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ON BORKAR AND YOUNG RELAXED CONTROL TOPOLOGIES
AND CONTINUOUS DEPENDENCE OF INVARIANT MEASURES

ON CONTROL POLICY\ast 

SERDAR Y\"UKSEL\dagger 

Abstract. In deterministic and stochastic control theory, relaxed or randomized control policies
allow for versatile mathematical analysis (on continuity, compactness, convexity, and approximations)
to be applicable with no artificial restrictions on the classes of control policies considered, leading to
very general existence results on optimal measurable policies under various setups and information
structures. On relaxed controls, two studied topologies are the Young and Borkar (weak\ast ) topologies
on spaces of functions from a state/measurement space to the space of probability measures on
control action spaces; the former via a weak convergence topology on probability measures on a
product space with a fixed marginal on the input (state) space, and the latter via a weak\ast topology
on randomized policies viewed as maps from states/measurements to the space of signed measures
with bounded variation. We establish implication and equivalence conditions between the Young and
Borkar topologies on control policies. We then show that, under some conditions, for a controlled
Markov chain with standard Borel spaces the invariant measure is weakly continuous on the space of
stationary control policies defined by either of these topologies. An implication is near-optimality of
quantized stationary policies in state and actions or continuous stationary and deterministic policies
for average cost control under two sets of continuity conditions (with either weak continuity in the
state-action pair or strong continuity in the action for each state) on transition kernels.

Key words. relaxed controls, Young measures, optimal stochastic control, invariant measures
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1. Introduction. In deterministic and stochastic control theory, relaxed or ran-
domized control policies allow for versatility in mathematical analysis, leading to con-
tinuity, compactness, convexity, and approximation properties in a variety of system
models, cost criteria, and information structures.

Under the relaxed/randomized control framework, with \BbbX a standard Borel state
space, \BbbU a standard Borel control space, and an \BbbX -valued random variable X \sim \mu ,
instead of considering the set of deterministic admissible policies

\Gamma =

\biggl\{ 
\gamma : \gamma is a measurable function from \BbbX to \BbbU 

\biggr\} 
,(1.1)

one considers

\Gamma R =

\biggl\{ 
\gamma : \gamma is a measurable function from \BbbX to \scrP (\BbbU )

\biggr\} 
,(1.2)

where \scrP (\BbbU ) is endowed with the Borel \sigma -algebra generated by the weak convergence
topology.

On \Gamma R, two commonly studied topologies are the following.
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2368 SERDAR Y\"UKSEL

Young topology on randomized policies. A particularly prominent approach
since Young's seminal paper [62] has been via the study of topologies on Young mea-
sures defined by randomized/relaxed controls, where one views policies to be identified
with probability measures defined on a product space with a fixed marginal at an in-
put/state space (typically taken to be the Lebesgue measure in optimal deterministic
control) [62, 46], [24, section 2.1], [60, p. 254], [45], [5, Theorem 2.2].

Thus, under the Young topology, one associates with \Gamma R in (1.2) the probability
measure induced on the product space \BbbX \times \BbbU with a fixed marginal \mu on \BbbX . On this
product space, several weak topologies and their equivalence properties have been
studied in the literature; e.g., [6], [5, Theorem 2.2], and [33, Theorem 3.32] study
the equivalence relations between the Young topology convergence and the narrow
topology convergence.

The generalization to stochastic control problems by considering more general
input measures has been commonplace, with applications also to partially observed
stochastic control and decentralized stochastic control as noted above, where most
of the aforementioned references have indeed adopted this approach to define control
topologies (see, e.g., on existence and approximation results involving optimal sto-
chastic control [32, 42, 41], on decentralized stochastic control [63, Theorem 5.2] and
[56, section 4], on piecewise deterministic optimal stochastic control [9, 8], on econom-
ics and game theory [48, 47, 5], on mean-field control policies [10], and on optimal
quantization [64, Definition 2.1]).

Borkar's (weak\ast ) topology on randomized policies. In the stochastic
setup, another topology is one introduced by Borkar on relaxed controls [21] (see also
[3, section 2.4], and [16], which [21] notes to be building on), formulated as a weak\ast 

topology on randomized policies viewed as maps from states/measurements to the
space of signed measures with bounded variation \scrM (\BbbU ), of which probability mea-
sures \scrP (\BbbU ) is a subset. We also refer the reader to [26, 31] for further references on
such a weak\ast formulation on relaxed controls, in particular when instead of countably
additive signed measures, finitely additive such measures are also considered.

See [21, 1, 51] for a detailed analysis on some implications in stochastic control
theory in continuous time (such as continuity of expected cost in control policies
[21], approximation results [51] under various cost criteria, and continuity of invariant
measures of diffusions in control policies [1]).

Thus, under the Borkar topology one studies \Gamma R in (1.2), with a weak\ast topology
formulation, as a bounded subset of the set of maps from \BbbX to the space of signed
measures with finite variation viewed as the topological dual of continuous functions
vanishing at infinity, leading to a compact metric space by the Banach--Alaoglu theo-
rem [34, Theorem 5.18] (and thus, as the unit ball of L\infty (\BbbX ,\scrM (\BbbU )) = (L1(\BbbX ,C0(\BbbU )))\ast 
is compact under the weak\ast topology, this leads to a compact metric topology on
relaxed control policies). We note that the presentations in [21, section 3] and [3, sec-
tion 2.4] are slightly different, though the induced topology is identical. An equivalent
representation of this topology is given in [3, Lemma 2.4.1] (see also [21, Lemma 3.1]).

While \BbbX was taken to be \BbbR n in [21], Saldi generalized this to setups where \BbbX is
a general standard Borel space with a fixed input (probability) measure. This topol-
ogy was used for optimal decentralized stochastic control for an existence analysis by
Saldi [53].

Further discussion and relations on these topologies will be presented in the paper.
It should also be noted that, while some further classical contributions on stochas-

tic control theory, such as [12, 29, 17], did not consider randomized policies for the
analysis on optimal stochastic control problems, they did consider topologies which
are closely related to the Young topology.
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CONTROL TOPOLOGIES AND INVARIANT MEASURES 2369

We will also consider an application of the above on continuity properties of in-
variant measures on the space of stationary control policies, where we will obtain
a discrete-time counterpart of [1, Lemma 4.4] (under the Young topology and for
more general state spaces). This result, in addition to applications on existence and
approximations of optimal control under average cost criterion, which we will study
in this paper, also finds direct applications in stochastic game theory (see, e.g., [18,
Assumption A6], for which our results will present sufficient conditions for a study
of mean-field games with ergodic cost for a collection of agents coupled only via
their cost and with local information, facilitating an existence analysis through the
Kakutani--Fan--Glicksberg fixed point theorem). In addition to these applications, an-
other motivation for comparing the topologies has been the following: Young topology
was utilized in [63] to arrive at general existence and approximation results in decen-
tralized stochastic control, whereas the generalization of Borkar topology by Saldi
was utilized to study the same in [53]. The apparent connection, and the continuity
problem noted above, motivate the analysis in the paper.

Contributions. Our main results are the following.
(i) Building on a supporting technical result on the relations between Young

topologies at absolutely continuous input measures in Lemma 3.6, we provide
in Theorem 3.7 implication and equivalence relations between the Borkar
and Young topologies. Notably, with \psi being an input measure and \lambda the
Lebesgue measure and \BbbX = \BbbR n, if \psi \ll \lambda with the Radon--Nikodym deriva-
tive (density) g(x) = d\psi 

d\lambda (x) being positive everywhere, convergence in Young
topology at input measure \psi implies convergence in Borkar topology; and
if \psi \ll \lambda and \psi is a finite measure, then convergence in Borkar topology
implies convergence in Young topology at input \psi . Thus, if \psi \ll \lambda , \psi is a
finite measure (such as a probability measure), and g(x) = d\psi 

d\lambda (x) is positive
everywhere, the topologies are equivalent.

(ii) We present conditions on the continuous dependence of invariant measures in
discrete-time controlled Markov chains on the space of control policies under
the Young topology in Theorem 4.1 and a particular application for finite
models in Corollary 4.2. Theorem 4.1 has direct implications on existence of
average cost optimal stochastic control policies (we recall that in continuous
time, such a result has been established [1, Lemma 4.4] under the Borkar
topology). In discrete time, such a result is not available, to the best of our
knowledge, for controlled models. In a control-free setup, we take note of a
perturbation result given in [39, Thm. 1.6] (see [37, Theorem 9.2.6]) under
a strong norm defined on transition kernels viewed as an operator acting on
the space of signed measures.

(iii) As a further application, in Theorem 5.1, we show near-optimality of quan-
tized control policies (in both state and action) or continuous stationary and
deterministic policies for average cost control under mild technical (with ei-
ther weak continuity in the state-action pair or strong continuity in the action
for each state) conditions on transition kernels. These justify the use of learn-
ing theoretic methods or numerical methods for average cost optimal control
problems.

2. Model. We consider the usual model in the literature for controlled Markov
chains, otherwise referred to as Markov decision processes (MDPs). In general, for
a topological space \scrX , we denote by \scrB (\scrX ) its Borel \sigma -field and by \scrP (\scrX ) the set of
probability measures on \scrB (\scrX ).
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2370 SERDAR Y\"UKSEL

A controlled Markov chain consists of the tuple
\bigl( 
\BbbX ,\BbbU ,\scrU ,\scrT , c

\bigr) 
, whose elements

can be described as follows.
(a) The state space \BbbX and the action or control space \BbbU are Borel subsets of

complete, separable, metric (i.e., Polish) spaces.
(b) The map \scrU :\BbbX \rightarrow \scrB (\BbbU ) is a measurable multifunction. The set of admissible

state/action pairs is

\BbbK :=
\bigl\{ 
(x,u) : x\in \BbbX , u\in \scrU (x)

\bigr\} 
,

endowed with the subspace topology corresponding to \scrB (\BbbX \times \BbbU ).
(c) The map \scrT :\BbbK \rightarrow \scrP (\BbbX ) is a stochastic kernel on \BbbK \times \scrB (\BbbX ); that is, \scrT ( \cdot | x,u)

is a probability measure on \scrB (\BbbX ) for each (x,u)\in \BbbK , and (x,u) \mapsto \rightarrow \scrT (A | x,u)
is measurable for each A\in \scrB (\BbbX ).

The (admissible) history spaces are defined as

\BbbH 0 := \BbbX , \BbbH t := \BbbH t - 1 \times \BbbU \times \BbbX , t\in \BbbN ,

and the canonical sample space is defined as \Omega := (\BbbX \times \BbbU )\infty . These spaces are endowed
with their respective product topologies and are therefore Borel spaces. The state,
action (or control), and information processes, denoted by \{ Xt\} t\in \BbbZ +

, \{ Ut\} t\in \BbbZ +
, and

\{ Ht\} t\in \BbbZ +
, respectively, are defined by the projections

Xt(\omega ) := xt , Ut(\omega ) := ut , Ht(\omega ) := (x0, u0, . . . , ut - 1, xt)

for each \omega = (x0, u0, . . . , ut - 1, xt, ut, . . . ) \in \Omega . An admissible control policy, or policy,
is a sequence \gamma = \{ \gamma t\} t\in \BbbZ +

of stochastic kernels on \BbbH t\times \scrB (\BbbU ) satisfying the constraint

\gamma t(\scrU (Xt) | ht) = 1 , ht \in \BbbH t .

The set of all admissible policies is denoted by \Gamma \sansA . It is well known (see [49, Prop.
V.1.1, pp. 162--164]) that for any given \nu \in \scrP (\BbbX ) and \gamma \in \Gamma \sansA there exists a unique
probability measure P \gamma \nu on

\bigl( 
\Omega ,\scrB (\Omega )

\bigr) 
satisfying

P \gamma \nu (X0 \in D) = \nu (D) \forall D \in \scrB (\BbbX ) ,
P \gamma \nu (Ut \in C | Ht) = \gamma t(C | Ht) P \gamma \nu -a.s. , \forall C \in \scrB (\BbbU ),

P \gamma \nu (Xt+1 \in D | Ht,Ut) = \scrT (D | Xt,Ut) P \gamma \nu -a.s. , \forall D \in \scrB (\BbbX ).

The expectation operator corresponding to P \gamma \nu is denoted by E\gamma \nu . If \nu is a Dirac mass
at x\in \BbbX , we simply write these as P \gamma x and E\gamma x .

A policy \gamma is calledMarkov if there exists a sequence of measurable maps \{ vt\} t\in \BbbZ +
,

where vt :\BbbX \rightarrow \scrP (\BbbU ), where \scrP (\BbbU ) is endowed with the weak convergence topology, for
each t\in \BbbZ +, such that

\gamma t( \cdot | Ht) = vt(Xt)(\cdot ), P \gamma \nu -a.s.

With some abuse in notation, such a policy is identified with the sequence v =
\{ vt\} t\in \BbbZ +

. Note then that \gamma t may be written as a stochastic kernel \gamma t(\cdot | x) on \BbbX \times \scrB (\BbbU ),
which satisfies \gamma t(\scrU (x) | x) = 1. Let \Gamma \sansM denote the set of all Markov policies.

We add the adjective stationary to indicate that the Markov policy does not
depend on t \in \BbbZ +, that is, \gamma t = \gamma for all t \in \BbbZ +. We let \Gamma \sansS denote the class of
stationary Markov policies, henceforth referred to simply as stationary policies, and
let \Gamma \sansS \sansD \subset \Gamma \sansS denote the subset of those that are deterministic.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONTROL TOPOLOGIES AND INVARIANT MEASURES 2371

In summary, under a policy \gamma \in \Gamma \sansS , the process satisfies the following: for all
Borel sets B \in \scrB (\BbbX ), t\geq 0, and (P \gamma almost all) realizations x[0,t], u[0,t], we have

P \gamma 
\bigl( 
Xt+1 \in B | X[0,t] = x[0,t],U[0,t] = u[0,t]

\bigr) 
= P \gamma (Xt+1 \in B | Xt = xt,Ut = ut)(2.1)

= \scrT (B | xt, ut).

For \gamma \in \Gamma \sansS , we let

\scrT \gamma (A | x) :=
\int 
\scrU (x)

\scrT (A | x,u)\gamma (du | x).(2.2)

We let \scrM b(\BbbX ) (Cb(\BbbX )) denote the space of bounded Borel measurable (continu-
ous) real-valued functions on \BbbX . For \mu \in \scrP (\BbbK ) and f \in \scrM b(\BbbX ), we define \mu \scrT \in \scrP (\BbbX )
and \scrT f :\BbbK \rightarrow \BbbR by

\mu \scrT (A) :=

\int 
\BbbK 
\mu (dx,du)\scrT (A | x,u) , A\in \scrB (\BbbX ) ,(2.3)

and

\scrT f(x,u) :=
\int 
\BbbX 
f(y)\scrT (dy | x,u) , (x,u)\in \BbbK ,(2.4)

respectively. We use the convenient notation for integrals of functions

\mu (f) = \langle \mu ,f\rangle :=
\int 
\BbbK 
f(x,u)\mu (dx,du),(2.5)

and similarly for f \in \scrM b(\BbbX ) and \mu \in \scrP (\BbbX ) if no ambiguity arises. We then have

\langle \mu \scrT , f\rangle = \langle \mu ,\scrT f\rangle for \mu \in \scrP (\BbbK ), f \in \scrM b(\BbbX ).

The set of invariant occupation measures (or, as is used more commonly in the
literature, ergodic occupation measures [2]) is defined by

\scrG :=
\bigl\{ 
\mu \in \scrP (\BbbK ) : \mu (B \times \BbbU ) = \mu \scrT (B), B \in \scrB (\BbbX )

\bigr\} 
.(2.6)

We also let

\scrH :=

\biggl\{ 
\pi \in \scrP (\BbbX ) : \exists \gamma \in \Gamma S such that \pi (A) =

\int 
\BbbX 
\scrT \gamma (A | x)\pi (dx), A\in \scrB (\BbbX )

\biggr\} 
denote the set of invariant probability measures of the controlled Markov chain.

Let \mu \in \scrG . It is well known that \mu can be disintegrated into a stochastic kernel \phi 
on \BbbX \times \scrB (\BbbU ) and \pi \in \scrP (\BbbX ) such that

\mu (dx,du) = \phi (du | x)\pi (dx),

and \phi is \pi -a.e. uniquely defined on the support of \pi . We denote this disintegration
by \mu = (\phi \pi ). Therefore, if \gamma \in \Gamma \sansS is any policy which agrees \pi -a.e. with \phi , then we
have \pi (A) = \scrT \gamma (A | x)\pi (dx) for A \in \scrB (\BbbX ). Therefore, \pi \in \scrH . Conversely, if \pi \in \scrH 
with an associated \gamma \in \Gamma \sansS , then it is clear from the definitions that (\gamma \pi )\in \scrG .
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2372 SERDAR Y\"UKSEL

2.1. Two complementary regularity assumptions.
(H1) The transition kernel \scrT is called weakly continuous if the map

\BbbK \ni (x,u) \mapsto \rightarrow 
\int 
\BbbX 
f(z)\scrT (dz | x,u)

is continuous for all f \in Cb(\BbbX ).
(H2) The transition kernel \scrT satisfies the following:

(a) For any x \in \BbbX , the map u \mapsto \rightarrow 
\int 
f(z)\scrT (dz | x,u) is continuous for every

bounded measurable function f .
(b) There exists a finite measure \nu majorizing \scrT , that is,

\scrT (dy | x,u) \leq \nu (dy), x\in \BbbX , u\in \BbbU .(2.7)

Example 2.1. Consider the following model:

xn+1 = F (xn, un) +wn, n= 0,1,2, . . . ,

where \BbbX =\BbbR n and the wn's are independent and identically distributed (i.i.d.) random
vectors.

(i) If F is continuous, regardless of the distribution of wn, (H1) applies.
(ii) If u \mapsto \rightarrow F (x,u) is continuous for all x \in \BbbX and wn has a distribution which

admits a bounded and continuous density function, then (H2)(a) holds.
(iii) If, in addition to (ii), we assume that F is bounded, (2.7) applies.

When one associates with a controlled Markov model an average cost criterion
with bounded cost functions, it has been shown that under these assumptions op-
timal solutions exist under additional conditions (such as positive Harris recurrence
and continuity in both the state and actions under (H1) [2, 23, 40, 35, 2, 36], and
continuity of the cost in actions for each state under (H2) [4]); generalizations to the
unbounded setup follow from tightness/lower semicontinuity arguments.

3. Young and Borkar topologies on stationary control policies. Consider
the deterministic measurable policy space (1.1) and the relaxed/randomized measur-
able policy space (1.2). In the following, we will study two topologies on (1.2).

3.1. Young topology on control policies. As noted earlier, a common ap-
proach that has been ubiquitously adopted in various fields, often with different ter-
minologies, is via what is commonly defined as the Young topology approach (e.g., in
optimal deterministic control [62, 46], [24, section 2.1], [60, p. 254], [45]; distributional
strategies in economics [48] [47]; and optimal quantization [64]).

To present the Young topology on control policies, we first present a relevant
representation result (see Borkar [22]).

Let \BbbX ,\BbbM be Borel spaces. Let \scrP (\BbbX ) denote the set of probability measures on \BbbX .
Consider the set of probability measures

\Theta :=

\biggl\{ 
\zeta \in \scrP (\BbbX \times \BbbM ) :

\zeta (dx,dm) = P (dx)Qf (dm| x),Qf (\cdot | x) = 1\{ f(x)\in \cdot \} , f :\BbbX \rightarrow \BbbM 
\biggr\} 

(3.1)

on \BbbX \times \BbbM with fixed input marginal P on \BbbX and with the stochastic kernel from \BbbX 
to \BbbM realized by any measurable function f : \BbbX \rightarrow \BbbM . We equip this set with the
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CONTROL TOPOLOGIES AND INVARIANT MEASURES 2373

weak convergence topology. This set is the (Borel measurable) set of the extreme
points of the set of probability measures on \BbbX \times \BbbM with a fixed marginal P on \BbbX .
For compact \BbbM , the Borel measurability of \Theta follows [50] since the set of probability
measures on \BbbX \times \BbbM with a fixed marginal P on \BbbX is a convex and compact set in a
complete separable metric space, and therefore, the set of its extreme points is Borel
measurable; measurability for the noncompact case follows from [22, Lemma 2.3].
Furthermore, given a fixed marginal P on \BbbX , any stochastic kernel Q from \BbbX to \BbbM 
can almost surely be identified by a probability measure \Xi \in \scrP (\Theta ) such that

Q(\cdot | x) =
\int 
\Theta 

\Xi (dQf )Qf (\cdot | x).(3.2)

In particular, a stochastic kernel can thus be viewed as an integral representation over
probability measures induced by deterministic policies (i.e., a mixture of deterministic
policies).

Let \BbbX be a Polish space and let \scrP (\BbbX ) denote the family of all probability measures
on (\BbbX ,\scrB (\BbbX )). Let \{ \mu n, n\in \BbbN \} be a sequence in \scrP (\BbbX ).

The sequence \{ \mu n\} is said to converge to \mu \in \scrP (\BbbX ) weakly if\int 
\BbbX 
c(x)\mu n(dx)\rightarrow 

\int 
\BbbX 
c(x)\mu (dx)(3.3)

for every continuous and bounded c :\BbbX \rightarrow \BbbR .
Let \BbbY be another Polish space.

Definition 3.1. The w-s (weak-setwise) topology on the set of probability mea-
sures \scrP (\BbbX \times \BbbY ) is the coarsest topology under which

\int 
f(x, y)\mu (dx,dy) :\scrP (\BbbX \times \BbbY )\rightarrow \BbbR 

is continuous for every measurable and bounded f which is continuous in y for every x
(but unlike the weak topology, f does not need to be continuous in x). Let \{ \mu n, n\in \BbbN \} 
be a sequence in \scrP (\BbbX \times \BbbY ). The sequence \{ \mu n\} is said to converge to \mu \in \scrP (\BbbX \times \BbbY )
in the w-s topology if \int 

f(x, y)\mu n(dx,dy)\rightarrow 
\int 
f(x, y)\mu (dx,dy)

for every measurable and bounded f which is continuous in y for every x\in \BbbX .

See [58, Theorem 3.7] for some properties and equivalence relations on the w-s
convergence. Note that the coordinate on which continuity is imposed should be made
explicit (thus, the w-s and s-w topologies are identically denoted).

Definition 3.2. Convergence of policies in \Gamma S under Young topology at reference
(input) measure \mu . Let \mu be a \sigma -finite measure. A sequence of stationary policies
\gamma n \rightarrow \gamma \in \Gamma S under Young topology at input \mu , if the joint measure (\mu \gamma n)\rightarrow (\mu \gamma ) in
the w-s sense at input \mu , i.e., for every measurable and bounded g : \BbbX \times \BbbU \rightarrow \BbbR with
g(x, \cdot ) : u \mapsto \rightarrow g(x,u) continuous and\int 

\mu (dx) sup
u\in \BbbU 

| g(x,u)| <\infty ,\int 
\mu (dx)

\biggl( 
\gamma n(du| x)g(x,u)

\biggr) 
\rightarrow 

\int 
\mu (dx)

\biggl( 
\gamma (du| x)g(x,u)

\biggr) 
.(3.4)

Lemma 3.3. If the probability measures induced by the two-tuple random variable
sequence (X,Un) converge to that induced by (X,U) weakly, then this convergence is
also in the w-s sense (setwise in x, weakly in u).
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2374 SERDAR Y\"UKSEL

Proof. The marginal on X is fixed along the sequence. The result then follows
from [58, Theorem 3.7] (or [7, Theorem 2.5]).

Remark 3.1. In view of Lemma 3.3, when \mu is a probability (or more generally,
a finite) measure, since the marginal of the joint measure (\mu \gamma n) on \BbbX is fixed, the
convergence in (3.4) is implied by weak convergence as well (with g(\cdot , \cdot ) taken to be
bounded continuous on \BbbX \times \BbbU ). We remark also that, as noted by a referee, the above
equivalence does not necessarily apply when the input \mu is not a finite measure.

In the literature, further related results are present; see [6] for a concise discussion
and [5, Theorem 2.2] and [33, Theorem 3.32] for equivalent characterizations of Young
topology convergence.

3.2. Borkar topology on control policies. We now present a different topol-
ogy, introduced by Borkar [21], [3, Lemma 2.4.1].

As we noted earlier, the presentations in [21, section 3] and [3, section 2.4] are
slightly different, though the induced topologies are equivalent. Saldi [53] generalized
Borkar's topology to setups where \BbbX is a general standard Borel space. In the fol-
lowing, we will take \BbbU to be compact, though the results generalize when \BbbU is locally
compact.

Consider the relaxed control policy space (1.2). The Borkar topology (and its
generalization by Saldi) on this space is formulated as the weak\ast topology when (1.2)
is viewed as maps from \BbbX to the space of signed measures \scrM (\BbbU ) with finite variation
of which probability measures \scrP (\BbbU ) are a subset, and signed measures with finite
variation are studied as the topological duals of continuous functions vanishing at
infinity (see [34, Theorem 7.17] and [25, Theorem 1.5.5, p. 27]). By the Banach--
Alaoglu theorem [34, Theorem 5.18], as the unit ball of L\infty (\BbbR ,\scrM (\BbbU )) is compact
under the weak\ast topology, this leads to a compact metric topology on relaxed con-
trol policies. An equivalent representation of this topology is given by the following
[3, Lemma 2.4.1].

Definition 3.4 (see [21], [3, Lemma 2.4.1]). Convergence of policies in \Gamma S under
Borkar topology. With \BbbX = \BbbR d, a sequence of stationary policies \gamma n \rightarrow \gamma \in \Gamma S in
the Borkar topology if for every continuous and bounded g : \BbbX \times \BbbU \rightarrow \BbbR and every
f \in L1(\BbbX )\cap L2(\BbbX )\int 

f(x)

\int 
\gamma n(du| x)g(x,u)dx\rightarrow 

\int 
f(x)

\int 
\gamma (du| x)g(x,u)dx.(3.5)

Remark 3.2. Building on, and slightly revising, the analysis in the proof of
Lemma 3.3, the functions g in Definition 3.4 may be relaxed to be continuous only in
u for every x\in \BbbX .

The generalization of this topology by Saldi [53] is the following, where the input
space \BbbX is arbitrary standard Borel, though with a fixed input measure \mu . Let C0(\BbbU )
be the Banach space of all continuous real functions on \BbbU vanishing at infinity endowed
with the norm

\| g\| \infty = sup
u\in \BbbU 

| g(u)| .

Saldi formulated this topology via noting that with L1

\bigl( 
\mu ,C0(\BbbU )

\bigr) 
denoting the set of

all Bochner-integrable functions from \BbbX to C0(\BbbU ) endowed with the norm

\| f\| 1 :=
\int 
\BbbX 
\| f(x)\| \infty \mu (dx),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/3

0/
24

 to
 6

7.
19

3.
16

3.
26

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



CONTROL TOPOLOGIES AND INVARIANT MEASURES 2375

using the fact that C0(\BbbU )\ast = \scrM (\BbbU ), and that the topological dual of (L1

\bigl( 
\mu ,C0(\BbbU 

\bigr) 
,

\| \cdot \| 1) can be identified with
\bigl( 
L\infty 

\bigl( 
\mu ,\scrM (\BbbU )

\bigr) 
,\| \cdot \| \infty 

\bigr) 
[25, Theorem 1.5.5, p. 27] (see

also [26, 31] for further context on such duality results, in particular when instead of
countably additive signed measures, finitely additive such measures are considered);
that is,

L1

\bigl( 
\mu ,C0(\BbbU )

\bigr) \ast 
=L\infty 

\bigl( 
\mu ,\scrM (\BbbU )

\bigr) 
.

Definition 3.5 (see [53]). Convergence of policies in \Gamma S under Borkar--Saldi
topology at input \bfitmu . With \BbbX standard Borel, a sequence of stationary policies \gamma n \rightarrow 
\gamma \in \Gamma S in the Borkar--Saldi topology if for every measurable bounded g : \BbbX \times \BbbU \rightarrow \BbbR 
with g(x, \cdot ) :\BbbU \rightarrow \BbbR continuous and\int 

\mu (dx) sup
u\in \BbbU 

| g(x,u)| <\infty ,

we have \int 
\mu (dx)

\int 
\gamma n(du| x)g(x,u)\rightarrow 

\int 
\mu (dx)

\int 
\gamma (du| x)g(x,u).(3.6)

Note that this definition is closely related to Young topology convergence at in-
put \mu , and when \BbbU is compact this can be seen to be identical to the Young topology
convergence at input \mu (via a uniform integrability argument following the steps to
be given in the proof of Lemma 3.6). A particular difference from the Borkar topol-
ogy, and similarity to Young topology, is with regard to the presence of a fixed input
measure.

The Borkar topology has been used to show that, for nondegenerate controlled
diffusions, expected cost is continuous in control policies under this topology (see [21]
for finite horizon problems and [51] for infinite horizon problems as well as continuity in
Markov policies in addition to stationary policies) and for the continuity of invariant
measures for such diffusions in control policies [1, Lemma 4.4]. The generalization
by Saldi was utilized to study existence of team optimal policies in decentralized
stochastic control [53].

3.3. Some properties and equivalence conditions of Young and Borkar
topologies. We first present a supporting result on convergence under the Young
topology.

Lemma 3.6. Let \eta \ll \kappa , where \kappa is \sigma -finite and \eta is a finite measure. Then,
\gamma n \rightarrow \gamma under Young topology at input \kappa implies \gamma n \rightarrow \gamma (under Young topology) at
input \eta .

Proof. By assumption we have that there exists f :\BbbX \rightarrow \BbbR + with

f(x) =
d\eta 

d\kappa 
(x),

which is the Radon--Nikodym derivative. In particular, f is integrable under \kappa .
Now, let \=g be continuous in u for every x and bounded where supu\in \BbbU | \=g(x,u)| is

integrable under \kappa . Consider a sequence of converging control policies at \kappa so that

lim
n\rightarrow \infty 

\int 
(\kappa \gamma n)(dx,du)\=g(x,u) =

\int 
\kappa \gamma (dx,du)\=g(x,u).

We will show that the above implies that for every continuous and bounded g
(which is necessarily integrable under the finite measure \eta )
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2376 SERDAR Y\"UKSEL

lim
n\rightarrow \infty 

\int 
(\eta \gamma n)(dx,du)g(x,u) =

\int 
\eta \gamma (dx,du)g(x,u).

We have the following uniform integrability condition:

lim
M\rightarrow \infty 

sup
n\in \BbbN 

\int 
\{ | f(x)| \geq M\} 

\kappa (dx)

\bigm| \bigm| \bigm| \bigm| f(x)\biggl( \int 
\gamma n(du| x)g(x,u)

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq lim
M\rightarrow \infty 

sup
n\in \BbbN 

\int 
\{ | f(x)| \geq M\} 

\kappa (dx)f(x)\| g\| \infty = 0.(3.7)

Therefore, with \int 
(\kappa \gamma n)(dx,du)f(x)g(x,u)

=

\int 
(\kappa \gamma n)(dx,du)(f(x) - min(M,f(x)))g(x,u)

+

\int 
(\kappa \gamma n)(dx,du)min(M,f(x))g(x,u)(3.8)

the first term on the right is uniformly and absolutely bounded by \epsilon M with \epsilon M \rightarrow 0
as M \rightarrow \infty (by uniform integrability in (3.7)), and the second term on the right
converges to

\int 
\kappa \gamma (dx,du)min(M,f(x))g(x,u) for every M \in \BbbR + (since for every M ,

min(M,f(x))g(x,u) is bounded and continuous in u for every x). Therefore,

limsup
n\rightarrow \infty 

\int 
(\kappa \gamma n)(dx,du)f(x)g(x,u)

(3.9)

\leq \epsilon M +

\int 
(\kappa \gamma )(dx,du)min(M,f(x))g(x,u)\leq \epsilon M +

\int 
(\kappa \gamma )(dx,du)f(x)g(x,u)

and

lim inf
n\rightarrow \infty 

\int 
(\kappa \gamma n)(dx,du)f(x)g(x,u)

\geq  - \epsilon M +

\int 
(\kappa \gamma )(dx,du)min(M,f(x))g(x,u).(3.10)

Since the above holds for every M , taking M \rightarrow \infty and applying the dominated
convergence theorem, the limit infimum and supremum of the sequences are seen to
be equal. We arrive at\int 

\eta \gamma n(dx,du)g(x,u) =

\int 
(\kappa \gamma n)(dx,du)f(x)g(x,u)

\rightarrow 
\int 
(\kappa \gamma )(dx,du)f(x)g(x,u) =

\int 
(\eta \gamma )(dx,du)g(x,u).(3.11)

Remark 3.3. As noted by a referee, Lemma 3.6 can be generalized to a uniform
convergence over collection of finite input measures \Upsilon = \{ \eta \alpha \} where \eta \alpha \ll \kappa with
uniformly integrable (under \kappa ) Radon--Nikodym derivatives d\eta \alpha 

d\kappa . In particular, a
close look at the proof reveals that we would have, for all bounded continuous g,

lim
n\rightarrow \infty 

sup
\eta \alpha \in \Upsilon 

\bigm| \bigm| \bigm| \bigm| \int \eta \alpha \gamma n(dx,du)g(x,u) - 
\int 
\eta \alpha \gamma (dx,du)g(x,u)

\bigm| \bigm| \bigm| \bigm| = 0.

This has implications for convergence of policies when the underlying input measure
is varying.
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CONTROL TOPOLOGIES AND INVARIANT MEASURES 2377

An implication of Lemma 3.6, essentially a corollary, is then the following.

Theorem 3.7. Let \BbbX =\BbbR n and \lambda be the Lebesgue measure. Consider convergence
in Young topology at some \sigma -finite input measure \psi .

(i) If \psi \ll \lambda with h(x) = d\psi 
d\lambda (x) is positive everywhere, then convergence in Young

topology at input measure \psi implies convergence in Borkar topology.
(ii) If \psi \ll \lambda and \psi is a finite measure, then convergence in Borkar topology

implies convergence in Young topology at input \psi .
(iii) Convergence in Borkar topology is equivalent to convergence in Young topology

at input \psi if \psi \ll \lambda , \psi is finite, and h(x) = d\psi 
d\lambda (x) is positive everywhere.

Proof. (i) Since L1 is separable, the convergence in the Borkar topology is equiv-
alent to convergence of\int 

fm(x)

\int 
\gamma n(du| x)g(x,u)\lambda (dx)\rightarrow 

\int 
fm(x)

\int 
\gamma (du| x)g(x,u)\lambda (dx)(3.12)

for a countable collection of functions \{ fm,m= 1,2, . . .\} . Equivalently,\int 
fm(x)

\| fm\| 1

\int 
\gamma n(du| x)g(x,u)\lambda (dx)\rightarrow 

\int 
fm(x)

\| fm\| 1

\int 
\gamma (du| x)g(x,u)\lambda (dx).(3.13)

For each fixed m, the convergence of (3.13) for every bounded and continu-
ous g can be viewed as weak convergence of the signed measure (Fm\gamma n)(A,B) =\int 
A
fm(x)
\| fm\| 1

\int 
B
\gamma n(du| x)dx, where we define this space as a locally convex space with the

seminorms defined by convergences of\bigm| \bigm| \bigm| \bigm| \int (Fm\gamma n)(dx,du)g(x,u) - 
\int 

(Fm\gamma )(dx,du)g(x,u)

\bigm| \bigm| \bigm| \bigm| 
to zero for each continuous and bounded g.

Now, define another signed measure F by

F(A) =
\sum 
m

2 - m
\int 
A

fm(x)

\| fm\| 1
dx.

This is a finite measure and one that satisfies Fm\ll F.
Thus, by Lemma 3.6 it follows that Young convergence at F will imply convergence

in the Borkar topology.
Let \psi \ll \lambda with h(x) = d\psi 

d\lambda (x) positive everywhere. It follows then that F \ll \psi 
and Young topology convergence at \psi implies convergence in the Borkar topology.

(ii) For any given finite measure F which is absolutely continuous with respect
to the Lebesgue measure, the Radon--Nikodym derivative dF

d\lambda (which is necessarily in
L1(\BbbX )) can be approximated arbitrarily well by functions fm in L1(\BbbX ) \cap L2(\BbbX ), in
the L1 norm. Therefore, by (3.12), convergence in the Borkar topology implies that
under the Young topology in this case.

(iii) This follows from (i) and (ii).

Remark 3.4. If the reference measure \psi is not absolutely continuous with respect
to the Lebesgue measure, then it is not necessarily the case that the Borkar topology
implies Young's: Any atomic probability measure can be approximated by nonatomic
measures under the weak convergence topology, but this is not strong enough for
the convergence in Young topology as control policies would also be varying along a
sequence of policies (unless one restricts the policies to be continuously converging
(see [59, Theorem 3.5] or [44, Theorem 3.5])).
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2378 SERDAR Y\"UKSEL

4. Continuous dependence of invariant measures on stationary control
policies under Young topology. In this section, we present the following continuity
results involving invariant measures on the space of control policies. We first consider
the case with \BbbX =\BbbR n.

Theorem 4.1. Suppose the following.
(i) We have \BbbX =\BbbR n for some finite n, and for all x\in \BbbR n, \BbbU (x) =\BbbU is compact.
(ii) For every stationary policy \gamma \in \Gamma \sansS there exists a unique invariant probability

measure.
(iii) The kernel \scrT (dy | x,u) is such that the family of conditional probability mea-

sures \{ \scrT (dy | x,u), x \in \BbbX , u \in \BbbU \} admits densities fx,u(y) with respect to a
reference measure \psi , and all such densities are bounded and equicontinuous
(over x\in \BbbX , u\in \BbbU ).

(iv) One of the following holds: (a) (H1) holds and \scrG (defined in (2.6)) is weakly
compact, or (b) (H2) holds (for which \scrG is necessarily weakly compact [4,
Theorem 2.2]).

Then, the invariant measure is weakly (and in total variation) continuous on the
control policy space \Gamma S, where we endow the stationary policy space \Gamma S with the Young
topology at reference (input) measure \psi .

Proof. Observe that the family of densities fx,u(\cdot ) being equicontinuous over
x\in \BbbX , u\in \BbbU implies that \{ 

\int 
fx,u(y)\mu (dx)\gamma (du| x), \mu \in \scrP (\BbbX ), \gamma \in \Gamma \sansS \} is also equicon-

tinuous. Thus, the family of invariant probability measures under any stationary
policy admits densities, with respect to the reference probability measure \psi , which
are bounded and equicontinuous. Then, following, e.g., [64, Lemma 4.3], if \{ hn\} is a
sequence of probability density functions (with respect to some reference measure \psi )
which are equicontinuous and uniformly bounded and if the corresponding sequence
of measures \mu n(dy) = hn(y)\psi (dy)\rightarrow \mu (dy) = h(y)\psi (dy) weakly, then as a consequence
of the Arzel\'a--Ascoli theorem (applied to \sigma -compact spaces) hn\rightarrow h pointwise and by
Scheff\'e's theorem [15], \mu n\rightarrow \mu in total variation.

Let \gamma be any randomized stationary policy. Suppose that this policy gives rise
to an invariant probability measure \pi \gamma (dx,du) (by (ii)). Now, consider a sequence
of policies fn so that under this sequence of policies fn \rightarrow \gamma at \psi and therefore, by
Lemma 3.6, \pi \gamma (dx)fn(du| x) converges weakly to \pi \gamma (dx,du) as well.

Now, let us apply the same control policy sequence to the random variable Xn

which has the probability measure \pi fn(dx) equal to the marginal of the invariant
measure under policy U = fn(X). Then, for every continuous and bounded g \in Cb(\BbbX )\int 

\pi fn(dx)fn(du| x)
\biggl( \int 

g(y)\scrT (dy | x,u)
\biggr) 
=

\int 
\pi fn(dx)g(x) .(4.1)

Let \pi fnk
(dx) be a weakly converging subsequence with limit \eta (by the compactness

assumption on \scrG ). By hypothesis (as a result of the discussion above on Scheff\'e's
theorem), this convergence is also in total variation. Therefore, writing (by dropping
the subsequence notation nk and considering this as a converging sequence)

\int 
\pi fn(dx)fn(du| x)

\biggl( \int 
g(y)\scrT (dy | x,u)

\biggr) 
 - 
\int 
\eta (dx)\gamma (du| x)

\biggl( \int 
g(y)\scrT (dy | x,u)

\biggr) (4.2)

=

\int 
\pi fn(dx)fn(du| x)

\biggl( \int 
g(y)\scrT (dy | x,u)

\biggr) 
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CONTROL TOPOLOGIES AND INVARIANT MEASURES 2379

 - 
\int 
\eta (dx)fn(du| x)

\biggl( \int 
g(y)\scrT (dy | x,u)

\biggr) 
+

\int 
\eta (dx)fn(du| x)

\biggl( \int 
g(y)\scrT (dy | x,u)

\biggr) 
 - 
\int 
\eta (dx)\gamma (du| x)

\biggl( \int 
g(y)\scrT (dy | x,u)

\biggr) 
,

we have that for every continuous and bounded function g (using the inner-product
\langle \cdot , \cdot \rangle notation for the above integrations)\biggl\langle 

\pi fn(dx)fn(du| x) - \eta (dx)fn(du| x),
\biggl( \int 

g(y)\scrT (dy | x,u)
\biggr) \biggr\rangle 

\rightarrow 0(4.3)

and \biggl\langle 
\eta (dx)fn(du| x) - \eta (dx)\gamma (du| x),

\biggl( \int 
g(y)\scrT (dy | x,u)

\biggr) \biggr\rangle 
\rightarrow 0.(4.4)

The first term (4.3) here on the right converges to zero due to total variation
convergence of \pi fn to \eta (since we apply the same policy fn, and convergence is uniform
over all measurable functions as in the proof of [38, Lemma 1.1(iii)]).

We now show that the second term (4.4) converges to zero as well. By the Arzel\'a--
Ascoli theorem implying that the limit function defines a density with respect to \psi ,
we have \eta \ll \psi . Therefore, by the definition of convergence (of control policies at
\psi , the reference measure for each invariant probability measure under any stationary
policy) and Lemma 3.6, we have that the second term converges to zero: Recall that\biggl( \int 

g(y)\scrT (dy | x,u)
\biggr) 

is either continuous in x,u (under (H1)); or continuous in u for every x \in \BbbX (under
(H2)(a)). In either case, by [58, Theorem 3.10] or [7, Theorem 2.5], since the measure
converges weakly and the marginal on \BbbX converges setwise, the convergence is also in
the w-s sense (see Lemma 3.3).

The term on the right of (4.1) converges to
\int 
\eta (dx)g(x), due to convergence of

the measures in total variation. Thus, we have that the following holds for every
continuous and bounded g:\int 

\eta (dx)\gamma (du| x)
\biggl( \int 

g(y)\scrT (dy | x,u)
\biggr) 
=

\int 
\eta (dx)g(x).

Since continuous and bounded functions are measure determining (see [14, p. 13] or
[30, Theorem 3.4.5]), the above implies that \eta is invariant.

However, by uniqueness of the invariant probability measure for any stationary
policy, we have that \eta must be \pi \gamma .

We remark that compactness of invariant measures under total variation has been
studied in [19, Lemma 3.2] with a similar argument in continuous time.

Let us present some concrete examples. Assume either Example 2.1(i) or Ex-
ample 2.1(ii) holds, together with Example 2.1(iii), and assume that wn admits a
bounded density function which is positive everywhere (so that the induced Markov
chain by any stationary policy is irreducible) and has a bounded derivative (so that
the densities are equicontinuous); a Gaussian density is sufficient for each of these
conditions. In this case, Theorem 4.1 is applicable.
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The following result, essentially providing additional examples for which Theo-
rem 4.1 is applicable, is a corollary of the above, since with finite spaces the continuity
conditions (weak or setwise) are equivalent, and every probability measure is abso-
lutely continuous with respect to a weighted counting measure; and thus the proof
follows identically.

Corollary 4.2.
(i) Let \BbbX ,\BbbU be finite, and for every stationary policy let there be a unique in-

variant probability measure. Then, the invariant measure is continuous under
Young topology on stationary controls at any input which places positive mass
on each element in \BbbX .

(ii) The above applies to the case where \BbbX is countable and \BbbU is compact, provided
that \scrG (2.6) is compact and the transition kernel is continuous in actions.

Remark 4.1. With finite or countable spaces, equivalent to the Young topology
with an input measure placing positive mass on each state x\in \BbbX , one can also directly
work with a metric of the form\sum 

x\in \BbbX 
2 - x\rho (\gamma n(\cdot | x), \gamma (\cdot | x)),

with \rho being any weak convergence inducing complete metric. Such a metric has been
shown to be consequential in stochastic dynamic game theory and learning theoretic
algorithms (see, e.g., [61, section 2.4]).

5. An application: Near-optimality of continuous or quantized (in state
and action) deterministic policies in average cost optimal control. Consider
the following average cost problem of finding

J\ast (x) := inf
\gamma 
J(x,\gamma ) = inf

\gamma \in \Gamma A

limsup
T\rightarrow \infty 

1

T
E\gamma x

\Biggl[ 
T - 1\sum 
t=0

c(xt, ut)

\Biggr] 
.(5.1)

It has been shown that, for such average cost criteria, optimal solutions exist under
additional conditions (such as positive Harris recurrence, boundedness of the cost func-
tion and its continuity in both the state and actions under (H1) [2, 23, 40, 35, 2, 36],
or continuity of the cost only in actions under (H2) [4]; and a tightness condition on
the set of invariant probability measures induced by stationary policies).

We present an approximation result.

Theorem 5.1. Let the conditions of Theorem 4.1 hold, either with (H1) or
(H2)(a). Further assume that \psi is a finite measure (a sufficient condition being
(H2)(b)). Suppose that the measurable cost function is bounded and is continuous in
the actions for each state. Then,

(i) an \epsilon -optimal solution exists among continuous stationary (possibly random-
ized) control policies;

(ii) an \epsilon -optimal solution exists among quantized (possibly randomized) station-
ary control policies which have finite range and finite domain with uniform
quantization (i.e., with both state and action space quantization);

(iii) if \psi \ll \lambda with \lambda being the Lebesgue measure, an \epsilon -optimal solution exists
among continuous stationary deterministic control policies;

(iv) if \psi \ll \lambda with \lambda being the Lebesgue measure, an \epsilon -optimal solution exists
among stationary and deterministic policies which have finite range and fi-
nite domain with uniform quantization (i.e., with both state and action space
quantization).
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CONTROL TOPOLOGIES AND INVARIANT MEASURES 2381

In the following, we prove this theorem. Recall the following.

Theorem 5.2 ([27, Theorem 7.5.2] Lusin's theorem). Let (\BbbX , T ) be any topolog-
ical space and \mu a finite, closed regular Borel measure on \BbbX . Let (\BbbS , d) be a separable
metric space, and let f be a Borel-measurable function from \BbbX into \BbbS . Then for any
\epsilon > 0 there is a closed set F \subset \BbbX such that \mu (\BbbX \setminus F )< \epsilon and the restriction of f to F
is continuous.

Finally we recall Tietze's extension theorem, which will be used in conjunction
with Lusin's theorem. This will be used to construct a continuous extension of the
continuous function defined on F in Theorem 5.2 to \BbbX . Note that we consider a
general space setup in the following; this is needed as we will study stochastic kernels
as probability measure-valued maps.

Theorem 5.3 ([28, Theorem 4.1] Tietze's extension theorem). Let \BbbX be an ar-
bitrary metric space, A a closed subset of \BbbX , L a locally convex linear space, and
f : A \rightarrow L a continuous map. Then there exists a continuous function fC : \BbbX \rightarrow L
such that fC(a) = f(a)\forall a\in A. Furthermore, the image of fC satisfies fC(\BbbX )\subset closed
convex hull of f(A).

Proof of Theorem 5.1. We will first prove (i)--(ii), followed by (iii)--(iv).
By Theorem 4.1 (see also [4, Theorems 2.1 and 2.2], under the complementary

conditions of (H1) or (H2)(a)) an optimal invariant measure exists, which leads to an
optimal policy for almost every initial condition (over a set of measure one) under its
corresponding invariant measure. We note that if the induced Markov chain is positive
Harris recurrent, then the optimality would hold for all initial conditions given the
assumptions. Consider this, possibly randomized, control policy \gamma , and consider the
measure on the product space with input measure \psi . Now, note that the policy, as a
stochastic kernel (as a regular conditional probability), is defined with the following
property: for every x \in \BbbX , \gamma (du| x) is \scrP (\BbbU )-valued and for every Borel set B \subset \BbbU ,
\gamma (u\in B| \cdot ) :\BbbX \rightarrow \BbbR is Borel-measurable.

Step 1. Following [13, Proposition 7.26], the above property is equivalent to the
policy \gamma (ui \in \cdot | x) being a Borel-measurable map from \BbbX to \scrP (\BbbU ) (which is endowed
by the weak convergence topology). Because \BbbU is standard Borel, \scrP (\BbbU ) is a separable
metric space and can be defined by viewing the space of probability measures \scrP (\BbbU )
as a convex subset of a locally convex space [52, Chapter 3] of signed measures with
finite total variation defined on \scrB (\BbbU ), where we define the locally convex space of
signed measures with the following notion of convergence: We say that \nu n \rightarrow \nu if\int 
f(u)\nu n(du)\rightarrow 

\int 
f(u)\nu (du) for every continuous and bounded function f :\BbbU \rightarrow \BbbR .

Step 2. In the following, we will first approximate \gamma with a continuous \gamma C which
will then be approximated with policies which are quantized.

Theorems 5.2 and 5.3 apply with the continuous extension being probability
measure-valued (by Theorem 5.3). Accordingly, for every \epsilon > 0, we have a continuous
map \gamma C which agrees with \gamma except on a set K\epsilon of measure \psi (K\epsilon )\leq \epsilon .

Now, we find a sequence of continuous functions \gamma nC which converges to \gamma in Young
topology at input \psi . To see this, note that convergence is equivalent to\int 

\BbbX 

\int 
\BbbU 
\psi (dx)\gamma nC(du| x)gm(x,u)\rightarrow 

\int 
\BbbX 

\int 
\BbbU 
\psi (dx)\gamma (du| x)gm(x,u)

for a countable collection of continuous and (uniformly) bounded functions, as these
are measure determining (see [14, p. 13] or [30, Theorem 3.4.5]).
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We can find, for every \epsilon n > 0, a set K\epsilon n so that on the complement of this set \gamma nC
agrees with \gamma . In particular, simultaneously for every m,\bigm| \bigm| \bigm| \bigm| \int 

\BbbX 

\int 
\BbbU 
\psi (dx)\gamma nC(du| x)gm(x,u) - 

\int 
\BbbX 

\int 
\BbbU 
\psi (dx)\gamma (du| x)gm(x,u)

\bigm| \bigm| \bigm| \bigm| (5.2)

=

\bigm| \bigm| \bigm| \bigm| \int 
K\epsilon n

\int 
\BbbU 
\psi (dx)\gamma nC(du| x)gm(x,u) - 

\int 
K\epsilon n

\int 
\BbbU 
\psi (dx)\gamma (du| x)gm(x,u)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
K\epsilon n

\psi (dx)

\bigm| \bigm| \bigm| \bigm| \int 
\BbbU 
\gamma nC(du| x)gm(x,u) - 

\int 
\BbbU 
\gamma (du| x)gm(x,u)

\bigm| \bigm| \bigm| \bigm| 
\leq 2\| gm\| \infty \epsilon n \leq 2M\epsilon n,

whereM = supm\in \BbbN \| gm\| \infty . We can define a metric to determine convergence (of such
continuous functions \gamma C to \gamma ), and obtain

d(\gamma C , \gamma ) :=
\sum 
m\in \BbbN 

2 - m

\bigm| \bigm| \bigm| \bigm| \int \BbbX \int \BbbU \psi (dx)\gamma C(du| x)gm(x,u) - 
\int 
\BbbX 
\int 
\BbbU \psi (dx)\gamma (du| x)gm(x,u)

\bigm| \bigm| \bigm| \bigm| 
1 +

\bigm| \bigm| \bigm| \bigm| \int \BbbX \int \BbbU \psi (dx)\gamma C(du| x)gm(x,u) - 
\int 
\BbbX 
\int 
\BbbU \psi (dx)\gamma (du| x)gm(x,u)

\bigm| \bigm| \bigm| \bigm| ,
so that

d(\gamma nC , \gamma )\leq M\epsilon n.

Thus, we can construct a sequence of continuous policies which converges to \gamma under
the Young topology (at \psi ).

Step 3. Let d\BbbX denote the metric on \BbbX . First assume that \BbbX is compact. For each
m\geq 1, there exists a finite subset \{ zm,i\} kmi=1 of \BbbX such that

min
i\in \{ 1,...,km\} 

d\BbbX (z, zm,i)< 1/m for all z \in \BbbX .

Let \BbbX m := \{ xm,1, . . . , xm,km\} and define Qm mapping any z \in \BbbX to the nearest element
of \BbbX m, i.e.,

Qm(z) := argminzm,i\in \BbbX m
d\BbbX (z, zm,i).

For eachm, a partition \{ \BbbS m,i\} kmi=1 of the state space \BbbX is induced by Qm by setting

\BbbS m,i = \{ z \in \BbbX :Qm(z) = zm,i\} .

For a continuous policy \gamma C , the integral\int 
g(x,u)\gamma C(du| x)

is continuous in x. This follows by a generalized convergence theorem since g(xn, u)\rightarrow 
g(x,u) and \gamma C(du| xn)\rightarrow \gamma C(du| x) as xn \rightarrow x; see [59, Theorem 3.5] or [44, Theorem
3.5].

Therefore, once we have a continuous policy \gamma C , we can have that for every
continuous and bounded g :\BbbX \times \BbbU \rightarrow \BbbR ,\int 

g(x,u)\gamma C(du| x)\psi (dx)
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CONTROL TOPOLOGIES AND INVARIANT MEASURES 2383

can be approximated with

km\sum 
i=1

\biggl( \int 
x\in \BbbS m,i

\int 
g(x,u)\gamma C(du| zm,i)\psi (dx)

\biggr) 
or

km\sum 
i=1

\biggl( \int 
g(zm,i, u)\gamma C(du| zm,i)

\biggr) 
\psi (\BbbS m,i),

which in turn can be approximated arbitrarily well, by also quantizing the action
space, with

km\sum 
i=1

\biggl( \int 
g(zm,i,Q

M (u))\gamma C(du| zm,i)
\biggr) 
\psi (\BbbS m,i)

or

km\sum 
i=1

\left(  \sum 
aj\in \Lambda M

g(zm,i, aj)\gamma C((Q
M ) - 1(aj)| zm,i)

\right)  \psi (\BbbS m,i),

where QM :\BbbU \rightarrow \Lambda M \subset \BbbU is so that d(u,QM (u))\leq 1
M and M is sufficiently large.

For the case with noncompact \BbbX , by the finiteness of \psi , for every \delta > 0, there
exists a compact set with \psi (\BbbX \setminus K\delta )< \delta .

Thus, one can approximate any stationary policy with quantized policies under
the Young topology (at input measure \psi ) by taking m and M sufficiently large.

Step 4. The proof is then complete by Theorem 4.1: Note that by (4.2) as
policies fn converge to \gamma , the invariant measure \pi fn(dx)fn(du| x) converges in the w-s
topology, so that\int 

\pi fn(dx)fn(du| x)c(x,u)\rightarrow 
\int 
\pi \gamma (dx)\gamma (du| x)c(x,u)

for every c which is continuous in u for each x.
Step 5. For (iii) and (iv), first by [4, Theorem 4.1], deterministic policies are

dense under the Young topology among the space of randomized stationary poli-
cies, where the argument critically builds on the fact that the invariant measures are
nonatomic (see, e.g., [48, Theorem 3] or [6], [11, Proposition 2.2], [43], [20], or [24,
Chapter 7]) and the steps present in the proof of Theorem 4.1 (or Step 4 above). The
steps above in (i), (ii), (iii) then apply in this setup for continuous as well as quantized
approximations for deterministic stationary policies.

Remark 5.1 (on approximations and reinforcement learning). Note that in the
above, quantized policies are near-optimal not only for the weakly continuous case
under (H1), but also in the setup under (H2) where continuity of the kernel in the
state variable may not hold, which is less explored; quantized policies still lead to
convergence of invariant measures under the total variation-weak sense by (4.2), and
then this leads to approximation of induced integral costs

\int 
\pi \gamma (dx)\gamma (du| x)c(x,u) with

quantized controls (in both state and action). This motivates the application of rein-
forcement learning methods for problems of this type by restricting control policies to
be finitely many. In particular, with having only finitely many policies, win-stay/lose-
shift type algorithms, such as the ones in [61] (adapted to average cost control), are
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applicable: in such algorithms one responds to a Q-learning exploration period, and
revises the policy by randomizing over all (finitely many) policies when \epsilon -satisfaction
of the current policy does not apply, and stays at the current policy when such sat-
isfaction applies, and such an algorithm is guaranteed to converge to near-optimality
in a suitable probabilistic sense (on average, or almost surely if exploration lengths
are increasing).

Remark 5.2 (related approximation results). One can also show that the set of
quantized deterministic stationary policies \Gamma SD is dense in the space of randomized
stationary policies \Gamma S endowed with the Young topology at input \psi by a further ad-
ditional argument (given now that by Theorem 5.1)(ii) quantized randomized policies
with finite range are near-optimal) via clustering the support sets of each quantiza-
tion bin to realize a given quantized randomized policy with a finite range. We note
that Theorem 5.1 generalizes [4, Thm. 4.2], which imposed geometric ergodicity for
a more restrictive result. We finally note that [54, Theorem 3.2] and [57, Theorem
4.2] had established near-optimality of quantized policies (though not quantization of
the state space), under (H2) (with slightly more restrictive conditions) and (H1),
respectively; and total variation continuity and uniform ergodicity were imposed in
[55, Theorem 4.14] to lead to both state and action quantization (where [55, Theorem
4.14] also leads to a finite MDP approximation, whereas our result here only shows
finite approximation without an approximate MDP construction).

6. Conclusion. We established relations and equivalence conditions between the
Young and Borkar topologies. We also showed that under some conditions for a con-
trolled Markov chain, the invariant measure is continuous on the space of stationary
control policies defined by a version of Young topology, which makes the space of poli-
cies convex and compact. We finally presented an approximation result involving con-
tinuous or quantized (with uniformly quantized range and domain) stationary policies.
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