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Abstract— Communication requirements for nestedness
conditions require exchange of very large data noiselessly,
hence these assumptions are generally impractical. In this
paper, we present a weaker notion of nestedness, which
we term as stochastic nestedness. Stochastic nestedness is
characterized with a sequence of Markov chain conditions.
It is shown that if the information structure of two decision
makers satisfy a stochastically nested structure, then the
optimization admits a dynamic programming recursion
and the optimization is tractable; and in particular for the
LQG problems, the team optimal solution is linear, despite
the lack of deterministic nestedness or partial nestedness.
It is also shown that the common state required need not be
consisting of observations and it suffices to share beliefs
on the state and applied control actions; a pattern we
refer to as k-step belief sharing pattern. In case stochastic
nestedness is absent, we can evaluate a precise expression
for the minimum amount of information required to
achieve belief sharing. The information exchange needed
is generally strictly less than the information exchange
needed for deterministic nestedness (even under optimal
coders) and is zero whenever stochastic nestedness ap-
plies. We provide explicit examples of stochastically nested
information structures and exhibit the benefit of belief
sharing on information exchange requirements and discuss
the monotone value of information channels.

I. I NTRODUCTION

In a decentralized system, different information is
available to different decision makers who try to act
on a common system towards a common goal as in
team problems [12] or towards a variety of goals as in
multi-criteria optimization problems [13]. Such team and
decentralized multi-criteria optimization problems are
challenging since the information patterns determining
which agent has access to what information and the
influence of her actions, can fall into the categories such
that the generation of the optimal control laws can be
very difficult, and of very high complexity.

We now proceed to make the decentralized system
considered in this paper precise.
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A. Decentralized System Model

Let X be a space in which elements of a random
sequence,{xt, t ∈ Z+∪{0}} live in. Let an observation
channelCi be defined as a stochastic kernel onX×Y

i,
such that for everyx ∈ X, p(.|x) is a probability
distribution onσ(Yi) and for everyA ∈ σ(Yi), p(A|.)
is a function of x. Let there beL decision makers,
{DM i, i = 1, 2, . . . , L}. Let a Decision Maker (DM)
DM i be located at one end of an observation channelCi,
with inputsxt generated asyi

t at the channel output. We
refer to a policyΠi as a sequence of control functions
which are causal such that the action ofDM i at timet,
ui

t, underΠi is a causal function of its local information,
that is, it is a measurable mapping with respect to the
sigma-algebra generated by

Ii
t = {yi

t, Z
i
t ; y

i
[0,t−1], u

i
[0,t−1], Z

i
[0,t−1]} t ≥ 1,

with Ii
0 = {yi

0, Z
i
0}, to U

i, with the notation fort ≥ 1

yi
[0,t−1] = {yi

s, 0 ≤ s ≤ t − 1}

HereZi
t denotes the additional information that can be

supplied toDM i at time t. Let DM i have a policyΠi

and under this policy generate control actions{ui
t, u

i
t ∈

U
i, t ≥ 0}, and let a dynamical system and observation

channels be described by the following discrete-time
equations:

xt+1 = f(xt, u
1
t , u

2
t , . . . , u

L
t , wt),

yi
t = gi(xt, v

i
t),

with {wt} independent, identical, white system noise
process and{vi

t, i = 1, 2, . . . , L} be disturbance pro-
cesses. The disturbance processes might be correlated,
but are independent of the system noise process.

Let X
T =

∏T−1
t=0 X be theT−product space ofX. For

the above setup, under a sequence of control policies
{Π1, Π2, . . . , ΠL}, we define anInformation-Control
Structure (ICS) as a probability space

(Ψ, σ(Ψ), P )



with

Ψ = X
T ×

T−1
∏

t=0

L
∏

k=1

Y
k ×

T−1
∏

t=0

L
∏

k=1

U
k

Here,P is the probability measure on the sigma-algebra
σ(XT ×

∏T−1
i=0

∏L

k=1 Y
k ×

∏T−1
i=0

∏L

k=1 U
k).

Information Patterns determine the sub-fields for all
decision makers and time stagesσ(Ii

t ) ⊂ σ(XT ×
∏T−1

i=0

∏L

k=1 Y
k ×

∏T−1
i=0

∏L

k=1 U
k). Hence, the control

actions are measurable on the sub-fields, which are
characterized byIi

t for all DMs, through the termZi
t . In

other words, an Information Pattern determines what the
control action can depend on, inducing an information-
control structure.

With the above formulation, let the objective of the
decision makers be the minimization of

EΠ1,Π2,,...,ΠL

x0
[
T−1
∑

i=0

c(xt, u
1
t , u

2
t , . . . , u

L
t )],

over all policiesΠ1, Π2, . . . , ΠL, with initial condition
x0.

Let for a general vectorq, q denote{q1, q2 . . . , qL}.
Let Π = {Π1, Π2, . . . , ΠL} denote the ensemble of
policies. Under an ensemble of policiesΠ and a given
information pattern, with an initial conditionx0, the
attained performance index is

Jx0
(Π) = EΠ

x0
[

T−1
∑

i=0

c(xt,ut)]

In the above problem, information patterns affect the
difficulty of control design, especially as the horizon
T or the cardinality ofX and U

i, i ∈ {1, 2, . . . , n}
increases.

B. Relevant Literature and Information Patterns

Various information structures have received particu-
lar interest. It has been almost customary to categorize
such information structures as follows (see [1], [14],
[3]):

Centralized Information Structure: All agents have the
same information regarding the current value of the state.
HereZi

t = {yt} for all decision makers and time stages.
Quasi-Classical Information Structure: Whenever a

dynamic programming recursion with a fixed complexity
per time stage is possible, the information structure is
said to have a quasi-classical pattern. This structure
includes theone-step delayed observation sharing in-
formation pattern (see [6] and [13]), which allows the
Decision Makers to share all their observations with
a unit delay:Zi

t = {yt−1}. If the agents also share
their decisions, then the information pattern is called

one-step delayed information sharing pattern: Zi
t =

{yt−1,ut−1}.
It was observed by Radner [12] that a static LQG

team problem with non-nested information structures
admit a linear solution. This argument follows from the
observation that the team cost is convex in the joint
strategies of the DM’s, and it suffices to find the uique
fixed point. This, in turn, is satisfied by a linear set of
solutions for each DM. However, the extension of this
result to a dynamic setup is not always possible. The
following information structure present cases where, this
result still holds in a dynamic setting.

Partially Nested Information Structure: An informa-
tion structure is partially nested, if whenever the control
actions of aDM i affects the observations of another
decision makerDM j , the information available atDM i

is known noiselessly by the affected decision maker, that
is: Z

j
t = {yi

t, if DMi → DMj}. Here the notation
DM i → DM j denotes the fact that the actions of
DM i affects the information atDM j . The partially
nested structure effectively reduces the dynamic LQG
team problem to a static optimization problem in the
sense that the signaling (inner) agent (whose information
sigma algebra is a subset of the signaled (outer) agent’s
information sigma algebra) makes all her decisions
statically and the outer agent can generate suchpure
strategy decisions and the joint decisions can be regarded
as one single-DM’s decision, effectively making the
problem static among such single DM’s. Due to the static
nature of the problem, one shows that the optimization
is jointly convex in the decision variables and there is
a person-by-person optimal solution, which turns out to
be a linear set of solutions. As a special case, partially-
nested structure includes the case where information
propagation is faster than dynamics propagation [19],
[11].

Non-classical Information Structures: If a decision
maker’s,DM j, information is dependent on the actions
of another, sayDMk, andDM j does not have access
to the information available toDMk, this informa-
tion structure is said to benon-classical. Hence, an
information pattern which is not partially nested is a
non-classical information pattern. Theone-step delayed
control sharing pattern Zi

t = ut−1 is one such example
[5], [3], [13].

Other information structures include the ones induced
by the n-step delayed information pattern with Zi

t =
{yt−n,ut−n}. Such a pattern does not lead to a sepa-
ration property [15] forn ≥ 2. Here, by separation we
mean that the conditional measure on a sufficient time
in the past and the received observations thereafter are



sufficient statistics for the generation of optimal control
laws.

A very important related information pattern is the
n-step periodic information sharing pattern of Ooi
et al [8], with Zi

t = {y[t−k−(t mod k),t−(t mod k)],
u[t−k−(t mod k),t−(t mod k)]}, wherek ∈ Z+ denotes
the period of information sharing. This pattern does
admit a separation structure for the generation of optimal
control laws, and hence this leads to a quasi-classical
information structure. We will discuss this pattern fur-
ther in the paper, and provide an alternative derivation
of the main results presented in [8] via Witsenhausen’s
equivalent model for discrete-stochastic control [10].

When the information structures are non-nested, con-
trollers might choose to communicate via their control
actions, that is might wish to pursue signaling. Three
types of signaling can occur: signaling what the belief
(that is, the conditional probability measure) on the state
of the system is, signaling what the belief on the other
agents controls are and signaling what the agent’s own
future control actions will be. These are all distinct
issues and affect the classes of problems that we will
discuss in the remainder of the paper.

C. Contributions of the paper: Stochastic Nestedness
and the Belief Sharing Information Pattern

The information structures leading to tractable so-
lutions require largenoiseless data transfer between
decision makers. In practice, it is not possible to send
large amount data noiselessly especially in a real-time
fashion. In particular, it is impossible to exchange a real
number noiselessly over a practical channel.

In this paper, we present a weaker notion of nested-
ness, which we term asStochastic Nestedness. We show
that under stochastic nestedness, there is a rich class of
problems which lead to tractable solutions despite the
lack of deterministic nestedness or partial nestedness.
The stochastically nested information structure entails
a Markov chain condition between the observations at
different sites and a state that is being controlled and
in essence requires the information to be stochastically
more informative at a decision maker than at another
one together with the availability of actions.

In this paper, we also introduce another informa-
tion pattern, which we callBelief Sharing Information
Pattern. We note however, that, a similar pattern was
discussed in [8], although we adopt an approach based
on stochastic control, Witsenhausen’s equivalent model
and information theory. Such a pattern minimizes the
information exchanges required for tractability, without
any loss of performance in comparison with its de-

terministic counterpart in the observation sharing in-
formation pattern. The belief-sharing pattern allows us
to formulate an optimization problem with minimum
information exchange leading to a finite-complexity dy-
namic programming recursion to be applicable. We also
address the communication rate minimization problem.

Finally, we investigate the effects of various com-
munication channels on stochastic nestedness, when the
channels are used in a decentralized control system.

D. Control of a Markov Chain under Partial Observa-
tions

Many of the results in this paper will base on the
fact that while controlling a partially observed Markov
chain, one could study the optimal control problem by
enlarging the state space, via replacing the state with
the belief on the state in a centralized setting (or a
decentralized setting, in which case the notion of state
becomes more complicated) and applying the control
machinery on the belief process [2].

One could transform a partially observable Markov
Decision Problem to a Fully Observed Markov Decision
Problem via an enlargement of the event space [7], if the
cost can be written as a summation of additive, per-stage
costs.

In a general decentralized setting, the above discus-
sion also applies, however, the notion of statext and
the Markov recursion now involves a much larger space
since the effective state includes the actions of the other
DM’s, and the beliefs of all DM’s on every other DM’s
actions and as the time horizon increases, the beliefs
on the beliefs and so on, leading to a non-tractable
optimization problem.

II. STOCHASTICALLY NESTED INFORMATION

STRUCTURE

In this section we will present three types of informa-
tion patterns, all of which are non-classical, yet admit
tractable recursions and when applied to LQG problems
lead to the optimality of linear policies. We will later
build on the findings of this section to present a new
information sharing pattern. First, however, we discuss
why nestedness is important for team decision problems.

A. A Linear Quadratic Gaussian Example and Impor-
tance of Nestedness

Consider a two-controller system:

xt+1 = Axt + B1u1
t + B2u2

t + wt

y1
t = C1xt + v1

t

y2
t = C2xt + v2

t ,



with w, v1, v2 zero-mean, i.i.d. disturbances. For
ρ1, ρ2 > 0, let the goal be the minimization of

J = E

[( 1
∑

t=0

||xt||
2
2 + ρ1||u

1
t ||

2
2 + ρ2||u

2
t ||

2
2

)

+ ||x2||
2
2

]

over the control policies of the form:

ui
t = µi

t(y
i
[0,t]), i = 1, 2, t = 0, 1

For a two-stage problem, the cost is in general no-
longer quadratic in the action of the controllers acting in
the first staget = 0: This is because these actions might
affect the estimation quality of the other controllers in
the second stage, if one DM can signal information at
the other DM in one stage. We note that this condition
is equivalent toC1AlB2 6= 0 or C2AlB1 6= 0 ([17],
Lemma 3.1), withl denoting the delay in signaling.
Hence, it is not immediate whether the cost function
is jointly convex in the control policies, and as such
finding a fixed point in the optimal policies does not
necessarily lead to the conclusion that such policies are
optimal.

Under the one-step delayed information structure
case, or the partially nested case, this ceases to be
true; there is no need for signaling, since all of the
information that can be signaled is already available at
the DMs that can be signaled. Thus, the cost is convex
in both the second stage controls and the first stage
ones; in particular, under any policy for the controls
in the first stage, the second stage controls are linear
and independent of an estimation error or improvement
caused by control actions applied at the first stage. The
optimization problem is still convex, and linear policies
are person-by-person-optimal, leading to a globally op-
timal solution.

We will see that, one may not need nestedness for the
convexity argument above to hold. We now proceed to
define stochastic nestedness.

B. Stochastic Nestedness

Definition 2.1: Let for some measurable functions
f, gi, i ∈ {1, 2, . . . , L}, a system be described by

xt+1 = f(xt, ut, wt),

yi
t = gi(xt, v

i
t), i ∈ {1, 2, . . . , L}

Under the decentralized model description of Section I-
A: If wheneverDM i → DM j , it follows that:

x0 ↔ y
j
0 ↔ yi

0

forms a Markov chain,

I
j
t = {yj

[0,t], u
i
[0,T−1]}

and
yi

t = st(y
i
0),

where st is a deterministic function for t ∈
{0, 1, . . . , T − 1}, then the information structure is
stochastically nested.

Theorem 2.1: Under the decentralized system de-
scription of Section I-A, letut = [u1

tu
2
t . . . uL

t ]T and
Q ≥ 0, R > 0 and there be an optimization problem
with the objective to be minimized as:

J i = E[
T−1
∑

t=0

xT
t Qxt + uT

t Rut]

with the system dynamics:

xt+1 = Axt +

L
∑

j=1

Bju
j
t + wt ,

yi
t = Cixt + vi

t , 1 ≤ i ≤ L, (1)

wherewt, v
i
t are Gaussian and the disturbances and the

noise processes are such that the information structure
is stochastically nested. In this case, the optimal control
laws are linear.

Remark: Note that, if we relax the Markov chain
condition there will be an incentive for signaling from
the inner DM to the outer DM on what the inner DM
thinks regarding the initial state. The availability of the
control actions is also essential, for otherwise, there will
be an incentive for the inner DM to signal information
on its future control signals. ⋄

C. Comparison with the Control Sharing Information
Pattern

The stochastically nested information structure dis-
cussed above brings to mind theControl Sharing In-
formation Pattern of Aoki [5], Sandell and Athans [3]
and Bismut [4]. In those works,ǫ−optimal policies
were obtained for the control sharing pattern. Theǫ

term arises due to the fact that the control policy is
to encode information on both the control action and
the observation, with as minimum damage as possible
to the control action; and this is possible due to the fact
that a real number carries infinite amount of information
(when information is measured in Shannon information
theoretic bits). One way to achieve this is as follows:
Since rational numbers are dense in reals, for anyǫ, there
exists ann such that ann-decimal representation which
is at most at anǫ distance (in the sup norm) from any
real number in a compact set is possible. Hence, if one is
to represent a finite dimensional controlU = R

r, and a
finite dimensional observation variableY = R

m taking



values in some compact set, all of these signals can be
represented uniformly by an arbitrarily small error with
a real number by transmitting all theǫ− approximate
decimal expansion of the numbers leading to a total
of n(m + r) decimal letters, by allocating the most
significantnr letters for the control signal.

If the control and observation variables take values
in a non-compact set, then, by separability, a countable
representation is possible but the mapping in the trans-
formation needs to be infinite, and a uniform number
of decimal letters will not be sufficient, hence, the
coding design becomes further impractical. In practical
applications, there cannot exist a noiseless exchange of
arbitrary real numbers, as this amounts to infinite amount
of information exchange. Also, note that, such a setup
is extremely sensitive to even an arbitrarily small noise
[3].

In our setup, the resulting policy is optimal (and not
only ǫ-optimal), and unlike the setups of [3] and [4],
is applicable to cases where (i) the control policy is
discontinuous, or (ii) the state space has finite cardinality
(hence arbitrarily small precision of two signals is not
possible via encoding into one-signal since there is only
finite information that can be transmitted in one signal),
(iii) the observation and control sets are not compact,
eliminating the possibility of uniform approximation,
(iv) the observation space ofDM i, Y

i, is an inseparable
space leading to an absence of a countable dense subset
in turn leading to a uniformly close finite truncated
representation, or (v) the time-horizon is not finite.
These are some conditions under which the assumptions
of [3] and [4] are not applicable.

The applicability of the above scenarios under the
stochastically partially nested structure follows because
in the information structure presented here, the signaling
DM does not need to encode any information on her
observations, as what she can encode is useless for the
other decision makers which have more informative ob-
servations. The exchange of the control signals, however,
is essential.

In the following section we investigate the case where
there is no nestedness. We evaluate the information
requirements to obtain stochastic nestedness.

III. B ELIEF SHARING INFORMATION PATTERN

The computationally attractive aspects of a partially
nested, or nested information structure comes with a
price of exchangingall of the information available
by the preceding controllers noiselessly. This is, how-
ever, impractical. In the analysis heretofore, we have
weakened the information requirements for tractability

in a class of decentralized optimization problems. We
now investigate the quantitative minimization of the
information requirements needed for tractability in a
large class of decentralized optimal control problems.

Before proceeding further, let us recall Witsen-
hausen’s equivalent model ([10], [16]) for dynamic team
problems in terms of an extensive form static team
problem. Let there be a common information vectorIc

t

at some timet, which is available at all of the decision
makers. Let at timesks, k ∈ Z+∪{0} andT divisible by
k, s ∈ Z+, the decision makers share all their past infor-
mation: Ic

ks = {y[0,ks−1],u[0,ks−1]}. In this case, until
the next observation instantt = (k + 1)s we can regard
the individual decision functions specific toDM i as
{ui

t = ūi
s(y

i
[ks,t], I

c
ks)} and we let̄u denote the ensemble

of such decision functions. In essence, it suffices to
generatēus for all s ≥ 0, as the decision outputs condi-
tioned onyi

[ks,t], underūi
s(y

i
[ks,t], I

c
ks), can be generated.

Witsenhausen achieved this by transforming the effects
of the control action into the costs and formulating an
equivalent control problem. In such a case, we have
that ūs(., I

c
ks) is the joint team decision rule mapping

Ic
ks into a space of action vectors,{ui(Ic

ks, y
i
[ks,t]), i ∈

{1, 2 . . . , L}, t ∈ {ks, ks + 1, . . . , k(s + 1) − 1}}.
In this case, the cost function is also adjusted as:

Jx0
(Π) = EΠ

x0
[

T

k
−1

∑

s=0

c̄(ūs(., I
c
ks), x̄s])]

with

c̄(ūs(., I
c
ks), x̄s) =

(k+1)s−1
∑

t=ks

c(xt,ut)

Lemma 3.1: Consider the decentralized system setup
in Section I-A, with the observation noise processes
being independent. LetIc

t be a common information
vector supplied to the DMs regularly at everyk time
steps, so that the DMs have common memory with
a control policy generated as described above. Then,
{x̄s := xks, ūs(., I

c
ks), s ≥ 0} form a Controlled

Markov chain
In view of the above, we now present a result on a

separation property. We note that the following has been
proven in [8]. We present a shorter proof, using the result
above directly.

Lemma 3.2: Let Ic
t be a common information vector

supplied to the DMs regularly at everyk time steps.
There is no loss in performance ifIc

ks is replaced by
P (x̄s|I

c
ks).

Proof:



The cost can be written as a function of additive costs:

Jx0
(Π, IS) = EΠ

x0
[

T

k
−1

∑

s=0

c̃(ūs, x̄s)]

with

c̃(ūs, x̄s) =

(k+1)s−1
∑

t=ks

c(xt,ut)

For the minimization of an additive cost in Partially
Observed Markov Chains, it suffices to transform the
state to an equivalent state of conditional densities [7]
as discussed in Section I-D. HenceP (x̄s|I

c
s) acts as a

sufficient statistic. See also [2].
⋄

Clearly, the largerk is, the larger the complexity in
the design of the computation of the control law̄uks.
This grows at least exponentially ink.

The essential issue for a tractable solution is to
ensure a common information vector which will act as a
sufficient statistic for future control policies. This can be
done via a one-step delayed structure, or some structure
possibly requiring larger but finite delay.

Definition 3.1: Belief Sharing Information Pat-
tern: An information pattern in which the DMs share
their beliefs about the system state is called thebelief
sharing information pattern. If the belief sharing occurs
periodically at everyk-stages, and the DMs also share
the control actions they applied in the last k-1 stages, we
call this thek-stage belief sharing information pattern.

We now discuss how the beliefs are shared sequen-
tially. We proceed by induction. Suppose at timeks, the
DMs have an agreement onP (x̄s|I

c
ks) and know the

policies used by each of the DM’s, hence know the ICS
and the probability measureP . It follows that,

P (x̄s+1|y[ks,k(s+1)−1], P (x̄s|I
c
ks))

=
P (x̄s+1,y[ks,k(s+1)−1], P (x̄s|I

c
ks))

∑

X
P (x̄s+1,y[ks,k(s+1)−1], P (x̄s|Ic

ks))

=

∑

X
P (x̄s+1, x̄s,y[ks,k(s+1)−1], P (x̄s|I

c
ks))

∑

X

∑

X
P (x̄s+1, x̄s,y[ks,k(s+1)−1], P (x̄s|Ic

ks))

Hence, to recover the joint belief, it suffices that the
DMs share:
P (y1

[ks,k(s+1)−1], y
2
[ks,k(s+1)−1], . . . , y

L
[ks,k(s+1)−1]|x̄s),

which is a|X|−dimensional vector withR-valued com-
ponents for everȳxs ∈ X given y[ks,k(s+1)−1] and the
control strategȳus(., I

c
ks), and actions. In case the state

space is uncountable, a probability measure onσ(X) is
to be exchanged. With this description, the recursions
can be obtained.

A. Minimum Communication Rate Needed for the Belief
Sharing Pattern

The exchange of the common information states under
deterministic nestedness might lead to a large informa-
tion exchangenoiselessly. This is impractical for many
scenarios. However, as a result of Lemma 3.1 and 3.2,
what needs to be exchanged is a sufficient amount
of information such that the DMs have a common
P (x̄s|I

c
s), so that their recursions can be based on

this information. The question that we are interested
in this section is the following: How much information
exchange is needed between the decision makers so that
the decision makers have an agreement on the state of
the system and a dynamic programming recursion is
tractable? The information is measured by information
bits, that is the average number of bits needed to be
exchanged among the decision makers.

Now, let us introduce two standard information-
theoretic notions, namely mutual information and rate
distortion function.Mutual information between an input
random variable,X , and another one,Y , is I(X ; Y ) =
H(X) − H(X |Y ) , where H(X) is the entropy of
X (differential entropy if X is a continuous random
variable) , andH(X |Y ) is the conditional entropy of
X given Y . The entropy of a variable is an important
quantity since the entropy provides an almost tight lower
bound for the expected number of bits for noiseless
transmission of data. We assume variable-rate, time-
invariant encoding, that is, the rate is defined as the
expected number of bits to be transmitted: The coding
process of the controller atDM i is a mapping mea-
surable with respect to the sigma-algebra generated by
Ii
t . The DM i’s coding policy toDM j is a mapping

from Ii
t to Wi,j = {W i,j(1), W i,j(2), . . . , W i,j(N)},

the codebook for communication fromDM i to DM j.
Hence, at each time stage,t, DM i sends Ri,j =
−

∑N

n=1 P (W i,j(n), t) log2(P (W i,j(n), t)) bits on av-
erage over an external channel toDM j at time t. Let
R = {Ri,j, i 6= j ∈ 1, 2, . . . , L} such that belief sharing
is possible. DefineR := infR{

∑L

i,j=1,j 6=i Ri,j}, such
that belief sharing is realized. We wish to obtain the
infimum of suchR values.

In the following, we consider the discrete-alphabet
valued observation case, as the analysis is simpler to
pursue. Note that we do not require the state-space to be
discrete, the process{xt} might still live in an uncount-
able space. However, if the observation process takes
a countable number of values the following analysis is
applicable. As mentioned above, with natural extensions,
one could study the most general case of uncountable
X, Yi cases for allDM i.



1) One-Step Belief Sharing Pattern: Let us consider
the one-step delayed information pattern, first for a two
DM setup. In this case, the information needed at both
the controllers is such that they all need to exchange the
relevant information on the state, and need to agree on
p(x̄t|I

1
t , I2

t ), whereIi
t denotes the information available

atDM i. In the one-step Belief-Sharing Pattern,x̄t = xt,

since the period for information exchangek = 1.
In the one-step belief sharing pattern, control actions

need to be exchanged, since they can be obtained given
the agreement on the beliefs.

Theorem 3.1: Suppose the observation variables are
discrete values, that isYi, i = 1, 2 is a countable space.
To achieve the belief sharing information pattern, a
lower bound on the minimum average amount of bits
to be transmitted toDM2 is lower bounded by:

R2,1 ≥ H

(

P (xt|I
c
t−1, y

1
t , y2

t )

∣

∣

∣

∣

P (xt−1|I
c
t−1), y

1
t

)

A lower bound on the minimum amount of information
needed to be transmitted toDM1 from DM2 is:

R1,2 ≥ H

(

P (xt|I
c
t−1, y

1
t , y2

t )

∣

∣

∣

∣

P (xt−1|I
c
t−1), y

2
t

)

We note that the information needed is less than one
needed for achieving the one-step delayed information
pattern. By the above argument, one would needRi,j ≥
H(yi

t|y
j
t , I

c
t ) for the one-step delayed observation shar-

ing pattern. The entropy of the output is at most as
much as the entropy of the observed variable. This is
because, different outputs may lead to the same values
for P (y2

t = y|xt, I
c
t ). Hence, we have the following

corollary to Theorem 3.1.
Corollary 3.1: When the observation space is dis-

crete, the one-step belief sharing information pattern
requires less or equal amount of information exchange
between the controllers than the one-step delayed obser-
vation sharing pattern.

For the multiple-decision maker case, one has a
distributed coding with side information scenario: In
this case the decision makers will send correlated in-
formation to another decision maker. This leads us to
the following lower bound.

Theorem 3.2: To achieve the belief sharing informa-
tion structure, a lower bound on the minimum average
amount of bits that needs to be supplied to anyDM i,
{i = 1, 2, . . . , L} is given by:

Ri ≥ H

(

P (xt|I
c
t−1, y

1
t , y2

t , . . . , yL
t )

∣

∣

∣

∣

P (xt−1|I
c
t−1), y

i
t

)

One could extend the above result for continuous-
alphabet valued for the state and observation spaces. To
lead to meaningful results however, one needs to assume

a given distortion level as the rate required typically
becomes infinite, as the conditional measure process
typically converges to−∞, leading to I(X ; Y ) =
h(X)−h(X |Y ) to grow unbounded. Hereh(X) denotes
the differential entropy of the random variableX .

B. A Case Study: Stochastically Nested Structure with
Zero-Capacity Channels

An example is for the case in which the channels has
zero capacity. In this case, as

P (ȳ1
s = η|x̄s) = P (ȳ1

s = β|x̄s)

for all η, β values that the observation can take, there
is no further information that is needed for the belief-
sharing pattern. As such, there is no need for information
exchange, since there is no information generated by the
observation for the controller with regard to the state
and no transmitted information will be useful. Hence,
the communication required for stochastic nestedness is
zero if all of the information channels are channels with
zero-capacity.

It should be noted that, when the channels are zero-
capacity channels, the deterministic nestedness condi-
tions would require all the information to be exchanged,
although the benefit of this is zero. This example indeed
clearly exhibits the efficiency difference between the two
information patterns.
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