

Quantized Control of Switched Linear Systems

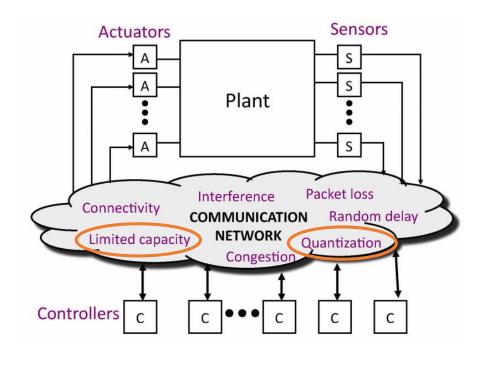
Raphael Jungers

Joint work with **Guillaume Berger**(Thanks also to **D. Liberzon and G. Yang** for many discussions during this research)

Virtual seminar on the interaction of control and information, 2021

Networked control systems

Systems in which the different agents are spatially distributed and communicate through a digital communication network

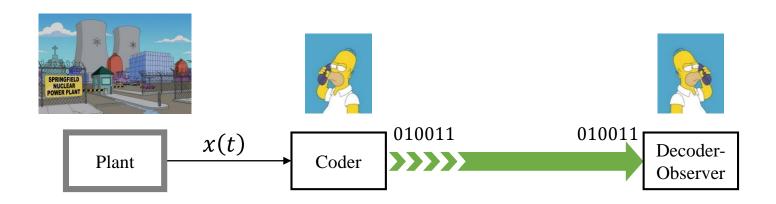


Problem setting



- Minimal data rate for stabilization?
- Practical implementation of the coder-decoder?

Problem setting



Assumptions on plant and coder-decoder:

Some pointers: [Brockett+2000], [Nair+2007], [Hespanha+2007], [Colonius+2008], [Matveev+2016], ..., [Pogromsky+2011], [Kawan2017], [Berger+2020], ..., [Liberzon2014], [Yang+2018], ...

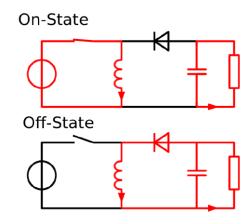
Switched systems

Systems of the form:

$$\dot{x}(t) = f_{\sigma(t)}(x(t), u(t))$$

 $\Sigma \coloneqq \{1, ..., N\}$ $\sigma : \mathbb{R}_+ \to \Sigma$ $f_i : \mathbb{R}^d \times \mathbb{R}^c \to \mathbb{R}^d$

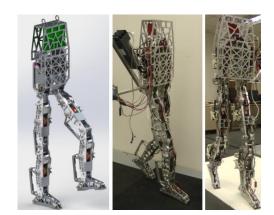
set of modes switching signal continuous dynamics



Switched *linear* systems:

$$\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$

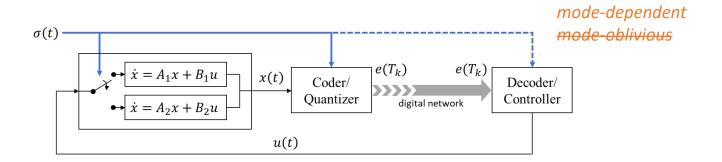
$$A_i \in \mathbb{R}^{d \times d}$$
, $B_i \in \mathbb{R}^{d \times c}$ state/input transition matrices



Outline of the presentation

- Preliminaries and related works
- Main results
 - A. Stabilization with mode-dependent coder-controller
 - B. Stabilization with mode-oblivious coder-controller
- 3. Some proofs of the main results and numerical examples
- 4. Conclusions

Coder-controller and data rate



$$T_k = k\tau_s$$
 $(k = 0,1,2,...)$

 \mathcal{E}_k

$$\gamma_k: \mathcal{X}^{k+1} \times \Sigma^{[0,T_k)} \to \mathcal{E}_k$$

$$e(T_k) = \gamma_k (x(T_0), \dots, x(T_k), \sigma|_{[0, T_k)})$$

$$\zeta_t : \mathcal{E}_0 \times \cdots \times \mathcal{E}_k \left[\times \Sigma^{[0,t]} \right] \to \mathbb{R}^c$$

$$u(t) = \zeta_t \left(e(T_0), \dots, e(T_k) \left[, \sigma|_{[0,t)} \right] \right)$$

transmission times: periodic

coding alphabet at time T_k : finite size

coder function at time T_k

symbol transmitted at time T_k

controller function at time $t \in [T_k, T_{k+1})$

control input at time $t \in [T_k, T_{k+1})$

Data rate of the coder-controller:

$$R(\gamma,\zeta) = \sup_{k \in \mathbb{N}} \frac{\lceil \log_2 |\mathcal{E}_k| \rceil}{\tau_s}$$

binary size of transmitted symbol interval between transmissions

Related works

Mode-dependent coder-controller

- Stabilizing Markov Jump Linear Systems:
 - Expression for the minimal expected data rate [Nair+2003]
 - Computable **lower bounds** and **upper bounds** on the data rate, and implementation [Zhang+2009, Ling+2010, Xiao+2010]
- Observing discrete-time switched linear systems: [Berger+2020]
 - Computable expression for the minimal data rate for observation
 - Practical implementation of the coder-observer
- This work: Stabilizing continuous-time switched linear systems

Related works

Mode-oblivious coder-controller

- Stabilizing continuous-time switched linear systems [Liberzon2014], with output [Wakaiki+2014], disturbance [Yang+2018]:
 - Sufficient relationship between the communication parameters (data rate, ...)
 and the switching parameters (average dwell time, ...) to ensure stabilization

This work:

- Also: Sufficient relationship between the communication parameters and the switching parameters to ensure stabilization
- But: Focus on arbitrarily small switching parameters (namely ADT)
- Show that non-zero ADT is necessary and sufficient for stabilization

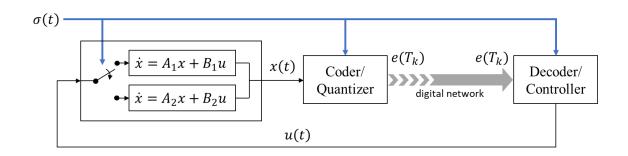
Outline of the presentation

Preliminaries and related works

2. Main results

- A. Stabilization with mode-dependent coder-controller
- B. Stabilization with mode-oblivious coder-controller
- 3. Some proofs of the main results and numerical examples
- 4. Conclusions

Mode-dependent coder-controller



Stabilizing $\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$ with <u>mode-dependent</u> coder-controller

Assumption: We assume that the system is stabilizable in the absence of data-rate constraints:

(clearly: it is a **necessary** condition for being stabilizable with data-rate constraints)

There is a **feedback law** $\varphi: \mathbb{R}^d \times \Sigma \to \mathbb{R}^c$ such that the closed-loop system with $u(t) \coloneqq \varphi \big(x(t), \sigma(t) \big)$ satisfies $\|x(t)\| \le D \|x(0)\| e^{-\mu t}$

for some $D \ge 0$, $\mu > 0$, and for all switching signals

Mode-dependent coder-controller

We use tools from:

- Control theory: **Lyapunov exponent** of switched linear systems: $\lambda(A_{\Sigma})$
- Multilinear algebra: **exterior power** of linear maps: A_i^{\odot}

Computable closed-form expression for the optimal data rate:

Main result #1: The minimal data rate R_* for stabilization of switched linear systems with a mode-dependent coder-controller is

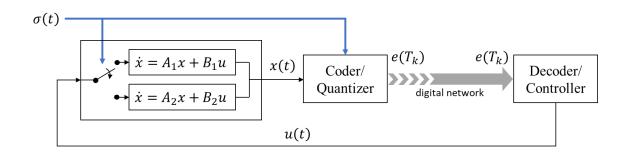
$$R_* = \log_2(e) \, \lambda \big(A_{\Sigma}^{\bigcirc} \big)$$

... generalizes the well-known formula for **LTI** systems: $R_* = \log_2(e) \sum_{\Re(\lambda_i(A))>0} \lambda_i(A)$

Practical attainability of the optimal data rate:

Main result #2: There is a practical (i.e., implementable) mode-dependent coder-controller with data rate arbitrarily close to the minimal data rate, that stabilizes the system

Mode-oblivious coder-controller



Stabilizing $\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$ with <u>mode-oblivious</u> coder-controller

Assumption #1: There is an average dwell time (ADT) $\tau_a > 0$:

$$N_{\sigma}(s,t) \coloneqq \# \text{ switches of } \sigma \text{ in } [s,t) \leq C + \frac{t-s}{\tau_a}$$

Assumption #2: We assume that the system is stabilizable in the absence of data-rate constraints:

There is a **feedback law** $\varphi: \mathbb{R}^d \times \Sigma \to \mathbb{R}^c$ such that the closed-loop system with $u(t) \coloneqq \varphi \big(x(t), \sigma(t) \big)$ satisfies $\| x(t) \| \le D \| x(0) \| e^{\mu_1 N_\sigma(0,t) - \mu_2 t}, \qquad \mu_1 / \tau_a < \mu_2$

Mode-oblivious coder-controller

Necessity of Assumption #1 (ADT>0):

Main result #1: Continuous-time switched linear systems with zero ADT are in general not stabilizable with a mode-oblivious coder-decoder with finite data rate

Existence of practical coder-controller:

Main result #2: Under the standing assumptions, there is a **practical** mode-oblivious coder-decoder with **finite data rate** that exponentially stabilizes the system: i.e., there is $\lambda > 0$ and a \mathcal{K} -function $g(\cdot)$, such that the closed-loop system satisfies

$$||x(t)|| \le g(||x(0)||)e^{-\lambda t}$$

Comparison of the settings

Stronger results

Closed-form expression for the optimal data rate

Practical attainability of the optimal data rate

Mode-oblivious

Weaker results

Only upper bounds on the optimal data rate (depending on ADT, assuming ADT>0)

More requirements

Well suited for event-triggered quantized control

Fundamental lower bounds on data rate for other coders-controllers

Less requirements

Does not require that the switching signal is known by the decoder

Outline of the presentation

- Preliminaries and related works
- Main results
 - A. Stabilization with mode-dependent coder-controller
 - B. Stabilization with mode-oblivious coder-controller
- 3. Some proofs of the main results and numerical examples
- 4. Conclusions

Lyapunov exponent of switched linear systems

Switched linear system: $\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$

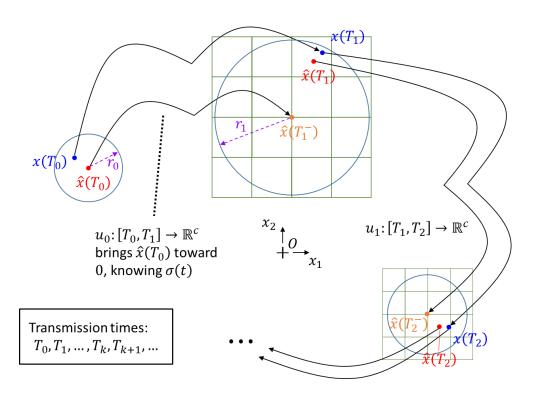
Definition: Lyapunov exponent of the <u>open-loop</u> system (i.e., with $u \equiv 0$):

$$\lambda(A_{\Sigma}) = \text{smallest } \alpha \text{ such that } \sup_{t \geq 0} e^{-\alpha t} \|x(t)\| < \infty$$
 for all trajectories $x(\cdot)$ of the open-loop system

= maximal "growth rate" of the trajectories of the open-loop system

- Measure of the stability of switched linear systems
- Can be approximated by numerical methods [Sun+2011, Protasov+2013]

Mode-dependent coder-controller



$$\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$

$$\dot{\hat{\mathbf{x}}}(t) = A_{\sigma(t)}\hat{\mathbf{x}}(t) + B_{\sigma(t)}\mathbf{u}(t)$$

$$\downarrow \qquad \text{estimation error} \\
\delta(t) = x(t) - \hat{x}(t)$$

$$\dot{\delta}(t) = A_{\sigma(t)}\delta(t)$$

... solution of the open-loop system

$$\|\delta(T_{k+1}^-)\| \le \|\Phi(T_k, T_{k+1})\| \cdot \|\delta(T_k)\|$$

where $\Phi(s,t) = e^{A_{\sigma(t_n)}(t-t_n)} \cdots e^{A_{\sigma(t_1)}(t_1-s)}$, and t_1, \dots, t_n are the switching times in [t,s)

Over-approximation of the reachable set at T_{k+1} : ball centered at $\hat{x}(T_{k+1}^-)$ and with radius $r_{k+1} = \|\Phi(T_k, T_{k+1})\| r_k$

 \Rightarrow # cells in the quantizing grid $\propto \|\Phi(T_k, T_{k+1})\|^d$

We obtain the following upper bound on the data rate:

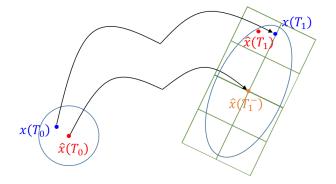
$$R(\gamma, \zeta) \le d \log_2(e) \lambda(A_{\Sigma}) + \varepsilon$$

For any $\varepsilon>0$ and $\tau_{\scriptscriptstyle S}$ large enough, $\|\Phi(T_k,T_{k+1})\|\leq e^{(\lambda(A_\Sigma)+\varepsilon)\tau_{\scriptscriptstyle S}}$

Bound on the data rate

Previous scheme is **not optimal**, because the estimation error does not grow with the <u>same</u> factor in all directions!

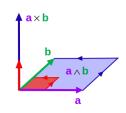
How to estimate the data rate with adapted grids?



Tool from multilinear algebra:

Definition: 1st-order exterior power of A is the $2^d \times 2^d$ matrix A^{\odot} defined by:

$$A^{\odot}: w_1 \wedge \cdots \wedge w_k \mapsto \sum\nolimits_{i=1}^k w_1 \wedge \cdots \wedge w_{i-1} \wedge Aw_i \wedge w_{i+1} \wedge \cdots \wedge w_k$$



... generalization of the concept of trace of a matrix

 $w_1 \wedge \cdots \wedge w_k$ is the **wedge product** of the vectors $w_i \in \mathbb{R}^n$. It represents an element of k-volume spanned by the vectors w_i . In 3D and k=2, it corresponds to the **exterior product**.

Property:
$$\|e^{A^{\odot}}\| = \max(\rho_1, 1) \cdots \max(\rho_n, 1), \qquad \rho_i = i$$
th singular value of e^A

... recalls the well-known formula $\det(e^A) = e^{\operatorname{tr}(A)}$

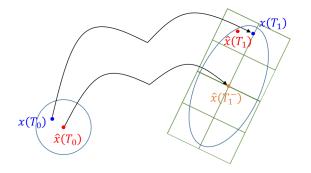
Bound on the data rate

Using

- the previous scheme
- the properties of the Lyapunov exponent
- the properties of exterior power of matrices

we obtain the following **upper bound** on the data rate:

$$R(\gamma,\zeta) \leq \log_2(e) \lambda (A_{\Sigma}^{\odot}) + \varepsilon$$



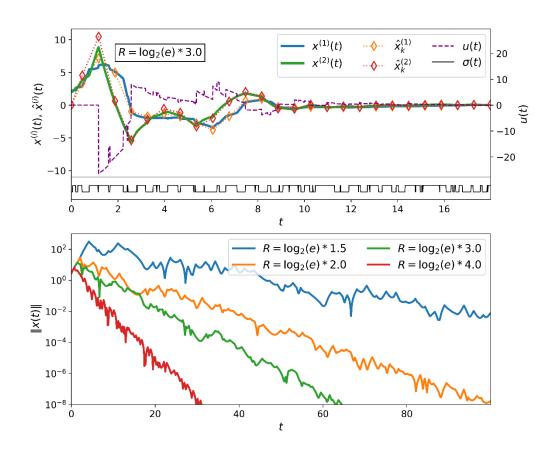
In fact, by pushing further the properties of the Lyapunov exponent and of exterior power of matrices, we can build a switching signal for which the upper bound is tight for all codercontrollers!

Main theorem: The **minimal data rate** R_* for stabilization of switched linear systems with a mode-dependent coder-controller is

$$R_* = \log_2(e) \lambda (A_{\Sigma}^{\bigcirc})$$

Numerical example

Consider the continuous-time SLS with
$$A_1 = \begin{bmatrix} 0.1 & 2.0 \\ 0.5 & 0.1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -0.5 & 0.5 \\ 2.0 & 0.0 \end{bmatrix}$, $B_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.



Exterior powers:

$$A_{1}^{\odot} = \begin{bmatrix} 1 & & & \\ & 0.1 & 2.0 & \\ & 0.5 & 0.1 & \\ & & 0.2 \end{bmatrix}$$
$$A_{2}^{\odot} = \begin{bmatrix} 1 & & & \\ & -0.5 & 0.5 & \\ & 2.0 & 0.0 & \\ & & & -0.5 \end{bmatrix}$$

We used techniques from [Protasov+2013, Jungers+2009] to estimate $\lambda(A_{\Sigma}^{\odot})$: this provided

$$1,21\log_2(e) \le R_* \le 1,22\log_2(e)$$

Mode-oblivious coder-controller

Necessity of ADT > 0

Theorem: Continuous-time switched linear systems with **zero ADT** are in general **not stabilizable** with a mode-oblivious coder-decoder with **finite data rate**

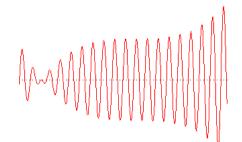
1D system: $\dot{x}(t) = B_{\sigma(t)}u(t)$ with $B_1 = -1$, $B_2 = +1$

... "integrator":
$$x(T_{k+1}) - x(T_k) = \int_{T_k}^{T_{k+1}} B_{\sigma(t)} u(t) dt$$

Finite data rate \Rightarrow finite number of different inputs $\{u_1(\cdot), ..., u_M(\cdot)\}$ on each transmission interval $[T_k, T_{k+1}]$

If
$$\sigma(\cdot)$$
 switches fast enough: $\left|\int_{T_k}^{T_{k+1}} B_{\sigma(t)} u_i(t) \; \mathrm{d}t \right| \leq \varepsilon$ for all i

(formalized using the Riemann-Lebesgue Lemma)



Mode-oblivious coder-controller

Implementation and data rate

Three parameters to choose: $\tau_s > 0$, $n \in \mathbb{N}_{>0}$, $\alpha > 0$

 au_s : primary sampling period: sampling $\sigma(\cdot)$

 $n\tau_s$: secondary sampling period: sampling $x(\cdot)$

 α : quantization level of $x(n\tau_s)$

Result: If the parameters satisfy the following relation, then the scheme is stabilizing

$$De^{\left(\frac{\mu_1}{\tau_a} - \mu_2\right)n\tau_S} + e^{\frac{\mu_1}{\tau_a}n\tau_S}e^{\nu n\tau_S}\alpha + \underbrace{\left(\frac{n\tau_S}{\tau_a}\right)}_{\text{effect of quantization}} + \underbrace{\left(\frac{\mu_1}{\tau_a} + \nu\right)n\tau_S}_{\text{Deviation due to}}\tau_S D(\Delta_1 + \Delta_2 L) < 1$$

switches

Data rate of the coder-controller:

$$R(\gamma,\zeta) = \frac{1}{\tau_s} \left[\frac{1}{n} d \log_2 \left(2 \left[\frac{d^{1/2}}{2\alpha} \right] + 1 \right) + \frac{1}{n} \log_2(n+1) + \log_2|\Sigma| \right]$$

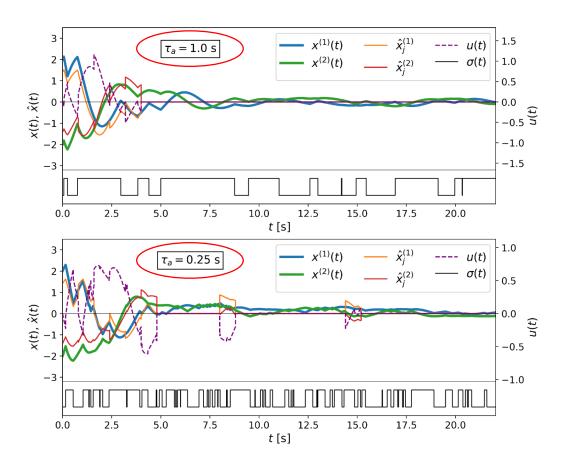
 $\nu = \frac{1}{2} \max_{i \in \Sigma} \lambda_{\max}(A_i + A_i^{\top}),$

 $\Delta_1 = \max_{i,j \in \Sigma} ||A_i - A_j||, \quad \Delta_2 = \max_{i,j \in \Sigma} ||B_i - B_j||.$

 $L = \max \{ \|\varphi(\xi, i)\| : i \in \Sigma, \ \xi \in \mathbb{R}^d, \ \|\xi\| = 1 \}.$

Numerical example

Consider the SLS (1) with matrices
$$A_1 = \begin{bmatrix} 0.1 & -1.0 \\ 1.5 & 0.1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -0.5 & 2.0 \\ -1.5 & 0.0 \end{bmatrix}$, $B_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.



Stabilizable with parameters $D=1, \mu_1=0, \mu_2=0.15$

$$\tau_s = 0.008, \, \alpha = 0.05 \text{ and } n = 100$$

$$R = 145 \text{ bits/s}$$

$$\tau_s = 0.002, \ \alpha = 0.05 \ \text{and} \ n = 400$$

$$R = 523 \text{ bits/s}$$

Conclusions

Mode-oblivious coder-controller:

More practical but higher data rate

Mode-dependent coder-controller:

- Lower data rate and closed-form expression for the optimal data rate
- First step toward event-based quantized control
- Fundamental lower bounds on data rate for other coders-controllers

Further works:

- Stochastic interval between switches?
- Use adapted grids for mode-oblivious coder-controller?
- Less conservative approach by uncoupling the problems of control with unknown switching signal and the problem of quantization?
- Nonlinear systems?