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Jointly Optimal LQG Quantization and Control Policies
for Multi-Dimensional Systems

Serdar Yüksel

Abstract—For controlled -valued linear systems driven by Gaussian
noise under quadratic cost criteria, we investigate the existence and the
structure of optimal quantization and control policies. For fully observed
and partially observed systems, we establish the global optimality of a class
of predictive encoders and show that an optimal quantization policy exists,
provided that the quantizers allowed are ones which have convex codecells.
Furthermore, optimal control policies are linear in the conditional estimate
of the state, and a form of separation of estimation and control holds.

Index Terms—Networked control systems, stochastic systems,
quantization.

I. JOINTLY OPTIMAL ENCODING AND CONTROL POLICIES

A. System Model

Consider a Linear Quadratic Gaussian (LQG) setup, where a sensor
encodes its noisy information to a controller. Let and the
evolution of the system be given by the following:

(1)

Here, is a mutually independent, zero-mean i.i.d. Gaussian
noise sequence, is an -valued control action, is the
observation variable, and are matrices of appropriate dimen-
sions. We assume that is a zero-mean Gaussian random variable.
As in Fig. 1, let there be an encoder who has access to the observation

variable , and who transmits his information to a receiver/controller,
over a discrete noiseless channel with finite capacity.
Definition 1.1: Let with . Let

be a (topological) space. A quantizer is a Borel measurable
map from to .
When the spaces and are clear from context, we will denote

the quantizer simply by .
Following [19], we refer by a Composite Quantization (Coding)

Policy , a sequence of functions
which are causal such that the quantization output at time , , under

is generated by a function of its local information, that is, a
mapping measurable on the sigma-algebra generated by
to a finite set , which is the quantization output alphabet given by

, for . Here, we have the notation
for : . Let , be
information spaces such that for all , the realizations satisfy

. Thus, . As elaborated on in [19], we
may express the policy as a composition of a Quantization
Policy and a Quantizer. A quantization policy is a sequence of
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Fig. 1. Joint LQG optimal design of coding and control.

functions , such that for each , is a mapping from the
information space to a space of quantizers , to be specified below.
A quantizer, subsequently is used to generate the quantizer output. A
quantizer will be generated based on the common information at the
encoder and the controller/receiver, and the quantizer will map the
relevant private information at the encoder to the quantization output
(see [17] and [19] for a similar reasoning). Such a separation in the
design will also allow us to use the machinery of Markov Decision
Processes to obtain a structural method to design optimal quantizers,
to be clarified further, without any loss in optimality. Thus, with the
information at the controller at time being , we
can express the composite quantization policy as

(2)

We note that any composite quantization policy can be ex-
pressed in the form above; that is there is no loss in the set of possible
such policies, since for any , one could define

Thus, we let the encoder have policy and under this policy generate
quantizer actions , (hence,
is the quantizer used at time and the realization space of
is quantized). Under action , and given the local information, the
encoder generates , as the quantization output at time . The receiver/
controller, upon receiving the information from the encoders, generates
its decision at time , also causally: An admissible causal controller
policy is a sequence of functions such that ,
with . We call such encoding and
control policies, causal or admissible. Now, suppose that the goal is
the computation of

(3)

where

Here, a positive semi-definite matrix, and a positive
definite matrix.

B. Relevant Literature and Contributions

There is a large literature on jointly optimal quantization for the LQG
problem dating back to early 1960s (see for example [5] and [9]). In this
literature, references [1], [3], [6], [7], [12]–[14] have considered the op-
timal LQG quantization and control design with various results on the
optimality or the lack of optimality (with detailed comparisons reported
in [7] and [13]) of the separation principle with different assumptions
in the setups and various (sometimes inconsistent) conclusions on the
structural properties of optimal policies.
We now highlight the differences between our technical note and

the most relevant contributions in the literature. (i) A relevant paper is
[7] which establishes a separation result parallel to the findings in this
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technical note. Our technical note is different from [7] in that [7] as-
sumes a priori a structural result on the encoders and the controllers.
In particular, the encoders are restricted to use the most recent observa-
tions conditioned on the information at the controller. (ii) Our contri-
bution is different from [13] in that, [13] establishes the optimality of
a class of predictive coding schemes, however, the predictive encoders
in [13] have memory and such a memory setting does not lead to a
controlled Markov recursion with a fixed state-space: In this technical
note, we show that restricting the memory of the encoder is without any
loss, and extending the findings in [19], we obtain a dynamic program
where the state space is the set of probability measures and the actions
are the quantizers. In addition, we establish the existence of optimal
quantization policies. (iii) Reference [1] considers the design of op-
timal encoders and controllers when there is a noisy channel between
the encoder and the controller and the encoder has access to limited
feedback information. When the information at the controller is nested
in that at the encoder, the paper establishes the optimality of a class of
predictive encoders (which refines the class considered in [13] further);
however these coders also have memory. This paper also establishes
an iterative method for the design of optimal encoders. (iv) References
[3] and [14] are among the earliest contributions in the literature on
jointly optimal LQG coding and control under information constraints.
These papers establish separation results and optimal coding and con-
trol policies, where an innovations/predictive encoder structure is im-
posed a priori. The contribution here is different from [3] and [14]
in that, this technical note establishes the optimality of such predictive
coders, in addition to the existence results. (v) Reference [12] considers
the design of optimal encoder and controllers for a partially observed
LQG system under the assumption that the controller is memoryless.
Since the memory structure of the controller is not expanding, Theorem
2.2 is not applicable (see also Section II-C of [17] and [19] for similar
discussions).
Regarding structural results on optimal causal (zero-delay or

real-time) coding, there have been many studies, see [19] and [20] for
a review. For multi-stage settings, [10] has considered the existence
problem for optimal quantization of control-free Markov sources for
a class of Markov sources driven by an additive Gaussian noise under
the restriction that the quantizers have convex codecells. This class
of systems also includes the setup contained here except that control
is not available in the systems considered in [10]. Also for optimal
multi-stage vector quantizers, [4] has obtained existence results for
an infinite horizon setup under a uniform boundedness assumption
on the reconstruction levels. [12] established the existence of optimal
coding and quantizer policies for the LQG setup under the assumption
that the controller is memoryless. Chapter 10 of [20] provides a
comprehensive overview of the results mentioned above and presented
in this technical note.
Essentially, in the context of LQG settings, the paper unifies many

of the results in the literature providing the following systematic
development: (i) The paper provides a structural result for optimal
encoders for controlled Markov sources taking values in a complete,
separable metric space extending the findings in [16] and [19], and
building on this structural result, (ii) it establishes a separation theorem
between coding and control which is new to our knowledge in its
generality, and (iii) it establishes an existence theorem for optimal
quantizers (building on [10], [20] and [21]) subject to a restriction on
the set of admissible quantizers, and also establishes the structure of
optimal control policies. The rest of the technical note is structured
as follows. In Section II, we establish the structure of optimal causal
(zero-delay) coding policies for fully and partially observed controlled
Markov sources. Section II-B introduces the set of quantizer actions.
In Section III, we consider the fully observed setting in (1) (that is
with ) and obtain the structure of optimal control policies. In

Section IV, we establish the existence of optimal quantization policies.
The partially observed setting is discussed in Section V.

II. STRUCTURAL RESULTS FOR OPTIMAL ZERO-DELAY CODES FOR
CONTROLLED MARKOV SOURCES AND THE SET OF QUANTIZERS

A. Structural Results

In this section, toward obtaining a solution to (3), we develop struc-
tural results for optimal causal composite quantization policies. Con-
sider the fully observed system

(4)

where the realizations satisfy , with being
complete, separable, metric (that is Polish) spaces (thus, including
spaces such as or a countable set). Suppose that the goal is the
minimization

(5)

over all policies , with the random initial condition having
probability measure . Here , is a measurable function and

for . Here, the information and quantization restrictions
are as stated in Section I. Structural results on optimal quantization
policies for such controlled Markov sources have been studied byWal-
rand and Varaiya [16] in the context of finite control and action spaces
and by Mahajan and Teneketzis [11] for control over noisy channels,
also for finite state-actions space settings (see Section V in [11] for a
brief discussion on continuous state-spaces). The following extend the
finite state space analysis of Walrand and Varaiya [16] to more general
spaces. The proofs of the results below essentially follow from Theo-
rems 2.4 and 2.5 in [19] with additional technical intricacies due to the
presence of control actions. The first one can be regarded as an exten-
sion of Witsenhausen’s structural theorem [18], and the second one can
be regarded as an extension of the results of Walrand and Varaiya [17]
(see also [15]). For complete proofs, see [20, Chapter 10].
Theorem 2.1: For system (4), under the information structure de-

scribed in the previous section and the objective given in (5), any com-
posite quantization policy (with a given control policy) can be replaced,
without any loss in performance, by onewhich only uses and
at time while keeping the control policy unaltered. This can be
expressed as a quantization policy which only uses to generate
a quantizer, where the quantizer uses to generate the quantization
output at time .
Let denote the set of probability measures on (where
denotes the Borel -field on ) under the topology of weak con-

vergence (see Section II-B in [19] for a discussion on the use of such
a topology) and define to be the regular conditional prob-
ability measure given by or since
the control actions are determined by quantizer outputs given a deter-
ministic control policy (we note that such policies are optimal without
any loss), , that is

.
Theorem 2.2: For system (4), under the information structure de-

scribed in the previous section and the objective given in (5), any com-
posite quantization policy can be replaced, without any loss in perfor-
mance, by one which only uses the conditional probability measure

, the state , and the time information , at
time . This can be expressed as a quantization policy which only uses

to generate a quantizer, where the quantizer uses to generate
the quantization output at time .
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We can also consider the partially observed setting. Instead of (4),
the system considered is a discrete-time system described by

(6)

for (Borel) measurable functions , with i.i.d.,
mutually independent noise processes and a random variable with
probability measure . Here, we let , and ,
where are Polish spaces.
For such a setup, results similar to Theorems 2.1 and 2.2 hold: (i) We

first note that the space under the topology of weak convergence
is itself a Polish space. (ii) We then recognize the fact that forms
a controlled Markov source, and that (iii) the cost function can be ex-
pressed as , where .
Thus, one could directly apply Theorems 2.1 and 2.2 to obtain struc-
tural results, see [19] for further discussions. For a further case where
the decoder’s memory is limited or imperfect, the results may apply by
replacing the full information considered so far at the receiver with the
limited one with additional assumptions on the decoder’s update of its
memory.

B. The Space of Quantizers

In this section, we construct a topology on the set of quantizers which
will be used in the subsequent analysis.
Definition 2.1: An -cell quantizer on is a (Borel) measur-

able mapping , and denotes the collection of all
-cell quantizers on .
Note that each is uniquely characterized by its quantization

cells (or bins) , which form
a measurable partition of . As in [21], we allow for the possibility
that some of the cells of the quantizer are empty.
As discussed in [21], a quantizer with cells can

also be characterized as a stochastic kernel from to
defined by

We will endow the quantizers with a topology induced by such a sto-
chastic kernel interpretation. If is a probability measure on and
is a stochastic kernel from to , then denotes the resulting

joint probability measure on . Let denote the family
of all probability measures on for some . Let

be a sequence in . It is said to converge to
weakly if for every

continuous and bounded . The following sequential con-
vergence notion is considered.
Definition 2.2: [21] A quantizer sequence converges to

weakly at ( weakly at ) if weakly.
Consider the set of probability measures

on having fixed input marginal , equipped with weak
topology. This is the Borel measurable set of the extreme points of the
set of probability measures on with a fixed input marginal
(see [2]). In view of this observation, and that the class of quantization
policies which admit the structure suggested in Theorem 2.2 is an
important one, we define

(7)

to represent this class of policies. Here, the input measure is time
varying and is given by .

III. FULLY OBSERVED LQG: SEPARATION OF

ESTIMATION ERROR AND CONTROL

We now consider the original LQG problem given in (1) with the cost
function given in (3), but with a fully observed setupwhere . By
Theorem 2.2, an optimal composite quantization policy will be within
the class . Let us fix such a composite quantization policy. In the
following, we adopt a dynamic programming approach and establish
that the optimal controller is linear in its estimate. This fact applies
naturally for the terminal time stage control. That this also applies for
the previous time stages follows from dynamic programming as we
observe in the following.
First consider the terminal time . For this time stage,

to minimize , the optimal control is
a.s. To obtain a solution for , we look for a solution to:

. By completing the squares, and using the Orthogo-
nality Principle, we obtain that the optimal control is linear and is given
by , with .
For , to obtain the solutions, we will first establish that the

estimation errors are uncorrelated. Towards this end, define for
(recall that the control actions are determined by the quantizer

outputs): and note that

It then follows that

(8)

with . The variable is orthog-
onal to the control action variable , as control actions are determined
by the past quantizer outputs and iterated expectation leads to the result
that conditioned on , is zero mean, and is orthogonal to .
Now, for going into earlier time stages, the dynamic programming

recursion for linear systems driven by an uncorrelated noise process
would normally apply, since the estimate process is driven an
uncorrelated noise (though, not necessarily an independent) process

. However, this lack of independence
may be important, as elaborated on in [13]. Using the completion of
the squares method, we can establish that the optimal controller at any
time will be linear in its estimate, provided that the random variable

does not depend on under an optimal coding policy
for all time stages. A sufficient condition for this is that the encoder is
a predictive one (see [3], [13] and [14] for related discussions).
Definition 3.1: A predictive quantizer policy is one where for each

time stage , the quantization has the form that the quantizer at all time
stages subtracts the effect of the past control terms, that is, at time it
has the form , and the past control terms
are added at the receiver. Hence, the encoder quantizes a control free
process, defined by:

(9)

the receiver generates the quantized estimate and adds
to compute the estimate of the state at time .

A predictive quantizer is depicted in Fig. 2. One question, which has
not been addressed in [1], [3], [13], [14], and [7], is whether restriction
to this class of quantization policies (given in Definition 3.1) is without
loss. We have the following key lemma.
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Fig. 2. For the LQG problem, a predictive encoder is optimal.

Lemma 3.1: For problem (3), for any quantizer policy in class
(which is without any loss as a result of Theorem 2.2), there exists a
predictive quantizer in the sense of Definition 3.1 which attains the
same performance under an optimal control policy for problem (3).

Proof: We apply dynamic programming. Let for the time-stage,
, . If the policy con-

sidered is in , the quantization policy is of the form
. For

this time-stage, there exists an optimal decoder and controller for
which a sufficient statistic for the optimal control policy is .
Observe that

The quantization output represents the bin information for . By
shifting each of the finitely many quantizer bins by , a new
quantizer which quantizes (see (9)), can generate the same bin in-
formation on through , that is, can encode the event
for some bin almost surely. Hence, there is no information loss
due to the elimination of the past control actions. This new quantizer,
by adding to the receiver output, generates the same con-
ditional estimate of the state as the original quantizer. Thus, corre-
sponding to a quantizer policy in at time , there exists a quan-
tizer of the form with the following prop-
erty: The estimation error realization and hence the estimation is the
same almost surely. Furthermore, under such a predictive scheme (with

fixed), does not depend on the con-
trol actions applied earlier; for a predictive quantizer, the error only
depends on the control-free process. By the analysis following (8), an
optimal controller at time will then use
as a sufficient statistic (note that the optimal controls for and

have been derived earlier). To design the quantizer at ,
by a similar reasoning as above for and , a predictive
quantizer can be used so that is independent of the
control actions applied earlier, inductively leading to the optimality of
linear policies, for all .
Remark 3.1: We note that the structure in Definition 3.1 separates

the estimation from the control process in the sense that the estimation
errors do not depend on the control actions or policies. Hence, there is
no dual effect of the control actions, in that the estimation error at any
given time does not depend on the past applied control actions.
We have thus established above that the optimal control is linear for

all time stages, by the proof of Lemma 3.1.We have the following result
(see also [13] which assumes a different version of the structure given
in Definition 3.1 for an essentially identical result on optimal control
policies):
Theorem 3.1: For the minimization problem (3), with the new effec-

tive state dynamics in (8), an optimal control policy is given by
, where ,

, and
, with .

Therefore, we obtain for , the unnormalized value function for
any time stage as

with . To obtain a more explicit
expression for the value function , we have the following anal-
ysis. Given a positive definite matrix define an inner-product as

, and the norm generated by this inner-product as
. We now note the following:

Note that

(10)

where (10) follows from the orthogonality property of minimummean-
square estimation and that is measurable on , the
sigma-field generated by .
Therefore, we have

After some algebra, for , the optimal cost can be written as

(11)

Given the optimal control solution, we address the optimal quantization
problem.

IV. EXISTENCE OF OPTIMAL QUANTIZATION POLICIES

In (11) above, we have separated the costs due to control and quan-
tization. Since under the optimal structure considered, control actions
do not affect the estimation performance, for the optimal quantization
policy we can effectively consider the setting where in (1), and
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the quantizer is designed for this system. Hence, we consider below the
system .
We first note that, for

(12)

Thus, from (11), for , we can define a cost to be minimized,
, as

where , and

with now denoting the receiver policy and
, and . Note that

is minimized by the conditional expectation given the bin information.
As a consequence, an optimal receiver and hence control policy always
exists. In the analysis for an optimal quantization policy, as was also
motivated in [21], we will restrict the quantizers to have convex code-
cells.
Assumption 4.1: The quantizers have convex codecells with at most

a given number, , of cells. The set of such quantizers is denoted by
.

We note that the assumption on convex codecells is adopted for tech-
nical reasons, and it may lead to a loss in optimality. However, such
quantizers are very desirable in practice due to their parametric repre-
sentability: As discussed in [8], by the separating hyperplane theorem,
there exist pairs of complementary closed half spaces

such that for all

Since is a closed convex polytope for each , if
the input probability measure admits a density function, then one
has for all . One can thus obtain a
( -a.s) representation of a quantizer by the hyper-
planes . One can represent a hyperplane in by
a vector of components with , and

. See [8] and [21] for further discussions
on such quantizers.
Let denote the set of all policies in (defined in (7)) which in

addition satisfy Assumption 4.1 (i.e., for all ). The
properties of conditional probability lead to the filtering expression:

Here, the term is determined by the quantizer ac-
tion . With denoting the set of probability measures on

under weak convergence topology, the conditional probability
measure process and the quantization process form a con-
trolled Markov process in [19].
Theorem 4.1: Under Assumption 4.1, there exists an optimal com-

posite coding policy in such that

is achieved. With, , the fol-
lowing dynamic programming recursion holds for :

with . Furthermore, the optimal control policy is linear in
the conditional estimate and is given in Theorem 3.1.
The proof of Theorem 4.1 follows from the separation argument con-

sidered since one can consider a control-free Markov source which is
to be quantized. Therefore, the existence result follows from [10] (see
also [20]) which considers a control-free setting. We also note that,
even though [10] assumes a time-invariant , the analysis is identical.

V. PARTIALLY OBSERVED CASE

In this section, we consider the partially observed model (1) with
.

To obtain a solution, we again first separate the estimation and con-
trol terms, as in the fully observed case. The solution to the control
terms then will follow from classical results in LQG theory. The solu-
tion for the quantization component will follow from the results earlier
and Theorem 4.1 in [19]. Define , which is com-
puted through a Kalman Filter. Recall that by the Kalman Filter with

and for ,

the following recursion holds for and with :

Note that the cost

(13)

with ,
can be written equivalently as

since the quadratic error is independent of
the coding or the control policy (and only depends on the estimation
performance at the encoder). Thus, the process and
form a controlled Markov chain and we can invoke Theorem 2.2: Any
causal quantizer, can be, without any loss replaced with one in
(where the state is now instead of ) as a consequence
of Theorem 2.2. Furthermore, any quantizer in can be replaced
without any loss with a predictive quantizer with the new state , as
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Fig. 3. Separated structure of the encoder above involving a Kalman Filter
(KF) is optimal. Here, the encoder is a predictive encoder without any loss.

a consequence of Lemma 3.1 applied to the new state with identical
arguments: Observe that the past control actions do not affect the evo-
lution of .
Theorem 5.1: For the minimization problem (13), the op-

timal control policy is given by , where
,

, and , with
. The optimal cost is given by ,

where

Now that we have separated the cost terms, and given that we can
use a predictive encoder without any loss, we have the following.
Theoram 5.2: For the minimization of the cost in (3), any composite

quantization policy can be replaced, without any loss in performance,
by an encoder which only uses the output of the Kalman Filter and the
information available at the receiver. Furthermore, any causal coder
can be replaced with one which only uses the conditional probability
on , , and the realization at time
(see Fig. 3). An optimal quantization policy exists in .

VI. CONCLUSION

In this technical note, joint optimization of encoding and control
policies is investigated for the LQG problem. Global optimality of pre-
dictive encoders is established and it is shown that separation of estima-
tion and control applies. Furthermore, an optimal quantizer is shown to
exist under mild technical assumptions on the space of policies consid-
ered and an optimal control policy is linear in its conditional estimate.
Results have been extended to the partially observed case, where the
structure of optimal coding and control policies is presented. As a side
result, towards obtaining the main results of the technical note, struc-
tural results in the literature for optimal causal (zero-delay) quantiza-
tion of Markov sources is extended to systems driven by control.

Future work will focus on the relaxation of the convex-codecell as-
sumption (Assumption 4.1) in Theorem 4.1. Another direction is the
extension of the results here to discrete noisy channels with noiseless
feedback, for which the separation results apply identically; see [20]
for some related discussion.
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