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Control Over Noisy Forward and Reverse Channels
Serdar Yüksel, Student Member, IEEE, and Tamer Başar, Fellow, IEEE

Abstract—We consider the problem of remotely controlling a
continuous-time linear time-invariant system driven by Brownian
motion process, when communication takes place over noisy
memoryless discrete- or continuous-alphabet channels. What
makes this class of remote control problems different from most
of the previously studied models is the presence of noise in both
the forward channel (connecting sensors to the controller) and
the reverse channel (connecting the controller to the plant). For
stability of the closed-loop system, we look for the existence of
an invariant distribution for the state, for which we show that it
is necessary that the entire control space and the state space be
encoded, and that the reverse channel be at least as reliable as the
forward channel. We obtain necessary conditions and sufficient
conditions on the channels and the controllers for stabilizability.
Using properties of the underlying sampled Markov chain, we
show that under variable-length coding and some realistic channel
conditions, stability can be achieved over discrete-alphabet chan-
nels even if the entire state and control spaces are to be encoded
and the number of bits that can be transmitted per unit time is
strictly bounded. For control over continuous-alphabet channels,
however, a variable rate scheme is not necessary. We also show
that memoryless policies are rate-efficient for Gaussian channels.

Index Terms—Information theory, networked control systems,
stochastic control, stochastic stability.

I. INTRODUCTION

T HE use of digital and wireless channels such as the
Internet or bus lines (as in a Controller Area Network

(CAN)) in control systems has become common place. Some
salient examples include vehicle control systems, large-scale
printers and aerospace applications. The presence of such chan-
nels brings up many challenges, since having a heterogeneous
communication link between the actuator and the sensor or the
sensor and the controllers as well as between the controller
and the plant makes the traditional control approaches such as
separation of estimation and control [17], Kalman filtering and
linear control [1] design inapplicable or inefficient.

There are generally three types of agents involved in a remote
control system (see later Fig. 1): sensors, controllers, and actua-
tors (plants), one or more of which might be connected through
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communication channels on the network. Further, there could
be more than one of each, with limited communication among
them, thus possibly leading to a decentralized structure. Various
forms of this problem have been introduced and studied in the
networked control literature, see for example [1] and [6], among
others, which, however, have addressed the situation when the
channels that connect the controller to the plant (reverse chan-
nels) are noiseless. In this paper, on the other hand, we deal with
networked (linear) systems where the reverse channels (as well
as the forward ones—those that connect the sensors to the con-
troller) are noisy. Both discrete- and continuous-alphabet chan-
nels are considered, and in both cases they are taken to be mem-
oryless. Before discussing the contents of this paper, and its con-
tributions, let us first provide a brief overview of the existing re-
sults in the literature on the general topic of control over noisy
channels.

One of the earliest papers on the topic is [1], which has shown
that for a scalar discrete-time linear Gaussian system controlled
over a Gaussian channel, the encoder and the controllers with
noiseless causal feedback which jointly minimize a quadratic
objective functional are all linear. This was perhaps the first
paper that used information theory along with stochastic con-
trol in the analysis of a control system, whose results were sub-
sequently extended to continuous-time systems in [3]. Refer-
ences [45] and [44] studied the optimal causal coding problem
over respectively a noiseless channel and a noisy channel with
noiseless feedback. Reference [10] showed the chaotic nature of
quantization in control in one of the first papers to bring in quan-
tization as a design limitation; [6], on the other hand, studied the
trade-off between delay and reliability, and formulated relevant
and challenging problems; the questions that were posed there
led to an accelerated pace of research efforts on the topic: Sig-
nificant progress on the connection between information theory
and control has been achieved through study of the minimum in-
formation rate requirements needed for stabilizability over noisy
channels with noiseless feedback, under various assumptions on
the noise models, as well as control over noiseless channels—as
reported in [41], [46], and [29], where [29] also considered a
class of quantizer policies for systems driven by noise with un-
bounded support set for its probability measure. Several studies
in the literature have focused on noiseless discrete channels with
time-invariant encoders, where the main issue becomes one of
design of an invariant quantizer; see [12] and [13]. The first
of these, [12], adopts a Lyapunov-based approach to stabilize
a system with limited information, and shows that the coarsest
quantizer achieving stability is logarithmic and that the design is
universal, i.e., it has the same base for construction regardless of
the sampling interval. We will show in this paper that this prop-
erty regarding sampling carries over to stochastic systems as
well. The second reference, [13], quantifies the relationship be-
tween the rate of convergence and communication rate for scalar
systems, and provides conditions for set invariance as a measure
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YÜKSEL AND BAŞAR: CONTROL OVER NOISY FORWARD AND REVERSE CHANNELS 1015

Fig. 1. Control over noisy channels.

of stability. An information theoretic approach to quantizer de-
sign leading to stabilizability was presented in [51]. The Bode
integral formula arguments were presented in [11] and [24] as
alternative and insightful derivations to interpret the informa-
tion theoretic approach to the derivation of the fundamental data
rates for stabilization and disturbance rejection. In [19], a Lya-
punov theoretic quantizer design leading to stability is provided,
with further results reported in [18], and time-varying quantizer
design presented also in [36]. Reference [9] studied control over
channels with partial observations, and adopted an information
theoretic approach, also with a robust formulation on the class
of sources. Entropy approach to disturbance rejection problems
was earlier reported in [20]. For noisy binary forward chan-
nels with noiseless feedback, coding schemes were presented
for the forward channel with noiseless feedback in [40], and
linear time-invariant as well as time-varying control policies on
continuous-alphabet channels modeled as SNR channels were
considered in [7].

It should be noted that the requirements on the channels de-
pend on what the underlying objective is. For instance, the ob-
jective can be one of moment stabilizability, or almost sure sta-
bilizability, or positive recurrence of the chain. In [35], mo-
ment stabilizability was considered and the notion of anytime
capacity introduced as a relevant measure when there is noise-
less feedback. This paper investigates a similar framework as in
[35], with however two main differences. First, we consider sys-
tems driven by unbounded noise, which makes the almost-sure
tracking of the state by the controller within a bounded confi-
dence interval impossible. Second, we take the reverse channel
to be noisy. The price we pay, however, is the redundancy in the
transmission of the correlated information in the sensor mes-
sages, since innovation encoding is not possible. Another related
reference, [25], studies stability over noisy discrete channels.
There, the plant is noise-free, and the reverse channel is noise-
less; for such a system, it is argued that capacity is a sufficient
measure. In our case, however, the plant and the reverse chan-
nels are also noisy. Reference [25] also argues that almost sure
stabilizability is not possible for control over DMCs and that it
is the zero-error capacity which is the relevant notion. We will
observe that for noiseless plants, if the number of channel uses
is penalized, then capacity is not a sufficient measure except for

noiseless discrete channels. Furthermore, we provide structural
results on coding and decoding schemes for stabilizability. Ref-
erence [29] has studied systems driven by unbounded noise, but
for only noiseless channels and a perfect feedback channel.

Regarding noisy reverse channels, there have been only a few
studies: An early work is [42], which has studied the Gaussian
channel case, with no encoding in the reverse channel, in the
context of relaxation of the noiseless feedback channel. Refer-
ences [17] and [39] have studied optimal control policies for
control over communication networks with UDP and TCP type
protocols with packet losses in the feedback channel as well as
the forward one. The case with delayed communications has
been studied in [38].

An information structure with noiseless, instantaneous feed-
back leads to a tractable problem, as the information at the con-
troller is nested at the sensor on the plant side. For such a system,
one can introduce an extended Markov chain where the state
space is the space of conditional distributions on the real line
with the topology of weak convergence. Further, one can for-
mulate an optimal control problem of choosing the quantizer bin
edges so as to minimize a long-term average cost function, as it
has been done in [48], which provides existence results for op-
timal sensing and control. When noiseless feedback is present,
the streaming coding schemes in [34] could be used, exploiting
the nested structure. Along these lines, when the channel is
Gaussian, [1] provided a comprehensive study on the optimality
of linear coding (innovation) and control policies. Reference
[28] considered time-varying channels.

The presence of a noisy channel with no explicit feedback
leads to a non-classical information structure (see e.g., [1]),
since the agents (controller, encoders and decoders) do not
have nested information. Furthermore, the dual role of control
is present, as the control policy might affect the estimation
error of the controller with respect to the state of the system.
As such, any stochastic optimal control formulation leads to
an intractable distributed control problem, and there is no
systematic design of practical value. To alleviate the difficulty
and obtain a tractable problem, one could consider placing
restrictions on the memory at the controller [23]; however,
even with such memory restrictions, the issues encountered
in this paper would still be present. Another possibility is the
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zooming technique introduced in [22], and its extension for
systems driven by unbounded noise [47], which, however, also
requires synchronization between the encoder and the decoder.
Further, the issues studied here would still come up regardless
of the degree of memory involved at the decoder on the plant
side, if the memory is finite. Finally, toward a general theory
for constructing codes for dynamic systems taking values in a
finite set, a graph-based, trajectory tracking code construction
has been presented in [32].

To recap, in contradistinction with most of the previous work
on this topic, we study here systems where both (the forward
and the reverse) channels are noisy, and further we consider the
case where the system noise has unbounded support. We use in-
direct methods, information theory, and Markov stability theory,
to arrive at a set of necessary as well as a set of sufficient con-
ditions. We also provide a new code design via variable-rate
coding through state-dependent sampling, which leads to sto-
chastic stability of the Markov chain. In fact, such a stochastic
drift type approach seems to be a powerful tool; for a related
result, the reader is referred to [49].

A precise problem formulation and a summary of the main
results are provided in the next section, followed by some back-
ground material on Markov chains and coding as relevant to
the developments in the paper. Section IV provides some gen-
eral necessary conditions for stability, which are further devel-
oped for DMCs in the next two sections, Section V and VI,
without and with system noise, respectively. Section VII dis-
cusses the significance of the side channel, the use of variable-
length coding through variable rate sampling to avoid the need
for infinitely many codewords. The last section of the main
body of the paper, Section VIII, deals with continuous alphabet
channels, and the paper ends with the concluding remarks of
Section IX and seven appendices containing formal proofs of
the results in the main body.

II. PROBLEM FORMULATION

We consider in this paper stabilization of open-loop unstable
continuous-time linear time-invariant (LTI) stochastic systems
when communications between the plant and the controller (for-
ward channel), and the controller and the plant (reverse channel)
are conducted over noisy channels which are either discrete
memoryless or continuous memoryless. As we will argue later,
at the conceptual level there is no loss of generality in restricting
our attention to scalar systems. This will enable us to discuss the
main challenges, introduce the essential ideas, and present the
development without unnecessarily cluttering the notation and
garbling the discussion. Accordingly, we consider the class of
LTI continuous-time scalar systems described by

(1)

where is the state; , is the standard Brownian
motion process; is the (applied) control, which is assumed
to be piecewise constant over intervals of length (which is a
constant sampling period); the initial state is a second-order
Gaussian random variable, and , thus making the open-
loop system unstable. After sampling, with period , we have
the discrete-time system

(2)

where is the discrete-time variable, defined through the rela-
tionship ; is the state at the sampling
times; is a sequence of zero-mean independent, identi-
cally distributed (i.i.d.) Gaussian random variables; ;

; and . We refer to
the channel carrying the signal from the plant to the controller
as the forward channel and the channel carrying the signal from
the controller to the plant as the reverse (feedback) channel (see
Fig. 1), and as we have indicated earlier, the plant is controlled
over a reverse channel and the controller receives information
over the forward channel, both of which are noisy. Let us first
revisit the notions of discrete and continuous (alphabet) memo-
ryless channels.

Definition 2.1: A Discrete Memoryless Channel (DMC) is
characterized by a discrete input alphabet , and a discrete
output alphabet , and a conditional probability mass function

, from to . Let be a sequence
of input symbols, , and let
be a sequence of output symbols, , where

and for all . Let be the conditional
probability mass function on the -tuple input and output
spaces. A DMC from to satisfies the following:

,
, where denote the th components of

the vectors , respectively.
Definition 2.2: A Continuous Memoryless Channel (CMC)

is characterized by a continuous input alphabet , and a
continuous output alphabet , and a conditional proba-
bility measure , from to , where
is the Borel -algebra of . Let be a sequence
of input symbols, , and let be a sequence
of Borel subsets in , , where
and for all . Let be the conditional proba-
bility measure on the -tuple of the input and Borel measurable
output spaces. A CMC from to satisfies the fol-
lowing:

where denotes the th component of the vector .
When the forward channel is a DMC, we will let denote

the set of sensor symbols, with denoting its cardinality,
and be the number of channel uses. Then, the coding rate for
the forward channel is defined as . Like-
wise, for the reverse channel, for the DMC case, the coding rate
is given by with obvious corresponding
meanings for and . The plant output (state) is quantized
(by the source coder) and turned into a bit stream for each quan-
tization symbol (by the channel encoder) before inputed to the
forward channel (see Fig. 1). Likewise, the controller output is
quantized and turned into a bit stream before inputed to the re-
verse channel.

Our objective is to obtain upper and lower bounds on com-
munication rates such that the overall system, seen as a Markov
chain, is stable with an invariant distribution. In addition to these
rate bounds, we will also construct new coding schemes. The
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specific models of control systems we will consider include dis-
crete-alphabet noisy channels with or without system noise, and
continuous-alphabet noisy channels with system noise.

Before stating the main results of the paper, we note that the
analysis we will carry out for the scalar system is readily appli-
cable (at least conceptually) to multivariable systems. Consider
a multi-dimensional LTI continuous-time system described by

(3)

where, is the -dimensional state process, is the standard
vector Brownian motion process, is the -dimensional (ap-
plied) control which is assumed to be piecewise constant over
intervals of length , is an –dimensional output or observa-
tion process, and the initial state is a second-order zero-mean
random vector with a given covariance matrix. Without any loss
of generality, one can take the matrix to be in Jordan form,
which we assume to have at least one unstable eigenvalue, and
also and to be of full rank. Let be controllable, and

be observable, so that without control the output is un-
bounded. Now, following sampling, with period , we have the
discrete-time system

(4)

where, as in the scalar case, is the state at time , and
is a sequence of i.i.d. Gaussian random vectors with covariance
matrix . In the above, , which is upper-triangular,

, and . We will
assume, without any loss of generality (due to the controllability
and observability assumptions), that the matrices and are
both full rank. We note that due to the upper-triangular structure
of the sampled system matrix, the analysis for the scalar case
will apply to the vector case as well: Using an induction type
argument, one can first start with the lowest mode (in the matrix
diagonal) of the system, and stabilize that mode so that there
is a finite invariant second moment of the state; one can then
regard this mode as disturbance for the one upper mode and ob-
tain the conditions for stabilizability for this mode. We note that
the random process for the upper mode might not have Markov
dynamics, as the marginal probability distribution on the upper
mode might not be Markov, due to the statistical coupling with
the lower modes, but the joint system consisting of all modes
will be Markov. Hence, a sequential scalar coding scheme will
be stabilizing, if all of the scalar schemes are stabilizing as in-
dividual scalar systems driven by noise (of increasing variance
as one moves up in the matrix).

A. Main Results

Before closing this section, we list below the main results and
main contributions of this paper in the context of the problem
formulated above.

1) For both discrete memoryless channels (DMCs) and con-
tinuous memoryless channels (CMCs), we obtain neces-
sary conditions on the channel capacities for the existence
of a controller that will lead to .

2) We show that if the underlying closed-loop system is de-
scribed by an irreducible Markov chain (such as in the case

when the system noise has unbounded support for its prob-
ability distribution), then the entire state space and the con-
trol space have to be encoded.

3) For the DMC case, we show that variable length coding
can stabilize the system. To meet the finite length con-
straint, variable length codewords are transmitted through
variable length sampling intervals. Using properties of the
sampled Markov chain, we provide stability conditions for
the Markov chain under the criterion of positive Harris re-
currence.

4) With DMCs, a two-part code is devised to stabilize the
system: One code transmits a timing information through
an arbitrarily low-rate non-zero zero-error capacity
channel, and the other code encodes the state information
in a given, state-dependent range.

5) For CMCs, time-invariant policies can lead to stability
and there is no need for variable rate-sampling. Gaussian
channels are considered in particular; optimal memoryless
linear policies are obtained and shown to be rate-efficient.

III. PRELIMINARIES

Referring to Fig. 1, in our setup both the sensor and the
controller act as both transmitters and receivers because of the
closed-loop structure. For the DMC case, we model the forward
source-channel encoder as a stochastic kernel ,

(with being the channel alphabet), between the source
output and the channel input; hence is a collection
of (conditional) probability mass functions parametrized by

. The forward channel is a memoryless stochastic kernel,
, between the channel input and the channel output,

where , the output channel alphabet. The channel output
is acted on by the controller in a memoryless fashion, so that we
have another well-defined stochastic kernel, , which is
the probability for control at time to be given that the
output of the forward channel at time is .

The reverse channel also has a source-channel encoder,
, channel mapping , and a

channel decoder . Appropriate adjustments
are made to the interpretations of these different stochastic
kernels in the case of CMCs.

For the DMC case, a quantizer is used to obtain a count-
able representation of the input source. A scalar quantizer
is a Borel-measurable mapping from the real line to a finite or
countable set. We take the quantization bins to be regular. Thus,
the bins, , can be taken to be non-overlapping semi-open
intervals, for , with

, such that is at the origin, where are termed
“bin edges”. We consider “symmetric quantizers,” in the sense
that if is a quantization bin, where ,
then is also a quantization bin. We define
the encodable state set as the set of elements which are
represented by some codeword; . Such a definition
applies to the encodable control set, , as well. Suppose that
the state is within the encodable state set and is in the th bin of
the quantizer. The source coding output at the plant sensor will
represent this state as and send the th index over the channel.
After a joint mapping of the channel and the channel decoder,
the controller will receive the transmitted index as index
with probability . The controller will apply its control over
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index , computing . Thus, the controller decoder, the con-
troller, and the encoder can be regarded as a single (composite)
mapping. The controller transmits the control signal through the
reverse channel to the plant which would interpret this value
as with probability , by a mapping through the re-
verse channel. Given that the state is in the th bin, the plant
will receive the control with probability .
Thus, the applied control will be with probability

, the probability of the state being in the th bin
being . For CMCs, however, we do not use
a quantizer; we denote the joint channel encoder and the channel
as a stochastic kernel, , for , and . The
control is a deterministic function of the channel decoder, map-
ping to . The control signals are sent back to the plant, via a
reverse channel encoder and a reverse channel. Upon the arrival
of the reverse channel output, the plant decoder obtains the de-
coded control signals, .

A. Stability of Markov Chains

Here, we review some relevant aspects of Markov chains,
and list a number of definitions useful for the development in
the paper. Let be a Markov chain with state space

, and defined on a probability space , where
denotes the Borel –field on , is the sample space,

a sigma field of subsets of , and a probability measure. For
and , we let

denote the transition probability from to , that is the prob-
ability of the event given that . Hence,
the probability of the event for any can be com-
puted recursively by starting at , with

, and iterating with a similar for-
mula for . We now have a number of definitions.
See [26] for further details.

Definition 3.1: For a Markov chain with transition proba-
bility defined as above, a probability measure is invariant on

if
Definition 3.2: A Markov chain is –-irreducible, if for any

Borel set with , and , there exists some integer
, possibly depending on and , such that ,

where is the transition probability in stages, that is
.

Definition 3.3: A -irreducible Markov chain is aperiodic if
for any , and any Borel set satisfying , there
exists such that for all .

Definition 3.4: For , let
(with denoting the indicator function for some event ). The

-irreducible Markov chain is Harris recurrent if
for all Borel sets with .

An alternative characterization is through stopping times. Let
us define: .

Definition 3.5: A -irreducible Markov chain is Harris re-
current if for any , and any
Borel set satisfying . It is positive Harris recurrent
if in addition there is an invariant probability measure . Such
a chain which is not recurrent is called transient.

We now define the notion of a petite set:
Definition 3.6: A set is -petite on if for

some distribution on (set of natural numbers), and some

nontrivial measure ,
.

A Markov chain’s stability can be characterized by drift con-
ditions [26], [27]. Let the Markov chain be irreducible, aperi-
odic, and be a petite set. Let be a posi-
tive-valued functional, and . Consider the following in-
equality for some , and some function :

. If the inequality holds with , then a finite invariant
measure exists for the Markov chain. If , then the chain is
exponentially ergodic.

B. Codes: Upper Bounds on Error Probabilities

In this subsection, we discuss reliability of codes. Although
longer block codes improve channel reliability, when it comes to
control applications, long delays and larger sampling periods are
undesirable. There is therefore a tradeoff between having short
codelengths and having reliable transmission, and the explicit
dependence of error probability on the codelength is character-
ized by error exponents [5]. Let be a
codebook of cardinality , where each codeword is of length

. Let be the conditional probability of being re-
ceived given that input to the channel is . Suppose that the
decoding rule is such that the th codeword is the output if

, for all . This rule corresponds to
the Maximum Likelihood (ML) decoding [5]. The set of output
symbols which would lead to a decoding of is thus given
by . It follows
that, if , for at least one , say , such that

, we have .
The probability of error given that is transmitted is given by

(5)

Let . It follows that

(6)

which defines the quantity whose minimum over
all codeword pairs and is called the minimum distance
of a code, as introduced in [37]. For , we have the
Bhattacharyya distance between two symbols and ,
which we denote (by some abuse of notation) by ;
note that . The minimum of this
quantity over all , , is called the minimum
Bhattacharrya distance of a code and is denoted by .
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We let denote the minimum Bhat-
tacharrya distance for a codebook with length and rate

. The probability of error between two different codewords
(i.e., can then be upper bounded
using : . We note that, for
low coding rates, the minimum Bhattacharrya distance is
closely related to the Gilbert bound; for details see [31], [43].
For rates which are not low, however, a more useful bound
is the random coding exponent [14]. The difference is that
in the random coding bound the exponent is strictly positive
for rates below capacity. This may not be so for the Gilbert
bound. With the random coding bound, under Maximum
Likelihood decoding, we have the average probability of error,

, where , to be bounded by
([14, Chp. 5]). We note that the

random coding exponent can be used also as a bound for the
errors in the transmission of each individual message (and not
only on the average), and the results can be applied for this
bound at rates where the Gilbert bound is weaker.

IV. NECESSARY CONDITIONS

A. Conditions on Capacities

For the system under study, there is a relationship between the
capacities of the two channels and the existence of an invariant
probability measure, as given in Thm. 4.1.

Theorem 4.1: Consider the system described by (2), and let
and denote, respectively, the forward and reverse channel

capacities. Then, for the existence of an invariant probability
measure with a finite second moment, we need

.
Proof: See Appendix A.

Hence, we observe that the reverse channel is as important as
the forward channel.

B. Structural Conditions

We now present a result on the structure of the encoder, which
has significant practical implications that will be elaborated on
later in the paper.

Theorem 4.2: For a discrete-time linear system as in (2), with
, with channel transitions forming an irreducible Markov

chain, if either the encodable control set or the encodable state
set is bounded, the Markov chain is transient.

Proof: See Appendix B.
We note that a related result has been presented by Nair and

Evans in [29] on the unboundedness of the second moment of
the state, when quantizers with bounded range are used.

Corollary 4.1: Consider a noisy linear system as in (2),
which is open-loop unstable. Further, suppose that the noise
process has a continuous probability distribution function
with unbounded support and that there is no communication
feedback. Such a system, controlled over discrete memoryless
channels with finite capacity, cannot be made to have an in-
variant probability measure when fixed-length coding is used
for the transmission of state and control signals.

The restriction alluded to in Thm. 4.2 above leads to signif-
icant complexity on encoding for control over a discrete noisy
channel, for there needs to be a matching between the entire
state space, which requires a countably infinite number of code-

words, and a finite-symbol channel. Such a complexity does not
arise, however, in a CMC, as we will see later. This now moti-
vates us to introduce the following.

Definition 4.1: An open-loop unstable system is escape-free
if all the state symbols are encoded in such a way that given

, there exists in the quantizer a reconstruction level, ,
such that .

Let for .
By Thm. 4.2, for the chain to be positive recurrent, i.e., to have

, , an unstable
system has to be escape-free. Such a condition is not required
for a stable system, since such a system is always recurrent.
A system controlled over a continuous channel can always be
made escape-free, and if the capacity is sufficiently large then
the system can be stabilized. We will observe that using a dy-
namic structure, escape-freeness can be assured by considering
a side channel which can be either continuous or a discrete
one with finite capacity that can transmit variable length codes
through variable sampling.

V. ASYMPTOTIC STABILITY OVER DMCS IN THE ABSENCE

OF SYSTEM NOISE

We first have the following result.
Theorem 5.1: Let , , and , be the

bin edges of a symmetric quantizer. Let be the indicator
function for . Then, for a discrete channel, if the following
drift condition holds for some sufficiently small , and for
all bins

(7)

is a recurrent set, that is

Proof: See Appendix C.
We now study the case when the channels are discrete and

noiseless. If the channels are noiseless, the above leads (with
) to Elia-Mitter’s logarithmic quantizer [12]:

Corollary 5.1: Consider a symmetric quantizer at the sensor.
Let the forward and the reverse channels be noiseless. To lead
to a drift towards the origin, quantizer bin edges (on the positive
real line) have to satisfy .

Before studying the stability conditions, however, we first
note the following relationship between reliability and delay.

Let us fix the forward and reverse channel rates,
and . We pe-

nalize the codelengths in the forward and reverse channels by a
possibly linear term in the sampling period. It then takes longer
to send more bits, that is reliability competes with delay. The
following theorem says that if the controller waits long enough,
stability can be achieved. To separate out the difficulty that
comes about due to the escape-freeness requirement, we con-
sider here first a one-stage problem; the more general system
and control setup will be considered subsequently.
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Fig. 2. Illustration of the binning approach to the joint source channel code. The symbols in a given Codebin are represented by the same channel code, that is,
letters such as ������ � � �. The mode symbols, such as �� �� �� � � �, are carried by the side channel.

Theorem 5.2: Consider the scalar continuous-time system
(1), but without the driving Brownian motion process. Let the
probability distribution of the initial state have a bounded
support set and have a finite second moment. Let the sampling
period be a function of block lengths: ;
be possibly depending on the codelengths, and the number of
symbols in the state and control be . Let
the rates and be kept con-
stant as and grow. If the system and channel parameters
satisfy the following three conditions,

(8)

then .
Proof: See Appendix D.

Let as before. We have the following observations1

regarding the result of Thm. 5.2 above: If there is no channel
noise, the third condition of (8) is the well-studied quantization
condition: . Simple positivity of the error exponents
(which is the case when rate is less than the capacity, )
does not directly lead to stability, and the exponent actually has
to be larger than a specific positive quantity. Thus, a more ac-
curate measure is the reliability of the channel, and not nec-
essarily its capacity, as had been observed earlier in [35] and
in part in [44]. As an illustration, consider binary symmetric
channels with cross-over probabilities , for which the Gilbert
exponent (which is equivalent to the Bhattacharyya exponent
in this case) is for

[31] where is the binary entropy
function. In this case, a stabilizing rate region is given by the
following:

1[[4]]We note that one could obtain a converse bound using the sphere
packing bound [14]. Sphere packing bound uses the maximum of the minimum
distance discussed earlier over all codes used for a channel. This provides a
lower bound on the probability of error for any transmitted signal, which can
then readily be used in our setting leading to a converse result.

However, as mentioned above, if the control is applied more
than once, the escape-freeness does not necessarily hold. There-
fore, Thm. 5.2 should only be considered as a prelude to the
more comprehensive analysis that will be carried out in the next
section. Henceforth we will be using the bound obtained via the
Gilbert exponent, but we note that it would be possible to obtain
parallel results using the random coding exponent as well.

VI. ASYMPTOTIC STABILITY OVER DMCS IN THE PRESENCE

OF SYSTEM NOISE

We now consider the sampled system (2) driven by i.i.d.
noise, which is a more realistic scenario, where a finite sam-
pling period is given, and the amount of data to be sent over a
sampling period is finite. In this case, asymptotic analysis of
Thm. 5.2 becomes inapplicable. We already know from Thm.
4.2 that for stability the encodable set has to be unbounded;
however, the number of bits that can be transmitted per unit
time over the channel is finite. To resolve this dichotomy, we
will introduce a coding scheme based on binning [33], [50],
where we will transmit the coset of the code and send the
particular bin using an additional side channel.

Suppose that symbols can be transmitted during
each time stage. Partition the entire state space into bins, group

adjacent elements into one larger bin, indexed by , and rep-
resent them by a single channel codebook. We refer to this en-
semble of bins as a Codebin. Hence, a total of codewords
are used to represent the entire state space (see Fig. 2). Thus,
we have . We
denote the bin indexes by , which means that the edge be-
longs to codebin and is represented by the th channel code-
word. We say the source code is in mode , if the state is in
Codebin (see Fig. 3). The reconstruction value of each bin is
assumed to be its midpoint, so that . We
define as the probability of error of Codebin (mode
of the quantizer) transmission from mode to mode through
the side channel. This means that the mode is erroneously trans-
mitted from the plant to the controller if . Likewise, for
the reverse channel we have as the side channel map-
ping.

We will consider two schemes for the side channel. One is the
case where the side channel is noisy but can transmit an infinite
number of codewords, and thus leads to an escape-free system.
In the second scheme, we consider a time-channel as the side
channel, which is assumed to carry binary decisions and to be
noiseless; it can, however, send only a limited number of bits
per unit time. This scheme will be studied in the next section.

Before proceeding further, one observation is in order. Since
the system noise is Gaussian, the Markov chain is Lebesgue-ir-
reducible. Furthermore, if there is a compact set which is recur-
rent, then all open subsets of this compact set are also recurrent.
Now, even though the transition kernel is not continuous for all
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Fig. 3. Side channels can be regarded as separate uses of the forward and the reverse channels sending the modes.

, for a small set in one of the bins close to the
origin, , , will be uniformly con-
tinuous in , and bounded from below by some non-trivial
measure. As such, such a set can serve as a petite set. With this
observation, we have the following result.

Theorem 6.1: Consider the scalar continuous-time system
described by (1), which is to be remotely controlled. Let
be a sampling period, which is a function of block lengths:

, with and possibly depending on the code-
lengths, and let the number of symbols in the state and the con-
trol be . Suppose that the forward and
reverse channel codes are respectively of and bits long,
and let the rates be and .
Let two variables be defined as follows:

(9)

For some , with , if the
following condition is satisfied

then drift conditions hold and there exists a coding scheme
leading to a finite second moment. A corresponding source
coder is a symmetric logarithmic quantizer with expansion ratio

, i.e., .
Proof: See Appendix E.

In a control problem, in general the controller is assumed to
know the plant model and the dynamics. This information can
be viewed as side information at the controller. For instance,
if a dynamic system is being tracked, then what is known on
the current state and the system model already provides some

information on the distribution for the next state, without an
explicit feedback. We now note the following.

Proposition 6.1: Suppose that the probability measure on the
initial state has a finite support set. Further, suppose that the
forward channel error, the system noise, and the reverse channel
noise are all uniformly bounded such that there exists
such that, for a DMC

and for a CMC

Then, to achieve , a.s., there is no need
for a forward side channel.

Proof: Let , , , and be the lengths of the sup-
port intervals of the distributions for the initial state, forward
channel error, systems noise, and the reverse channel error, re-
spectively. Then, the total uncertainty at the first stage will be
bounded by . Clearly for
large enough , using a logarithmic quantizer, there exists a

such that , . Using binning tech-
niques, there will be no error in distinguishing between two
codewords with the same coset. In this case if the two nearest
bins sharing the same coset are spread out with a distance greater
than , then with only the coset information,
the controller can deduce the exact value of the bin.

Unlike the transmissions from the controller, in general the
plant cannot predict the control signal it will receive, since it
does not have access to the decision policy at the controller.
Therefore, such a relaxation does not apply to the reverse
channel. We have observed that stability might be possible
through the use of a side channel. However this side channel
has to have infinitely many codewords! In the next section, we
will get around this difficulty by a coding scheme which uses
variable length coding through variable rate sampling.
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Fig. 4. Variable encoding via a time-channel as side channel.

VII. VARIABLE LENGTH CODING THROUGH VARIABLE RATE

SAMPLING

In practice, there is a strict bound on the actual number of
channel uses per time. Markovian stability theory can be used to
show that even with such a restriction, stability can be achieved.
In case an invariant density exists, the occurrence of high mag-
nitude signals will be rare. Building on this fact, we introduce
below a variable length encoding scheme.

The controller and the sensor can send side channel infor-
mation, i.e., the index information of the Codebin, over variable
periods by using either explicit variable length codes or a timing
channel (see Fig. 4). Timing channel is noiseless and carries the
binary signal of starting the encoding, effectively carrying the
index information. In such a scheme, Codebins are generated
according to the number of sampling periods required to send
the side channel information. Thus, the effective sampling pe-
riod will vary. Here, the number of Codebins for a given period
will grow exponentially with the sampling period. However, in
this case the system will no longer be first-order Markovian.

Given state , let be the number of sampling periods it
takes for the transmission of the side channel symbol (or timing
instant). Note that is a causally measurable stopping time,
which is in fact deterministic. Consider the sampling process
given by the dynamics: . The sampled
process, , is also Markovian by the strong Markov prop-
erty [30]. With this observation, we can obtain a state-depen-
dent drift condition as discussed in Section III, to study sta-
bility. Here, we provide only conditions for the existence of an
invariant measure; the approach for stronger conditions is iden-
tical and the extension is merely technical. If the transmission
of the state and the control signals takes times as long as it
does in the fixed length case, the effective sampling period in
the variable length encoding scheme is . Thus, the
system will be open loop during seconds. These consider-
ations lead to the following counterpart of Thm. 6.1 in the case
of variable-length encoding for side channels.

Theorem 7.1: Consider the scalar continuous-time system
described by (1), which is to be remotely controlled over dis-
crete channels. Let the forward and the reverse side channels
be noiseless and the side channel symbols be transmitted over
variable durations (as described above). Further, let

, and

(10)

Suppose . If for a sequence
, such that, , the following

holds:

then there exists a coding scheme leading to positive Harris re-
currence for the sampled Markov chain. The source coder is a
symmetric logarithmic quantizer with sequentially decreasing
expansion ratios used for symbols transmitted in the th time
stage.

Proof: See Appendix F.
In the preceding discussion, we required the time-channel

to transmit noisefree the integer (for as the
open-loop duration during transmission) in time stages.
A prefix-free, uniquely decodable code can be used for the
time-channel, such as, with 1 denoting the stopping bit,

. Hence, it suffices to send
one bit of information to stop decoding. One needs an arbi-
trarily small, but non-zero zero-error capacity, since for every
zero-error capacity of , there exists a sampling period
such that and reliable transmission of one bit per
time-stage is possible. One can adjust the petite set as a function
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of . We note that in Theorem 7.1, the conditions simplify for
noiseless channels, since the error probabilities are zero.

If the goal is the existence of a finite moment, more stringent
criteria will be needed. Nonetheless, the same techniques can
be applied. We also note that the coding construction can be
arbitrary, as long as the drift conditions are satisfied.

VIII. CONTINUOUS-ALPHABET CHANNELS

In this section, we consider CMCs and obtain achievable rates
for control over continuous alphabet channels. For continuous
alphabet channels, there is no restriction on the values trans-
mitted over the channel; there may be constraints over the input
distributions, but arbitrary values can be fed into the channel.
Thus, the system can always be designed to be escape-free.
Here, we will study two special channels: Gaussian and con-
tinuous erasure channels.

A. Stabilizing Rates Over Gaussian Channels

For Gaussian channels, we associate power constraints with
the encoder outputs, and , for the forward and the re-
verse channels, respectively. Our objective is to develop coding
schemes that will lead to an invariant density with a finite second
moment. Here, one does not face the difficulty of explicitly
using a finite codelength, for is the entire real line, and rare
events are transmitted with higher magnitude signals, whose
contribution to the expected power is limited. This was the main
difficulty we observed in DMCs in the design of variable length
codes in a control context. There, rare events had to be repre-
sented in longer codewords to prevent the Markov chain from
becoming transient.

In the following theorem, we restrict the encoders, the sensor,
and the controller to be scaling their inputs. We further restrict
the controller and the decoders to be linear in their arguments,
and obtain the decoder and the controller that minimize the in-
variant second moment of the state. Our aim is to obtain a sta-
bilizing configuration.

Theorem 8.1: Suppose that the sensor encoder and the con-
troller encoder have average power constraints and , re-
spectively. Further suppose that the encoders and decoders, and
finally the controller itself, are restricted to be linear and mem-
oryless. Then, the optimal such policy at the input of the plant,
which minimizes the steady state variance is

where , , and and are the
channel noise variances for the forward and the reverse chan-
nels, respectively. If the forward and the reverse channel capac-
ities satisfy

then the steady state variance is finite.
Proof: See Appendix G.

Observe that the lower bound on the capacities is .
This leads us to the following Corollary to Theorem 8.1:

Fig. 5. For the case when � � �, the area above the dashed curve contains sta-
bilizing capacity pairs under linear memoryless policies, the capacity pairs out-
side the perpendicular edges are not stabilizing under any memoryless scheme.

Corollary 8.1: As (respectively, ) , the condi-
tion on (respectively, ) becomes (respec-
tively, . Hence, if either the forward channel or
the reverse channel is noiseless, then memoryless coders are as
good as any other coder for the minimization of rate (power) re-
quirements for there to be an invariant distribution for the state
process.

Hence, linear policies are almost optimal as they meet the
lower bound, when one of the channels becomes very reliable.
It is known that when noiseless feedback is available, innovation
coders are optimal. The Corollary above shows that, if the goal
is to have stability, memoryless schemes might as well be used.

[42] studied Gaussian channels in the context of relaxation of
the “equimemory” condition. There, control is not encoded and
by optimizing over the controller gain it is proven that the rate in
the reverse channel does not improve the performance beyond
a threshold value. In our case, however, the control is encoded
as well, and an increment in power strictly improves the rate
restrictions for the forward channel. Note that if one encodes
the control, the problem is one of information transmission. If
there is no encoding, then control is applied as it is received and
there exists an optimal value for the control power. We note that
[2] showed that for a one-shot problem, the analysis above leads
to an optimal solution.

We plot the achievable (sufficient) and the necessary rate re-
gions in Fig. 5. We observe that use of memoryless policies is
actually not very inefficient, since the rate region is not too far
off from the lower bounds; especially when one of the channels
becomes more reliable, linear policies are almost tight, as can
be deduced analytically.

B. Continuous Erasure Channels

Consider forward and reverse erasure channels which lose
packets with probabilities and , respectively. Consider also
the case where the packets can be sent without a need of quan-
tization, i.e., the erasure channel codebook set is the real line
(thus the information theoretic capacity is infinite). The consid-
eration of such an infinite capacity erasure channel model has
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been common in the network control literature [17]. In this case
we have the following result.

Proposition 8.1: Consider the unstable plant in (2), along
with forward and reverse erasure channels. If the forward
and the reverse channel packet loss probabilities satisfy the
inequality , then .

Proof: We will have with probability ,
. If there is loss in the forward

channel as well as in the reverse channel, zero control is applied
(as a consequence of the memoryless policy). Then the evolution
of the second moment will be

, which is clearly stable if and only if the
condition in the statement of the proposition holds.

IX. CONCLUDING REMARKS

In this paper we have analyzed networked control systems
over noisy channels, where the system noise can have un-
bounded support, both the forward and the reverse channels
can be noisy, and they can be discrete or continuous.

To recap the main messages and contributions of the paper:
We have obtained capacity bounds and achievable forward
and reverse rate regions leading to a positive recurrent Markov
chain. We observed that control over discrete channels requires
an intricate design. We showed the inadequacy of fixed-length
encoding schemes and introduced the notion of escape-free-
ness, which required the design to use variable length encoding.
Our design stabilizes the system via variable rate sampling and
uses properties of the sampled Markov chain. We observed that
continuous alphabet channels are simpler to analyze for they
can always be designed to be escape-free, without resorting to
variable length sampling. However, since continuous channels
are not as widely used as discrete channels, we view the analysis
on DMCs to be important in applications.

The stochastic drift approach presented in this paper seems
to admit generalizations to many problems where the transmis-
sion of the control or sensor signals has a randomness in it. One
example of such an approach is reported in [49], for proving sto-
chastic stability of adaptive encoders for Markov sources where
random stopping times are the instances when the encoder can
transmit information to a controller. It seems that such a random
drift approach is a promising way, as variable-length decoding
schemes also use stopping time arguments [8] for optimal per-
formance and control over communication channels [35]. Thus,
one future direction of research would be to study a combination
of Bhattacharyya distance arguments and Burnashev’s variable
rate coding scheme with very little feedback for use in the re-
verse channel.

APPENDIX A
PROOF OF THEOREM 4.1

Let be the probability measure at time , gener-
ated as a result of the Markovian recursions

, . Suppose that we
have an invariant probability measure for the Markovian
process, with a finite second moment. Then, the entropy of
the invariant density is also finite (which is bounded by the
entropy of the Gaussian density with the same second moment).

Furthermore, by the irreducibility of the Markovian process,
there is a unique invariant probability measure.

Since the system is driven by a Gaussian noise process, it fol-
lows that admits a density, which we will refer as , and
which can be expressed as a convolution of the Gaussian mea-
sure with another probability measure. That is

where is a piecewise continuous density function and
is the Gaussian density function. The density function
is piecewise continuous due to the effect of quantization and
channel errors. It is thus a simple exercise to show that is
uniformly continuous and is such that, for any open set ,

. This implies that is absolutely continuous
with respect to (which in turn is absolutely continuous
with respect to the Lebesgue measure). Let be the density
corresponding to .

This consequently implies that the (Kullback-Leibler) diver-
gence , for some , where for two probability
density functions on , the divergence is defined by the re-
lation .

These lead to the conclusion that, by Theorem 4 of Har-
remoës and Holst [16] (see also [4]), .
Furthermore, by the –norm Ergodic Theorem ([26, Chapter
14]), . There-
fore, converges to .
Hence, exists and is finite.

Since , conditioning does not increase
entropy, and is independent

(11)

which implies . Since
, we have

. For ,
we have

We now study the asymptotic behavior of the mutual informa-
tion . There exists a
limit for from the discussion above. There exists an in-
variant limit density for with a finite second moment, since
the control is a result of a stationary stochastic kernel. Thus,

is the joint entropy process of a stable stationary pair,
and thus has a limit with the arguments above. Hence,
has a limit, and . Therefore, for
some arbitrary stationary distribution, the mutual information
is lower bounded by . From the general alphabet ver-
sion of the data processing inequality ([15], Chapter 5), we have

and .
Since capacities of memoryless channels are

achieved by the supremizing source distributions,
, and the
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capacities of the individual channels upper bound the joint
capacity, we have

APPENDIX B
PROOF OF THEOREM 4.2

Without any loss of generality, let the bounded encodable
control set be given by . Since the chain
is irreducible, all the open sets are irreducible ([26], Chapter 8).
Hence, . Due to this observation, the es-
timation error of the controller, (where

is the information at the controller at time ), with re-
gard to the state will be visiting in finite time with probability
one. Now suppose that the initial state is in a set .

We study the exit time of the process from . We have
. Define a process , with

, where , and
and having the same sample path as the disturbance in the
original system. Let , and

. Further, define
, and further define .

Since for
is almost surely positive, for . Since

almost surely, the exit time almost surely.
Now, let . Note that is continuously dif-
ferentiable and bounded over the set of interest. Hence, we can
apply Dynkin’s formula [30], from which it follows that

where is the generator function [30], given by
, where denotes the partial deriva-

tive of with respect to , and is its second partial
derivative. Since , and ,
we have the expectation . With

, and by the Monotone Convergence
Theorem, it follows that . Hence,

. We have that
is bounded in k, and . Hence, it follows that

. Thus, the proba-
bility of the exit time for the newly defined process satis-
fies . Hence, , and

. Thus, the Markov chain is transient. Due
to the open-loop instability of the dynamics, the return time of
the process to a compact set around the origin has probability
less than one. The proof for the encodable state set follows
from similar arguments.

APPENDIX C
PROOF OF THEOREM 5.1

The expectation is linear in
; therefore, the maximum value of

for is achieved at one of the end points of
each quantization bin (as is a convex function, if is
linear). Thus, by ensuring the drift condition for the bin edges,
a uniform decrease in the Lyapunov value for all will be at-
tained.

Let . The result of the theorem follows from the
construction of a Supermartingale sequence as follows: Let

and for ,
. The sequence forms a Supermartin-

gale: For any finite , .
Let . Let for ,

be a stop-
ping time. Then, , and hence

, and
by the Monotone Convergence Theorem, it follows that

.

APPENDIX D
PROOF OF THEOREM 5.2

Suppose that the continuous-time system is sampled with a
period , to lead to: , where and
is the sampled data control coefficient, as introduced earlier.

Let , which is the center of moment
of the corresponding bin (centroid). Let be the probability
measure on the initial state. Then, the distortion is given by

which can be upper bounded as a function of the codelengths in
the forward and reverse channels

(12)

The conditions and
guarantee the convergence of the first

term above. Note that the last term in (12) is just the quantization
error, and using asymptotic quantization theory [51], the distor-
tion is inversely proportional with the square of the number of
symbols under a Lloyd-Max quantizer, and this needs to com-
pensate the growth in , which is satisfied by the third condi-
tion in (8). We note here that the third condition in (8) can also
be expressed as .

What remains to be done is the analysis of the cross terms
(second and the third terms in the summation). For the term
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using the centroid property of , we obtain

for asymptotic boundedness of which it suffices to have
. Likewise, for

the other cross term, we need
.

The proof for the random coding exponent follows similar
steps. In this case, under Maximum Likelihood decoding, we
obtain that

where is the maximum value that can take. We observe
that the stability condition is the stability of each of the indi-
vidual terms above. This concludes the proof.

APPENDIX E
PROOF OF THEOREM 6.1

Suppose that the continuous-time system is sampled with a
fixed sampling period to lead to ,
where and and is zero-mean Gaussian
with variance . Using the
drift condition, we need, for some , for some compact set

and with denoting the region outside ,
. We first note that

. Now, for a given state value, , the expected
distortion, , can be written as

(13)

In the above expression, we can identify three different sources
for error: one in case there is an error in the regular channel
code with possible error in the side channels, one in case there
is an error in the side channel given that there is no error in the
channel code, and one in case there is an error in neither the
side channels nor the channel codes. We also note that, using a
simple bound via the parallellogram law

(14)

For a logarithmic quantizer with expansion ratio ,
. Thus,

for a transition from the th bin to the th bin, using
the parallellogram law, the distortion will be less than

.
Now summing over all , and using the lower bound on the
error exponent, the above can be upper bounded by

(15)

We have captured the distortion caused by channel errors and
the side channel errors. For the case where there is only side
channel error, the distortion divided by is upper-bounded by

(16)

We finally have the source coding error (when there is no error
in any of the channels) as the following:
which can be upper-bounded by or

. We will upper bound this by in the fol-
lowing to add the probability of events conveniently (as this oc-
curs when either of the channels leads to an error). For some
compact set , if the following is satisfied , then sta-
bility will be achieved

The above is implied by the following for sufficiently large
:

and this completes the proof.

APPENDIX F
PROOF OF THEOREM 7.1

The proof is analogous to the one for Thm. 6.1. The difference
is that the forward channels in the Codebins, are encoded here in

time stages. Also, here the transmissions in the side channels
are assumed to be noise free. However, due to the increase in the
effective sampling period, the sampled Brownian motion noise
has a larger variance. Let be the set of codebins, which are
represented by codes that are transmitted over transmissions.
For the existence of an invariant distribution, it suffices that for
some and

(17)
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Now, in our setting, we will have that there will be code-
words which are transmitted in sampling periods. Here,
will be the logarithmic quantizer ratio for this set of codewords.
Let us consider the following condition for some and

(18)

. We now write
, where

is the variance of the standard
Wiener process integrated over a period of . Thus, we need

.
We will now bound the distortion term following the results of
Thm. 5.2. The distortion is equal to

The probability of error consists of the summation of the prob-
ability of errors in both channels, or in one of the channels. We
can bound the probability of error by the following:

For any and , the worst case distortion is upper bounded by
, and the source coding error is upper-bounded by

. Hence if we have

(19)

for , (18) will be satisfied. It now follows that
(18) implies (17), since . This follows
since can be as large as

, and that, as a result

when . This implies that
.

APPENDIX G
PROOF OF THEOREM 8.1

We have

The control applied, , can be written as follows:

Using this in the system equation , we
obtain

(20)

Define . The minimization of with respect to
yields

(21)

From this, the optimal expression for follows. If we plug this
optimal value in the expression for , we
obtain

Upon recognizing the capacity expression in the following:

we arrive at

Rearranging the first term, it follows that the condition

implies stability.
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