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A TUTORIAL ON QUANTIZER DESIGN FOR NETWORKED CONTROL
SYSTEMS: STABILIZATION AND OPTIMIZATION

SERDAR YUKSEL*

ABSTRACT. In this article, a tutorial on optimal quantizer design in networked control systems
is presented. The poal of this invited article is not to present a literature survey (although
an effort is presented for a brief literature review); but to present a detailed discussion on the
salient issues and some of the main results in the literature and by the author and collaborators,
together with some previously unpublished contributions. The analysis is restricted to noiseless
channels with finite capacity. The analysis and results presented consist of quantizer design
for stabilization over noiseless channels, optimal quantizer design for minimizing a class of cost
functions, quantizer design for stabilization of decentralized systems, and optimal quantizer
design under a class of decentralized information structures.
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1. NETWORKED CONTROL SYSTEMS

A Networked Control System is a control system in which the components are connected
through real-time communication channels or a data network. Thus, there may be a data
link between the sensors (which collect information), controllers (which make decisions), and
actuators (which apply the controller commands).

Due to such a networked structure, many modern control systems are decentralized. A system
is said to be decentralized if there are multiple decision makers in the system (e.g., sensors, con-
trollers, encoders) and these decision makers have access to different and imperfect information
with regard to the system they operate in, and they need to either cooperate or compete with
each other. Such systems are becoming ubiquitous, with applications ranging from automobile
and inter-vehicle communications design, control of surveillance and rescue robot teams for ac-
cess to hazardous environments, space exploration and aircraft design, among many other fields
of applications (see [73], [26], [43] for a review of application areas).

In such remote control applications, one major concern is the characterization of a sufficient
amount of information transfer needed for a satisfactory performance. This information transfer
can be between various components of a networked control system. One necessity for satisfactory
control performance is the ability for the controllers to track the plant state under communi-
cation constraints. One other challenge is the determination of the data rate required for the
transmission of control signals, and the construction of dynamic encoding, decoding, and control
policies meeting some criteria.

Another important problem is the coordination among multiple sensors or multiple con-
trollers/decision makers with the lowest information exchange possible. Even in cases when
communication resources are not scarce, a strong understanding of the fundamentals can be
useful in the system architecture, and finally, such an insight can help reduce the computation

requirements and complexity.
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Figure 1. A decentralized networked control system. Solid lines show the interaction between the control
stations and the plant. Dashed lines depict the possible communication links between the stations.

As indicated earlier, there are usually three types of agents involved in a control system:
sensors, controllers, and actuators (plants) (see Fig. 1). Various forms of this architecture have
been introduced and studied in the literature in the networked control community. To be able to
analyze different scenarios, it is important to identify the probabilistic description of the system
and characterize the information structure in the system. Toward this goal; in the following we
review information structures in decentralized control.

1.1. Information structures in a networked control system. In the following, we present
a general discussion on information structures; which will also be useful in our analysis for
quantized systems.

We can present a general decentralized system based exclusively on the underlying probability
space and the interaction dynamics of the decentralized decision makers. Such a model was con-
sidered by Witsenhausen, and is known as Witsenhausen’s Intrinsic Model [152]. In this model,
any action applied at a given time stage is regarded as applied by an individual station/decision
maker/agent. The Intrinsic Model of Witsenhausen has three components:

(1) An information structure: 7 := {Q,F, (U*,u*),1 < k < N} specifying the system’s
allowable decisions and events. N is the number of control actions taken, and each of
these actions is taken by an individual station (hence, even a station with perfect recall
can be regarded as a separate decision maker, at different time stages). (2, F) is the
measurable space generating the probability space. (U*,U4*) denotes the measurable
space from which the action of decision maker k, u* is selected.

(2) A design constraint, which restricts the set of admissible N-tuples, control laws v =
{+,72,...,4"}, called designs to the set of all measurable I measurable control func-
tions. Here, the sub-sigma field 7% denotes the information that can be used to select

the kth control action.
(3) A probability measure P defined on (£, F).

A decentralized problem is dynamic if the information available at one decision maker (DM)
is affected by the actions of another decision maker. A decentralized problem is called static, if
the information available at every decision maker is only affected by exogenous disturbances, or
nature; that is no other decision maker can affect the information at any given decision maker.
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Witsenhausen defines information structures to be one of the three types: Classical, quasi-
classical, and non-classical. If the information available at the decision makers is nested in the
sense that 7% C TZF+1 the information structure is classical. An information structure is quasi-
classical, if whenever the control actions of a DM' affects the observations of another decision
maker DM/, the information available at DM is known noiselessly by the affected decision
maker. An information structure is non-classical, if it is not quasi-classical.

In a large class of applications, there is a pre-defined, deterministic, ordering of control actions,
and there is a state-space model; in which there are a number of decision makers with perfect
recall (that is, these decision makers remember their past information, with growing time, the
information fields are expanding), acting sequentially; we call this model a sequential model,
following Witsenhausen.

Let (2, F, P) be a probability space. Let X be a complete, separable, metric space in which
realizations of a random sequence {z;,t € Z; U {0}} measurable on the probability space live
in. Let Yi, be another space for i = 1,2,...,L and let an observation channel C! be defined
as a stochastic kernel (regular conditional probability measure) on X x Y¢, such that for every
z € X, P(|z) is a probability distribution on the (Borel) sigma-algebra B(Y?), and for every
A € B(Y"), P(A|.) is a measurable function of z.

Let there be L decision makers, {DM?,i = 1,2,...,L}. Let a Decision Maker (DM) DM be
located at one end of an observation channel C?, with inputs z; generated as y; € Y* at the
channel output. We refer to a policy IT* as a sequence of control functions measurable with

respect to the sigma-algebra generated by

I;;' oo {y;, Z;, yfﬂ,t—l]’ uiolt_]_]) zio,t,—l]} 2 2 1!

Icir = {yél: 7}
with control actions ui € Uf, with the notation for £ > 1

Yoy = {5, 0< s <t -1}

Here zi denotes the additional information that can be supplied to DM! at time . . .
Let DM’ have a policy IT*, and under this policy generate control actions {ut, t > 0}, uj € U',
and let a dynamical system and observation channels be described by the following discrete-time

equations:
1 .2 L
Tit1 = f(xhutaut!"':ut !’wt)a

y: = gi(mti Ui)!

for some measurable functions f, {g'}, with {w;} independent, identical, white system noise
process, and {vi,i =1,2,..., L} be disturbance processes. Let = th_ﬂl X be the T'—product

space of X. For the above setup, under a sequence of control policies {II*, II%, .. ., IT¥}, we define
an Information-Control Structure (ICS) as a probability space
P21 L T—1 L Poi L P I
(xT x H HY" X H HIU’“,B(XT % H HY" X H HIU"),P).
t=0 k=1 t=0 k=1 i=0 k=1 i=0 k=1

Here, P is the probability measure on the (Borel) sigma-algebra BXT x [I3} TIE., Y& %

?1—01 L ]UL)

1= k=1 ' :
Information Patterns determine the sub-fields for all decision makers and time stages o(I}) C
BXT x [T TR, YF x [T [Tk, U*). Hence, the control policies are measurable on the
sub-fields, which are characterized by I? for all DMs, through the term z;. Thus, an Information
Pattern determines what the control action can depend on, inducing an information-control

structure, With the above formulation, in general the objective of the decision makers is the
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minimization: -
-1
1m2,,..nk 1,2
EED Hpefl [Z C(xt:ut:uta i ,‘Mf)],
1=0
over all policies IT*, I12, .. ., II¥, with initial condition zy. Here, EE*“Z’-""HL[] denotes the ex-
pectation over all sample paths with initial state given by zo under policies {II*,II?, ..., IIL}.

For a general vector ¢, let q denote {g!,¢*...,¢"*}. Let IT = {1,112, ... ,TIZ} denote the
ensemble of policies. Under an ensemble of policies IT and a given information pattern, with an
initial condition gy, the attained performance index is

T—1
Jug [IT) = Eg[z ez, ).
t=0

We say the information available at DM’ is nested in that of DM7 at time ¢, if o(If) C o(I}).
Nestedness has very important implications; but as indicated in [171] such a characterization
of information sets is too strong. It was observed by Radner [120], that a static LQG team
problem, with a non-nested information structure, admits an optimal solution which is linear.

An information structure is partially nested, if whenever the control actions of a DM affects
the observations of another decision maker DM/, the information available at DM is known
noiselessly by the affected decision maker, that is: Z7 = {yi, if DM' — DM/}. Here the
notation DM? — DM7 denotes the fact that the actions of DM? affects the information at DM?
(which is also known as signaling, see [175] for a review of signaling). The partially nested
structure effectively reduces the dynamic LQG team problem to a static optimization problem
~ in the sense that the signaling (inner) agent (whose information sigma algebra is a subset of the
signaled (outer) agent’s information sigma algebra) makes all her decisions statically and the
outer agent can generate such pure strategy decisions and the joint decisions can be regarded as
one single-DM’s decision, effectively making the problem static among such single DMs. Partially
nested structures can also have a dynamic evolution [27], and as a special case, this includes the
case where information propagation is faster than dynamics propagation, where in the above
definition, delay is also considered [27], [146], [121]. According to Witsenhausen’s definition,
quasi-classical information structure is equivalent to partial nestedness. This structure includes
the one-step delayed observation sharing information pattern (see [80] and [9]), which allows
the Decision Makers to share all their observations with a unit delay: z} = {y:—1}. If the agents
also share their decisions, then the information pattern is called one-step delayed information
sharing pattern: zi = {y;—1,u;—1}. For further related discussion, please see [162].

If a decision maker’s, DM’, information is dependent on the actions of another, say DMF,
and DM? does not have access to the information available to DM¥, this information structure
is said to be non-classical. Hence, an information pattern which is not partially nested is a
non-classical information pattern. The one-step delayed control sharing pattern zi = u,—; is
one such example [4], [128], [9].

A systematic approach for generating optimal control policies by eliminating redundant in-
formation has been introduced in [88].

[146], [6], and [122] have studied sufficiency conditions for tractability, and convexity in opti-
mal decentralized control problems.

Even when the information structure is non-classical, one may obtain tractable solutions for
optimal control problems. The stochastically nested information structure is an example of such
problems [171]. Shannon’s point-to-point communication problem can be regarded as another
example, which is by definition non-classical, but tractable.

When the information structures are non-nested, controllers might choose to communicate via
their control actions, that is they might wish to pursue signaling. Different types of signaling
can occur: signaling to learn the dynamics of the system, signaling what the belief (that is,
the conditional probability measure) on the state of the system is, signaling what the belief on
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ihe other agents controls, are or signaling what the agent’s own future control actions will be,
depending on the effects on the cost performance. Especially, in decentralized control systems,
the notion of information, and how it is generated, is often part of the control problem itself,
and this has been captured in the so-called dual effect [8], so that control can serve both to
improve the quality of estimation, and also to achieve its primary objective. This leads to
a triple effect, when there is also an incentive for signaling: the action that decision makers
communicate with each other through the plant. This arises prominently in networked control
systems. We conclude this section by noting that, the information structures can be further
identified, by also considering the probability measure and the cost functions; such an approach

has been adopted in [91].

1.2. An incomplete literature review on quantizer design in a class of networked con-
trol systems. In the following, we present an incomplete literature review on the fundamental
bounds for networked control systems, where we restrict the analysis to noiseless channels with
finite capacity.

We refer the reader to [105] for a literature survey of quantizer design in networked control
problems, and the comprehensive book [99] for a detailed analysis of the literature as well as
more general noisy settings. The goal here is not to present a survey; such a task of writing a
genuine survey is beyond what we could provide.

As mentioned earlier, the use of digital and wireless channels, such as the Internet or bus
lines (as in a Controller Area Network (CAN)) in control systems, has become common place,
raising important mathematical (control theoretic and information theoretic) challenges for the
design of such systems. The design of such systems combining ideas {rom information theory,
control theory, and applied probability had already been investigated in the 1950s to 1970s, for
example in the context of state space design and Kalman Filtering [75], estimation [39], design
of statistical experiments [14], and value of information channels [35].

There is a large amount of literature on stochastic stabilization of sources via coding, both
in the information theory and control theory communities. In the information theory literature,
stochastic stability results are established mostly for stationary sources, which are already in
some appropriate sense, stable sources. In this literature, the stability of the estimation errors,
as well as the encoder state processes are studied. These systems mainly involve causal and non-
causal coding (block coding, as well as sliding-block coding) of stationary sources [76], [51], and
asymptotically mean stationary sources [55]. Real-time settings such as sigma-delta quantization
schemes have also been considered in the literature, see for example [159] among others. Earlier
papers in control theory literature on quantized estimation include [52].

There also have been important contributions on non-causal coding of non-stationary /unstable
sources: Consider the following Gaussian AR process:

m
T = — E QpTi—f + Wi,
k=1

where {w;,} is an independent and identical, zero-mean, Gaussian random sequence with variance
E[w}] = ¢2. If the roots of the polynomial: H(z) = 1+ Y jt; apz"" are all in the interior of the
unit circle, then the process is stationary and its rate distortion function (with the distortion
being the expected, normalized Euclidean error) is given parametrically by the following [56],
obtained by considering the asymptotic distribution of the eigenvalues of the correlation matrix:

1 m 1
un S in(6. ——)d
Dy o f_wmln(g, g(w)) w,
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with g(w) = &|1+3 -, are~**|?. If at least one root, however, is on or outside the unit circle,
the analysis is more involved, as the asymptotic eigenvalue distribution contains unbounded
components. [56] and [54] showed that, using the properties of the eigenvalues, as well as
Jensen’s formula for integrations along the unit circle, R(Dy) above should be replaced with:

R(De) = 5- [ mex(3 log(gorr), O)dw + Y 3ol )

=T k=1

where {p} are the roots of the polynomial.

[16] obtained the rate-distortion function for Wiener processes, and in addition, developed
a two-part coding scheme, which was later generalized in [126], to unstable Markov processes
driven by bounded noise. The scheme in [16] exploits the independent increment property of
Wiener processes.

Thus, an important finding in the above literature is that, the logarithms of the unstable
poles in such linear systems appear in the rate-distortion formulations, an issue which has also
been observed in the networked control literature, which we will discuss further below. We also
wish to emphasize that these coding schemes are non-causal, that is the encoder has access to
the entire ensemble before the encoding begins, or the coding is a sliding-block/sliding-window
scheme with a finite degree of non-causality.

In contrast with information theory, due to the practical motivation of sensitivity to delay,
the control theory literature has mainly considered causal/zero-delay coding for unstable (or
non-stationary) sources, in the context of networked control systems.

There has been a renewed and growing interest with the emergence of practical applications
within the past decade. In this context, one of the earliest papers on the topic is [7], which has
shown that for a scalar discrete-time linear Gaussian system controlled over a Gaussian channel,
the encoder and the controllers with noiseless causal feedback, which jointly minimize a quadratic
objective functional, are all linear. This was perhaps the first paper that used information theory
along with stochastic control in the analysis of a control system. References [154] and [148],
studied the optimal causal coding problem over, respectively, a noiseless channel and a noisy
channel with noiseless feedback. Reference [37] showed the chaotic nature of quantization in
control, in one of the first papers to bring in quantization as a design limitation; [22], on the other
hand, studied the trade-off between delay and reliability, and formulated relevant and challenging
problems; the questions that were posed there led to an accelerated pace of research efforts on the
topic: Significant progress on the connection between information theory and control has been
achieved through study of the minimum information rate requirements needed for stabilizability
over noisy channels with noiseless feedback, under various assumptions on the noise models, as
well as control over noiseless channels—as reported in [160], [142], and [109], where [109] also
considered a class of quantizer policies for systems driven by noise with unbounded support set
for its probability measure. References [160], [142], and [109], obtained the minimum lower bound
needed for stabilization over noisy channels under a class of assumptions on the system noise
and channels; known as the data rate theorem. This theorem states that for stabilizability under
information constraints, in the mean-square sense, a minimum rate needed for stabilizability has
to be at least the sum of the logarithms of the unstable poles/eigenvalues in the system; that is:

m

Z%leg(lpklz)-

k=1
This result could be contrasted with (1).

Several studies in the literature have focused on noiseless discrete channels with time-invariant
encoders, where the main issue becomes one of design of an invariant quantizer; see [42] and [44].
The first of these, [42], adopts a Lyapunov-based approach to stabilize a system with limited
information, and shows that the coarsest quantizer achieving stability is logarithmic, and that the
design is universal, i.e., it has the same base for construction regardless of the sampling interval.
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The second reference, [44], quantifies the relationship between the rate of convergence and
communication rate for scalar systems, and provides conditions for set invariance as a measure
of stability. An information theoretic approach to quantizer design leading to stabilizability was
presented in [176]. [93] and [95] consider the disturbance rejection problem over noisy channels.
In [73], a Lyapunov theoretic quantizer design leading to stability is provided, with further
results reported in [72], and time-varying quantizer design presented also in [125]. Reference [29]
studied control over channels with partial observations, and adopted an information theoretic
approach, also with a robust formulation on the class of sources. For noisy binary forward
channels with noiseless feedback, coding schemes were presented for the forward channel with
noiseless feedback in [132], and linear time-invariant as well as time-varying control policies on
continuous-alphabet channels modeled as Gaussian channels, were considered in [24].

For control over erasure channels, there are also various studies: [71], [103], [163], [179], [166],
[131], [60]. For more general noisy channels, we refer the reader to [99], [93], [92], [41], [126],
[180], among others.

For coding and information transmission for unstable linear systems, there is an important
difference between continuous alphabet and finite-alphabet (discrete) channels as discussed in
[180]: When the space is continuous alphabet, we do not necessarily need to consider adaptation
in the encoders. On the other hand, when the channel is finite alphabet, and the system is
driven by unbounded noise, a bounded range quantizer (a quantizer with bounded granular
region) leads to almost sure instability. This was first recognized in view of the unboundedness
of second moments in Proposition 5.1 in [109], transience of the process is established in Theorem
4.2 in [180]. [30] considers the conditions for stabilization when the control signals are bounded.

As discussed above, zooming type adaptive quantizers, introduced by Brockett and Liberzon
[25], for remote stabilization of open-loop unstable, noise-free systems with arbitrary initial
conditions has been very useful. Reference [170] obtained a martingale characterization for
stabilization for such zooming quantizers, even when there is noise in the system, and the noise
has unbounded support for its probability measure. This approach has been extended to control
over erasure channels in [166] and [179].

There is also a large body of literature on real-time quantizer design in the communications
and information theory community, as conveniently presented, in the survey paper [57]. There
are many important contributions from this field on optimal quantization of general sources; both
in the context of block-codes (where infinite copies of a source are encoded simultaneously), as
well as in the single-shot, or delay-limited settings. In this context, we wish to point out one
observation: The distortion-rate problem [34] and the entropy-constrained quantization problem
[61], exhibit the distinctness of the two problems: The distortion-rate (or the dual problem of
rate-distortion) deals with efficient coding of an infinite copy of a source; whereas the entropy-
constrained quantization problem deals with a real-time setup of encoding one realization of a
random variable.

One important reference is the work by Goodman and Gersho [51], where an adaptive quan-
tizer was introduced, and the adaptive quantizer’s stationarity properties were investigated when
the source fed to the quantizer is a second order and i.i.d. sequence. In fact, zooming type quan-
tizers is a special class of Goodman and Gersho’s adaptive quantization scheme. Kieffer and
Dunham [76], have obtained conditions for the stochastic stability of a number of coding schemes
when the source considered is also stable, where various forms of stability of the quantizer and
the estimation error have been studied.

There is also a large collection of work in the context of optimal real-time source coding.
Related papers on real-time coding include the following: [112] established that the optimal
Optimal causal encoder, minimizing the data rate subject to a distortion for an i.i.d sequence
18 memoryless. If the source is kth-order Markov, then the optimal causal fixed-rate coder
minimizing any measurable distortion uses only the last k source symbols, together with the
Current state at the receiver’s memory [154]. References [148] considered the optimal causal
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coding problem of finite-state Markov sources over noisy channels with feedback. [144] and [89]
considered optimal causal coding of Markov sources over noisy channels without feedback. [87]
considered the optimal causal coding over a noisy channel with noisy feedback. Reference [83]
considered the causal coding stationary sources under high-rate assumption. Borkar, Mitter,
and Tatikonda [19] studies a related problem of coding of a partially observed Markov source,
however, the construction for the encoders is restricted to take a particular form which uses
the information at the decoder, and the most recent observation at the encoder (not including
the observation history). [111] considers decentralized coding of correlated sources when the
encoders observe conditionally independent messages given a finitely valued random variable,
and obtain separation results for the optimal encoders. The paper also considers noisy channels.
Reference [168] and [169] consider partially observed sources, and some results in these papers
will be presented in this article. References [150] and [104] consider optimal causal variable-rate
coding under side information, and [177] considers optimal variable-rate causal coding under
distortion constraints. A parallel line of consideration, which has a rate-distortion theoretic
nature, is on sequential-rate distortion proposed in [142], and the feedforward setup, which has
been investigated in [147] and [40]. A related work is Witsenhausen’s indirect rate distortion
problem [153] (see also [38]). Further related papers include [12], [69].

This paper also presents a discussion for the decentralized setup. The corresponding brief
literature review will be presented in Section 5.

Here is a brief overview of the rest of the paper. In the next section, we revisit some prelim-
inary definitions on quantization and information theoretic notions. In Section 3, we consider
the problem of stabilization under quantization constraints, and in Section 4, we consider the
problem of optimal single-terminal quantization. In Section 5, stabilization of decentralized sys-
tems under quantization constraints is discussed. In Section 6, optimization for decentralized
systems is considered. The paper ends with the concluding remarks of Section 7

2. QUANTIZATION AND PRELIMINARIES

Essential in communications problems, is the embedding of information into a finite set,
possibly with loss of information. This is done through quantization, which is a mapping from a
larger alphabet to a smaller alphabet. We refer the reader to the survey paper [57] for a detailed
review of quantization, and an introduction of different types of quantizers.

Let us present a formal definition which we will adopt throughout the paper.

Definition 1. Let M = {1,2,..., M} with M = |[M|. Let A be a topological space. A
quantizer Q(A; M) is a Borel measurable map from A to M.
We define the bins or cells in a quantizer as the sets:

B;={a€A:Qa)=1i}, ieM.

We note that, traditionally, in source coding theory, a quantizer is also characterized by
a reconstruction value in addition to a set of partitions; in our definition we only define the

quantizer by the bins in the quantizer.

We say the rate of such a quantizer is log,(|M]) bits.

When the spaces A and M are clear from context, we will drop the notation and denote the
quantizer simply by @.

In practice, however, one may impose additional structure on the quantizers; for example one
may impose the bins in the quantizers to be convex. Further structures are possible in this
context. An important class of quantizers on R™ are those which are uniform, and those which
have their bins with identical Lebescfue measure. These will be discussed later in the paper.

The information rate is measured by the number of bits. When the coding is variable-rate,
information is measured by the average number of bits needed to be exchanged among the
decision makers; whereas when the coding scheme is fixed-rate, information is measured by the

actual number of bits that are exchanged for any given time stage ¢ > 0.
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Let = be & finitely-valued random variable. Consider the following problem: What is the
pinimum amount of average bits needed to represent x with no loss? The answer to this leads
us to the notion of entropy of a source [34]: Entropy of a finitely-valued random variable
provides an almost tight lower bound on the average bit rate needed to compress the source
Josslessly. The entropy of such a source is defined as H(z) = — 5 p(z)logy(p(z)). When the
source is continuous, we use the term differential entropy: h(z) = — [ p(dz)log,(p(dz)), where

dz) is the measure of the source.
Mutual information between an input random variable, z, and a corresponding output, y, is

I(z;y) = H(z) - H(zly),

where H(z|y) is the conditional entropy of z given y.
We would like to point out one important distinction between information theoretic appli-

cations and such real-time problems considered in the paper. The relation between the rate-
distortion function and the notion of distortion-constrained entropy minimization [61] [62] [176],
is a striking example identifying the difference: In rate-distortion theoretic analysis, an infinite
realization of a random variable is observed, and compression is performed based on the entire
sequence. For a quantization problem; however, a single realization is observed, and the output
it generated only for the single realization. Clearly, the rate-distortion function leads to a lower
value, since one could shape the codebooks appropriately [83]. Only for quantization of vec-
tor valued processes, in the limit of large dimensions, one observes an equivalence between the
distortion-constrained entropy minimization and the rate-distortion function [57]. We note that,
:n the definition of the rate distortion function R(D) for a random variable z taking realizations

in X with distortion metric p: X x X — R:

R(D) inf I a);

P(&|z)v:Elp(zy(£)))<D
the minimization is over the space of stochastic kernels P(&|z), where I(:,-) denotes the mutual
information function. In the quantization framework, the optimization is over the space of
quantizer-decoder pairs only. Note that, when & admits a discrete probability measure and
2 = v(Q(z)), for some decoder function v, I(z; &) reduces to H(z). Thus, the essential difference
is the space of optimization. Furthermore, even though the rate-distortion function is a convex
function of distortion, the distortion-constrained entropy function is not a convex function of
distortion (see [61], [62], where in the former study [61], an analysis for a uniform source has
been considered). The space of quantizers is not a convex space.

Although typical information-theoretic approaches require long delays; important special cases
provide optimal performance even under delay-limited settings: One example is the problem of
communicating a Gaussian source over a Gaussian channel. This topic is related to the matching
principle; the readers are referred to [49] and [7]. On a parallel note, the multi-terminal source
coding theorems [34], although insightful, are not always applicable for a real-time setting, as
the asymptotic partitioning arguments in classical information theory [34] do not apply. In a
control context, however, one method to achieve the information theoretic bounds is via binning;
see [174], [175], [58] for discussions on binning in a decentralized control context, and [119] for
a discussion on binning in a general communications context.

2.1. General setup for a quantization problem: policies, actions, causality and mea-
surability. This subsection considers a typical optimal causal encoding/quantization setup in
a networked control system. For simplicity of the setup, we consider only two encoders, for a de-
centralized system, and use this system to introduce the causality and measurability constraints
in quantizer design.

We begin with providing a description of the system model. We consider a partially observed
Markov process, defined on a probability space, again, (9, F, P) and described by the following
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discrete-time equations for ¢ > 0 (which may be modified to include control actions as well):
Tyl = f(mt: wt)a (2)
y;- = gi(mi: T:)v (3)

for (Borel) measurable functions f, g',i=1,2, with {ws, {,4 = 1,2} noise processes, which are
independent across time and space. Here, we let 2, € X, and y} € Y?, where X, Y are complete,
separable, metric spaces (Polish spaces), and thus, include countable spaces or R* neZ,.

Let an encoder, Encoder i, be located at one end of an observation channe] characterized by
(3). The encoders transmit their information to a receiver (see Fig. 2), over a discrete noiseless
channel with finite capacity; that is, they quantize their information.

Feedback
Encoder 1 from Receiver

Channels
Source \ /ﬂcu}ver
Encoder 2

Figure 2. Partially observed source under a decentralized structure.

We refer by a Composite Quantization Policy [I¢mPesitei of Bncoder 1, a sequence of
functions {Q{°™**"** ¢ > 0} which are causal such that the quantization output at time ¢,
g, under IT* is generated by a causally measurable function of its local information, that is, a
mapping measurable with respect to the sigma-algebra generated by

Iy = {yfo,t]aq[ln,¢—1]az[10,z~1]}: t21,
and _
: Iy ={w},
to M, where
My ={1,2,...,|M}},
for0<t<T—-1andi= 1,2. Here z}j denotes some additional side information available, such
as feedback from the receiver. Here, we have the notation for ¢ > 1, as earlier:

ylio,t—lj ey 20§ & 1},

Let I} be the space such that for all ¢ > 0, I} € Ii. Thus,

composite,i | 11 i
t T — M.

We may express, equivalently, the policy [1°mPositei g5 4 composition of a Quantization Policy
IT' and a Quantizer.

A quantization policy of encoder i, 7%, is a sequence of functions {7}}, such that for each
t 2 0, T} is a mapping from the information space Ii to the space of quantizers Qi. A quantizer,
subsequently is used to generate the quantizer output. That is for every t and i, IT'(L,) € Qi
and for every I} € If,
PN = (THIDIE), (4)

t
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mapping the information space to M in its most general form.
Even though there may seem to be duplicated information in (4) (since a map is used to

:ck a quantizer, and the quantizer maps the available information to outputs) we will eliminate
any informational redundancy: A quantizer action will be generated based on the common
information at the encoder and the receiver, and the quantizer will map the relevant private
jnformation at the encoder to the quantization output.

Let the information at the receiver at time ¢ > 0 be I] = {q[lo,t—1]1 q[zo’ 4_q)}- Let the common

:nformation, under feedback information, at the encoders and the receiver be the set Ij. Thus,
we can express the composite guantization policy as:

Qemrestei(1f) = (UL AT,
mapping the information space to M.

We note that, any composite quantization policy can be expressed in the form above; that is
there is no loss in the space of causal policies.

Thus, we let DM* have policy IT* and under this policy generate quantizers {Qt = 0},
Qi € Qi (@} is the quantizer used at time ¢). Under action @}, the encoder generates qi, as the
quantization output at time t.

The receiver, upon receiving the information from the encoders, generates its decision at
time ¢, also causally: An admissible causal receiver policy is a sequence of measurable functions

v = {7y} such that
t

’Yt:H(MixME)—;IU, )
s=0
where U denotes the the decision space.

Let us present further notation. As denoted earlier, for a general vector a, let a denote {at, e*}

and let II = {I1!, 112} denote the ensemble of policies and Q: = {Q},Q?}. Hence, q)py denotes
2
{90, %9}
With the above formulation, for example, one typical objective functional of the decision
makers is the following

T=1
_ < composite
inf inf E,l;é "l E c(zg, v,
chmpos:’tc ¥ =0

over all policies TI®°™Posite  ~ with initial condition distribution vp. Here c¢(z¢,v:t), is a non-
negative function and v, = (qjoy) for t 2 0. This setup may include, for the case when
X = R™, the cost function: ¢(z,v) = ||z — v|3. ;
Another objective is to ensure that a dynamical system is stable in some appropriate sense.
We will consider these in the following sections. First, we discuss the stabilization problem.

3. QUANTIZER DESIGN FOR STABILIZATION OVER NOISELESS CHANNELS

We consider a multi-dimensional linear system connected over a noiseless channel
Ty = Azy + Bug +we,  Yp = To; (5)

}Vhere z, € B™ is the state at time £, u; is the control input, and {w;} is a sequence of zero-mean
independent, identically distributed (i.i.d.) R"-valued zero-mean Gaussian random variables.
Furthermore, E[|jwe||2] = E[llwi|3] < oo. Here A is the system matrix with at least one
eigenvalue greater than 1 in magnitude, that is, the system is open-loop unstable. Without any
loss of generality, we assume A to be in Jordan form. Since we have assumed a Jordan form, we
allow w; to have correlated components, that is the correlation matrix E[ddT] is not necessarily
diagonal. We also assume that B is invertible, even though, it suffices to only assume that

(4, B) is a controllable pair.




376 APPL. COMPUT. MATH., V.10, N.3, 2011

1

I ]

, q i |

g Quanizer —— ! Discrele Noiseless :—,.q Conlrater —

1 Channel |

|

: 1

] ]

# u
Linear Piant f

Figure 3. Control over a finite-rate noiseless channel with quantized observations at the controller.

The following is due to Wong-Brockett [160], Tatikonda-Mitter [140] and Nair-Evans [109].
Theorem 1. [160] [140] [109] For any stabilizing control and causal quantization policy, if
T is second-order with finite entropy, for lim sup,_,, E[||z:]|?] < oo, the average quantization

rate needs to satisfy:
Ravg 2 Y logs(JAil),

[A:]>1
where {A;,1 < i < n} denote the eigenvalues of A.

Proof. In the following proof, we use ideas from [176] and [180]. The matrix A can always
be block-diagonalized, say with two blocks, where the first block has only stable eigenvalues,
and the second one unstable eigenvalues. For the stable modes, one does not need to use the
channel, and hence for the remaining discussion and analysis we can assume, without any loss
of generality, that A has only unstable eigenvalues.

Let z; = E|z|q)p,] 2nd the Euclidean distance for the vector z; — £, be denoted by Dy, and
the covariance matrix of the componentwise errors be denoted by C;. Thus, D, = Trace(Ct).
Let Dy be finite, which also makes C; a matrix with finite entries. Among random vectors with a
fixed covariance matrix, the differential entropy is maximized by a jointly Gaussian distribution,
which in turn has a finite entropy [34]. It follows that

T—1
lim inf(1/T)H (go,r-z) = lim inf( 1/T)(Z H(g:|gi0,6-1)) + H(qo))

> lim inf(1/) (H(qtfq[o,t_l;) _ Hlgila, q[o,t_n)) T H(qa))

t=1

(Z
= lim inf I/T( (I(:ct;mlqm,t_u)) -!-H(fm))
(2

= hm m.f (1/7) (h($t|q[o; 1) h(%'ﬂo,t])) +I'—r(‘.70)> (6)
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N
&

(h(ACCt—1 + We—1 + Buz—1|qjo,t-1j) — h(ItIQ'[o,z])) e H(‘IO))

P
XL L

= hm mf [LET (
= hm mf (1/7) (

(h'(Amt—l -+ wi—1|9'[0,t—1]) - h‘(mt{Q[O,t])) + H(QD))

P
'_.l—t

11111 111f (14T

Y

(h(fm i i g s B, :3)) . H(qo))

o
o
-

= hm mf (1/T)

M

h(Az—1]gp,1—1), We-1) — (mtig[O,f.])> +H(q0))

Tl
e

= hm mf (1/T)

f:M

logs (|41} + h{ss-alap—sy) — imrlgog )) 4 H(qu))

=1

=

(
(Aecslgo ) - Hadan)) +Hao)) 7
(

= hm mf (1/7) log, (|A]) ) + h{zolgo) — R(zr-1lg0,7-1) + H(Qo)))

i
;_. -

(2
(
(2
- porm($
(%
(3

log (| A ) + hzolao) - (1/2) log((2me)*|Cr_s]) +H(qo))

/“'\/—‘\

> hm mf (1/T)

t=1

2 Z ]'Og.?(l/\‘il):

|Ail>1

where C; is the covariance matrix of the state error at time £. The first inequality follows since
discrete entropy is always non-negative, and the second inequality follows from the fact that
conditioning does not increase entropy. The third inequality follows from the property that the
Gaussian measure maximizes the entropy, for a given covariance matrix. Equation (7) follows
from the observation that {w;} is an independent process. The other equations follow from the
properties of mutual information.

3.1. Achievability through random-time state-dependent stochastic drift. For achiev-
ability of the lower bound, we use a recently developed approach used first in [170], [167] and
generalized in [179], [166]. Before, however, we provide a review of Markov chains and the notion
of stochastic stability. See Meyn and Tweedie for a general discussion [100].

3.1.1. Stochastic stability of Markov chains. Let us first present a brief discussion on stochastic
stability of Markov Chains; for a list of definitions on Markov Chains the reader is referred to
[100] and [101]. Let {z,t > 0} be a Markov chain with state space (X, 5(X)), and defined on a
probability space (£, F, P), where B(X) denotes the Borel o —field on X, 2 is the sample space, F
a sigma field of subsets of {2, and P a probability measure. Let P(z, D) := P(z441 € D|z: = )
denote the transition probability from z to D.

Deﬁmt:on 2 For a Markov chain, a probability measure 7 is invariant on the Borel space
(X, B(X)) if 7(D) = [, P(z, D) (dz), VD e B(X).

Deﬁmtmn 3 A Markov cham is p-irreducible, if for any set B € B(X) with u(B) > 0, Vz € X,
there exists some integer 7 > 0, possibly depending on B and z, such that P"(z, B) > 0, where
P"(z, B) is the transition probability in n stages, that is P(zsy, € B|z, = ).
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Definition 4. A set A C X is (—petite on (X, B(X)) if for some distribution Z on N (set
of natural numbers), and some non-trivial measure ¢, > oo, P"(z,B)Z(n) > ((B), Vz €
A, BeB(X).

Definition 5. A p-irreducible Markov chain is aperiodic if for any © € X, and any B € B(X)
satisfying p(B) > 0, there exists ng = ng(z, B) such that P*(z, B) > 0 for all n > ny.

Theorem 2. [Meyn-Tweedie [101] Thm. 4.1] Suppose that X is a p-irreducible Markov
chain, and suppose that there is a set A € x satisfying the following:

(i) A is p-petite for some p.
(i) Ais recurrent: Pp(T4 < o00) =1 for any = € X.
(ili) A is regular: sup F;[74] < 0.
€A

Then X is positive Harris recurrent (and thus admits a unique invariant probability measure).
The existence of a unique invariant distribution is important also because of the following:
Theorem 3.[Birkhofl’s Sample Path Ergodic Theorem| Consider a positive Harris recurrent

Markov process {z;} taking values in X, with invariant distribution 7 (.). Let f : X — R be such

that [ f(z)w(dz) < oo. Then, the following holds almost surely:

T-1
; 1
fm 73 fe) = [ t@m(a)
Throughout this section we consider a sequence of times {7; : i € Z,} which is assumed to

be non-decreasing, with 7p = 0.

Theorem 4.[Yiiksel-Meyn [179][166]] Suppose that X is a p-irreducible Markov chain. Sup-
pose moreover that there is a function V' : X — (0, 00), a petite set C, and constants x € (0,1),
b € R, such that the following hold:

ElV(z7y,) | Fr]l £ 1 = 8)V(z7) 4 bliz, ec)

8
BlTos - T. | Fr] < Vior), 220, -

Then, the Markov chain is positive Harris recurrent.
The following provides a criterion for finite moments, which we refer to as random-time state-

dependent stochastic drift.

Theorem 5. [Yiksel-Meyn [179][166]] Suppose that X is a p-irreducible Markov chain.
Suppose moreover that there are functions V: X — (0,00), 6: X — [1,00), f: X — [1,0), &
petite set C, and a constant b € R, such that the following hold:

E[V(Q:TE+1) | FT;] < V(zr)-6(zz)+ bl{.’!?f,": ec}

ol (9)
E[}; @) | Fr| S 0az),  z20.

Then X is positive Harris recurrent, and moreover limi—oo E[f(zt)] = E-[f(2)] < oo, with

being the invariant distribution.
By taking f(z) =1 for all z € X, we obtain the following corollary to Theorem 5.
Corollary 1. Suppose that X is a p-irreducible Markov chain. Suppose moreover that there
is a function V : X — (0, ), a petite set C, and a constant b € R, such that the following hold:

E[V(mﬂ-{-J I FT:] < V(:ET:) = 1= bl{:I:T;EC}

sup E['];+1—'1;|IT; =$J<OO.
zeX, z20

(10)

Then X is a positive Harris recurrent.
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3.1.2. Scalar case. Before proceeding further with the description of the system, we discuss the
quantization policy investigated, for a scalar case. Consider the equation

Ty = QT -+ but + Wy, (11)

with |a| > 1 and b # 0, and w, system disturbance.

We consider a variation of uniform quantizers. In the following, we modify the description of
a traditional uniform quantizer by assigning the same value when the state is in the overflow
region of the quantizer. As such, when |z > (K/2)A, the receiver knows that the source is in
the overflow region of the quantizer. As such, a uniform quantizer: Q% : R — R with step size
A and K + 1 (with K even) number of bins satisfles the following for £ =1,2..., K:

(k- 3(E+1)a, i ze[(k—1-3K)A, (k= 3K)A)
Q(z) =14 (K -1)A, if z=3KA
0, if ©g[-1KA LKA

A general class of quantizers are those which are adaptive. Let S be a set of states for a
quantizer state §. Let F': § x R — S be a state update-function. An adaptive quantizer has
the following state update equations: Syp1 = F(Q¢(z¢), Si). Here, Q; is the quantizer applied at
time ¢, T, is the input to the quantizer @y, and S, is the state of the quantizer. Such a quantizer
is implementable since the updates can be performed at both the encoder and the decoder. One
particular class of adaptive quantizers is introduced by Goodman and Gersho [51], which we
will consider in the following analysis.

This system is connected over a noiseless channel with a finite capacity to an estimator
(controller). The controller has access to the information it has received through the channel.
The controller in our model estimates the state and then applies its control. As such, the
problem reduces to a state estimation problem since such a scalar system is controllable. Hence,
the stability of the estimation error is equivalent to the stability of the state itself.

An example of Goodman-Gersho [51] type adaptive quantizers, which also has been shown
to be very useful in control systems, are those that have their bin sizes as the quantizer states
[25]. In the zooming scheme, the quantizer enlarges the bin sizes in the quantizer until the state
process is in the range of the quantizer, where the quantizer is in the perfect-zoom phase. Due
to the effect of the system noise, occasionally the state will be in the overflow region of the
quantizer, leading to an under-zoom phase. We refer to such quantizers as zooming quantizers.
In the following, we will assume the communication channel to be a discrete noiseless one with
capacity K.

Theorem 6. [170] Consider an adaptive quantizer applied to the linear control system
described by (19), under Assumption A. If the noiseless channel has capacity, for some € > 0,
R = log,([|a| + €] + 1), there exists an adaptive quantization policy such that there exists a
compact set S with sup,cg F[min(t > 0: 2; € S)|zo = 7] < o0, thus 5 is a regular [101] set.

With K an even number, R = log, (K + 1), let us define R’ = log,(K'). We will consider the
following update rules. For ¢ > 0 and with Ag > L for some L € Ry, and &g € R, consider:

a. . = I
U = —E.Tt, Iy = QIA{t(mi)'l Ai-i—] = AiQ(lﬁfl’At) (12)

If weuse § >0,0 <a <1 and L > 0 such that,

Qz,A)=|a|+ 0 if  |z| >1
Q(z,A) =« if 0<|z|<L,A>L
Qz,A)=1 if 0<|z|<1,A<L, (13)
we will show that a recurrent set exists.

We now make explicit the connection with the general theory for random-time stochastic
drift considered in Section 3.1.1. In the model considered, the controller can receive meaningful
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information regarding the state of the system when the source lies in the granular region of
the quantizer: That is, z; € [-3K A, $KA;|. The times at which these events occur form an
increasing sequence of stopping times. We apply the drift criteria presented in Section 3.1.1
for these random stopping times. In particular, we will define h; := ﬁ, observe that the

process {(z:, h:)} is Markov (equivalently {(z:, A;)} is Markov), and then define the sequence
of stopping times as:
To=0, Tpq = inf{lk>T,:|h| <1}, z€Z,. (14)

These are the times when information reaches the controller regarding the value of the state
when the state is in the granular region of the quantizer. We can establish criteria for recurrence

for the Markov process {(z¢, h:)} (see Fig. 4).
Inj
> K
TN O\
T W

/

it

\ —
T~

x|=F x|
Figure 4. Drift in the Error Process. When under-zoomed, the error increases on average and the quantizer

zooms out; when perfectly-zoomed, the error decreases and the quantizer zooms in.

The following considers the state space for the quantizer bins to be countable, leading to
irreducibility and consequently Positive Harris Recurrence.

Theorem 7. Under the setup of Theorem 6, for the adaptive quantizer in (12), if the
quantizer bin sizes are such that their (base—2) logarithms are integer multiples of some scalar
s, and log, (Q(-, -)) take values in integer multiples of s where the integers taken are relatively
prime (that is they share no common divisors except for 1), then the process {(z;, A,)} is a
positive (Harris) recurrent Markov chain, and, as such, has a unique invariant distribution.

The following result is on moment stability.

Theorem 8. [170] Under the setups of Theorem 6, Theorem 7, and Assumption B, it follows
that lim¢—c E[z7] < 0o, and this limit is independent of the initial state of the system.

As a simulation study, we consider a linear system with the following dynamics:

Tty = 2.2z by -+ W,

where Elw] = 0,E[w]] = 1, and {w,} are i.i.d. Gaussian variables. We use the zooming
quantizer with rate log, (4) = 2, since 4 is the smallest integer as large as [2.2] 4+ 1. Fig. 5 below
corroborates the stochastic stability result, by showing the under-zoomed and perfectly-zoomed
phases, with the peaks in the plots showing the under-zoom phases.
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Figure 5. Sample path for a stochastically stable quantizer. The variables picked are as follows.

3.1.3. Multi-dimensional case. The proposed technique is also applicable for the multi-dimensional
setup. Let us consider a multi-dimensional linear system

Tip1 = Azy + Bug +wy, (15)

where z; € R™ is the state at time ¢, u, is the control input, and {w;} is a sequence of zero-mean
independent, identically distributed (i.i.d.) R"-valued zero-mean Gaussian random variables.
Furthermore, E[||w||3] = E[|lw1]|}] < co. Here A is the system matrix with at least one
eigenvalue greater than 1 in magnitude, that is, the system is open-loop unstable. Without any
loss of generality, we assume A to be in Jordan form Since we have assumed a Jordan form, we
allow w; to have correlated components, that is the correlation matrix E|w;w] | is not necessarily
diagonal. We also assume that B is invertible for making the stopping time analysis easier to

pursue,
Instead of (14), the sequence of stopping times is defined as follows:

To=0, Top1 = inf{k>T.:|hi|<1,i=1,2...,n}, z€Z,,

where hi = jf Here A is the bin size of the quantizer in the direction of the eigenvector
7', with rate Ri With the above, the analysis follows that of scalar systems. For example, let

us consider a two dimensional system with a Jordan form:

- Ao

The approach is quantizing the components in the system according to the adaptive quanti-
zation rule provided earlier, that is, we modify the scheme in (12) as follows: Let for ¢ = 1,2,
Rf = R} = log, (2 — 1) = log,(K;) (that is, the same rate is used for quantizing the components
with the same eigenvalue). For ¢ > 0 and with A}, Aj € R, consider:

u = —B 1A%,
] - 2. "
Tt Q;{g (=7)
i—{-l = AzQ(lht ls |hf|:A§)1 i=1,2, (18)
with 8! =62 > 0,0 < a! = a? < 1, and L* > 0(i = 1,2) such that
Q'(z,y,8) = |A| + & if Jzi>1, or |y[>1
Qi(z,y, A) = o' if 0< |z <1 ly £1,A"> L
Qi(z,y,A) =1 if 0<|z|<Lly £LAT KL
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We also assume that for some sufficiently large na: A} = na A2, which leads to the result that
A} =naA} forall ¢ > 0.
With this approach, the drift criterion applies almost identically as it does for the scalar case.
We thus have the following result. See [74] for extensions of such a result.
Theorem 9. Consider the multi-dimensional system (15). If the average rate satisfies

R> Z 10%2(|)\1'|):

|.X-i|>]

there exists a stabilizing scheme leading to a Markov chain with a bounded second moment in
the sense that limy_.c0 E|[2¢]]3] < o00.

4, QUANTIZER DESIGN FOR OPTIMIZATION OVER NOISELESS CHANNELS: SEPARATION
RESULTS

Consider the general setup described earlier in Section 3. Consider the setup earlier in (3)

with one encoder.
Thus, the system considered is a discrete-time scalar system described by

Tip1 = flzy, wy), Y = g, 1), (19)

where z, is the state at time ¢, and {w;,7,} is a sequence of zero-mean, mutually independent,
identically distributed (i.i.d.) random variables with finite second moments. Let the quantizer, as
described earlier, map its information to a finite set M,. At any given time, the receiver generates
a quantity v; as a function of its received information, that is as a function of {@0,q1,...,q¢:}
The goal is to minimize 3", o' Elc(z:,v:)], subject to constraints on the number of quantizer

1=
bins in M;, and the causality restriction in encoding and decoding.

4.0.4. Witsenhausen and Walrand- Varaiya’s separation results. Let us revisit the single-encoder,
fully observed case: In this setup, y; = z; for all ¢+ > 0. There are two related approaches in
the literature as presented explicitly by Teneketzis in [144]; one adopted by Witsenhausen [154],
and one by Walrand and Varaiya [148]. Reference [144] extended the setups to the more general
context of non-feedback communication.

Theorem 10. [Witsenhausen [154]] An optimal causal composite quantization policy, if one
exists, uses only z; and jo,t—1) at time ¢ > 1 and x5 at t = 0.

Walrand and Varaiya considered sources living in a finite set, and obtained the following:

Theorem 11. [Walrand-Varaiya [148]] An optimal causal composite quantization policy, if
one exists, uses the conditional probability measure P(z:-1|g0,4—1)), the state z;, and the time
information £, at time ¢ > 1.

The difference between the structural results above is the following: In Witsenhausen’s setup,
the encoder’s memory space is not fixed, and keeps expanding as the decision horizon in the
optimization, T'— 1, increases. In Walrand and Varaiya's result, the memory space of an optimal
encoder is fixed. In general, the space of probability measures is a very large one; however, it
may be the case that different quantization outputs may lead to the same conditional probability
measure on the state process, leading to a reduction in the required memory. Furthermore,
Walrand and Varaiya’s result allows one to apply the theory of Markov Decision Processes, for
infinite horizon problems. We note that [19] applied such a machinery to obtain existence results
for optimal causal coding of partially observed Markov processes.

4.1. Partially observed setting. Let for a general topological space S, P(S) be the space of
probability measures on B(S), the Borel o—field on § (generated by opens sets in S), equipped
with the topology of total variation. Let m; € P(X) be the regular conditiona] probability
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whose existence follows from the fact that both the state process and the observation
omplete, separable, metric, that is Polish, spaces) given by P(dx;|yo,), that is

m(A) = P(z, € Alypy), A € BX).

It is known that the process {m:} evolves according to a non-linear filtering equation (see for

cample [63],]19]), and is itself a Markov process.
5 Let us also define 5 € P(P(X)) as the regular conditional measure

Ei(4) = P(m: € Algpoy-1))y A€ B(P(X))-

The conditional measure {Z,} exists since the space of quantizer outputs is finite.

The following are our main results of this section:

Theorem 12. [168][169] An optimal causal composite quantization policy, if there exists
one, uses {7, qo,e-1)} 8s & sufficient statistic for ¢ > 1. This can be expressed as an optimal
quantization policy which only uses gp ;1) to generate an optimal quantizer, where the quantizer
uses m; to generate the quantization output at time .

Theorem 13. [168][169] An optimal causal composite quantization policy, if there exists
one, uses {Zy,m, t} for t > 1. This can be expressed as an optimal quantization policy which
only uses {Z,t} to generate an optimal quantizer, where the quantizer uses m; to generate the

quantization output at time .

measul'e (
process are C

4.2. Application to linear gaussian systems and quadratic (LQG) cost minimization.
Consider a Linear Quadratic Gaussian setup, where a sensor quantizes its noisy information to
a controller. Let 2; € R™, 1 € B™, and the evolution of the system be given by the following:

Tei1 Az + wy,
Wy = C.’Et + Ty (20)
Here, {w;, 7} is a mutually independent, white zero-mean Gaussian noise sequence with W =
Elwaw], R = E[rrf], A, B, C ere matrices of appropriate dimensions. Suppose the the goal is
the computation of

] T-1
infinf EI1S a = 00T Qe — )] @)
=0

[[composite =y
with vy denoting a Gaussian distribution for the initial state, @@ > 0, a positive definite matrix
(See Fig. 6).

The conditional distribution m; = P(dzy|yp,4, %jo,.—1)) is Gaussian for all time stages, which
is characterized uniquely by its mean and covariance matrix for all time stages.

Theorem 14. [168][169] For the minimization of the cost in (21) over all causal quantization
policies, a causal quantizer based on the conditional distribution on the Kalman Filter output,
and the information available at the receiver is as good as any causal quantizer.

We could, also obtain Walrand and Varaiya’s structural result by considering a direct ap-
proach, exploiting the specific quadratic nature of the problem. Let, again, z; € R™ and 18]
denote the norm generated by an inner product of the form: {(z,y) = 2T Qy for z,y € R™ for
pOS‘itiVE-deﬁnite @Q > 0. The Projection Theorem for Hilbert Spaces implies that the random
variable mt—E[mdy[o,t]] is orthogonal to the random variables {y|0,4, @jo,q }, Where gpo ¢ is included

i("hllf to the Markov chain condition that P(dz:|yjo 4 9o,) = P(dz|yp,y). We thus obtain the
Ollowing:

Elllz, — ElzilaplI"] = Ellle. — Elzdyp)ll’] + EllElzelyp,g] - Elz|qpglll*]- (22)

Thus, the optimality of Kalman filtering allows the encoder to only use the conditional esti-
Mate fmd the error covariance matrix without any loss of optimality (See Fig. 6), and the optimal
g{‘;ﬂl;tlzation problem also has an explicit formulation. Note that, the process {P(dz:|yjo,4)} is
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One of the important discussions in the literature is on the notion of decentralized fixed
modes, for which there are two definitions. [36] presented a definition of fixed modes under
linear time-invariant control policies: Let

F = {F:F =diag(F',F?,... FL),Fi g R™¥PiY,

The set of decentralized fixed modes uhder linear time-invariant laws is given by:

L
A=A (A +> Biﬁfci).,
F i=1
where A(.) denotes the set of eigenvalues of its argument. Wang and Davison [36] proved that
unless unstable fixed modes are present, a decentralized system can be stabilized by linear time
invariant controllers. Anderson and Moore [2] provided algebraic conditions for there to be
decentralized fixed modes under linear time-invariant policies; the reader is also referred to
[107]. The other notion of fixed modes is on ones that are independent of the control policy
applied, which arise due to the uncontrollability of the decentralized systerm. _

Reference [79] showed that it is possible for the controllers to communicate through the plant,
by signaling. We will provide further discussion on this in the development of the paper. If every
station can communicate with every other station, possibly via other stations, the system is said
to be strongly connected. Through communication via the plant, the controllable subspace
can be expanded, and the unobservable subspace can be reduced [79]. The work [2] showed
that decentralized stabilization in a multi-controller setting is possible, if the system is jointly
controllable, jointly observable, and strongly connected, via time-varying control laws. Corfmat
and Morse [33| provided conditions for decentralized stabilization with time-invariant, output
feedback controllers when a leader is picked to control the entire system. If a leader is selected,
by restricting the other agents to use time-invariant or time-varying linear laws, the leader might
be able to control the entire system under strong connectivity conditions.

Further related references are the works of Wang [149], Willems [151], Khargonekar and
Ozgiiler [77], and Gong and Aldeen [50], which further studied time-varying control laws for
stabilization. Khargonekar and Ozgiiler |77] studied the necessary and sufficient requirements
needed for stabilization via time-varying controllers in terms of input output mappings. The
conditions they provide is algebraic, and further corroborate the fact that strong connectivity
does ensure decentralized stabilizability under the assumption of joint controllability and observ-
ability. Gong and Aldeen [50] considered the decentralized stabilization problem, and obtained
the characterization for stabilizability along similar algebraic conditions. Ozgiiner and Davison
[118] used a sampling technique to eliminate fixed modes resulting from time-invariant policies.

The characterization of minimum information requirements for multi-sensor and multi-controller
linear systems with an arbitrary topology of decentralization, has been discussed in various pub-
lications, and the discussion for the fundamental bounds has been extensively studied in [137],
[138], [108] [110], [96], [97], [98], [99], [174], [175]. In particular, reference [97] introduced the
idea of signaling to networked control problems, which was also studied in [175]. Recently,
Matveev and Savkin provided a comprehensive discussion of the developments in networked
control systems [99], and provided discussions on multi-controller systems when the eigenval-
ues are distinct, via cut-set type arguments. The case where either the plant or observation
dynamics are noisy has been studied in [99] and [172]; where one common observation is that,
information theoretic bounds for the noiseless case are not tight when the plant itself is noisy.
Some other related results were presented earlier in [174] with time invariant policies, and [137]
for information theoretic considerations for multi-sensor systems. We finally refer the reader
to earlier papers on control over communication channels for single-sensor and single-controller
cases: [160], [142], [109] and [42].

The issue of complexity of decentralized computation is another important aspect for decen-
tralized control applications. Wong [158] studied the communication complexity of decentralized
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The above result is related to findings in [38] (also see [5] and [46]), and partially improves
them in the direction of Markov sources.

Gaussian

Channel

Linear Gaussian Kalman Fiter ~ Quanlizer Receiver!

Source Coniraller
Sensor

Figure 6. Separation of Estimation and Quantization: When the source is linear and Gaussian, the cost is
quadratic, and the observation channel is Gaussian, the separated structure of the encoder above is
optimal. That is, first the encoder runs a Kalman flter, and then causally encodes its estimate. For
one-shot and independent observations setups, this result was observed in (5], (15], [12], (38], and [46].
Our result shows that, an extension of this result applies for the optimal causal encoding of partially

observed Markov sources as well.

5. QUANTIZER DESIGN FOR DECENTRALIZED STABILIZATION OVER NOISELESS CHANNELS

5.1. Stabilization of linear systems under decentralized information structure. We
now consider a class of multi-station n-dimensional discrete-time noise-free LTI systems

L
Ty = Az + z BJU? )
j=1

yi o= Clzy, 1<i< L, (23)

where (A, [B|B?|...|B%]) is controllable and (4, [(C*)T|(C?)7]... |(CE)T]T) is observable, but
the individual pairs (4,B?) may not be controllable or (A, C?) may not be observable, for
1 < i< L. Here, z; € R", is the state of the system, ui € R™ is the control applied by station
i, and yi € R¥ is the observation available at station i at time t. Without any loss of generality,
we assume the system matrix A to be in Jordan form. The initial state zg is unknown, but
is known to be generated according to some probability distribution which is supported on a

compact set Ay C R™.
Under the decentralized information structure, the information available to station ¢ at time

tis
I = {yfo,t]vuiﬂ,t—l]}ﬁ
where, as before, u%ﬂ,tﬁlj denotes the sequence {u},ui,...,u;_,} and yfo,tj = {yi, v, ..., yi}. We
also assume that each of the stations has access to the system dynamics of all other agents.
Definition 6. A decentralized system described in (23) is stabilizable under the decentralized
information structure, if there exists a set of admissible policies such that there exists a sequence
{Kt,t 2 0}, I{t € R, hmt_,m I{,d_ = (0 with ||-’Et||oo S Kt Vi o 0.
Let us define
Ki = [B' ABI ... A"B]
of = [C) (CAF ... (CAT)
and let the controllable and unobservable subspaces at station i be denoted by K' and N?,
respectively, where K is the range space of K, and N* is the null-space of 0. We will, by a
slight abuse of notation, refer to the subspace orthogonal to N as the observable subspace at

the ith station, and will denote it by O

B i TR
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control, building on the notion of communication complexity of computation by Yau [161]. In
the information theory literature, distributed function computation with minimum information
exchange is another important area, with some notable results being reported in [116]; which
does not consider a real-time setup, but an information thoretic setup, which considers an infinite
copy of messages to be encoded, and functions to be computed, extending the results in Csiszar
and Kérner ([31], Thm. 4.6) to a computational setting. One could present two approaches
for distributed computation for control systems: One is to allow the decision makers to share
sufficient information to make the problem essentially centralized in a larger state space: This
view had been adopted in [171], for the belief sharing information pattern. Another approach
is to apply controls decentrally, this approach was adopted in [158].

Let U C R™, V C R"™ be Euclidean subspaces. We adopt the following notation for such

subspaces:
UUVY = {v:v=oaa;+pfas,a €U,a €V, aq,pcR}
UnvV = {v:velveV}
U-V = {u:uelufv=0VYveV}

With the above definitions, for a vector space S C R™, we have S =R — §, as the orthogonal
complement of S. For vectors vy, vs, ..., v, we denote by

m
{vi,va, .., vm} = {Z a;v;, a; € RY,
i=1

the space spanned by the vectors vy, vs, ..., Up.

We denote by {v1,2,...,un} the set of individual vectors vy, vs, . .., Up,.

For two sets ¥ and =, ¥ — E = {5 :n € ¥,n ¢ =}, is the usual set difference.

We denote by Vja,p)» fOr some vector v, and a,b € Z, a < b, the sequence (vq, Vai1, ..., Vy)-

By modes of a linear system, we refer to the subspaces (eigenspaces) which are invariant in
the absence of control; as such, when all the eigenvalues of the system matrix are different the
eigenvectors uniquely identify the modes of the system. In case the geometric multiplicity of
an eigenvalue is less than its algebraic multiplicity, generalized eigenvectors (generalized modes)
span the eigenspace corresponding to a particular eigenvalue.

We next introduce some relevant graph-theoretic notions: A directed graph G consists of a
set of vertices, V, and a set of directed edges, (a,b) € £, such that a,b € V. A pathin G of length
d consists of a sequence of d directed edges, such that each edge is connected. A graph in which
there exists a path from any node to any other, is a strongly connected graph. We define the
minimum distance between two sets of nodes 81,5, € G as d(S1,52) = ¥ ;¢ min{d(i,5), 5 €
Sy}, where d(i, 7) denotes the number of paths between node 7 and j, with the trivial case being

d(i,i) = 0 for all nodes.

9.1.1. Emistence of decentralized controllers and sufficiency of restriction to periodic time-varying
control laws. In this section, we discuss the necessary and sufficient conditions for there to be
stabilizing controllers under the decentralized information structure considered in the paper.

Toward this end, we review the notion of connectivity. For two stations ¢ and 7, if K* Z N7,
then there exist control signals generated at station i, which are observed at station j. We denote
this by © — j. This is equivalent to C7A'B* 3 0, for some 0 < ! < n — 1 [175]. This ensures
that station ¢ can send information to station j through control actions {u}} (that is, engage in
signaling). One may construct a directed communication graph given the above relation. It is
possible that two stations are connected through other stations. If every station is connected to
every other station, the system is said to be strongly connected. This, however, is a restrictive
condition. Our result on the existence of stabilizing controllers is the following.

Theorem 15. [175][99] Let the initial state satisfy zg € X, where A} is a bounded set. The
system (23) is controllable under the decentralized information structure IS if and only if there
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exist a partitioning of R™ in terms of z!,22,...,2" such that R" = U2 {x'} and controllers
guch that fori =1,2,...,n:

zp € K™ ({ U of}UomUM,-),
I—m
where M7 = {0}, and for i > 1,
i-1
M; = | J{xb}-
k=1
Kobayashi et al [79] presented a graph theoretic discussion where, they considered a case
where the decentralized system can be expressed as a set of strongly connected sub-systems.
They proved that the system is stabilizable by a linear controller if and only if there is no
fixed mode between the decentralized system composed of the strongly connected subsystems.
Khargonekar and Ozgiiler [77] made the connection with linear control laws. Let us revisit
Theorem 2 of [77]. We first present a definition:
Definition 7. Let a discrete time n—dimensional system with matrices A, B,C be given.

This system is complete if

-C 0

has rank no smaller than n for all complex valued A € C. If this holds for all |A| > 1, then the
system is said to be weakly complete.
In Lemma 1 of [77], it is proven that if a system is complete, and if CA'B =0 for all I > 0,
then the controllable subspace of (A4, B) is identical to the unobservable subspace of (4, C).
Theorem 16. [77] There exists a periodic-time-varying decentralized controller if and only
if the joint system is stabilizable and detectable, and for every partitioning of the system into
E=ay,a,...,a8, F=0b1,by....0p— ={1,2,...,L} — &, such that if the system

(4, (B4 B ... B, [(CY)T(C)T .. €=+,
has a zero transfer function, then it is weakly complete.

We now state a theorem on the universality of linear-time varying controllers for decentralized

stabilization.
Theorem 17. [50] A decentralized system described in (23) is stabilizable under the de-

centralized information structure if and only if it is stabilizable by periodic linear time-varying
controllers.

)

5.2. Decentralized stabilization under quantization constraints and signaling. Sup-
pose the controllers are connected to the plant over a discrete-noiseless channel. In this case,
the control signals u’ are coded and decoded over discrete noiseless channels with finite capacity.
Hence, the applied control and transmitted messages follow a coding (i.e., binary representa-
tion) and a decoding process. We assume fixed-rate encoding, that is, the rate is defined as
the (base-2) logarithm of the number of symbols to be transmitted: The coding process of the
controller at station i is a mapping measurable with respect to the sigma-algebra generated by
I} to {1,2,..., W}, which is the quantizer codebook at station 7 at time ¢. Hence, at each time
t, station i sends log,(WW}) bits over the channel to the plant.

Problem Statement. Let R be the set of average rates on L sensor and controller channels
which lead to stabilization, that is,

R:{HJELZHWL:

3ufy 0y U, oy -+ 1 W00} i [[7loo = 0},
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where R = lim supg_,,  3r; log,(W}). We are interested in the average total rate R :=
minR{Zf:l R}, such that decentralized stabilization is possible.

Two supportive results are in order. The first one will provide the rate needed for the con-
trollers and sensors to communicate the necessary information to the controllers capable of
controlling a mode. The second result will investigate the rate from the controllers to the plant
itself.

9.2.1. Case where multiple controllers need information from different controllers/sensors. Let
there be more than one controller which can control a mode, yet, their information is not
sufficient to recover the mode independently. We remark that this may apply only for some
modes with geometric multiplicities, greater than one. One example is the following:

8 0 0 0 1 1 0 0

0 5 0 0 0 0 1 1
mi"‘l = O O 0.2 0 'I:f. _l- 0 utl H'l_ O ug _i— 1 U? 4“ 0 ug7

0 0 0 05 0 0 0 1

yr =[000 1]z,
Y =[0010]z,
vi =[1100]z,

yp =1 ~100]z:.

In this case, the third and fourth stations send information to the first two controllers, which
can control the first mode whose information is not enough to recover the mode independently.

Theorem 18. The minimum average total information rate needed to be sent to the con-
trollers for controlling a mode with eigenvalue ); is lower bounded by

min d(L, K) max(0, log, (|A:])), (24)

]K,IL:{xi}C(LJmEKf{"‘)ﬁ(UjeLImEKOjUDm)

where

d(L,K) = mind(, k).
leL kel

5.2.2. Case where multiple controllers jointly control a given mode. We now discuss how much
information is needed to be transmitted from the controllers to the plant to apply the control
action. Let there be a number of controllers who can control a given mode, but only their joint
information is sufficient to recover the mode. In this case:

Theorem 19. The minimum average total information rate needed to be sent from the
controllers to the plant for controlling a mode with eigenvalue ); is lower bounded by

min max (0, log, (|1 A:))) [ K|.
K:{xi}c{umeﬂf{m)n(ume'ﬁ(Om)

Remark. If only one controller applies the control, then the price of communication is lowest.
But it might be more beneficial to communicate to two separate different controllers. When the
eigenvalues are all distinct, then it suffices to only consider one controller, as there will be a
controller to whom the information can be sent most efficiently. The issue of different controllers

acting will arise when the algebraic multiplicity of a mode is greater than one.
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5.2.3. Tight lower bound on the minimum average total-rate. The following result follows from
[175]- In the following, we restrict the analysis to the case when the eigenvalues are distinct,
although a similar analysis is possible for the case when the eigenvalues are repeated, requiring
further definitions.

Theorem 20. [175] Let A be such that all the eigenvalues are distinct, and let {z'} be the
corresponding eigenvectors. Then, a tight lower bound on the total rate required, R, between
the controllers and the plant for stabilizability is given by

(¥ () (10200 }. (25)

[Ai]>1
where

= i D*(l,m):l— h e,
N z,me?f,]:?,...,m{ (i,m) m, {x'}

{x'} c K™, D*(l,m) = d(l,m) + 1}. (26)

Proof. If k — [, then station k can send the information on a particular mode in OF to
station [, which, upon receiving the state information can generate the control signal. For this
we use quantization, where successively the initial state is sent to the controller. Without any
loss of generality, suppose that there exists only one station, station !, that can control a mode
i, and only one station, k # [, that can observe a mode 2. Then, the information on mode z*
is to be sent to station ! through the plant; thus the plant relays the information.

Suppose i is to be sent to station {. Sensor k recovers z at a time no later than n. It then
quantizes zj uniformly. Station k sets uF = Qu(zh), where Q, denotes the quantizer used at
time £. In this case,

Tni1 = A-Tn + BI:QH(‘TE):
yfl_H = CI(Amn%fl —+ BkQﬂ(ma))

Assembling the observations 4 1, ¥l - - - Vs, and following the fact that GHAYRBE £ 0
for at least one m,1 < m < n, the quantized output @y (zi) can be recovered at a time no later
than 2n.

Thus, sensor [ can recover the quantized information G (z}), which it subsequently sends to

station I. Via this information, the estimate at time 2n, 2%5(2n), can be computed.
Let p > 0 be an integer. If an average quantization rate of R = nlog, |A:] + ¢, for some ¢ > 0

is used, then the estimation error z§ — % (pn) approaches zero at a rate faster than
jzh — 2h(pn)l < 1/(IM)™.

The plant undoes the signaling, since it is assumed to know the control protocol. Since the
system is controllable, the controller can drive the estimated value to zero in at most n time
stages. The rate required for the transmission of control signals will be identical to the rate
of the transmission of the sensory information, since the control operation will be a one-to-one
mapping, which is in fact linear in the observations.

Finally, we need to consider multiple transmissions. The remaining controllers can be designed
to be idle, while a particular mode is being relayed by the plant. Such a sequential scheme ensures
convergence. Since the number of time-stages are adjustable, € can be taken to converge to zero.

5.3. Incorporation of sensors into the model. We can also assume there to be sensors in
the system. Suppose there are a number of sensors which are directly connected to a number of
controllers. We can efficiently model such a sensor as a control station which can only control
one artificial, decoupled, stable mode, and use this stable mode to communicate signals to the
stations that the sensors can communicate to. In this case, the enlarged state will have a larger
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dimension, but will not affect the unstable subspace of the system, as the new components will
be decoupled. It is further possible that these sensors are signaled by other controllers. An
example is the following. Consider a three controller system, where there is also an additiona)
sensor which is connected to station 1,

5 0 0 1 1 0]
1= 0 4 0 |z+ |0 ul+ [0 ud+ |1]ad
0 0 -2 0 0 1

?Jtl =00 0]z,

vi = [001]a,,

y? =[11 0]z,
with the sensor observation as:

yp =[001]z,.
We can express this system as a multi-controller system by regarding the sensor as a new
station, station 4, which cannot stabilize an unstable mode, but can signal information through
a fictitious stable mode it can control. The new four-controller system can be constructed as

follows, where the new mode only acts as a communication channel between station 4 and station
1:

51 0 0 1 1 0 0

0 5 0 0 1 0
T1= g g g g | Tt [o| Wt o u || wt || W

00 0 01 0 0 0 1

yi =[000 1]z,
Yy =001 0]z,
¥ =[1100]x, a
Yy, =[0010]z,.
The above construction, together with Theorem 16 leads to the following result.
Proposition 1. In system (23) with additional sensors, if the sensors are incorporated
in the system as controllers which can control a fictious stable mode used for signaling to a
corresponding controller, then the system will be weakly complete if the original system is
weakly complete.

9.4. Multi-sensor structure with a centralized controller as a special case. It should
be noted that, the general problem considered in this paper is not a multi-terminal source coding
problem with a centralized decoder, where a number of remote sensors encode information to
a centralized decision maker (fusion center). This is why there is a rate loss when compared
with a system with a single controller and a single sensor. The decoder (some controller) might
have the observation information to control all the modes as a result of signaling, but cannot
control all such modes, but requires to receive all of them to extract what she needs. Hence,
it is unavoidable not to send this information to the controller decentrally. In a multi-terminal
source coding problem, there is no-rate loss, because the additional information received is also
related and can be utilized. This is in contrast with the multi-sensor problem, with a centralized
controller, for which it is known that there is no rate loss (see [96], [137], [173], [110]), which is
in fact a special case of the multi-controller problem as discussed earlier. We now revisit this
problem. Consider the following discrete-time system (see Fig. 7)

Typr = Az + Bu,, t >0,
y;, = Ciwh (27)
where (4, B) is stabilizable, x; is the state, v, is the control, and the initial state zo is a random
vector with a known continuous distribution over a compact support. Assume (4, [(C1)T ... (C'L)T]T)r
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to be detectable. The information sent by the sensors is quantized and is sent to the controller,
which has access to only the information sent by the sensors.

Plant <
L NZN
y'1 y*2 y"3
z“]f 2“25 z“3f u
W % Ay
|
Controller

Figure 7. Multisensor system structure.

The geometric conditions presented in the paper shows that the rate required is the sum of
the logarithms of the unstable eigenvalue magnitudes, see [137], [173], [98] for related results.

6. QUANTIZER DESIGN FOR OPTIMAL DECENTRALIZED CONTROL OVER NOISELESS CHANNELS

We now consider the optimization of quantizers in a decentralized system. In view of the non-
clessical information structure, it is not always possible to obtain optimality results for a general
setup; however, for a class of information structures, it is possible to obtain a characterization
of optimal quantizers.

One question is the following: Suppose that there is a channel between two controllers. What
is the performance of the decentralized system, given a rate constraint on the communication
channel. That is, consider the following problem:

Under an ensemble of quantization and control policies IT and a given information pattern,
with an initial condition xg, the attained performance index is

-1
Jeg(I1) = ELL[ (s, us)]
t=0
subject to constraints
T'_l L
S m<R
=0

where R;” denotes the bit rate per time stage for communication among the decision malkers
(see Fig. 6).

For the case when R allows for exchange of agreement on the conditional measure on the
state, we can obtain a precise answer, which we do in the following.
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Figure 8. Agreement on the conditional measure on the state

In the following, let the state and observation spaces be finite.

6.1. One-stage belief sharing pattern. In the following, we use ideas from [162] and [171].
Let there be a common information vector If at some time ¢, which is available at all of the
~ decision makers. Let at times ks — 1, & € Z; U {0} and T divisible by &, s € Z,, the decision

makers share all their information: If, ; = {¥[ks-1)» Ujo,ks-1y} and for I§ = {P(zo)}, that is
at time 0 the DMs have the same apriori belief on the initial state. Until the next observation
instant ¢ = k(s + 1) — 1, we can regard the individual decision functions specific to DM! as
{uf = 8}(Yys 4 Ifo—1))} and we let @ denote the ensemble of such decision functions. In essence,

it suffices to generate @ for all s > 0, as the decision outputs conditioned on yfks_‘_l o under
@l (yfks,t], It ), can be generated.

In such a case, we have that 0,(., I, ;) is the joint team decision rule mapping Ij, , into a
space of action vectors: {u'(I¢._ ., v, )i €{1,2..., L}, t € {ksks+1,...,k(s+1)—1}}.In
15 ks—11 Yks 1)
this case, the cost function is also modified as:

.1
-
Tl L) = ERDY " B8,( i) Bl
5=0
with
k(s+1)-1
Bl 1 )] = EEY Z ez, uy)).
i=ks

Lemma 1. [171] Consider the decentralized system setup in Section 1, with the observation
noise processes being independent. Let If be a common information vector supplied to the DMs
regularly at every k time stages, so that the DMs have common memory with a control policy
generated as described above. Then, {Zs = Tis, Us(.. [f,_;), § = 0} forms a Controlled Markov
chain.

In view of the above, we now present a result on a separation property. We note that the
following also has been studied in [115]. We present a shorter proof, using the result above
directly.

Lemma 2. [171][115] Let If be a common information vector supplied to the DMs regularly
at every k time steps. There is no loss in performance if If,_,; is replaced by P(Z,|I5,_,).

The essential issue for a tractable solution is to ensure a common information vector which will
act as a sufficient statistic for future control policies. This can be done via sharing information

at every stage, or some structure possibly requiring larger but finite delay.
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Definition 8. Belief sharing information pattern: [171] An information pattern in
which the DMs share their beliefs about the system state is called the belief sharing information
pattern. If the belief sharing occurs periodically at every k-stages (k > 1), the DMs also share the
control actions they applied in the last k—1 stages, together with intermediate belief information.
In this case, the information pattern is called the k-stage belief sharing information pattern.

Let us consider the one-stage belief sharing pattern, first for a two DM setup. In this case, the
information needed at both the controllers is such that they all need to exchange the relevant
information on the state, and need to agree on p(%|I},I?), where I} denotes the information
available at DME. In the one-step Belief Sharing Pattern, ; = x4, since the period for information
exchange k = 1.

We note that, when control policies are deterministic, the actions can uniquely be identified
by both DMs. As such, control signals need not be exchanged.

Theorem 21. [171] To achieve the one-stage belief sharing information pattern, the following
rate region is achievable using fixed-rate codes: '

R{E) = {(Ri’f,Rj'*’) : R = [log,(|S|)], R = [logy (sup |Sxi 4[)]1,
8:, = { (i = P(ﬁ?t

P(.|.)) >0,y € Yi},
wi,P(.|.))- > 0,17 € w’}},

= yl,P(-IJ) : P(yi =y

where P(.|.) denotes P(z¢|I5_).
A discussion is also available when the communicate rate is measured by the average number

of bits.
Theorem 22. Suppose the observation variables are discrete valued, that is Yii=1,21is

a countable space. To achieve the belief sharing information pattern, a lower bound on the
minimum average amount of bits to be transmitted to DM* from DM7, i,7 € {1,2},i # j and
in the opposite direction are

P(@|Ii,), y;'),

RiG > H(p(mm;_l,yi,yf )

P(ﬂ?tlff_l),wf,zi),

R > H (P(:cdff#l,yé,y{)

where Z} is the variable sent to DM! from DM?.

We note that the information rate needed is less than one needed for achieving the centralized
information pattern. By the above argument, one would need R* > H (vily!, Ie_) for the
centralized information pattern as a lower bound. The entropy of the conditional measure is
at most as much as the entropy of the observed variable. This is because, different outputs
may lead to the same values for P(y? = y|z:, If_,). Hence, we have the following corollary to
Theorem 22.

Corollary 2. When the observation space is discrete, the one-stage belief sharing information
pattern requires less or equal amount of information exchange between the controllers than the
centralized information pattern.

We may also obtain an upper bound on the communication rates for a two decision maker
setting for variable-rate schemes.

Proposition 2. To achieve the one-stage belief sharing information pattern, an upper bound
on the minimum average amount of bits to be transmitted to DM from DM?, 4,7 € {1,2},1 # J,
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is given by:
R < min {H(Q(y{,P(.l.))‘P(.L)) :
P(afPt1sts2) = P(=]PU) bl PO ) |

where P(.|.) denotes P(zy|If ;).

Remark. In the setup considered, the goal is that each DM can compute the joint belief,
We note here the interesting discussion between decentralized computation and communication
provided in Csiszar and Korner ([31), Thm. 4.6) and Orlitsky and Roche [116]. However, the
setting presented in these works assumes an infinite copy of messages to be encoded and functions

to be computed, which is not applicable in a real-time setting.

7. CONCLUDING REMARKS AND SOME OPEN PROBLEMS

This tutorial left out many problems and questions; in view of conciseness and space con-
straints.

7.1. Quantizer design for optimal control over erasure and noisy channels. The erasure
channel is an important practical channel, and one could argue that it is the most relevant noisy
channel for real-time control applications. For such channels, both stabilization and optimization
have been considered in the literature. We refer the reader to [71], [103], [163], [179], [166], [131],
[60], [165].

Likewise, for discrete-alphabet, as well as continuous-alphabet noisy channels, there has also
been a significant activity. References [99], [142], [180], [144], [87], and [7] contain a rich literature
review. There still remain many open problems, in particular, on synchronization across noisy
channels, and optimal encoder design with noisy feedback. The book [99] is an excellent reference
for a comprehensive discussion of general channels and a literature review.

7.2. Existence of optimal quantizers and optimal quantization of probability mea-
sures. The problem of existence of optimal quantizer, and topological properties of information
channels in networked control problems, has been addressed in a number of papers, such as [19]
and [178].

In [178] existence of optimal quantizers is addressed for the case when the source admits a
probability density. One further problem is on the existence and design of optimal quantizers.
There are results available in the literature on optimal quantization of probability measures [53],
however, more needs to be done in the context of finite rate communications, and for the cases
when the source lives in an uncountable space. With a separation result paving the way for an
MDP formulation, one could proceed with the analysis of [19] with the evaluation of the optimal
quantization policies and existence results for infinite horizon problems. Nonetheless, quanti-
zation of probability measures remains an interesting problem to be understood in a real-time
coding context; with important practical consequences. In [178], existence of optimal quantizers
has been studied for finite dimensional Euclidean state spaces, when a source distribution admits
a density.

The separation results in the paper and in the literature, will likely find many applications
in sensor networks and networked control problems where sensors have imperfect observation
of a plant to be controlled. One direction is to find explicit results on the optimal policies
using computational tools. One promising approach is the expert-based systems, which are very
effective once one imposes a structure on the designs, see [62] for details.
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7.3. Optimal information exchange and information structures with an information
theoretic characterization. One related problem is how to optimally encode the control
actions; such an analysis will explicitly depend on the cost functions [145]. In this case, the
exchanged information exhibits the properties of the triple effect of control; as such the analysis

requires further research.
In the paper, we discussed the case when the rate is high enough to allow belief sharing.

The regime where this is not possible requires further research, since the exchange information
affects both the cufrent stage cost, and the costs in future stages. Deterministic nestedness
has been observed to be too restrictive in [171]. One observes that it is possible to transform
an information structure into a desirable one, leading to tractable decentralized optimization
problems by exchange of minimal information. Such an analysis will have important practical
consequences. The dynamic nature of such quantization problems, however, require first a
precise notion of decentralized state, of a system.
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