measurement equations. This allowed us to apply our
prior approximation results [16], [17], developed under weak
continuity conditions, to partially observed models. Extending
the analysis to average cost problems is a future task.
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