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Abstract— In many applications, the common assumption that
a driving noise process affecting a system is independent or
Markovian may not be realistic, but the noise process may be as-
sumed to be stationary. To study such problems, this paper inves-
tigates stochastic stability properties of a class of non-Markovian
processes, where the existence of a stationary measure, asymp-
totic mean stationarity and ergodicity conditions are studied.
Applications in adaptive quantization and stochastic networked
control are presented.

I. INTRODUCTION

Consider a stationary stochastic process {Xk, k ∈ Z+}
where each element Xk takes values in some source space X

(which we take to be Rn for some n ∈ N or some countable

set) with process measure μ, and a time-invariant update rule

described by

Sk+1 = F (Xk, Sk) (1)

where Sk is an S-valued state sequence (where we take S

also to be Rn for some n ∈ N or some countable subset of

Rn), with S0 = s or S0 ∼ κ for some probability measure κ,

independent of Xk. The question that we are interested in is

whether for a given measurable and bounded f ,

lim
N→∞

1

N
E[

N−1∑
k=0

f(Xk, Sk)] (2)

or almost surely

lim
N→∞

1

N

N−1∑
k=0

f(Xk, Sk) (3)

exist and whether the limit is indifferent to the initial states

or distributions. Here, we use the notation that capital letters

denote a random variable and small letters denote the realiza-

tions. We also have y[m,n] := {yk,m ≤ k ≤ n}.

In (1) if {Xk} were i.i.d, the process {Sk} would be Marko-

vian or if {Xk} were Markovian, the joint process {(Xk, Sk)}
would be Markovian. For such Markov sources, there is an al-

most complete theory of the verification of stochastic stability

through the analysis of finite-mean recurrence times to suitably

defined sets [1] [16] [14] as well as the regularity properties of

the kernel (such as utilizing continuity of the transition kernel

and majorization by a finite measure) [14] [9]. For systems of

the form (1) with only stationary {Xk}, however, there does

not exist a complete theory.
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Such problems arise in many applications in feedback quan-

tization and source coding, networks, and stochastic control.

As an example, consider the following scheme which includes

the Δ-Modulation [3] algorithm commonly used in source

coding as a special case: Let {Xk} be stationary and ergodic,

Q : R → M ⊂ R, |M| < ∞ be a quantizer, and consider the

following update:

Sk+1 = Sk +Q(Xk − Sk), (4)

where S0 = 0. Here, Sk is the output of an adaptive encoder

and Xk is the source to be encoded.

The contributions in Kieffer [10] [12] [11] are the most

relevant ones to the discussion in this paper. These have stud-

ied problems motivated from applications in source coding

and quantization as in (4). [12] considered a non-Markovian

setup where S is countable, [10] considered a setup where S

is not countable, but f(x, ·) is continuous on SN for every

x. Our approach here is different than that considered in the

literature; notably from that of Kieffer [10], and Kieffer and

Dunham [12] (as well as other contributions such as Gersho’s

[3] [4] as well as [19] and [15] which can be approached by

finite dimensional Markov chain formulations). We will view

(X(−∞,k], Sk) or (X[k,∞), S[k,∞)) as an infinite dimensional

Markov chain taking values in a product space. The approach

of viewing (X(−∞,k], Sk) as a Markov chain, to our knowl-

edge, first has been studied in [7], where the focus of the author

has been on the uniqueness of an invariant measure on the state

process Sk, under the assumption that an invariant measure

exists and further regularity assumptions. In this paper, we

provide sufficient conditions for the existence of an invariant

probability measure for the joint process while deriving our

results. We also establish connections with asymptotic mean

stationarity, in addition to the existence of an invariant mea-

sure, and ergodicity.

We will see that conditions of the form:

lim
M→∞

(
lim sup
T→∞

1

T

T−1∑
k=0

P (|Sk| ≥ M)

)
= 0, (5)

play an important role for stochastic stability.

A further related view to approach such problems is the tra-

ditional random dynamical systems view in which one studies

the properties of the shifted sequences (S[k,∞), X[k,∞)): Such

a viewpoint leads to the interpretation that the entire uncer-

tainty is realized in the initial state of the Markov chain, and

the process evolves deterministically through a shift map. This

approach has led to important contributions on ergodic theory
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and the introduction of useful notions such as asymptotic mean

stationarity [5].

The proofs of the results presented here are available in

[20].

II. STOCHASTIC STABILITY OF NON-MARKOVIAN

SYSTEMS

Towards obtaining a method to study such systems, we will

here view the process (X(−∞,k], Sk) as a XZ− × S-valued

Markov process. We recall that with X a complete, separable,

metric (that is, a Polish) space, Σ = XZ− is also a Polish

space under the product topology. By a standard argument

(e.g. Chapter 7 in [2]), we can embed the one-sided stationary

process {Xk, k ∈ Z+} into a bilateral (double-sided) station-

ary process {Xk, k ∈ Z}. We first state the following.

Lemma II.1. The sequence (Zk, Sk) with Zk = X(−∞,k] is

a Markov process.

We let P denote the transition kernel for this process. Since

Xk is known to be stationary, if there were an invariant mea-

sure v for this process, then this would decompose as

v(ds0|x(−∞,0])π(dx(−∞,0])

with π being the stationary measure for Xk.

If there is an invariant probability measure P̄ for such a

process we say that the process is stochastically stable. By the

ergodic theorem [9, Theorems 2.3.4-2.3.5], P̄ almost surely

lim
N→∞

1

N
Ex(−∞,0],s[

N−1∑
k=0

f(X(−∞,k], Sk)] = f∗(x(−∞,0], s)

(6)

exists for all measurable and bounded f and for corresponding

functions f∗ (where the full set of convergence may depend

on the function f ). The following assumption will be useful

in establishing further stability results in Section III. Recall

that S0 ∼ κ for some probability measure κ.

Assumption II.1. The invariant measure P̄ is such that π ×
κ 	 P̄ . That is, P̄ (A,B) = 0 implies that π(A)κ(B) = 0 for

any Borel A,B.

Under this assumption, the set of initial conditions which

may not satisfy (6) (this set has zero measure under P̄ ) also

has zero measure under the initial product probability measure

π×κ. Furthermore, sample paths also converge almost surely

A. Existence of an invariant probability measure with finite S

Our first result is for the setup with finite S. For some related

results and an alternative approach for the finite case, see [13].

Theorem II.1. Consider the dynamical system given by (1).

Suppose that S is finite. Then, the process is stochastically

stable.

Proof sketch. Define for all a ∈ S, the sequence of expected

occupational measures

vt(dx(−∞,k] × {a}) = E[
1

t

t−1∑
k=0

1{X(−∞,k],S∈dx(−∞,k]×{a}}]

=
1

t

t−1∑
k=0

P (X(−∞,k], S ∈ dx(−∞,k] × {a}),

(7)

where for every k, X(−∞,k] ∼ π. Therefore, for any t, we can

write

vt(dx(−∞,k] × {a}) = π(dx(−∞,k])vt(a|x(−∞,k])

since π is a stationary measure. It follows then that

vt(dx(−∞,k] × {a}) ≤ π(dx(−∞,k])

for every a and |S|π(dx(−∞,k]) is a majorizing finite measure

for the sequence vt. This ensures by [9, Proposition 1.4.4]

that the sequence {vt} has a converging subsequence vtk in

the setwise sense so that for some probability measure v,

vtk(A) → v(A) for all Borel A. Some further analysis reveals

that v is an invariant probability measure. �

B. Existence of an invariant probability measure with count-

able S

Here, we assume that S is a countable set viewed as a subset

of R whose elements are uniformly separated from each other;

thus S is a uniformly discrete set in the sense that there exists

r > 0 such that |x− y| > r for all x, y ∈ S .

Theorem II.2. Consider the dynamical system given by (1). If

(5) holds with the norm defined on R, the process is stochas-

tically stable.

C. Existence of an invariant probability measure with S = Rn

We have the following assumption.

Assumption II.2. F (x, s) is continuous in s for every x.

Theorem II.3. Consider the dynamical system given by (1). If

(5) holds, under Assumption II.2, the process is stochastically

stable.

A large class of applications do not have the property that

S is countable or that F is continuous in s. To approach such

problems in our framework, we impose the following quasi-

Feller type condition which is natural for the applications we

will consider.

Assumption II.3. F (x, s) is continuous on X×S\D where D
is a closed set with P ((Xt+1, St+1) ∈ D|x(−∞,t] = x, st =
s) = 0 for all x, s. Furthermore, with Dε = {z : d(z,D) < ε}
for ε > 0 and d the product metric on X×S, for some K < ∞,

we have that for all x, s and ε > 0

P

(
(Xt+1, St+1) ∈ Dε|x(−∞,t] = x, st = s

)
≤ Kε.

Assumption II.4. (i) If X is compact, for every continuous

and bounded f ,
∫
X
P (Xk+1 ∈ dx|X(−∞,k] = z)f(x) is

continuous in z.

(ii) If X is not compact,
∫
X
P (Xk+1 ∈ dx|X(−∞,k] = z)f(x)

is continuous in z for every measurable and bounded f .

Theorem II.4. Suppose that Assumptions II.3 and II.4 hold.

If (5) holds, the system is stochastically stable.
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III. ASYMPTOTIC MEAN STATIONARITY AND ERGODICITY

A. Shifts and random dynamical systems view

Let X be a complete, separable, metric space. Let B(X)
denote the Borel sigma-field of subsets of X, let Σ = XZ+

denote the sequence space of all one-sided (unilateral) in-

finite sequences drawn from X. Thus, if x ∈ Σ then x =
{x0, x1, x2, . . . } with xi ∈ X. Let Xn : Σ → X denote the

coordinate function such that Xn(x) = xn. Let T denote the

shift operation on Σ, that is Xn(Tx) = xn+1. With X a Polish

space, Σ = XZ+ is also a Polish space under the product

topology. Let B(Σ) denote the smallest σ-field containing all

cylinder sets of the form {x : xi ∈ Bi,m ≤ i ≤ n} where

Bi ∈ B(X), for all integers m,n ≥ 0. Here, ∩n≥0T
−nB(Σ)

is the tail σ−field: ∩n≥0σ(Xn, Xn+1, · · · ), since T−n(A) =
{x : T nx ∈ A}.

Let μ be the measure on the process {X0, X1, · · · }. This

process is stationary and μ is said to be a stationary (or in-

variant) measure on (Σ,B(Σ)) if μ(T−1B) = μ(B) for all

B ∈ B(Σ). This random process is ergodic if A = T−1A
implies that μ(A) ∈ {0, 1}.

Definition III.1. [6] A process on a probability space (Ω,F ,P)
with process measure μ, is asymptotically mean stationary

(AMS) if there exists a probability measure P̄ such that

lim
N→∞

1

N

N−1∑
k=0

μ(T−kF ) = P̄ (F ), (8)

for all events F ∈ B(Σ). Here P̄ is called the stationary mean

of μ, and is a stationary measure.

P̄ is stationary since, by definition P̄ (F ) = P̄ (T−1F ). Due

to the Markov formulation, we can obtain the following to

check whether the AMS property holds under (1).

Theorem III.1. Let there exist a stationary measure P̄ for the

Markov chain (X(−∞,k], Sk) for the system (1). Assumption

II.1 implies the AMS property for the process (Xk, Sk).

B. Ergodicity

For a Markov chain, the uniqueness of an invariant probabil-

ity measure implies ergodicity (see e.g. [9, Chp. 2]). Consider

an X-valued Markov chain with transition kernel P , where X

is a Polish space.

Definition III.2. A Markov chain is μ-irreducible, if for any

set B ∈ B(X) such that μ(B) > 0, and ∀x ∈ X, there exists

some integer n > 0, possibly depending on B and x, such that

Pn(x,B) > 0, where Pn(x,B) is the transition probability

in n stages from x to B.

A maximal irreducibility measure ψ is an irreducibility mea-

sure such that for all other irreducibility measures φ, we have

ψ(B) = 0 ⇒ φ(B) = 0 for any B ∈ B(X ).

Theorem III.2. For a ψ-irreducible Markov chain, there can

be at most one invariant probability measure.

A complementary condition for ergodicity is the following.

Definition III.3. For a Markov chain with transition kernel

P , a point x is accessible if for every y and every open neigh-

bourhood O of x, there exists k > 0 such that P k(y,O) > 0.

One can show that if a point is accessible, it belongs to

the (topological) support of every invariant measure (see, e.g.,

Lemma 2.2 in [8]). Recall that the support of a probability

measure is defined to be the set of all points x for which

every open neighbourhood of x has positive measure.

We recall that a Markov chain Vt is said to have the strong

Feller property if E[f(Vt+1)|Vt = v] is continuous in v for

every measurable and bounded f .

Theorem III.3. [8] [17] If a Markov chain over a Polish

space has the strong Feller property, and if there exists an

accessible point, then the chain can have at most one invariant

probability measure.

However, a Markov chain defined as (X(−∞,k], Sk) cannot

be strongly Feller due to the memory in the source.

Theorem III.4. Suppose that E[f(Xk+1, Sk+1)|X(−∞,k] =
x(−∞,k], Sk = sk], for measurable and bounded f : X× S →
R, is continuous in (x(−∞,k], sk). Suppose further that there

exists an accessible point for the Markov chain {(X(−∞,k], Sk)}.

The chain can have at most one invariant probability measure.

For applications such as Δ-Modulation, however, we will

see that the continuity assumption in Theorem III.4 fails to

hold. To be able to apply the result for such setups, we have

the following relaxation.

Theorem III.5. Suppose that for measurable and bounded f :
X× S → R, E[f(Xk+1, Sk+1)|X(−∞,k] = x(−∞,k], Sk = sk]
is continuous in x(∞,k], sk for all x, s ∈ (XZ−×S)\D for some

closed set D. Suppose further that there exists an accessible

point (x, s) /∈ D for the Markov chain {(X(−∞,k], Sk)}. The

chain can have at most one invariant probability measure.

IV. APPLICATIONS TO STOCHASTIC STABILITY OF

ADAPTIVE QUANTIZERS

In this section, we consider applications in feedback quan-

tization and networked control.

A. Adaptive Quantization with a Stationary Source

Adaptive quantization for stationary sources has been stud-

ied in particular in [10], [12] and [3].

1) Δ-Modulation:

Theorem IV.1. Let Xk be stationary and ergodic R-valued

process stationary process measure π, Q : R → {−m,m},

with the following update:

Sk+1 = Sk +Q(Xk − Sk),

where S0 = 0 and Q(Z) = m1{Z≥0} − m1{Z<0}. Suppose

further that E[Q(X0−m)] < 0 and E[Q(X0+m)] > 0 (equiv-

alently P (X0 ≥ m) < 1/2, P (X0 ≤ −m) < 1/2). Then, the

system is stochastically stable in the sense that there exists an

invariant probability measure. Furthermore, if for every m, k,

and non-empty open Ak, π(X[m,k] ∈
∏k

t=m Ak) > 0, the
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system is AMS. If in addition E[g(X1)|x(−∞,0]] is continuous

in x(−∞,0] for measurable and bounded g, (Xk, Sk) is ergodic.

Here S = {km, k ∈ Z} is a countable set. An example

where the condition (π(X[m,k] ∈
∏k

t=m Ak) > 0) holds for

non-empty open sets is Xt+1 =
∑∞

i=0 αiWt−i, with
∑

t |α
2
t | <

∞ and Wt is a sequence of i.i.d. Gaussian random variables.

An example where the continuity condition for ergodicity holds

is the following auto-regressive representation Xt+1 =
∑N−1

i=0 αiXt−i+

Wt, with the roots of 1−
∑N

i=1 αi−1z
−i strictly inside the unit

circle and Wt a sequence of i.i.d. Gaussian random variables.

Proof sketch. It can be shown that (5) can be equiva-

lently written as limM→∞

(
lim infT→∞

1
T

∑T−1
k=0 P (|Sk| <

M)

)
= 1. This is implied by [12, Eqn. (2.2)], as a result of

[12, Theorem 2]. This follows since, with K a finite set, the

condition Si ∈ K for some i ∈ {n, · · · , n + N} [12, Eqn.

(2.2)] implies that |Si| ≤ K1 + Nm ≤ K2N for constants

K1,K2 since |Si − Sj | ≤ |i − j|m. By Theorem II.3, the

system is stochastically stable.

Asymptotic mean stationarity: For the AMS property, we

show that Assumption II.1 holds: Let X[−m,0] ∈ B and S0 = 0
have a zero measure under P̄ . Then, π(B) = 0. To show this,

consider the contrapositive: If π(B) > 0, by the condition that

all finite-dimensional cylinder sets consisting of non-empty

open sets have positive measure conditioned on any past event,

it follows that for some S0 = s∗ with positive measure under

P̄ , there exists a positive probability event X[0,m] ∈ B so that

Sm = 0. With,

P̄ (X[−m,0] ∈ B,S0 = 0) = P̄ (X[0,m] ∈ B,Sm = 0)

≥

∫
z

P̄ (dz, s∗)P(x[0,m] ∈ B,Sm = 0|z, s∗) > 0, (9)

it follows that the absolute continuity condition holds, and by

Theorem III.1, the AMS property.

Ergodicity: We can establish the uniqueness of an invariant

probability measure through either irreducibility properties or

the following argument. Consider the point p0 = {m/2}Z− ×
{0}. We argue that this point is accessible. Recall that an

open set in a product topology is a Borel set in the product

space consisting of finitely many open sets with the rest be-

ing X itself or arbitrary union of such sets. Now, consider

any x(−∞,0], s. From this point, we can show that for every

open neighborhood U of p0, there exists some k > 0 so that

P (X(−∞,k] ∈ U |x(−∞,0], s) > 0. Also the sets of points

where continuity fails, D = {x : x = km, k ∈ Z}, is a

closed set and p0 is outside this set. By Theorem III.5, the

process is ergodic. �

Remark IV.1. Stochastic stability can also be established for

leaky adaptive quantization [3] with Sk+1 = αSk +Q(Xk −
Sk) for some |α| ≤ 1. Here, since the set of values that S can

take can be a continuum, Theorem II.4 needs to be invoked to

ensure that an invariant probability measure exists.

A final remark is that the Δ-modulation leads to a process

that is periodic since the state process for the quantizer (shifted

by the initial condition) cannot take consecutive even or odd

values. This is unlike the setup that we will consider in the

application from networked control further below.

2) Adaptive Quantization of Goodman and Gersho: Con-

sider the following update equations [4]:

Vt = ΔtQ1(Xt/Δt)

Δt+1 = ΔtQ2(
|Xt|

Δt

), Δ0 = b (10)

Here, Δt is the bin size of the uniform quantizer with a finite

range and |Q1(R)| < ∞, |Q2(R+)| < ∞. Vt is the output

which is to track the source process Xt. Suppose further that

Q2 is non-decreasing.

Theorem IV.2. Let Xt be a stationary and ergodic Gaussian

sequence, ζ = limx→∞ Q2(x) > 1, Q2(0) = limx↓0 Q2(x) <
1 and log2(Q2(·)) ∈ Q. Then, the system is stochastically

stable. If in addition, with {α1, α2, · · · , αL} a set of pairwise

relatively prime integers and log2(Q2(·)) ∈ {αkm} for some

m ∈ Q, the process is AMS, and furthermore, ergodic.

Proof sketch. Consider

log2(Δt+1) = log2(Δt) + log2(Q2(
|Xt|

Δt

))

log2(Δt) − log2(Δ0) ∈ Q for all t. Let St = log2(Δt). This

sequence takes values in a countable set and satisfies

St+n − St =

t+n−1∑
k=t

log2(Q2(
|Xk|

Δk

)).

As in the proof of Theorem IV.1, by Theorem II.3 the system

is stochastically stable.

The AMS property: Since {αk} is a set of numbers that

are relatively prime, S consists of all integer multiples of m
shifted by the initial value log2(b). This follows from the prop-

erty of relatively prime numbers due to Bézout’s lemma; see

[21, Lemma 7.6.2]. The argument for the AMS property then

follows as before through the absolute continuity condition:

Any invariant measure is such that P̄ (·, s) 	 P̄ (·, s′) for all

admissible s, s′ and by Theorem III.1, the result follows.

Ergodicity: In this case, the point ({0}Z− , log2(b)) is acces-

sible by the same arguments adopted in the proof of Theorem

IV.1 and the steps leading to the AMS property above. By

Theorem III.5, the process is ergodic. �

B. Stochastic networked control

We consider a stabilization problem in stochastic networked

control where a linear system is controlled over a communi-

cation channel. We will study the approach in [19], [22] (see

[21] for a detailed discussion). Consider the following control

system, with Ut a control variable,

Xt+1 = aXt + bUt +Wt. (11)

where |a| ≥ 1, Wt is i.i.d, admitting a probability measure

v which admits a density, positive everywhere and bounded.
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Furthermore, E[|Wt|
2+ζ ] < ∞ for some ζ > 0. In the appli-

cation considered, a controller has access to quantized infor-

mation from the state process. The quantization is described

as follows. An adaptive quantizer has the following form with

QΔ
K being a uniform quantizer with K + 1 bins and bin-size

Δ, QΔ
K : R → R satisfies the following for k = 1, 2 . . . ,K:

QΔ
K(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(k − 1
2 (K + 1))Δ,

if x ∈ [(k − 1− 1
2K)Δ, (k − 1

2K)Δ)
1
2 (K − 1)Δ, if x = 1

2KΔ

0, if x ∈ [− 1
2KΔ, 1

2KΔ]

With K = �|a| + ε�, R = log2(K + 1), let R′ = log2(K).
We will consider the following coding and quantization update

policy. For t ≥ 0 and with Δ0 > L for some L ∈ R+, and

x̂0 ∈ R, consider:

Ut = −
a

b
X̂t, X̂t = QΔt

K (Xt),

Δt+1 = ΔtQ̄(|
Xt

Δt2R
′−1

|,Δt)

Suppose that with δ, ε, α > 0 with α < 1 and L > 0 the

following hold

Q̄(x,Δ) = |a|+ δ if |x| > 1

Q̄(x,Δ) = α if 0 ≤ |x| ≤ 1,Δ ≥ L

Q̄(x,Δ) = 1 if 0 ≤ |x| ≤ 1,Δ < L,

Theorem IV.3. [22] [19] Consider an adaptive quantizer ap-

plied to the linear control system described by (11). If the

noiseless channel has capacity,

R > log2(�|a|�+ 1),

and for the adaptive quantizer in (12), if the quantizer bin sizes

are such that their (base−2) logarithms are integer multiples

of some scalar s, and log2(Q̄(·, ·)) take values in integer

multiples of s where the integers taken are relatively prime

(that is they share no common divisors except for 1), then the

process {(Xt,Δt)} is a positive (Harris) recurrent Markov

chain (and has a unique invariant distribution).

In [22] it was shown that an m-small set (since a petite

set in an irreducible and aperiodic Markov chain is m-small

[14]) can be constructed so that return conditions are satisfied.

Hence, the return time properties directly leads to a stability

result. The small set discussion in [22] builds on the Marko-

vian property and irreducibility and aperiodicity of the Markov

chain, together with a uniform countable additivity condition

from [18]. We can obtain the stability result through the anal-

ysis in this paper, without defining a small/petite set: One

can view the system as: (Δt+1, xt+1) = F (Δt, xt, wt), where

the state is now st := (Δt, xt) and the independence of wt

makes the process (Δt, xt) Markov. Let the transition kernel

be denoted with P . The finiteness of lim supt→∞ E[Δ2
t +x2

t ]
can be established by a Lyapunov analysis similar to [19] and

[22]. However, F here is not continuous in st. Nonetheless,

the set of discontinuity is given by: D = {x,Δ : x
Δ ∈

{−K
2 , · · · ,

K
2 }, Δ ∈ N}, where N is the set of admis-

sible bin sizes which is a countable set by the hypothesis

of relative primeness. As a result D is also countable and

closed (since the elements are uniformly separated from each

other). Furthermore, any weak limit of a converging sequence

of expected occupational measures has zero measure on D, as

can be deduced from the condition that every open set Dε =
{x,Δ : d((x,Δ), D) < ε} is such that vtkP (Dε) ≤ L1ε,
for some L1 < ∞ since P (xt+1 ∈ dx|x,Δ) has a density

which is uniformly bounded for all z,Δ and the conditional

probability P (Δtk |xtk−1 = z,Δtk−1 = Δ) has finite support.

By Theorem II.4, the result follows. Finally, ergodicity follows

from the irreducibility of the Markov process. �
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