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Abstract—We study stochastic static teams with count-
ably infinite number of decision makers (DMs), with the goal
of obtaining (globally) optimal policies under a decentral-
ized information structure. We present sufficient conditions
to connect the concepts of team optimality and person-by-
person optimality for static teams with countably infinite
number of DMs. We show that under uniform integrability
and uniform convergence conditions, an optimal policy for
static teams with countably infinite number of DMs can be
established as the limit of sequences of optimal policies for
static teams with N DMs as N → ∞. Under the presence
of a symmetry condition, we relax the conditions and this
leads to optimal results for a large class of mean-field op-
timal team problems where the existing results have been
limited to person-by-person optimality and not global op-
timality (under strict decentralization). In particular, we es-
tablish the optimality of symmetric (i.e., identical) policies
for such problems. As a further condition, this optimality
result leads to an existence result for mean-field teams.
We consider a number of illustrative examples where the
theory is applied to setups with either infinitely many DMs
or an infinite-horizon stochastic control problem reduced to
a static team.

Index Terms—Average cost optimization, decentralized
control, mean-field theory, stochastic teams.

I. INTRODUCTION

ADECENTRALIZED control system, or a team, consists
of a collection of decision makers (DMs)/agents acting

together to optimize a common cost function, but not neces-
sarily sharing all the available information. Teams whose initial
states, observations, cost function, or the evolution dynamics are
random or are disturbed by some external noise processes are
called stochastic teams. At each time stage, each agent only has
access to some parts of the global information. If each agent’s
information depends only on primitive random variables, the
team is static. If at least one agent’s information is affected by
an action of another agent, the team is said to be dynamic.
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On teams with finitely many DMs, Marschak [36] stud-
ied optimal static teams and Radner [40] developed founda-
tional results on optimality and established connections between
person-by-person optimality, stationarity, and team-optimality.
Radner’s results were generalized in [30] by relaxing optimality
conditions. A summary of these results is that in the context of
static team problems, convexity of the cost function, subject to
minor regularity conditions, may suffice for the global optimality
of person-by-person-optimal solutions. In the particular case for
linear quadratic Gaussian (LQG) static teams, this result leads
to the optimality of linear policies [40], which also applies for
dynamic LQG problems under specific information structures
(ISs) (to be discussed further below) [23]. These results are
applicable for static teams with finite number of DMs. In our
article, the focus is on teams with infinitely many DMs.

A. Connections With the Literature on Mean-Field
Games/Teams

On the case with infinitely many DMs, a related set of re-
sults involves mean-field games: mean-field games (see, e.g.,
[24], [25], [34]) can be viewed as limit models of symmetric
nonzero-sum noncooperativeN -player games with a mean-field
interaction as N → ∞. The uniqueness and nonuniqueness re-
sults have been established for mean-field games in both the
partial differential equations (PDE) and probabilistic setting
[4], [11], [34]. In [4], examples have been provided to show
the existence of multiple solutions to the mean-field games
when uniqueness conditions in [11] and [34] are violated. The
mean-field approach designs policies for both cases of games
with infinitely many players, as well as games with very large
number of players where the equilibrium policies for the former
are shown to be ε-equilibria for the latter [12], [24], [42]. These
results, while very useful for establishing equilibria or in the con-
text of team problems, person-by-person-optimal policies, does
not guarantee the ε-global optimality among all policies. That
is, ε-person-by-person optimality is not sufficient for ε-global
optimality since in the limit, one typically only finds equilibrium
policies without establishing their uniqueness (which would
imply global optimality for team problems) [29], [37], [45].
Related to such problems, in the economic theory literature,
Mas-Colell and Schmeidler [37], [45] considered Cournot-Nash
equilibria. This Cournot-Nash equilibrium concept corresponds
to a mean-field equilibrium for a static problem. However, such
an equilibrium does not necessarily imply global optimality in
the context of team problems, as discussed above.

Recently, mean-field team problems have also been studied:
Social optima for mean-field LQG control problems under both
centralized and a specific decentralized IS have been considered
in [26] and [47]. In [2], a setup is considered where DMs
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share some information on the mean-field in the system, and
through showing that the performance of a corresponding cen-
tralized system can be realized under a decentralized IS, global
optimality is established. In this article, we follow an approach
where optimality for every N is established and also optimality
holds as N → ∞ for the limit policy. The papers [27] and [28]
have studied a continuous-time setup where a major agent is
present; by considering the social impact for each individual
player, they showed person-by-person optimal policies asymp-
totically minimize the social cost [26]. By approximating the
mean-field term, the authors bound the induced approximation
error of order O(N

−1
2 + εN ) where εN goes to zero as the num-

ber of players N → ∞ [26]. In [9], mean-field team problems
with mixed players have been considered where minor agents
act together to minimize a common cost against a major player.
Also, for the linear quadratic (LQ) setup, under the assumption
that DMs apply identical policy in addition to some technical
assumptions on the cost function and transition probabilities
of Markov chains, Arabneydi and Aghdam [1] showed that the
expected cost achieved by a suboptimal fully decentralized strat-
egy is on ε(n) neighborhood of the optimal cost achieved when
mean-field (empirical distribution of states) has been shared,
where n is the number of players. Such results on mean-field
teams either show global optimality through equivalence to the
performance of a centralized setup (considering specific sharing
patterns on the mean-field model) or typically only assume
person-by-person-optimality. In this article, we will establish
global optimality under a completely decentralized IS; however,
certain technical conditions will be imposed.

B. Connections With the Literature on Limits of Finite
Player Games/Teams

There exist contributions where games with finitely many
players are studied, their equilibrium solutions are obtained, and
the limit is taken. Along this direction, the connection between
Nash equilibrium of symmetric N -player games and an optimal
solution of mean-field games has been addressed in [3], [5], [7],
[17], [18], and [31]. The goal is to find sufficient conditions
such that the limit of the sequences of Nash equilibrium for
the N -player games identify as a solution of the corresponding
mean-field game as N → ∞. Convergence of Nash equilibria
of symmetric N -player games to the corresponding mean-field
games for stationary continuous-time problems with ergodic
costs has been investigated in [5] and [17]. Moreover, such a
convergence of Nash equilibria for symmetric N -player games
to the corresponding mean-field solution for a broad class of
continuous time symmetric games has been established in [18]
under uniform integrability and exchangeability (symmetry)
conditions (see [18, Th. 5.1 and conditions (T) and (S)]) pro-
vided that the cost function and dynamics admit the structural
restrictions. In [31], assumptions on equilibrium policies of the
large population mean-field symmetric stochastic differential
games have been relaxed to allow the convergence of asym-
metric approximate Nash equilibria to a weak solution of the
mean-field game [31, Th. 2.6]. In a discrete-time setup, Biswas
[7] considered convergence of Nash equilibria for games with
the mean-field interaction and with ergodic costs for Markov
processes. The convergence result has been derived under an ex-
istence assumption on the mean-field solution and an additional
convexity condition (see [7, Th. 5.1 and condition (A7)]). In con-
trast, in the context of stochastic teams with countably infinite

number of DMs, the gap between person-by-person optimality
(Nash equilibrium in the game-theoretic context) and global
team optimality is significant since a perturbation of finitely
many policies fails to deviate the value of the expected cost;
thus, person by person optimality is a weak condition for such
a setup, and hence the results presented in the aforementioned
papers may be inconclusive regarding global optimality of the
limit equilibrium. This observation motivates us to investigate
the connection between person-by-person-optimality and global
team optimality in stochastic teams with countably infinite DMs.
Compared with [3], [5], [7], [17], and [18] where only the
convergence of a sequence of Nash equilibria for symmetric
games with the mean-field interaction has been studied, we show
that, under sufficient conditions, sequences of optimal policies
for teams withN number of DMs asN → ∞ converge to a team
optimal policy for static teams with countably infinite number
of DMs.

Related to mean-field team problems, a limit theory for mean-
field type problems (also called Mckean–Vlasov stochastic con-
trol problems) has been established in [10] and [32]. In [10] and
[32], the connection between solutions of N -player differential
control systems and solutions of Mckean–Vlasov control prob-
lems has been investigated. It has been shown that the sequence
of empirical measures of pairs of states and εN -centralized
optimal controls (under the classical IS since all the information
available are completely shared between players) converges in
distribution as N → ∞ to limit points in the set of pairs of states
and optimal controls of the Mckean–Vlasov problem [32] (see
Remark 3). In contrast, our focus is on the ISs of DMs. Here,
under convexity of the cost function and symmetry, we show
the convergence of a sequence of decentralized optimal policies
of N -DM teams to an optimal policy of mean-field teams as
N → ∞.

C. Connections With the Literature on LQG
Games/Teams

There has been a number of studies focusing on the LQG
setup (in addition to [26] and [47]). A close study is [35] where
LQG static teams with countably infinite number of DMs have
been studied and sufficient conditions for global optimality have
been established. In this article, we utilize some of the results
from [35]; however, compared with [35], we propose suffi-
cient conditions for team optimality on average cost problems
for a general setup: except convexity, no specific structure is
presumed a priori on the cost function. For our analysis, we
do not restrict the setup to the LQG one, where often direct
methods can be applied building on [30] and [40], and operator
theory involving matrix algebra; in addition, we also study the
mean-field setting. In fact, for a general setup of static teams,
we introduce sufficient conditions (see Theorems 5 and 6) such
that the optimal cost and optimal policies of static teams with
countably infinite number of DMs is obtained as a limit of the
optimal cost and optimal policies for static teams withN number
of DMs as N → ∞. In [20], LQG team problems with infinitely
many DMs have been considered for a setup where the cost
function is the expected inner-product of an infinite dimensional
vector (and to allow for a Hilbert theoretic formulation, finiteness
of the infinite sum of the moments of individual random variables
is imposed) and linearity and uniqueness of optimal policies
have been established; the finiteness (of the infinite summation)
restriction rules out the setup in this article. In [39], infinite
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horizon decentralized stochastic control problems containing a
remote controller and a collection of local controllers dealing
with linear models have been addressed for a setup where the cost
is quadratic and the communication model satisfies a specified
sharing pattern of information between a local controller and
remote controller. Under the assumed sharing pattern (common
information), the connections between the optimal solution and
the coupled algebraic Riccati equation for Markov jump linear
systems and its convergence to the coupled fixed point equations
have been utilized to show the optimality of the solution [39].

As a further motivation for our article, we note that for
dynamic team problems, Ho and Chu [23] have introduced a
technique such that dynamic partially nested LQG team prob-
lems can be reduced to static team problems (we also note that
Witsenhausen [48] showed that under an absolute continuity
condition, any sequential dynamic team can be reduced to a
static one). For infinite-horizon dynamic team problems, this
reduction leads to a static team with countably many DMs; thus,
leading to a different setup where our results in this article will
be applicable. We will study a particular example as a case study.
In particular, the question of whether partially nested dynamic
LQG teams admit optimal policies under an expected average
cost criterion, in its most general form, has not been conclusively
addressed despite the presence of results, which impose linearity
a priori for the optimal policies under such ISs [41]. We hope
that our solution approach can be utilized in the future to develop
a complete theory for such problems.

D. Contributions

1) For a general setup of static teams, we show that (see
Theorem 6), under a uniform integrability condition (see
Remark 2), if sequences of team optimal policies of DMs
i = 1, . . . , N of static teams with N number of DMs
converge uniformly in i = 1, . . . , N (see (b) in Theorem
6), then the corresponding limit policies are team optimal
for the static team with countably infinite number of DMs,
under the expected average cost criteria.

2) We establish global optimality results for mean-field
teams under strict decentralization of the IS for both teams
with large numbers of players and infinitely many players.
Toward this end, we introduce a notion of symmetrically
optimal teams (see Definition 6) to obtain a global op-
timality result under relaxed sufficient conditions (see
Section IV). Under mild conditions on action spaces and
observations of DMs, through concentration of measures
arguments, we establish the convergence of optimal poli-
cies for symmetric mean-field teams with N DMs to the
corresponding optimal policy of mean-field teams (see
Section IV). In addition, we establish an existence result
for optimal policies on mean-field teams under relaxed
conditions on action spaces and the cost function (see
Theorem 12).

3) We apply our results to a number of illustrative examples:
We first consider LQG and LQ (non-Gaussian) average
cost problems with state coupling (see Sections V-A and
V-B). We also consider LQG average cost problems with
control coupling (see Section V-C). In addition, we show
that the team optimal policy of LQG teams with classical

IS (see Section V-D) is obtained using the technique
proposed in this article. This is important since this result,
while is well-known in the stochastic control literature,
has not been investigated using static reduction proposed
in [23] and hence this approach can be viewed as a step
to address optimal solutions for infinite-horizon partially
nested dynamic LQG problems, which can be reduced to
a static team with countably infinite number of DMs.

The organization of the article is as follows. Preliminaries and
the problem statement are presented in Section II. Section III
contains our main results including sufficient conditions for
team optimality and asymptotic optimality for a general setup of
static teams with countably infinite number of DMs. Section IV
discusses symmetric and mean-field teams, and applications are
presented in Section V. Section VI presents concluding remarks.

II. PROBLEM FORMULATION

A. Preliminaries

Before presenting our main results, we introduce preliminar-
ies following the presentation in [53], in particular, we introduce
the characterizations laid out by Witsenhausen, through his In-
trinsic Model [49]; further characterizations and classifications
of ISs are introduced comprehensively in [52]. Suppose there
is a predefined order in which the DMs act. Such systems are
called sequential systems. The action and measurement spaces
are standard Borel spaces, that is, Borel subsets of complete,
separable, and metric spaces. The Intrinsic Model for sequential
teams is defined as follows.

1) There exists a collection of measurable spaces
{(Ω,F), (U i,U i), (V i,Vi), i ∈ N}, specifying the sys-
tem’s distinguishable events, and control and measure-
ment spaces, where N is either {1, . . . , N} or N (N de-
notes the set of natural numbers). In this model (described
in discrete time), any action applied at any given time
t ∈ N is regarded as applied by a DM DMi for i ∈ N ,
who acts only once. The pair (Ω,F) is a measurable space
(on which an underlying probability may be defined). The
pair (U i,U i) denotes the measurable space from which
the action, ui, of DM i is selected. The pair (V i,Vi)
denotes the measurable observation/measurement space.

2) There is a measurement constraint to establish the connec-
tion between the observation variables and the system’s
distinguishable events. The V i-valued observation vari-
ables are given by vi = hi(ω, u[1,i−1]), where u[1,i−1] =
{uk, k ≤ i− 1}, hi are given measurable functions and
uk denotes the action of DMk. Hence, vi induces σ(vi)
over Ω×∏i−1

k=1 Uk.
3) The set of admissible control laws γ = {γ1, γ2, . . . },

also called designs or policies, are measurable control
functions, so that ui = γi(vi). Let Γi denote the set of all
admissible policies for DMi.

4) There is a probability measure P on (Ω,F) describing
the probability space on which the system is defined.

Under this intrinsic model, a sequential team problem is
dynamic if the information available to at least one DM is
affected by the action of at least one other DM. A team problem is
static, if for every DM, the information available is only affected
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by exogenous disturbances; that is, no other DM can affect the
information of any given DM.

ISs can also be categorized as classical, quasi-classical, or
nonclassical. An IS {vi, i ∈ N} is classical if vi contains all
of the information available to DMk for k < i. An IS is quasi-
classical or partially nested, if whenever uk, for some k < i,
affects vi through the measurement function hi, vi contains vk

(that is σ(vk) ⊂ σ(vi)). An IS, which is not partially nested, is
nonclassical.

(P′
N ) Let N = |N | be the number of control actions taken,

and each of these actions is taken by a different DM, where
N := {1, . . . , N}. Let γ

N
= {γ1, . . . , γN} and let ΓN =∏N

i Γi be the space of admissible policies for the team with
N -DMs. Assume an expected cost function is defined as

JN (γ
N
) = Eγ

N [c(ω0, uN )] (1)

for some Borel measurable cost function c :
Ω0 ×

∏N
k=1 Uk → R where Eγ

N [c(ω0, uN )] :=
E[c(ω0, γ

1(v1), . . . , γN (vN ))] and we define ω0 as
the cost function relevant exogenous random variable as
ω0 : (Ω,F ,P ) → (Ω0,B(Ω0)). Here, we have the notation
uN := {ui, i ∈ N} and B(·) denotes the Borel σ-field.

Definition 1: Team optimal solution for (P′
N ) [52].

For a given stochastic team problem with a given IS, a pol-
icy (strategy) N -tuple γ∗

N
:= (γ1∗, . . . , γN ∗

) ∈ ΓN is optimal
(team-optimal solution) for (P′

N ) if

JN (γ∗
N
) = inf

γ
N
∈ΓN

J(γ
N
) =: J∗

N .

Definition 2: Person-by-person optimal solution [52].
For a given N -DM stochastic team with a fixed IS, an N -

tuple of strategies γ∗
N

:= (γ1∗, . . . , γN ∗
) constitutes a person-

by-person optimal solution for (P′
N ) if, for all β ∈ Γi and all

i ∈ N , the following inequalities hold:

J∗
N := JN (γ∗

N
) ≤ JN (γ−i∗

N
, β)

where (γ−i∗
N

, β) := (γ1∗, . . . , γ(i−1)∗, β, γ(i+1)∗, . . . , γN∗).
To simplify notations, let for any 1 ≤ k ≤ N ,γ−k

N
:= {γi, i ∈

{1, · · · , N} \ {k}}.
Definition 3 (Stationary solution [40]): A policy γ

N
(.) is

stationary if J(γ
N
) < ∞, and for all i = 1, ..., N , P -almost

surely

∇uiE

[
c(ω0, (γ

−i
N
, ui))

∣∣∣∣vi
]∣∣∣∣

ui=γi(vi)

= 0

where ∇ui denotes the gradient with respect to ui.
In this section, without abuse of notations, we sometimes used

γi as γi(vi). In the following, we present some related existing
results for static teams with N DMs. The following is known
as Radner’s theorem [40]. Radner proposed the first result to
connect the stationarity concept and global team optimality.

Theorem 1 (see [40]): If
a) c(ω0, uN ) is convex and differentiable inuN for P - almost

surely;
b) infγ

N
∈ΓN

JN (γ
N
) > −∞;

c) JN (.) is locally finite at γ∗
N

[40];
d) γ∗

N
is stationary;

then γ∗
N

is globally optimal for (P′
N ).

Radner’s theorem fails in some applications because of the
restrictive local finiteness assumption. Krainak et al. [30] re-
laxed assumptions and presented sufficient conditions for team
optimality on static teams.

Theorem 2 (see [30]): Assume that, for every fixed
ω0, c(ω0, uN ) is convex differentiable in uN . Suppose
(b) in Theorem 1 holds. Let γ∗

N
∈ ΓN , and assume

that E[c(ω0, γ
∗
N
(vN ))] < ∞. If, for all γ

N
∈ ΓN with

E[c(ω0, γN
(vN ))] < ∞

E

[ N∑
i=1

cui(ω0, γ
∗
N
)(γi − γi∗)

]
≥ 0 (2)

where cui(ω0, γ
∗
N
) is the partial derivative of c(ω0, uN ) with

respect to ui valued in uN = γ∗
N

, then γ∗
N

is an optimal team
policy for (P′

N ). Moreover, if c(ω0, uN ) is strictly convex in uN
P -almost surely, then γ∗

N
is P -a.s. unique.

Since the set of admissible policies is generally uncountable,
checking (2) is difficult. Krainak et al. [30] further developed
relaxed conditions under which stationarity of a policy implies
its optimality.

Theorem 3 (see [30]): Assume that, for every fixedω0 ∈ Ω0,
c(ω0, uN ) is a convex differentiable function of uN and suppose
(b) in Theorem 1 holds. Assume that γ∗

N
∈ ΓN is a stationary

policy. Let, for all γ
N

∈ ΓN with E[c(ω0, γN
(vN ))] < ∞

E

[
cui(ω0, γ

∗
N
)(γi − γi∗)

]
< ∞ for i = 1, . . . , N. (3)

Then, γ∗
N

is a team optimal policy for (P′
N ). If c(ω0, uN ) is

strictly convex in uN , P -a.s., then γ∗
N

is unique.
Furthermore, (3) can be replaced by the following more

checkable conditions [52]: Let Γi be Hilbert space for each
i = 1, . . . , N and E[c(ω0, γN

(vN ))] < ∞ for all γ
N

∈ ΓN .
Moreover, let

E

[
cui(ω0, γ

∗
N
)

∣∣∣∣vi
]
∈ Γi, i = 1, . . . , N. (4)

The above conditions follows directly from (3) when Γi is a
Hilbert space for all i = 1, 2, . . . , N . This condition can be
checked for some applications; for example, LQ teams [52].

B. Problem Statement

(P∞) Consider a team with countably infinitely many DMs.
Let Γ =

∏
i∈N Γi be a countable but an infinite product

policy space. We assume U i = Rn, and V i = Rm for all
i ∈ N, where n and m are positive integers. Let c : Ω0 ×
Rn × Rn → R+, and the expected cost be

J(γ) = lim sup
N→∞

1

N
Eγ

[ N∑
i=1

c

(
ω0, u

i,
1

N

N∑
p=1

up

)]
(5)

where we denote Eγ [
∑N

i=1 c(ω0, u
i, 1

N

∑N
p=1 u

p)] :=

E[
∑N

i=1 c(ω0, γ
i(vi), 1

N

∑N
p=1 γ

p(vp))].
Definition 4: Team optimal solution for (P∞).
For a given stochastic team problem with a given IS, a policy

γ∗ := (γ1∗, γ2∗, . . .) ∈ Γ is optimal for (P∞) if

J(γ∗) = inf
γ∈Γ

J(γ) =: J∗.
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Our goal in this article is to establish conditions for a team
policy to be optimal, and also connect the optimal cost and
policies for (P∞) and (PN ). To this end, we redefine (PN ) for
our problem statement as follows:

(PN ) Let N = |N | be the number of control actions taken
and γ

N
= {γ1, . . . , γN} and let ΓN =

∏N
i Γi space of

admissible policies for the team with N -DMs. Assume an
expected cost function is defined as

JN (γ
N
) =

1

N
Eγ

N

[ N∑
i=1

c(ω0, u
i,

1

N

N∑
p=1

up)

]
. (6)

We will investigate the relations between the sequence of
solutions to (6) and the solution to (5). We note that our main
result is on the connection between (P∞) and (PN ).

III. OPTIMAL POLICIES FOR TEAMS WITH INFINITELY

MANY DMS

A. Sufficient Conditions of Optimality

In the following, we propose sufficient conditions of team
optimality for (P∞). We often follow [30], and the result is an
extension of [30] to a general setup of static teams with countably
infinite number of DMs. We also note a related analysis in [35].
We will use the following theorem for LQ static teams with
countably infinite number of DMs (see Section V-B).

Assumption 1: Let
A1) c(ω0, u

i, 1
N

∑N
p=1 u

p) be a R+-valued jointly convex
function of second and third arguments and differen-
tiable in ui with continuous partial derivatives, for every
ω0 ∈ Ω0.

A2) for some γ∗ ∈ Γ

lim
N→∞

1

N

N∑
i=1

Eγ∗
[
c

(
ω0, u

i,
1

N

N∑
p=1

up

)]
< ∞. (7)

We note that the cost function is differentiable in
ui which means that the cost is totally differentiable
in ui, i.e., d

dui c(ω0, u
i, 1

N

∑N
p=1 u

p) = ∂
∂ui c(ω0, u

i, μN ) +
1
N

∂
∂μN

c(ω0, u
i, μN ).

Theorem 4: Assume (A1) holds and (A2) holds for γ∗ ∈ Γ.
If for all γ ∈ Γ with J(γ) < ∞

lim sup
N→∞

1

N
E

[ N∑
i=1

N∑
k=1

cuk(ω0, γ
i∗, μ∗

N )(γk − γk∗)
]
≥ 0 (8)

where μ∗
N = 1

N

∑N
p=1 γ

p∗(vp), then γ∗ is a globally optimal
team policy for (P∞).

Proof: Under (A1), the required derivatives in (8) in the
direction of ui exist and the chain rule of derivatives can be
applied since this implies that the cost function is Fréchet differ-
entiable in ui [19]. Now, we use the convexity property to justify
interchanging the expectation and the derivation similar to [30,
Th. 2], then we use (7) and (8) to establish the global optimality
of γ∗ for (P∞). Under (A1), we have for every α ∈ (0, 1]

N∑
i=1

c

(
ω0, γ

i∗ + αδi, μ∗
N +

α

N

N∑
p=1

δp
)
− c(ω0, γ

i∗, μ∗
N )

≤ α

N∑
i=1

(
c(ω0, γ

i, μN )− c(ω0, γ
i∗, μ∗

N )
)

where μN = 1
N

∑N
p=1 γ

p(vp) and δi = γi − γi∗. Let

hω0

N (α) :=
1

α

[
1

N

N∑
i=1

c

(
ω0, γ

i∗ + αδi, μ∗
N +

α

N

N∑
p=1

δp
)

− c(ω0, γ
i∗, μ∗

N )

]
.

Hence, [14, Proposition 6.3.2] implies thathω0

N (α) is a monotone
nonincreasing function asα → 0 inα ∈ [0, 1] and bounded from
above byhω0

N (1). Thus, by [14, Corollary 6.3.3],h′
+,N (ω0, 0) :=

limα→0 h
ω0

N (α) exists. Since hω0

N (α) is a monotonic nonincreas-
ing function as α → 0 in α ∈ [0, 1] and bounded above by
hω0

N (1), and since J(γ∗) and J(γ) are finite, we can choose
N large enough such that E(hω0

N (1)) < ∞. Now, we can use
the monotone convergence theorem (see [22, page. 170]) to
interchange the limit and the expectation

lim
α→0

E(hω0

N (α)) = E
(
lim
α→0

hω0

N (α)
)
= E(h′

+,N (ω0, 0)). (9)

From [30, Lemma 1], we have E(h′
+,N (ω0, 0)) =

1
N E(

∑N
i=1

∑N
k=1 cuk(ω0, γ

i∗, μ∗
N )δk). Define

FN
γ
N
(α) :=

1

N
E

( N∑
i=1

c

(
ω0, γ

i∗ + αδi, μ∗
N +

α

N

N∑
p=1

δp
))

.

Note that FN
γ
N
(α) exists for α ∈ [0, 1] since E(hω0

N (α)) ≤
E(hω0

N (1)) < ∞, and E( 1
N

∑N
i=1 c(ω0, γ

i∗, μ∗
N )) < ∞. There-

fore, one can write F ′N
γ+
N

(0) = limα→0 E(hω0(α)), and

F ′N
γ+
N

(0) =
1

N
E

( N∑
i=1

N∑
k=1

cuk(ω0, γ
i∗, μ∗

N )(γk − γk∗)
)
.

Thus, we can write

J(γ)− J(γ∗) = lim sup
N→∞

FN
γ
N
(1)− lim sup

N→∞
FN
γ
N
(0) (10)

= lim sup
N→∞

FN
γ
N
(1)− lim inf

N→∞
FN
γ
N
(0) (11)

≥ lim sup
N→∞

FN
γ
N
(1)− FN

γ
N
(0)

1
(12)

≥ lim sup
N→∞

F ′N
γ+
N

(0) ≥ 0 (13)

where (11) follows from (A2) and (7), and − lim infN→∞ aN =
lim supN→∞ −aN , lim supN→∞ aN + lim supN→∞ bN ≥
lim supN→∞(aN + bN ) imply (12), and (13) holds since
FN
γ
N
(.) is a convex function using [14, Corollary 6.3.3], and since

aN ≥ bN , then lim supN→∞ aN ≥ lim supN→∞ bN . Finally,
the last inequality follows from (8); hence, J(γ)− J(γ∗) ≥ 0,
and the proof is completed.

In some applications, (8) can be difficult to check since it must
be satisfied for all γ ∈ Γ with J(γ) < ∞. In the next section,
we address this issue by introducing a constructive approach for
static teams with countably infinite number of DMs as a limit of
a sequence of team optimal policies of the corresponding static
teams with finite number of DMs. In the following, we propose

Authorized licensed use limited to: Queen's University. Downloaded on March 22,2021 at 13:22:03 UTC from IEEE Xplore.  Restrictions apply. 



1076 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

sufficient conditions to approximate the optimal cost and a team
optimal policy for static teams with countably infinite number
of DMs using the optimal cost and an optimal policy for static
teams with N DMs. We note that our first result here is based on
[35, Th. 1], which considered an equality. We denote γ|N ∈ ΓN

as a restriction of γ ∈ Γ to the first N components.
Theorem 5: Let γ∗

N
∈ ΓN be an optimal policy for (PN ) as

(6) (see [21], [30], [53] for sufficient conditions). If there exists
γ∗ ∈ Γ, with J(γ∗) < ∞, satisfying

lim sup
N→∞

JN (γ∗
N
) ≥ J(γ∗) (14)

then, γ∗ is a globally team optimal policy for (P∞).
Proof: We have

J(γ∗) ≤ lim sup
N→∞

1

N

N∑
i=1

Eγ∗
N

(
c(ω0, u

i, μN )
)

(15)

= lim sup
N→∞

inf
γ
N
∈ΓN

1

N

N∑
i=1

Eγ
N

(
c(ω0, u

i, μN )
)

(16)

= lim sup
N→∞

inf
γ∈Γ

1

N

N∑
i=1

Eγ
(
c(ω0, u

i, μN )
)

(17)

≤ inf
γ∈Γ

lim sup
N→∞

1

N

N∑
i=1

Eγ
(
c(ω0, u

i, μN )
)

= inf
γ∈Γ

J(γ) (18)

where μN := 1
N

∑N
p=1 u

p and (15) follows from (14), and (16)
is true since γ∗

N is a team optimal policy for (PN ) [see (6)].
Furthermore, (17) follows from the fact that [γ|N : γ ∈ Γ] =
ΓN, where γ|N is γ restricted to the first N components. �

Remark 1: Under (A2), one can replace (14) with

lim sup
N→∞

1

N

N∑
i=1

[
Eγ∗

N

(
c(ω0, u

i, μN )

)

− Eγ∗
(
c(ω0, u

i, μN )

)]
≥ 0. (19)

The above theorem and remark will be useful for some appli-
cations (see for example Section V-D).

B. Asymptotically Optimal Policies as a Limit of Finite
Team Optimal Policies

In the following, we present a sufficient condition for (14). The
following result also presents a constructive method to obtain
optimal policies using asymptotic analysis.

Theorem 6: Assume
a) for every N, there exist γ∗

N
∈ ΓN for (PN ) [see (6)],

b) let ω ∈ B for some B ∈ F event of P measure one, for
every fixed vi(ω), γi∗

N (vi) converges to γi∗
∞(vi) uniformly

in i = 1, 2, . . . , N , i.e.,

lim
N→∞

sup
1≤i≤N

|γi∗
N (vi)− γi∗

∞(vi)| = 0P − a.s.

c) there exists a P -integrable function g(ω0, v) such that, for
every N

1

N

N∑
i=1

c

(
ω0, γ

i∗
∞(vi),

1

N

N∑
p=1

γp∗
∞ (vp)

)
≤ g(ω0, v)

where v = (v1, v2, . . . ), then γ∗, a team optimal policy
for (P∞), is a pointwise limit of γ∗

N
, an optimal pol-

icy for (PN ), i.e., γi∗(vi) = lim
N→∞

γi∗
N (vi) = γi∗

∞(vi) P -

almost surely.
Proof: According to Theorem 5, we only need to show that

lim sup
N→∞

JN (γ∗
N
) ≥ lim inf

N→∞
JN (γ∗

N
)

≥ E

(
lim

N→∞
1

N

N∑
i=1

c(ω0, γ
i∗
N (vi), μ∗

N )

)

= lim
N→∞

JN (γ∗
∞)

where μ∗
N = 1

N

∑N
p=1 γ

p∗
N (vp) and the second inequality fol-

lows from Fatou’s lemma (since the cost function is non-
negative). In the following, we justify the equality above.
On a set of P measure one, ω ∈ B where B ∈ F , for every
fixed vi(ω) in this set, define v(ω) = (v1(ω), v2(ω), . . .) and
vN (ω) = (v1(ω), . . . , vN (ω)). We follow three steps to prove
the theorem.

Step 1: We show that on a set of P measure one,
ω ∈ B where B ∈ F , for every fixed vi(ω) in this set
limN→∞ 1

N

∑N
i=1(γ

i∗
N (vi)− γi∗

∞(vi)) = 0. For a fixed v, fol-
lowing from (b) for a given δω,vN

:= sup1≤i≤N |γi∗
N (vi)−

γi∗
∞(vi)| > 0, there exists N̂(δω,vN

) ∈ N such that for N >

N̂(δω,vN
), |γi∗

N (vi)− γi∗
∞(vi)| ≤ δω,vN

for every i = 1, . . . , N ,
where limN→∞ δω,vN

= 0 P -almost surely. We have P -almost
surely

∣∣∣∣ 1N
N∑
i=1

(
γi∗
N (vi)− γi∗

∞(vi)
) ∣∣∣∣ < 1

N

N∑
i=1

δω,vN
= δω,vN

and since limN→∞ sup1≤i≤N |γi∗
N (vi)− γi∗

∞(vi)| = 0, we have
limN→∞ δω,vN

= 0. Hence, we can show that limN→∞ 1
N∑N

i=1 γ
i∗
N (vi) = limN→∞ 1

N

∑N
i=1 γ

i∗
∞(vi). Following from

continuity, c(ω0, γ
i∗
N (vi), μ∗

N ) converges to c(ω0, γ
i∗
∞(vi),

limN→∞ μ∗
∞) P -a.s. for every i = 1. . . . , N .

Step 2: We show that c(ω0, γ
i∗
N (vi), μ∗

N ) converges to
c(ω0, γ

i∗
∞(vi), limN→∞ μ∗

∞) uniformly in i = 1, . . . , N

P -almost surely, where μ∗
∞ = 1

N

∑N
p=1 γ

p∗
∞ (vp). By continuity

of the cost function, we have for a given εω,vN
> 0,

there exists δω,vN
> 0 such that |γi∗

N (vi)− γi∗
∞(vi)| <

δω,vN
, and | 1N

∑N
i=1(γ

i∗
N (vi)− γi∗

∞(vi))| < δω,vN
implies

|c(ω0, γ
i∗
N (vi), μ∗

N )− c(ω0, γ
i∗
∞(vi), μ∗

∞)| < εω,vN
P -almost

surely for every i = 1, . . . , N . Following from (Step 1), we
have for N > N̂(δω,vN

(εω,vN
)), |γi∗

N (vi)− γi∗
∞(vi)| < δω,vN

,

and | 1N
∑N

i=1(γ
i∗
N (vi)− γi∗

∞(vi))| < δω,vN
. Hence, P -a.s.

|c(ω0, γ
i∗
N (vi), μ∗

N )− c(ω0, γ
i∗
∞(vi), μ∗

∞)| < εω,vN

where limN→∞ εω,vN
= 0.
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Step 3: In this step, we show that P -a.s.

lim
N→∞

1

N

N∑
i=1

(
c(ω0, γ

i∗
N (vi), μ∗

N )− c(ω0, γ
i∗
∞(vi), μ∗

∞)
)
= 0.

According to (Step 2), for N > N̂(δω,vN
(εω,vN

)), we have P -
a.s.∣∣∣∣ 1N

N∑
i=1

c(ω0, γ
i∗
N (vi), μ∗

N )− c(ω0, γ
i∗
∞(vi), μ∗

∞)

∣∣∣∣ < εω,vN
.

Following from (c), we can interchange the limit and the integral
using the dominated convergence theorem, and the proof is
completed.

Remark 2: One can relax conditions in Theorem 6 as follows.
i) relax (a) by considering a sequence of εN -optimal pol-

icy, where εN are non-negative and converges to zero as
N → ∞,

ii) relax (c) with a uniform integrability condition, which
is satisfied if the following expression is finite (see [6,
Th. 3.5])

sup
N≥1

E

[∣∣∣∣ 1N
N∑
i=1

c

(
ω0, γ

i∗
∞(vi),

1

N

N∑
i=1

γi∗
∞(vi)

)∣∣∣∣
1+ε]

for some ε > 0. This new condition can be checked in
some applications (see Section V). The result follows from
[6, Th. 3.5],

iii) relax the convergence P -almost surely in (b) by consid-
ering convergence in probability, i.e.,

lim
N→∞

P

(
sup

1≤i≤N

∣∣∣∣γi∗
N (vi)− γi∗

∞(vi)

∣∣∣∣ ≥ ε

)
= 0

hence similar to the proof of Theorem 6 (Step 1),
using continuous mapping theorem (see for example,
[6, page 20]), we can show that c(ω0, γ

i∗
N (vi), μ∗

N )
converges to c(ω0, γ

i∗
∞(vi), limN→∞ μ∗

∞) in probability.
Similarly, the result of (Step 2) holds in probability.
Using [6, Th. 3.5], under the uniform integrability
of XN := 1

N

∑N
i=1 c(ω0, γ

i∗
∞(vi), 1

N

∑N
i=1 γ

i∗
∞(vi))

and under the convergence in probability of XN to
X := limN→∞ 1

N

∑N
i=1 c(ω0, γ

i∗
∞(vi), 1

N

∑N
i=1 γ

i∗
∞(vi)),

we can conclude that E(XN ) → E(X). This relaxation
can be useful when the weak law of large numbers can be
invoked to check (c), but the strong law of large numbers
(SLLNs) fails to apply.

We apply the results of this section to two examples in
Sections V-A and V-B.

In the following section, we show that under symmetry of op-
timal policies, sufficient conditions of optimality can be satisfied
quite effortlessly.

IV. GLOBALLY OPTIMAL POLICIES FOR MEAN-FIELD TEAMS

A. Symmetric Teams

In the following, we present sufficient conditions for team
optimality in symmetric and mean-field teams. The concept of
symmetry has been studied in a variety of contexts (see, e.g.,
[13] and [38] and many others).

Definition 5 (Exchangeable teams): An N -DM team is ex-
changeable if the value of the expected cost function [see (1)]
is invariant under every permutation of policies.

We note that it is also called totally symmetric in a game
theoretic context (see, for example, [13]).

Definition 6 (Symmetrically optimal teams): A team is sym-
metrically optimal, if for every given policy, there exists an
identically symmetric policy (i.e., each DM has the same policy),
which performs at least as good as the given policy.

In the following, we characterize the symmetry of the general
setup for (P′

N ) [see (1)] defined in Section II-A. Clearly, the
result will also hold for the (PN ) [see (6)] defined in Section II-B.
First, we recall the definition of an exchangeable finite set of
random variables.

Definition 7: Random variables x1, x2, . . . , xN are ex-
changeable if any permutation, σ, of the set of indexes
{1, . . . , N} fails to change the joint probability measures
of random variables, i.e., P (dxσ(1), dxσ(2), . . . , dxσ(N)) =
P (dx1, dx2, . . . , dxN ).

Lemma 1: For a fixedN , consider anN -DM team defined as
(P′

N ) [see (1)] and let the cost function be a convex function of
uN P -almost surely. Assume the cost function is exchangeable
P -almost surely with respect to the actions, i.e., for any per-
mutation of indexes, σ, P -almost surely c(ω0, u

1, . . . , uN ) =
c(ω0, u

σ(1), . . . , uσ(N)). If U is convex, and observations of
DMs are exchangeable conditioned on ω0, then the team is
symmetrically optimal.

Proof: Any permutation of policies does not deviate the value
of JN (γ

N
) since

JN (γσ
N
)

=

∫
c(ω0, u

1, . . . , uN )PN (dv1, . . . , dvN |ω0)

× 1{(γσ(1)(v1),...,γσ(N)(vN ))}(du
1, . . . , duN )P (dω0)

=

∫
c(ω0, u

σ(1), . . . , uσ(N))

× 1{(γσ(1)(vσ(1)),...,γσ(N)(vσ(N)))}(du
σ(1), . . . , duσ(N))

× PN (dvσ(1), . . . , dvσ(N)|ω0)P (dω0)

=

∫
c(ω0, u

1, . . . , uN )1{(γ1(v1),...,γN (vN ))}(du
1, . . . , duN )

× PN (dv1, . . . , dvN |ω0)P (dω0)

= JN (γ
N
) (20)

where (20) follows from the assumption that the cost function is
exchangeable with respect to the actions, and the hypothesis that
observations of DMs are P -almost surely exchangeable condi-
tioned on the random variableω0. Letγ∗

N
= (γ1∗, γ2∗, . . . , γN∗)

be a given team policy for (P′
N ) [see (1)]. Consider γ̃

N
as a

convex combination of all possible permutations of policies by
averaging them, σ ∈ Σ, where Σ is the set of all possible per-
mutation. Since U is convex, γ̃

N
is a control policy. Following

from convexity of the cost function P -almost surely, we have
for ασ = 1

|Σ| (where |Σ| denotes the cardinality of Σ)

JN (γ̃
N
) := JN (

∑
σ∈Σ

ασγ
∗,σ
N

) ≤
∑
σ∈Σ

ασJN (γ∗,σ
N

)
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=
∑
σ∈Σ

ασJN (γ∗
N
) = JN (γ∗

N
)

where the inequality follows from convexity of the cost function
P -almost surely for every fixed realization of observations since
we have

E

[
c

(
ω0,
∑
σ∈Σ

ασ(γ
∗,σ
N

)1(v1), . . . ,
∑
σ∈Σ

ασ(γ
∗,σ
N

)N (vN )

)]

≤ E

[∑
σ∈Σ

ασc

(
ω0, (γ

∗,σ
N

)1(v1), . . . , (γ∗,σ
N

)N (vN )

)]

=
∑
σ∈Σ

ασE

[
c

(
ω0, (γ

∗,σ
N

)1(v1), . . . , (γ∗,σ
N

)N (vN )

)]

where (γ∗,σ
N

)j denotes the jth component of γ∗,σ
N

, and the
inequality above follows from Jensen’s inequality since the
cost function is convex P -almost surely. Hence, the team is
symmetrically optimal. �

In the following, we present another characterization of sym-
metrically optimal teams; this looks to be a standard result;
however, a proof is included for completeness since we could
not find an explicit reference.

Lemma 2: For a fixedN , consider anN -DM team defined as
(P′

N ) [see (1)] and let the cost function be a convex function of
uN P -almost surely. Assume the set of action space for each DM
is convex. If the expected cost function [see (1)] is exchangeable
with respect to the policies, then the team is symmetrically
optimal.

Proof: Let γ∗
N

= (γ1∗, γ2∗, . . . , γN∗) be a given team pol-
icy for (P′

N ) [see (1)]. According to the definition of ex-
changeable teams, any permutation of policies, say γ̂∗

N
=

(γi1∗, γi2∗, . . . , γiN ∗), fails to change the value of the expected
cost function, and hence achieve the same expected cost as the
one induced by γ∗

N
. Consider γ̃

N
as a uniform randomization

among all possible permutations of optimal policies, since U
is convex, then γ̃

N
is a control policy. By convexity of the

cost function, through Jensen’s inequality, and the fact that
any permutation of optimal policies preserves the value of the
cost function, we have JN (γ̃

N
) ≤ JN (γ∗

N
). Since γ̃

N
is also

identically symmetric, the proof is completed. �
Now, we characterize symmetrically optimal teams for (PN )

[see (6)].
Theorem 7: Consider an N -DM team defined as (PN ) [see

(6)] in Section II-B. Let action spaces be convex and the cost
function be convex in the second and third arguments P -almost
surely. If observations are exchangeable conditioned onω0, then
the team is symmetrically optimal.

Proof: The cost function defined in (PN ) [see (6)] is ex-
changeable in actions; hence, under convexity of the action
spaces and the cost function and following from the hypothesis
that observations are exchangeable condition on ω0, the proof is
completed using Lemma 1. �

Theorem 7 will be utilized in our analysis to follow.

B. Optimal Solutions for Mean-Field Teams as Limits of
Optimal Policies for Finite Symmetric Teams

In the following, we present results for symmetrically optimal
static teams. First, we focus on the case that the observations of
DMs are identical and independent, then we deal with noniden-
tical and dependent observations under additional assumptions.

As we noted earlier, mean-field games studied in [18] belong to
this class in a game theoretic context; in [18], concentration of
measures arguments and independence of measurements have
been utilized to justify the convergence of equilibria (person-
by-person-optimality in the team setup). We also note that
Jovanovic et al. [29] and [37] have considered symmetry con-
ditions for mean-field games. In the context of LQ mean-field
teams, Arabneydi and Mahajan [2] has considered a setup where
DMs share the mean field in the system either completely or
partially (through showing that a centralized performance can
be attained under the restricted IS). Also, for the LQ setup under
the assumption that DMs apply an identical policy in addition
to some technical assumptions, Arabneydi and Aghdam [1]
showed that the expected cost achieved by a suboptimal fully
decentralized strategy is on ε(n) neighborhood of the optimal
expected cost achieved when mean field (empirical distribution
of states) has been shared, where n is the number of players.
In [28], a continuous-time setup with a major agent has been
studied.

Remark 3: We note that, in [10, Ch. 6 Vol. I] and [32, Sec.
2.4], the connection between solutions of N -player differen-
tial control systems and solutions of Mckean–Vlasov control
problems has been investigated under either the assumption that
the IS is classical (i.e., the problem is centralized) since the
controls, ui

t, for each player are assumed to be progressively
measurable with respect to the filtration generated by all ini-
tial states, (X1

0 , . . . , X
N
0 ) and Wiener processes of all DMs

({(W 1
s , . . . ,W

N
s ), s ≤ t}), or by imposing structural assump-

tions on the controllers where controllers assumed to belong
to the open-loop class (with their definition being, somewhat
nonstandard, that ui

t are progressively measurable with respect
to the filtration generated by initial states and Wiener processes
instead of the path of states Xi

s for s ≤ t) or to belong to Marko-
vian controllers (i.e., ui

t = φi(t,Xi
t) where φi are measurable

functions) [10, pages 72-76],[32]. Also, in [32, Th. 2.11], it
has been shown that a sequence of relaxed (measure-valued)
open-loop εN -optimal policies for N -player differential control
systems (with only coupling on states) converges to a relaxed
open-loop Mckean–Vlasov control optimal solution. Under ad-
ditional assumptions, the existence of a strong solution and a
Markovian optimal solution of McKean–Vlasov solution has
been established [32, Th. 2.12 and Corollary 2.13]. In the mean-
field team setup, under the decentralized IS, it is not clear a priori
whether the limsup of the expected cost function and states of
dynamics for N -DM teams converge to the limit. In fact, the IS
of the team problem can break the symmetry and also can prevent
establishing a limit theory (for example, by considering a partial
sharing of observations between DMs). Here, by focusing on the
decentralized setup and by considering mean-field coupling of
controls, using a convexity argument and symmetry, we show
that a sequence of optimal policies for (PN ) converges pointwise
to an optimal policy for (P∞).

Our next theorem, under the assumption that observations are
independent and identically distributed (i.i.d.), utilizes a measure
concentration argument to establish a convergence result.

Theorem 8: Consider a team defined as (P∞) [see (5)] with
the convex cost function in the second and third arguments P -
almost surely. Let the action space be compact and convex for
each DM, and vis be i.i.d. random variables. If there exists a
sequence of optimal policies for (PN ) [see (6)], {γ∗

N}N , which
converges (for every DM due to the symmetry) pointwise to
γ∗
∞ as N → ∞, then γ∗

∞ (which is identically symmetric) is an
optimal policy for (P∞).
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Proof: Action spaces and the cost function are convex and
following from the hypothesis that vis are i.i.d. random variables
(hence they are exchangeable conditioned on ω0) and the result
of Theorem 7, one can consider a sequence of N -DM teams,
which are symmetrically optimal that defines (PN ) [see (6)] and
whose limit is identified with (P∞). Define empirical measures
on actions and observation of QN (B) := 1

N

∑N
i=1 δζi

N
(B), and

Q̃N (B) := 1
N

∑N
i=1 δζi∞(B), where B ∈ Z := U × V , ζiN :=

(γ∗
N (vi), vi), ζi∞ := (γ∗

∞(vi), vi), and δY (·) is the Dirac mea-
sure for any random variable Y . In the following, we first show
that Q̃N converges weakly to Q = Law(ζi∞) P -almost surely,
then we show (14) holds, and we invoke Theorem 5.

Step 1: For every g ∈ Cb(Z), where we denote Cb(X) as
the space of continuous and bounded functions in X , we
have

lim
N→∞

P

(∣∣∣∣
∫

gdQN −
∫

gdQ̃N

∣∣∣∣ ≥ ε

)

≤ ε−1 lim
N→∞

1

N

N∑
i=1

E

[∣∣∣∣g(γ∗
N (vi), vi)− g(γ∗

∞(vi), vi)

∣∣∣∣
]

(21)

= ε−1 lim
N→∞

E

[∣∣∣∣g(γ∗
N (vi), vi)− g(γ∗

∞(vi), vi)

∣∣∣∣
]

(22)

= ε−1E

[
lim

N→∞

∣∣∣∣g(γ∗
N (vi), vi)− g(γ∗

∞(vi), vi)

∣∣∣∣
]
= 0 (23)

where (21) follows from Markov’s inequality, the triangle in-
equality, and the definition of the empirical measure, and (22)
follows from the hypothesis that vis are identical random vari-
ables. Since g is bounded and continuous, the dominated con-
vergence theorem implies (23). Hence, for every subsequence,
there exists a subsequence such that | ∫ gdQNkl

− ∫ gdQ̃Nkl
|

converges to zero P -almost surely as l → ∞. On the other
hand, since vis are i.i.d. random variables, the SLLNs im-
ply that Q̃N converges weakly to Q P -almost surely, that is,
| ∫ gdQ̃N − ∫ gdQ| converges to zero P -almost surely for every
g ∈ Cb(Z). Hence, through choosing a suitable subsequence,
QNk

converges P -almost sure weakly to Q since for every
continuous and bounded function g, we have P -a.s.

lim
N→∞

∣∣∣∣
∫

gdQN −
∫

gdQ

∣∣∣∣
≤ lim

N→∞

(∣∣∣∣
∫
gdQN −

∫
gdQ̃N

∣∣∣∣+
∣∣∣∣
∫
gdQ̃N −

∫
gdQ

∣∣∣∣
)

= 0. (24)

Step 2: Following from [16, Lemma 1.5] and [46, Th. 3.5], or
[33, Th. 3.1] using the fact that the cost function is non-negative
and continuous, we have

lim sup
N→∞

1

N

N∑
i=1

E

[
c

(
ω0, γ

∗
N (vi),

1

N

N∑
i=1

γ∗
N (vi)

)]

≥ lim inf
N→∞

E

[
E

[ ∫
Z
c

(
ω0, u,

∫
U
uQN (du× V )

)

×QN (du, dv)

∣∣∣∣ω0

]]

≥ E

[
E

[
lim inf
N→∞

∫
Z
c

(
ω0, u,

∫
U
uQN (du× V )

)

×QN (du, dv)

∣∣∣∣ω0

]]

≥ E

[
E

[ ∫
Z
c

(
ω0, u,

∫
U
uQ(du× V )

)
Q(du, dv)

∣∣∣∣ω0

]]
(25)

where the first inequality follows from the definition of QN and
replacing limsup by liminf. The second inequality follows from
Fatou’s lemma. In the following, we justify (25). Since QN con-
verges weakly to Q P -almost surely, using continuous mapping
theorem [6, page 20], we have QN (du× V ) converges weakly
toQ(du× V )P -almost surely, hence the compactness of U im-
plies

∫
U uQN (du× V ) → ∫

U uQ(du× V ) P -almost surely,
and continuity of the cost function P -almost surely implies
c(ω0, u,

∫
U uQN (du× V )) converges to c(ω0, u,

∫
U uQ(du×

V )) P -almost surely. Define a non-negative bounded se-
quence GM

N := min{M, c(ω0, u,
∫

U uQN (du× V ))}, where
GN

M ↑ GN := c(ω0, u,
∫

U uQN (du× V )) asM → ∞, then we
have P -almost surely

lim inf
N→∞

∫
Z
c

(
ω0, u,

∫
U
uQN (du× V )

)
QN (du, dv)

= lim
M→∞

lim inf
N→∞

∫
Z
c

(
ω0, u,

∫
U
uQN (du× V )

)
QN (du, dv)

≥ lim
M→∞

lim inf
N→∞

∫
Z
GM

N QN (du, dv)

= lim
M→∞

∫
Z
GMQ(du, dv)

=

∫
Z
c

(
ω0, u,

∫
U
uQ(du× V )

)
Q(du, dv)

where the first inequality follows from the definition of GM
N

and the second equality is true using [46, Th. 3.5] since GM
N

is bounded (hence it is uniformly QN -integrable) and continu-
ously converges toGM , and the monotone convergence theorem
implies the last equality. Hence, (25) holds, which implies (14),
and the proof is completed using Theorem 5.

Remark 4: The proof above reveals that if P -almost surely
the sequence {QN}N converges weakly to Q, then Theorem
8 can be generalized to a class of team problems defined as
(P∞) [see (5)], which may include ones with a nonconvex cost
function and/or the ones with conditionally nonexchangeable
observations: This relaxation contains a class of problems (see,
e.g., Example 4 in Section V-C1) where one can consider a
sequence of N -DM teams, which admits asymmetric optimal
policies that define (PN ) [see (6)], but whose limit is identified
with (P∞) under an optimal sequence of policies.

In the following, we relax the hypothesis that observations of
DMs are independent.

Proposition 1: Consider a team defined as (P∞) [see (5)]
with the convex cost function in the second and third arguments
P -almost surely. Let the action space be compact and convex
for each DM, and vi = h(x, zi), where zis are i.i.d. random
variables. If there exists a sequence of optimal policies for (PN )
[see (6)], {γ∗

N}N , which converges pointwise to γ∗
∞ asN → ∞,

then γ∗
∞ (which is identically symmetric) is an optimal policy

for (P∞).
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Proof: Since zis are i.i.d. random variables, observations,
vi = h(x, zi), have identical distributions (but are not indepen-
dent), and similar to the proof of Theorem 8, using symmetry,
one can show (23) holds. In the following, we show (24) and
(25) hold

lim
N→∞

P

(∣∣∣∣
∫

gdQ̃N −
∫

gdQ

∣∣∣∣ ≥ ε

)

≤ 1

ε2
lim

N→∞
E

[∣∣∣∣ 1N
N∑
i=1

g(γ∗
∞(vi), vi)− E(g(γ∗

∞(v1), v1))

∣∣∣∣
2]

(26)

= lim
N→∞

(ε)−2E

[
E

[∣∣∣∣ 1N
N∑
i=1

L(γ∗
∞(vi), vi)

∣∣∣∣
2∣∣∣∣x
]]

(27)

= 0 (28)

where L(γ∗
∞(vi), vi) := g(γ∗

∞(vi), vi)− E(g(γ∗
∞(v1), v1)|x),

and (26) follows from Chebyshev’s inequality, and (27) fol-
lows from the law of iterated expectations. The structure vi =
h(x, zi) implies conditional independence of vis given x, hence,
using the law of large numbers and since g ∈ Cb(Z), we have
(28), and this implies Q̃Nk

converges weakly to Law(ζi∞|x)
P -almost surely as k → ∞, hence through choosing a suit-
able subsequence, QNkl

converges P -almost sure weakly to
Q = Law(ζi∞|x) as l → ∞ and the rest of the proof to justify
(25) is the same as that of Theorem 8. �

Remark 5: Existence of optimal policies for (PN ) and dy-
namic teams satisfying static reduction have been studied in
[21] and [51]. In [51, Th. 4.8], the existence of optimal policies
achieved under σ-compactness of each DM’s action space and
under mild conditions on the control law and the cost function.
Hence, the existence of identically symmetric optimal policies
for (PN ) [see (6)] follows from symmetry and [51, Th. 4.8]; thus,
the existence result for (P∞) is obtained under assumptions of
Theorem 8.

In the following, action spaces need not be compact; this is
particularly important for LQG models as we will see in the next
section.

Theorem 9: Consider a team defined as (P∞) [see (5)] with
the convex cost function in the second and third arguments
P -almost surely. Let the action spaces be convex for each DM.
Let vis be i.i.d. random variables. If there exists a sequence
of optimal policies for (PN ) [see (6)], {γ∗

N}N , which con-
verges pointwise to γ∗

∞ as N → ∞, and A3) for some δ > 0,
supN≥1 E(|γ∗

N (v1)|1+δ) < ∞ then γ∗
∞ (which is identically

symmetric) is an optimal policy for (P∞).
Proof: In the following, we just show

∫
U uQN (du× V ) →∫

U uQ(du× V ) P -almost surely, and the rest of the proof
follows from that of Theorem 8. We have

lim
N→∞

P

(∣∣∣∣
∫

U
uQN (du× V )−

∫
U
udQ̃N (du× V )

∣∣∣∣ ≥ ε

)

≤ ε−1 lim
N→∞

1

N

N∑
i=1

E

[∣∣∣∣γ∗
N (vi)− γ∗

∞(vi)

∣∣∣∣
]

(29)

= ε−1 lim
N→∞

E

[∣∣∣∣γ∗
N (v1)− γ∗

∞(v1)

∣∣∣∣
]

(30)

= ε−1E

[
lim

N→∞

∣∣∣∣γ∗
N (v1)− γ∗

∞(v1)

∣∣∣∣
]
= 0 (31)

where (29) follows from Markov’s inequality and the trian-
gle inequality, and (30) is true since observations have iden-
tical distributions, and (31) follows from the uniform inte-
grability assumption (A3) and the pointwise convergence of
γ∗
N using [6, Th. 3.5]. On the other hand, SLLN implies

P -almost surely that
∫

U uQ̃N (du× V ) = 1
N

∑N
i=1 γ

∗
∞(vi) →∫

U uQ(du× V ), and this completes the proof.
In the following, we present a result for monotone mean-field

coupled teams.
Theorem 10: Consider a team defined as (P∞) [see (5)] with

the convex cost function in the second and third arguments P -
almost surely. Let the action spaces be convex for each DM.
Let the cost function be increasing in the last argument, and vis
be i.i.d. random variables. If there exists a sequence of optimal
policies for (PN ), {γ∗

N}N [see (6)], which converges pointwise
to γ∗

∞, then γ∗
∞ as N → ∞ (which is identically symmetric) is

an optimal policy for (P∞).
Proof: We show (14) holds, then we invoke Theorem 5. We

use the same definitions in Theorem 8 for measures QN and Q.
We have

E

[
E

[
lim inf
N→∞

∫
Z
c

(
ω0, u,

∫
U
uQN (du× V )

)
QN (du, dv)

∣∣∣∣ω0

]]

≥ E

[
E

[ ∫
Z
lim inf
N→∞

c

(
ω0, u,

∫
U
uQN (du× V )

)

×Q(du, dv)

∣∣∣∣ω0

]]
(32)

≥ E

[
E

[ ∫
Z
c

(
ω0, u,

∫
U
uQ(du× V )

)
Q(du, dv)

∣∣∣∣ω0

]]
(33)

where (32) follows from a version of Fatou’s lemma in [15,
Th. 1.1], and (33) is true since from the lower semicontinu-
ity of

∫
U uQN (du× V ), we have lim infN→∞

∫
U uQN (du×

V ) ≥ ∫U uQ(du× V ), and continuity and the hypothesis that
the cost function is increasing in the last argument im-
ply for all u ∈ U , lim infN→∞ c(ω0, u,

∫
U uQN (du× V )) ≥

c(ω0, u,
∫

U uQ(du× V )) P -almost surely, and this completes
the proof. �

In the following, observations need not be identical or inde-
pendent.

Theorem 11: Consider a team defined as (P∞) [see (5)] with
the convex cost function in the second and third arguments
P -almost surely. Let the action spaces be convex for each DM.
Let (a) and (c) in Theorem 6 hold, and let observations be
exchangeable conditioned onω0. Assume there exists a sequence
{γ∗

N}N converges pointwise to γ∗
∞ as N → ∞, and let P -a.s.∣∣∣∣γ∗

N (vi)− γ∗
∞(vi)

∣∣∣∣
2

≤ f(vi)h(N)

N
(34)

where limN→∞ N−1
∑N

i=1 f(v
i) < ∞ and limN→∞ h(N) =

0. Then, a team optimal policy for (P∞) is symmetrically optimal
and an optimal policy is identified as a limit of a sequence of
team optimal policies for (PN ) [see (6)] as N → ∞.

Proof: Following from the result of Theorem 7, one can
consider a sequence of N -DM teams, which are symmetrically
optimal that defines (PN ) [see (6)] and whose limit is identified
with (P∞). Equivalent to (b) in Theorem 6, we can show that
limN→∞ sup1≤i≤N ||γ∗

N (vi)− γ∗
∞(vi)||2 = 0P -almost surely.
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We have

lim
N→∞

sup
1≤i≤N

|γ∗
N (vi)− γ∗

∞(vi)|2

≤ lim
N→∞

N∑
i=1

|γ∗
N (vi)− γ∗

∞(vi)|2

≤ lim
N→∞

h(N)
1

N

N∑
i=1

f(vi) = 0

where the last inequality follows from (34). Hence, thanks to
Theorem 6, a team optimal policy for (P∞) is the limit of a
sequence of team optimal policies for (PN ) [see (6)] as N →
∞, and hence a team optimal policy for (P∞) is symmetrically
optimal and the proof is completed. �

C. Existence Theorem on Globally Optimal Policies for
Mean-Field Team Problems

An implication of our analysis is the following existence
result on globally optimal policies for mean-field problems. In
Theorem 8, we showed that if a pointwise limit as N → ∞
of a sequence of optimal policies for (PN ) [see (6)] exists,
this limit is a globally optimal policy for (P∞), but under the
conditions stated in the following theorem, an existence result
also can be established. In the following, we relax the assumption
that there exists a pointwise convergence sequence of optimal
policies for (PN ) [see (6)]. For the following theorem, we do not
establish the pointwise convergence; but clearly if a sequence of
optimal policies for (PN ) [see (6)] converges pointwise, a global
optimal policy exists. Let QN (B) := 1

N

∑N
i=1 δζi

N
(B), where

B ∈ Z := U × V , and ζiN := (γ∗
N (vi), vi).

Theorem 12: Consider (P∞) [see (5)] with the convex cost
function in the second and third arguments P -almost surely. Let
the action spaces be convex for each DM. Assume further that,
without any loss, the optimal control laws can be restricted to
those with E(φi(u

i)) ≤ K for some finite K, where φi : U i →
R+ is lower semicontinuous. If vis are i.i.d. random variables,
then there exists an optimal policy for (P∞).

We note that the limit policy is not necessarily deterministic
according to the above result; this interesting discussion is left
open for further study.

Proof: We first show that {QN}N is precompact in the
product space (V × U) equipped with the weak convergence
topology for each component. Then, we show that an in-
duced policy by the limit Q achieves lower expected cost than
lim supN→∞ JN (γ∗

N
), and we invoke Theorem 5 to complete

the proof. Action spaces and the cost function are convex and
following from the hypothesis that vis are i.i.d. random variables
(hence they are exchangeable conditioned on ω0) and the result
of Theorem 7, one can consider a sequence of N -DM teams
which are symmetrically optimal that defines (PN ) [see (6)]
and whose limit is identified with (P∞).

Step 1: In the following, we show that for some subsequence
{Qn}n∈I converges weakly toQP -almost surely, that is, P -a.s.,
for every continuous and bounded function g

lim
n→∞

∣∣∣∣
∫

gdQn −
∫

gdQ

∣∣∣∣ = 0

where n ∈ I is the index set of a converging subsequence. We
use the fact that observations are i.i.d. and the space of control
policies is weakly compact (see, e.g., [51, proof of Th. 4.7]).

That is because we can represent the control policy spaces with
the space of all joint measures on (V i × U i) for each DM with
a fixed marginal on vi [8], [53]. Since the team is static, this
decouples the policy spaces from the policies of the previous
DMs, and following from the hypothesis on φi and the fact
that ν → ∫

ν(dx)g(x) is lower semicontinuous for a continuous
function g [51, Proof of Th. 4.7], the marginals on U i will be
weakly compact. If the marginals are weakly compact, then the
collection of all measures with these weakly compact marginals
are also weakly compact (see, e.g., [50, Proof of Th. 2.4])
and hence the control policy space is weakly compact. Using
Tychonoff’s theorem, the countably infinite product space is also
compact under the product topology, which implies compactness
of the space of control policies under the product topology.
Hence, there exists a subsequence {Qn}n∈I converges weakly
to Q P -almost surely.

Step 2: Now, we show that (14) holds. We have

E

[
E

[ ∫
Z
c

(
ω0, u,

∫
U
uQ(du× V )

)
Q(du, dv)

∣∣∣∣ω0

]]

= lim
M→∞

E

[
E

[ ∫
Z
min

{
M, c

(
ω0, u,

∫
U
uQ(du× V )

)}

×Q(du, dv)

∣∣∣∣ω0

]]
(35)

= lim
M→∞

E

[
E

[
lim
n→∞

∫
Z
min

{
M, c

(
ω0, u,

∫
U
uQn(du× V )

)}

×Qn(du, dv)

∣∣∣∣ω0

]]
(36)

= lim
M→∞

lim
n→∞ E

[
E

[∫
Z
min

{
M, c

(
ω0, u,

∫
U
uQn(du× V )

)}

×Qn(du, dv)

∣∣∣∣ω0

]]
(37)

≤ lim
M→∞

lim sup
N→∞

E

[
E

[∫
Z
min

{
M, c

(
ω0, u,

∫
U
uQN (du×V )

)}

×QN (du, dv)

∣∣∣∣ω0

]]
(38)

≤ lim sup
N→∞

1

N

N∑
i=1

E

[
c

(
ω0, γ

∗
N (vi),

1

N

N∑
i=1

γ∗
N (vi)

)]
(39)

where (35) follows from the monotone convergence theorem.
Since {Qn}n∈I converges weakly to Q P -almost surely, we
have by continuous mapping theorem (by considering a projec-
tion to the first component)

∫
U uQn(du× V ) → ∫

U uQ(du×
V ) P -almost surely. Following from (Step 1), (36) follows
from [46, Th. 3.5]. That is because the cost function is con-
tinuous in actions, and min{M, c(ω0, u,

∫
U uQn(du× V ))}

continuously converges in u, min{M, c(ω0, un,
∫

U uQn(du×
V ))} → min{M, c(ω0, u,

∫
U uQ(du× V ))}whereun → u as

n → ∞. Equality (37) follows from the dominated conver-
gence theorem since min{M, c(ω0, u,

∫
U uQN (du× V ))} is

bounded, and (38) is true since limsup is the greatest con-
vergent subsequence limit for a bounded sequence. Finally,
(39) follows from the definition of empirical measures and
since for every M , min{M, c(ω0, u,

∫
U uQN (du× V ))} ≤

c(ω0, u,
∫

U uQN (du× V )); hence, following from Theorem 5,
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the randomized limit policy through subsequence is a globally
optimal for (P∞). �

We apply the results of this section in Section V-C.

V. EXAMPLES

In the following, we present a number of examples to demon-
strate results in previous sections. First, we consider LQG and
LQ static teams with coupling between states, then we consider
LQG symmetric static teams with coupling between control
actions. Moreover, we investigate dynamic infinite-horizon av-
erage cost LQG teams with the classical information structure.

A. Example 1, Static Quadratic Gaussian Teams With
Coupling Between States

Consider the following observation scheme:

vi = xi + zi (40)

where {zi}i∈N and {xi}i∈N are i.i.d. zero mean Gaussian ran-
dom variables. Let {zi}i∈N be independent of {xi}i∈N . The
expected cost function is defined as

J(γ) = lim sup
N→∞

1

N
Eγ

[ N∑
i=1

R(ui)2 +Q(ui − xi − μN )2
]

(41)
where μN := 1

N

∑N
k=1 x

k. Let R be a positive number and Q
be a non-negative number.

Theorem 13: For LQG static teams as formulated above,
under the measurement scheme (40), γi∗

∞(vi) is globally optimal
for (P∞) achieved as the limit N → ∞ of γi∗

N (vi), an optimal
solution for (PN ).

Proof: We invoke Theorem 6 to prove the theorem. The
stationary policy (see Definition 3) is obtained as

γi∗
N = (R+Q)−1Q

(
1 +

1

N

)
E(xi|vi)

where the equality follows from the assumption that xis are
independent of zis and xks, k �= i for every i = 1, 2, . . . , N and
the assumption that random variables are mean zero. Follow-
ing from [30], stationary policies are team optimal for (PN )
in this formulation. We have γi∗

∞(vi) = (R+Q)−1QE(xi|vi).
Since vis are zero mean Gaussian random variables, we have
E(xi|vi) = ΣxiviΣ−1

viviv
i := Kvi, where ΣXY is defined as a

covariance of two random variables X and Y . We have P -a.s.

sup
1≤i≤N

|γi∗
N (vi)− γi∗

∞(vi)| = Q

R+Q
sup

1≤i≤N

∣∣∣∣ 1N E(xi|vi)
∣∣∣∣

=
KQ

R+Q
sup

1≤i≤N

∣∣∣∣ 1N vi
∣∣∣∣ −−−→N→∞

0

(42)

where (42) follows from

lim
N→∞

sup
1≤i≤N

1

N2
(vi)2 ≤ lim

N→∞
1

N2

N∑
i=1

(vi)2 = 0P − a.s.

where the first inequality is true since (vi)2s are non-negative,
and equality follows from the SLLN since vis are i.i.d. and
have a finite variance, hence, (b) holds. One can show that
the condition in Remark 2(ii) holds since vis and xis are i.i.d.
random variables, hence Theorem 6 completes the proof. �

B. Example 2, Static Non-Gaussian Teams With
Coupling Between States

Let the observation scheme be (40), where {zi}i∈N and
{xi}i∈N are i.i.d. zero mean random variables with finite vari-
ance. Let {zi}i∈N be independent of {xi}i∈N . The expected cost
function is defined as (41). Let R be a positive number and Q
be a non-negative number.

Theorem 14: For LQ static teams as formulated
above, under the measurement scheme (40), γk∗

∞ (vk) =
(R+Q)−1QE(xk|vk) is globally optimal for (P∞) and is
obtained as the limit of γk∗

N (vk) as N → ∞.
Proof: In the following, we use both Theorem 4 and Theo-

rem 6. Clearly, (A1) holds, we show that (A2) holds

lim sup
N→∞

1

N
E

[ N∑
i=1

(γi∗
∞(vi))2R+Q(γi∗

∞(vi)− xi − μN )2
]

= lim sup
N→∞

1

N
E

[ N∑
i=1

−Q2

Q+R
E2(xi|vi)(1 + 2

N
)(xi + μN )2Q

]
(43)

≤ lim sup
N→∞

1

N
E

[ N∑
i=1

−Q2

Q+R
E2(xi|vi)

]
+ lim

N→∞
Q(N + 3)σ2

N

(44)

=
−Q2

Q+R
E

[
E2(x1|v1)

]
+Qσ2 (45)

where (43) follows from E(E(xi|vi)(xi + μN )) =
E(E(E(xi|vi)(xi + μN )|vi)) = (1 + 1

N )E(E2(xi|vi)), and
(44) is true since xi and zi are i.i.d. random variables and
lim supN→∞ aN+lim supN→∞ bN ≥ lim supN→∞(aN+bN ).
We can justify (45) by defining Y i := (E(xi|vi))2, and since
Y is are measurable functions of {vi}i≥1, and vis and xis are
i.i.d., Y is are i.i.d. random variables. Similarly, one can show
the other side direction for liminf. Hence, (A2) is satisfied.
Now, we check (8), for every γk

∞ with J(γ∞) < ∞

lim sup
N→∞

1

N
E

( N∑
i=1

N∑
k=1

cuk(ω0, γ
i∗, μ∗)(mk)

)

= lim sup
N→∞

2Q

N

N∑
k=1

E
(
E(xk(mk)|vk)

)− E
(
(xk+ μN )(mk)

)
(46)

= lim sup
N→∞

−2Q

N

N∑
k=1

E (μN (mk)) (47)

= 2Q lim sup
N→∞

1

N2

N∑
k=1

E
[
xkγk∗

∞ (vk)
]− E

[
xkγk

∞(vk)
]

(48)

= −2Q lim inf
N→∞

1

N2

N∑
k=1

E
(
xkγk

∞(vk)
)

(49)

≥ −2Qσ lim inf
N→∞

1

N2

N∑
k=1

√
E [(γk∞(vk))2] (50)
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≥ −2Qσ lim inf
N→∞

sup
1≤k≤N

√
E [(γk∞(vk))2]

N2
= 0 (51)

where measurability of mk := γk
∞(vk)− γk∗

∞ (vk) with respect
to the σ-field generated by vk implies (46), and (47) follows
from the iterated expectations property. Since xps are mean
zero and independent of vk for k �= p, we have (48), and (49)
follows from the fact that γk∗

∞ is independent of k, and since vk

and xk are i.i.d. random variables. Moreover, J(γ∞) < ∞, so
E(γk

∞(vk)) ≤ E((γk
∞(vk))2) < ∞, and Cauchy–Schwarz in-

equality implies (50), and (51) follows from

lim inf
N→∞

sup
1≤k≤N

E
[
(γk

∞(vk))2
]

N2

≤ lim inf
N→∞

1

N2

N∑
k=1

E
[
(γk

∞(vk))2
]
= 0 (52)

where (52) is true since E[(γk
∞(vk))2] ≥ 0 and

lim supN→∞
1
N E(

∑N
k=1(γ

k
∞(vk))2R) ≤ J(γ∞) < ∞. Thus,

(8) is satisfied and Theorem 4 completes the proof.
One can also invoke Theorem 6 to complete the proof. One

can show that the condition in Remark 2(ii) holds since vis and
xis are i.i.d. random variables. We only justify (b). Stationary
policy is team optimal for (PN ) in this formulation [30], hence
γi∗
N (vi) = (R+Q)−1Q(1 + 1

N )E(xi|vi), so we need to show
that

lim
N→∞

sup
1≤i≤N

∣∣γi∗
N (vi)− γi∗

∞(vi)
∣∣ = 0 P − a.s.

Equivalently, we can show that P -a.s.

lim
N→∞

sup
1≤i≤N

1

N2

(
E(xi|vi))2 ≤ lim

N→∞
1

N2

N∑
i=1

(
E(xi|vi))2=0

where the first inequality is true since (E(xi|vi))2s are non-
negative, and equality follows from SLLN since

E
(
(E(xi|vi))2) = E

(
(xi)2

)− E
(
(xi − E(xi|vi))2) < ∞

and (E(xi|vi))2 are i.i.d. sequence of random variables since
vis are i.i.d. random variables and the proof is completed. �

C. Example 3, LQG Symmetric Teams With Coupling
Between Control Actions

Let

vi = Hix+ zi (53)

where {zi}i∈N is independent zero mean Gaussian random
vectors also independent of x, with covariance Σjj = N0 > 0.
Define ω = (x, z1, z2, . . . ), and ω0 := x where x is a Gaussian
random vector with covariance E(xxT ) = Σ00. Let

J(γ) = lim sup
N→∞

1

N
Eγ

[ N∑
i=1

(ui)TRui − 2

N∑
i=1

(ui)TD

×
(
x+

1

N

N∑
k=1

uk

)
+

(
x+

1

N

N∑
k=1

uk

)T

Q

(
x+

1

N

N∑
k=1

uk

)]
(54)

where R is an appropriate dimension positive definite matrix
and D, and Q are appropriate dimension positive semidefinite

matrices, and R > 2D. In the following, we follow steps in [52,
Th. 2.6.8] to obtain optimal policies for (PN ).

Lemma 3: Consider anN -DM LQG team formulated above,
under the measurement scheme (53), the global optimal pol-
icy for (PN ) is linear, i.e., γk∗

N (vk) = πk
Nvk. Here, πk

N ∈
Mn,m(R), n×m real-valued matrix, is obtained by solving
the following parallel update scheme:

πk
N,(i) = −LN

[
Sk +

1

N

N∑
p=1,p �=k

πp
N,(i)H

pSk

]
(55)

where LN := (R+ Q
N2 − 2D

N )−1(QN −D)eq, Sk :=

Σ00(H
k)T (HkΣ00(H

k)T +Σkk)
−1 and the initial points

of the iterations are considered as zero functions.
Proof: By Definition 3, stationary policies satisfy the follow-

ing equality for k = 1, . . . , N

Mγk∗
N (vk) +

(
Q

N
−D

)

×
[
E(x|vk) + 1

N

N∑
p=1,p �=k

E

(
γp∗
N (vp)|vk

)]
= 0 (56)

where M := R+ Q
N2 − 2D

N , and (56) can be rewritten as
PR̂γ∗

N
(v) + Pr(ω) = 0, where P is a block diagonal matrix

with iith block Piiβ
i(ω) := E(βi(ω)|vi), R̂ is a matrix where

R̂ii := M and R̂ij :=
1

N
(
Q

N
−D) for every i, j = 1, . . . , N ,

j �= i, and r(ω) = x. Note thatP is a projection operator defined
on a Hilbert space whose operator norm is one. Now, we use the
successive approximation method [52, Th. A.6.4]. According to
(56), we can write for k = 1, 2, . . . , N

Mγk∗
N,(i)(v

k) + εγk∗
N,(i)(v

k)− εγk∗
N,(i)(v

k) +

(
Q

N
−D

)

×
[
E(x|vk) + 1

N

N∑
p=1,p �=k

E

(
γp∗
N,(i)(v

p)|vk
)]

= 0.

Thus, by dividing the expression over ε and rearranging it, we
have

γk∗
N,(i)(v

k) =

(
1− R̂ii

ε

)
γk∗
N,(i)(v

k)− 1

ε

(
Q

N
−D

)

×
[
E(x|vk) + 1

N

N∑
p=1,p �=k

E

(
γp∗
N,(i)(v

p)

∣∣∣∣vk
)]

where the initial points of the iterations are zero func-
tions. We can write γ∗

N
(v) = P (I − 1

ε R̂)γ∗
N
(v)− 1

εPr(ω).
Similar to [52, Th. 2.6.5], the above sequence converges
to the unique fixed point if and only if the spectral ra-

dius satisfies the following constraint ρ(P (I − R̂
ε )) = ρ(I −

R̂
ε ) := limk→∞ sup[||A||k] 1k < 1, where A := I − R̂

ε
, ||A|| :=

sup||x||<1 ||Ax|| and ρ denotes spectral radius. The first equal-
ity is true since both P and A maps ΓN into itself and P
has operator norm equal to one. The above constraint can
be always satisfied by choosing ε = 1

2 (λmax(R̂) + λmin(R̂)).
On the other hand, since (x, z1, . . . , zN ) are jointly Gaussian,
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then γk∗
N (vk) = πk

Nvk for k = 1, . . . , N . Hence, γk∗
N,(i)(v

k) =

πk
N,(i)v

k, and by linearity of the conditional expectation, we have

E(x|vk) = Skvk, and E(γp∗
N (vp)|vk) = πp

NHpSkvk. Hence,
(55) holds. Following from [52], the stationary policy is globally
optimal for (PN ), and this completes the proof. �

Theorem 15: Consider (P∞) with the expected cost (54).
Under the following measurement scheme:

vi = Hx+ zi (57)

where zis are i.i.d. Gaussian random vectors, γi∗
∞(vi) = π∗

∞vi

is an optimal policy for (P∞) and is the pointwise limit of
γi∗
N (vi) = π∗

Nvi, an optimal policy for (PN ).
Proof: In the following, we invoke Proposition 1 and

Theorem 9 to prove the theorem. Under (57), the static team
is symmetrically optimal and hence from (55), we have π∗

N =
LN [S +N−1(N − 1)π∗

NHS], π∗
∞ = R−1D[S + π∗

∞HS],
where LN := (N2R− 2DN +Q)−1(N2D −NQ),
S := Σ00(H)T (HΣ00(H)T +Σkk)

−1. Since for every
N , we have JN (γ∗

N
) < ∞, and since R > 0, we have

supN≥1 E(||γ∗
N (v1)||22) < ∞, which implies (A3). The proof

is completed using the results of Proposition 1 and Theorem 9.
One can also invoke Theorem 11 to justify the result. �

1) Example 4, Asymmetric LQG Team Problems: Here,
we consider simple variation of Example 3 considered above to
illustrate Remark 4. Consider the observation scheme (57), and
let the expected cost function be defined as

J(γ) = lim sup
N→∞

1

N
Eγ

[ N∑
i=1

(ui)TRui

− 2
N∑
i=1

(ui)TD

(
x+

1

N

N∑
k=1

uk

)

+

(
x+

1

N

N∑
k=1

uk

)T

Q

(
x+

1

N

N∑
k=1

uk

)

+
1

N

M∑
k=1

(uk)Tαku
k

]

where M ∈ Z+ is independent of N . Clearly, the N -DM team
admits asymmetric optimal policies for (PN ) with the expected
cost JN for everyN . However, one can observe that the last term
above goes to zero as N → ∞ under a sequence of optimal
policies, and hence asymptotically the expected cost would
essentially be (54) and Theorem 13 implies γ∗

∞ is an optimal
policy since P -almost surely the sequenceQN converges weakly
(the asymmetric term vanishes when N → ∞). That is, the
optimal policy designed for the symmetric problem is also a
solution for the asymmetric problem since under this policy, the
additional term (which is a non-negative contribution) vanishes,
certifying its optimality.

D. Example 5, Multivariable Classical Linear Quadratic
Gaussian Problems: Average Cost Optimality Through
Static Reduction

Here, we revisit a well-known problem and a well-known
solution, using the technique presented in this article. Let

Xt+1 = AXt +But + wt

whereA ∈ Mn,n(R),B ∈ Mn,m(R), andwts andX0 are i.i.d.
Gaussian random vectors with mean zero and positive variance
taking values in Rn. Let (A,B) be controllable and let

J(γ) = lim sup
T→∞

JT (γ)

:= lim sup
T→∞

1

T
Eγ

[ T−1∑
t=0

XT
t QXt + (ut)TRut

]

where Q ≥ 0 and R > 0 are appropriate dimensions real matri-
ces. We can write

J(γ) = lim sup
T→∞

1

T
Eγ

[ T−1∑
t=0

( t∑
k=1

At−kBuk−1+

t∑
k=0

At−kζk
)T

×Q

( t∑
k=1

At−kBuk−1 +

t∑
k=0

At−kζk
)
+ (ut)TRut

]

where ζ = (XT
0 , (w

0)T , (w1)T , . . . )T . In the following, we
consider fully observed classical IS, i.e., Y t = Xt, and we
can write Y t = Htζ +

∑t−1
j=0 Dtju

j , where Ht and Dtj are
appropriate dimensional matrices. Using [23, Th. 1], we can
reduce IS to the static one as V t = H̃tζ. According to [22,
Sec. 3.5], we have ut∗

T = Gt
TXt for t = 0, 1, . . . , T − 1, where

kTT = 0, and

Gt
T = −(R+BT kt+1

T B)−1BT kt+1
T A (58)

ktT = Q+AT kt+1
T A−AT kt+1T B(R+BT kt+1

T B)−1BT kt+1
T A.
(59)

Theorem 16: For LQG teams with the classical IS, ut∗ =
lim
T→∞

γt∗
T (vt) = γt∗

∞(vt) is the optimal policy for J(γ), where

{γt∗
T }T is a sequence of optimal policies for {JT (γT

)}T with
the pointwise limit γt∗

∞ as T → ∞.
Although this result is a classical one in the literature, here,

we present a new approach using the static reduction.
Proof: Since, ktT+1 = kt−1

T for t = 1, 2, . . . , T , one can
write (59) as

ktT =Q+AT ktT−1A−AT ktT−1B(R+BT ktT−1B)−1BTktT−1A.

We use Theorem 5 and Remark 1, to show that ut∗
∞ = G∞Xt is

team optimal, where G∞ = −(R+BTC∗B)−1BTC∗A,
and following from controllability of (A,B), C∗ =
limβ→1 Cβ , a fixed point of the following recursion
exists, Cβ(n) = Q+ATβCβ(n− 1)A−ATβCβ(n−
1)B(R+BTβCβ(n− 1)B)−1BTβCβ(n− 1)A. By
comparing C∗(n) = limβ→1 C

∗
β(n) and (59), we have

limT→∞ ktT = K = C∗ = limn→∞ C∗(n). Hence, for t =
0, 1, . . . , T − 1, limT→∞ Gt

T = −(R+BTKB)−1BTKA =
−(R+BTC∗B)−1BTC∗A = G∞. Now, we use Remark 1 to
show (14) holds

lim sup
T→∞

∣∣∣∣JT (γ∗
T
)− JT (γ

∗
∞)

∣∣∣∣
≤ lim sup

T→∞
sup

0≤t≤T−1

∣∣∣∣E
[ t∑
k=0

Tr

(
ζTk

(
Lt,k
T

)T

(Ht
T )L

t,k
T ζk

)]

− E

[ t∑
k=0

Tr

(
ζTk

(
Lt,k
∞

)T

(Ht
∞)Lt,k

∞ ζk

)]∣∣∣∣ (60)
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≤ lim sup
T→∞

sup
0≤t≤T−1

∣∣∣∣E
[ t∑
k=0

Tr

(
ζkζ

T
k

((
Lt,k
T

)T

(Ht
T )L

t,k
T

−
(
Lt,k
∞

)T

(Ht
∞)Lt,k

∞

))]∣∣∣∣ (61)

≤ Σ2 lim sup
T→∞

sup
0≤t≤T−1

∣∣∣∣Tr
(
(Ht

T )C
t
T − (Ht

∞)Ct
∞

)∣∣∣∣ (62)

≤ Σ2 lim sup
T→∞

[
sup

0≤t≤T−1

∣∣∣∣Tr
(
(Gt

T )
TRGt

TC
t
T

− (G∞)TRG∞Ct
∞)

∣∣∣∣+ sup
0≤t≤T−1

∣∣∣∣Tr(QetT )

∣∣∣∣
]

(63)

≤ Σ2 lim sup
T→∞

[
sup

0≤t≤T−1

∣∣∣∣Tr
(
(Gt

T )
TRGt

T − (G∞)TRG∞

)∣∣∣∣
× sup

0≤t≤T−1

∣∣∣∣Tr(Ct
T )

∣∣∣∣
+ sup

0≤t≤T−1

∣∣∣∣Tr
(
GT

∞RG∞etT

)∣∣∣∣+ sup
0≤t≤T−1

∣∣∣∣Tr(QetT )

∣∣∣∣
]

≤ Σ2 lim sup
T→∞

[
sup

0≤t≤T−1

∣∣∣∣Tr
(
(Gt

T (G
t
T )

T −G∞GT
∞)R

)∣∣∣∣
×
(

sup
0≤t≤T−1

∣∣∣∣Tr(etT )
∣∣∣∣+ sup

0≤t≤T−1

∣∣∣∣Tr(Ct
∞)

∣∣∣∣
)

+ sup
0≤t≤T−1

∣∣∣∣Tr
(
GT

∞RG∞etT

)∣∣∣∣+ sup
0≤t≤T−1

∣∣∣∣Tr(QetT )

∣∣∣∣
]
= 0

(64)

where Lt,k
T :=

∏t−1
p=k(A+BGp

T ), L
t,k
∞ :=

∏t−1
p=k(A+BG∞),

Ht
T = (Q+ (Gt

T )
TRGt

T ), Ht
∞ = (Q+ (G∞)TRG∞),

etT := Ct
T − Ct

∞, and Ct
T := [

∑t
k=0 L

t,k
T (Lt,k

T )T ], Ct
∞ :=

[
∑t

k=0 L
t,k
∞ (Lt,k

∞ )T ] and Σ2 := max(σ2
X0

, σ2
w), where σ2

X0

and σ2
w are the variance of each component of X0 and wk,

respectively. Equality (60) follows from the fact that {wk}k
are i.i.d. and independent from X0. Inequality (61) follows
from the trace property that Tr(ABC) = Tr(CAB), and
(62) follows from the hypothesis that ζks are i.i.d. random
vectors and Tr(ABC) = Tr(BCA) and (63) follows from
linearity of the trace and sup f + g ≤ sup f + sup g. Inequality
(64) follows from adding and subtracting GT

∞RG∞Ct
T in

the first term and using Tr(AB) ≤ Tr(A)Tr(B) for A
and B positive semidefinite matrices since (59) implies
that for a fixed T , {ktT }T−1

t=0 is a decreasing sequence, i.e.,
K > k0T > k1T > . . . > kT−1

T , and hence {Gt
T (G

t
T )

T }T−1
t=0 is

a decreasing sequence. Also, from (58), we have for a fixed
T , {(A+BGt

T )(A+BGt
T )

T }T−1
t=0 is an increasing sequence,

hence, (Gt
T )

TRGt
T −GT

∞RG∞ is positive semidefinite.
Finally, the last inequality follows from the definition of etT
and the following calculation. First note that for a fixed T ,
{Tr(etT )}T−1

t=0 is an increasing sequence. Hence

lim
T→∞

sup
0≤t≤T−1

|Tr(etT )| = lim
T→∞

|Tr(eT−1
T )| = 0.

Similarly, limT→∞ sup0≤t≤T−1 |Tr(QetT )| = 0. We have

lim
T→∞

sup
0≤t≤T−1

|Tr(Ct
∞)| = ∣∣Tr [(I − (A+BG∞))−1

]∣∣ = 0

where Y (T ) denotes the T power of the matrix Y and the result
follows from ||A+BG∞|| < 1 (following from the controlla-
bility assumption). Finally, we have

lim
T→∞

sup
0≤t≤T−1

∣∣Tr [(Gt
T (G

t
T )

T −G∞GT
∞
)
R
]∣∣ = 0

where the second equality follows from the aforementioned
observations and since R is positive definite. Therefore,
lim supT→∞ |JT (γ∗

T
)− J(γ∗

∞)| = 0, and the proof is com-
pleted.

Remark 6: Similarly, one can show the result for (i) Y t =
CXt, (A,C) is observable and Q = CTC, (ii) the discounted
LQG team problems with the classical IS.

VI. CONCLUSION

In this article, we studied static teams with countably infinite
number of DMs. We presented sufficient conditions for team
optimality concerning average cost problems. Additionally, con-
structive results have been established to obtain the team optimal
solution for static teams with countably infinite number of DMs
as limits of the optimal solutions for static teams with finite
number of DMs as the number of DMs goes to infinity. We also
studied sufficient conditions for team optimality of symmetric
static teams and mean-field teams under relaxed conditions. We
recently studied convex dynamic teams with countably infinite
DMs and mean-field teams [44].
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