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Minimum Rate Coding for LTI Systems Over
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Abstract—This paper studies rate requirements for state estima-
tion in linear time-invariant (LTI) systems where the controller
and the plant are connected via a noiseless channel with limited
capacity. Using information theoretic arguments, we obtain first
for scalar systems, and subsequently for multidimensional systems,
lower bounds on the data rates required for state estimation under
three different stability criteria, namely monotonic boundedness
of entropy, asymptotic stability of distortion, and support size sta-
bility. Further, the minimum data rate achievable by any source-
encoder is computed under each of these criteria, and the best rate
achievable with quantization is shown to be in agreement with the
information-theoretic bounds in some specific cases (such as if the
system coefficient is an integer or if the criterion is an asymptotic
one). Existence of optimal variable-length and fixed-length quan-
tizers are studied and optimal quantizers are constructed under
each of these criteria. One observation is that, the uniform quan-
tizer is, in addition to being simple, efficient in linear control sys-
tems.

Index Terms—Networked control, quantization, stability.

I. INTRODUCTION AND LITERATURE REVIEW

WE ARE seeing increasingly more the interplay between
control theoretic issues in communication problems and

communication theoretic issues in control problems. One class
of problems in this context is control over communication chan-
nels, for which various system models and channel structures
have been studied in the recent literature; see, e.g., [1]–[5], [7],
and the references therein. Among these, several studies focused
on noiseless systems with time-invariant encoders, where the
main issue becomes one of designing a quantizer; see [7] and
[8]. We note, however, that when the channels are noiseless,
then structures which are not time invariant turn out to be more
rate-efficient [13]–[16], because the transmitter and the receiver
can make the updates in the encoding and the decoding rely on
the data received, equipped with the knowledge that the data
sent will make it to the other party with no ambiguity. It is this
class of problems that this paper addresses.

Papers most relevant to our work here (which is an expanded
version of [9] and part of [10]), are [13], [17], [18], and [14].

Manuscript received April 12, 2004; revised September 19, 2005 and April
18, 2006. Recommended by Associate Editor E. Jonckheere. This work was sup-
ported in part by the National Science Foundation under Grant CCR 00-85917
ITR. An earlier version of this paper was presented at the IEEE Conference on
Control Applications (CCA), Istanbul, June 2003, and appeared in an abridged
form in the CCA Proceedings.

S. Yüksel was with the Coordinated Science Laboratory, University of Illi-
nois, Urbana, IL 61801-2307 USA. He is now with Dunham Lab, Yale Univer-
sity, New Haven, CT 06511 USA (e-mail: serdar.yuksel@yale.edu)
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Among these, [18] also studies noiseless systems with noise-
less channels. In [13], directed mutual information is utilized for
systems with noiseless feedback to obtain the optimum causal
encoders minimizing the rate subject to distortion criteria. In
[14], using fixed-length quantization, it has been shown that for
an LTI system with an uncertain initial state, where the cost
is the th moment of the state, a necessary and sufficient con-
dition for exponential stability is that the input rate should be
higher than the sum of the logarithms of the ratios of the ab-
solute values of unstable open-loop eigenvalues and the desired
exponential factor, which is naturally an asymptotic result. In
contradistinction with the approaches of [13], [17] and [18],
we focus here on optimal quantization problems, and show the
connection between the optimal performance of causal quan-
tizers with the lower bounds provided by information theory
under three different criteria. This paper also differs from [14]
in that we use information theoretic arguments to obtain bounds
for any source-coder, and we study both fixed-length and vari-
able-length quantization. We should mention that another pre-
vious study relevant to this paper is [4], where it has also been
shown that capacity in the Shannon sense is not a sufficient mea-
sure for stabilizability of control systems.

We now provide a brief outline of the results of this paper.
We first address scalar systems, and introduce optimal coding
schemes under a zero-delay, sequential criterion, and obtain
the rates achievable by any stabilizing source-coder. We then
compare these rates with those corresponding to the best quan-
tizer. We show that the information-theoretic bounds to achieve
a monotonically bounded entropy sequence are operationally
tight, i.e., they are achievable by a quantizer, if the system is
scalar with an integer coefficient, or if the distortion criterion
is an asymptotic one. If the system coefficient is not an integer
(again for scalar systems), by exploiting variable-length coding
we obtain the optimal quantizer meeting the stability criterion.
We further show that, again for a scalar system, the probability
distribution of the quantization error converges to a uniform
one. We then analyze the conditions on rate required for bound-
edness and minimization of an asymptotic distortion, where
both variable-length and fixed-length quantizers are considered.
We finally consider stability in worst case estimation error for
both scalar and multidimensional systems.

One of our goals in this paper is to bridge information- and
quantization-theoretic results with control systems. We will see
that many of the results from causal coding theory apply to con-
trol systems; however, some communication theoretic notions
such as entropy and rate-distortion function have to be cau-
tiously applied when used in a control context. Furthermore, it
turns out that, the simplest and most common type of quantizer,
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Fig. 1. Past codewords are common side information. With a slight abuse of no-
tation here, x(t) and q(t) (instead of x and q ) denote the state and the trans-
mitted codewords respectively. If variable-length coding is used, the encoder
consists of a quantizer followed by an entropy coder; if fixed-length coding is
used the encoder is only the quantizer. The channel connecting the control to
the plant is assumed to be noiseless.

the uniform quantizer, is indeed the best quantizer under some
of the criteria.

This paper is organized as follows. Section II provides
a precise formulation of the class of systems considered.
Section III deals with quantization schemes for scalar systems,
and Section IV for the multidimensional case. This paper ends
with the concluding remarks of Section V.

II. PROBLEM FORMULATION

The class of systems considered in this paper is described by

(1)

where is a controllable pair, with having at least one
unstable eigenvalue and no zero eigenvalues, is the time vari-
able, and is the -dimensional state; the initial state is
a random vector with a bounded support, and is the control
variable of dimension , which is allowed to depend on only
a quantized version of the state , possibly with memory. The
state is quantized (source-coded) before being made available
to the control , at which site the quantized state information is
recovered by a decoder; see Fig. 1.

The main goal in the design of the quantizer, the encoders,
and the decoders is to achieve a certain degree of stability in state
estimation error. Since is a controllable pair, the problem
of stability in state itself can be translated into an equivalent
problem of stability in state estimation, as shown in [14]. Hence,
without any loss of generality, we can deal with the control-free
system , and focus on state estimation. We now
introduce some terminology and notation that will be used in the
development, first for scalar (that is, one-dimensional) systems.

A quantizer, , for a scalar continuous variable is a mapping
from the real line to a finite or countable set, characterized by
corresponding bins and their reconstruction levels , such
that if and only if and . Here
(for scalar quantization), can be taken to be non-overlap-
ping semi-open intervals, , with

, such that is the one closest to the origin, where
are termed “bin edges.” (For a comprehensive overview of

quantization, see [21].)

Among different types of quantizers, the uniform quantizer
(where are of equal lengths) is the most common one, be-
cause of the ease with which it can be used and of its asymp-
totic optimality property under the mean-square distortion mea-
sure [22]. Another type is the logarithmic quantizer (where the
lengths of ’s increase exponentially away from the origin),
which has been shown to be the coarsest quantizer for stabi-
lization of systems with quantized signals [7]. Another clas-
sification of quantizers is according to whether their rate is a
constant or a variable: A fixed-length quantizer is one where
the quantized outcomes are represented by codewords of equal
length, whereas a variable-length quantizer can have variable
lengths assigned to the quantization outcomes [24], [21]. In a
dynamic, discrete-time setting, the construction of a quantizer at
any time could depend on the past quantizer values. To make
this precise, let be the input space, be the output space,
and be the set of quantizer reconstruction values, , at time

. Then, the quantizer at time , is a mapping
from to , where is the -product of . Such
a quantizer is said to be causal, in addition to being dynamic. We
also introduce as the decoder func-
tion, which again has causal access to the past received values.

We next introduce two standard information-theoretic no-
tions, namely mutual information and rate distortion function.
Mutual information between an input random variable, , and
a corresponding output, , is

where is the entropy of (differential entropy if is
a continuous random variable), and is the conditional
entropy of given . The rate distortion function, , of
a random variable, , is the minimum (or infimum) value of the
mutual information over the class of stochastic mappings from
the input to the output, subject to the constraint that distortion
is no higher than a given level, , namely

Finally, we introduce the notion of the support width, ,
of a random variable , as the width of the connected domain
over which all mass associated with the distribution of is
concentrated.

In the case of a digital noiseless channel (which is our main
concern here), the quantization output values will be available
error-free at the receiver, and the receiver would use the se-
quence of quantization outputs for estimation at the receiver. We
will use the notation to denote the receiver estimation output
at time , so that , for some decoder function ,
where and denotes output of the encoder,

, at time .
Our objective here, first for scalar systems, is to design dy-

namic causal quantizers
that are optimal under one of the three criteria introduced later.

Criterion 1: Monotonic Boundedness of Differential Entropy:
Find a dynamic, zero-delay encoder (quantizer) ,
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under which the estimation error entropy is a nonincreasing se-
quence (and is thus bounded), i.e., with

and it achieves this with minimum possible rate.
The binary representation of the quantization outputs could

be of fixed length or variable length. If fixed-length coding is
used, the rate of the code is given by

where is the number of levels in the quantizer or, equivalently,
the number of ’s. If variable-length coding is used, the rate is
given by

where is the probability of the event .
We will first obtain bounds on the performance of any type

of a quantizer, and then investigate the existence of quantizers
that achieve these bounds. For the cases when the bounds are
not met, we will show the existence of, determine the perfor-
mance of, and construct the minimum-rate quantizers that lead
to monotonically bounded entropy.

Criterion 2: Asymptotic Boundedness in Distortion: Find a
minimal-rate quantizer sequence under which the asymptotic
terminal-time estimation error distortion, that is the quantity

does not exceed some value .
Remark 1: A criterion similar to the previous one was con-

sidered earlier in [14], which uses fixed-length coding. The dif-
ference between the treatments there and in this paper is that we
will employ information theoretic arguments to obtain the ulti-
mate bound achievable by any source-coder, and use asymptotic
quantization theory to design the optimal quantizer; furthermore
we will consider here both fixed-length and variable-length en-
coders.

Criterion 3: Stability in Support Size: Find a dynamic causal
quantizer under which .

This third criterion can also be regarded as stability in the
almost sure sense.

We will also consider natural extensions of these three criteria
to the multidimensional case later in Section IV.

III. SCALAR LTI SYSTEMS

Consider now the scalar LTI system

(2)

where the initial state is a random variable with a given dis-
tribution with finite support, and . We assume ,
for otherwise there would be no need for any data exchange
between the plant and the controller. At each stage , only a
particular quantized value of the state is available to the con-
troller, possibly with memory, and the problem of interest is to
design an “optimal” quantization scheme under some prespec-
ified constraints and with respect to a particular criterion (one
of the three introduced in the previous section). We will assume
that the control signal is available at both the receiver and the
transmitter, which is legitimate because the channel is noise-
less and the control signal is transmitted error-free. As stated
earlier, with this assumption, the control function will not have
any effect on the evolution of the uncertainty in the initial state.
Hence, in essence, we can work with the control-free system,

, and focus on the state estimation
problem. In this reformulation, the state can be viewed as the
“uncertainty” at time .

A. Criterion 1: Monotonic Boundedness of
Differential Entropy

The sole element of randomness is in the initial state . We
first show that the quantization error converges to a uniform
random variable in distribution, which will be useful in the ex-
ploration of the minimum required rate.

Lemma 3.1: Let be the realization of a random variable
with a continuous probability density function

on a finite support set . Suppose that at each suc-
cessive time steps, the state generated by is quan-
tized using a level uniform quantizer with a bin size equal
to at time , where . Then, the Kull-
back–Leibler divergence between the conditional quantization
error density (the quantization error for any specific bin) and
the uniform error density with support size
converges to zero as .

Proof: See the Appendix.
We now state a result on achievable rates under Criterion 1.
Theorem 3.1: For the scalar LTI system (2) with a uniform,

zero-mean distribution for the initial state, for any encoder to
satisfy Criterion 1, the minimum rate is per
stage.

First, we state and prove two results (Lemmas 3.2 and 3.3)
which will be needed in the proof of Theorem 3.1. Toward this
end, let denote the encoder function and be the entropy-
minimizing decoder function given , at time , and
consider the minimization, over , of the differential entropy

(3)

subject to the rate constraint

(4)

Lemma 3.2: Suppose has a continuous probability den-
sity function and the conditional mean-square-error for is
uniformly bounded (in ). Then, there exists a solution to the
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constrained optimization problem of minimizing (3) subject to
(4).

Proof: See the Appendix.
The next result is a statement on the structure of the optimal

quantizer.
Lemma 3.3: The optimal quantizer , solving (3) and (4)

uses only the current state and the past transmitted symbols.
Proof: See the Appendix.

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1: Past information is available at both

the encoder and the decoder. We have

where can be viewed as the side information. Since
, and for any random vari-

able and any scalar , we have

Thus

Recognizing that for both
and , we have

Thus, to obtain a nonincreasing sequence in differential entropy,
we need to have

and therefore the mutual information is lower bounded by
. The corresponding expression that also covers the

stable case is .
After thus presenting a bound on the rate for a general

(including probabilistic) encoder, as before, we next obtain an
achievable rate for a fixed-length quantizer. In this analysis,
we will study the conditions for a monotonically nonincreasing
sequence in distortion, , instead of in the
differential entropy, because for a uniform random variable
entropy and distortion are monotonic invertible functions of
each other.

Theorem 3.2: For the scalar LTI system (2) with a uni-
form, zero-mean distribution for the initial state, for any
fixed-length quantizer to satisfy Criterion 1, the required rate is

per stage, where is the smallest integer
larger than or equal to . This rate is achievable.

Proof: The estimation error is to have a nonincreasing sup-
port size, for which we need , where is an integer.

Thus, we observe that using fixed-length and deterministic
encoding gets us close to the lower bound. Nonetheless, we may

get even closer by using variable-length encoding, as we show
next.

Variable-Length Encoding for Monotonic Boundedness in
Distortion: Henceforth we consider the case where the encoder
uses variable-length encoding, which is important when the pa-
rameter is not an integer. The average code length needed to
reliably express a random discrete output in a binary format is
lower-bounded by the entropy rate of the process [24], and there
exist coding schemes which come arbitrarily close to this bound.
Our objective is to have a nonincreasing sequence

Thus, at time , the problem is the minimization of the entropy

subject to the distortion and density constraints

(5)

The entropy is only a function of the quantizer threshold
values, and not of the reconstruction values and, hence, given
the threshold values, the partial derivative of with respect
to the quantization reconstruction values will characterize the
optimality of the centroid of the cell as the reconstruction value.
Now, if we restrict ourselves to a uniform input, with support
set , and using the centroid property for the quantization
reconstruction values, and the constraints reduce to

(6)

By setting , the cost to be minimized becomes
, with the constraints

(7)

Proposition 3.1: For the linear system , the min-
imum rate required of a quantizer leading to a time-invariant
distortion level is no smaller than . This rate
is achievable for the class of systems where is an integer, in
which case an level uniform quantizer is used.

Proof: By a slight abuse of notation, let us write the en-
tropy , as , where

denotes expectation with respect to the discrete prob-
ability mass function . Entropy is a concave
function (of ) and, hence, using Jensen’s inequality,

, where
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equality is achieved by the uniform distribution. Using
Jensen’s inequality again, this time for , we have

and

where again equality is achieved by the uniform distribution.
Using the previous two results

(8)

A dual version of this problem is one of finding the minimal
entropy needed to achieve a given level of distortion which is

. Hence, one could as well analyze an entropy-con-
strained distortion minimizing quantizer, which has in fact been
studied in the source-coding literature [25], where one can also
find the following useful result.

Proposition 3.2: If is not an integer, then the optimal quan-
tizer consists of bins where of them occur
with equal probability, , each, and the remaining one occurs
with probability , such that

Furthermore, the minimum rate needed to satisfy Criterion 1,
equivalently for the monotonic boundedness of the error vari-
ance, is

(9)

B. Criterion 2: Asymptotic Boundeness in Distortion

Asymptotic stability of the state estimation error variance has
been investigated earlier in [14], where asymptotic quantization
analysis has been used to determine the rate requirements. Here,
we take a different, information-theoretic, approach to arrive at
the same rate requirements, and then employ asymptotic quan-
tization as .

Theorem 3.3: Consider a scalar linear system ,
where the pdf of the initial state has finite support. Then, the
following hold.

i) The bit rate required for boundedness of the state esti-
mation error variance as the terminal time , is

per stage.
ii) This rate is achievable by quantization. Furthermore, uni-

form quantizer is the optimal variable length quantizer.
Proof: i) The entropy at time is

(10)

and the mutual information between and is

(11)

Let be the set of all probabilistic maps that achieve a given
finite distortion level . Then, for any corresponding rate , we
have . Thus

(12)

where the last two steps are due to the facts that conditioning
on a random variable does not increase the entropy, and for a
random variable with a finite variance , the differential entropy
is maximized by the Gaussian distribution (with that variance)
[23], with the maximum value being . Note
that since we are interested in quantizers, the quantization error
conditioned on the quantized values will in fact have a compact
support set for its distribution. Nonetheless, using the entropy
corresponding to the Gaussian density serves our purpose by
providing a lower bound.

If we divide both sides of the last inequality in (12) by , and
let approach , this yields as a necessary condition on the
average rate, , the lower bound . ii) We employ
asymptotic quantization theory for this part of the proof. Al-
though the rate per stage is finite, as the terminal time goes to ,
one can regard this problem as one where the number of quanti-
zation levels goes to . Reference [22] has shown that the uni-
form quantizer followed by an entropy coder is at most 0.255
bits worse than the optimal quantizer. Since , it
readily follows that the uniform quantizer is optimal.

C. Criterion 3: Stability in Support Size

Theorem 3.4: Consider the scalar system (2) and suppose
that fixed-length quantization is used. The rate required for sta-
bility in the support size is at least . The min-
imum rate achievable by a fixed-length time-invariant quan-
tizer is , where is the smallest integer that is
strictly larger than (and is thus a modified function).

Proof: If is not an integer, pick ,
whereas if is an integer, . Thus, the rate is:

.

IV. QUANTIZATION AND CODING FOR HIGHER-DIMENSIONAL

LTI SYSTEMS

We now consider extensions of the results of the previous
section to the multidimensional case—the class of systems
described by (1), where is a controllable pair, with
having at least one unstable eigenvalue and no zero eigen-
values. We can again instead consider the control-free system

, as the evolution of the uncertainty in the initial
state does not depend on the control . We will take the initial
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state vector to be the realization of a random vector
with a finite-support distribution. The objective, as in the
previous section, is to design optimal dynamic quantizers,

and corresponding encoder-de-
coder pairs to achieve stability. We again have three criteria,
as introduced earlier, but with only the norm appropri-
ately changed to the -dimensional Euclidean norm. If is
diagonalizable, even with complex eigenvalues, all the results
obtained for the scalar case would be equally applicable to the
decoupled components. When an eigenvalue is complex (which
of course comes in conjugate pairs), then one only has to apply
a rotation to the received data and, hence, only the absolute
value of the eigenvalue will matter in the rate analysis.

Now, if is not diagonalizable, it can be block-diagonalized,
say with two blocks, where the first block has only stable eigen-
values, and the second one unstable eigenvalues. For the stable
modes, one does not need to use the channel (since those modes
asymptotically go to zero), and hence for the remaining discus-
sion and analysis we can assume, without any loss of generality,
that has only unstable eigenvalues. Further, because of the
reasoning in the previous paragraph, the main focus will be on
the cases when is not diagonalizable.

With this structure for , we now study each of the criteria
introduced, starting with Criterion 1.

Theorem 4.1: For an -dimensional linear system
, where all eigenvalues, , of are unstable, and the

initial state is a finite-support random vector, the minimum
rate required for monotonic boundedness of the state estimation
error entropy is .

Proof: The proof is almost identical to that of Theorem 3.1.
Lemmas 3.2 and 3.3 apply to the multidimensional case as well,
with the intervals being replaced with higher dimensional bins.
We again have the mutual information as

where is the side information available. Since ,
and for any random variable
and any square matrix , we have

where is the determinant of . As in the Proof of
Theorem 3.1, after a few steps we arrive at the inequality

, which says that we need at least
an additional bits to make the conditional differen-
tial entropy sequence nonincreasing. Since

, the rate is .
Remark 2: In the above, if we had not taken out the stable

modes of , then the stable eigenvalues would also have en-
tered the computation of the rate required to keep the differen-
tial entropy bounded, as the summation in
would be over all eigenvalues of , whereas as we have ar-
gued above, stable eigenvalues can be safely left out. This shows
that entropy is not a good measure to use in the multidimen-
sional case provided that one carefully separates out the stable
part of the system, since otherwise the analysis leads to a very

loose bound. This all stems from the fact that the volume of any
cube of dimension 2 or higher (corresponding in this case to a
bin) can be made arbitrarily small without making the lengths
of all edges arbitrarily small. As a parallel argument, asymp-
totic quantization theory is not directly applicable here either.
In high-rate quantization, the quantization error is taken to be
uniformly distributed over cells of arbitrarily small volume, and
that , where is one such bin, and is
a pdf. However, as we argued previously, , where
denotes the volume, does not imply that ;
hence, the property , which follows
from the continuity of the pdf, does not apply. Thus, to employ
asymptotic quantization theory in a meaningful way, one should
only consider the unstable eigenvalues of the system.

We now move on to Criterion 2, and have the following result.
Theorem 4.2: Consider the -dimensional system

, where has only unstable eigenvalues, and is a random
vector. Then, the following hold.

i) Under Criterion 2, a lower bound on the required rate is
.

ii) The bound in i) is achievable with both fixed-length or
variable-length quantizers.

Proof: i) The entropy at time step is

(13)

Let be the set of all probabilistic maps achieving a bounded
final distortion level of . Then, . For any
corresponding rate , we have

(14)

where the inequality uses the fact that conditioning does not in-
crease the entropy. Let the Euclidean distortion for the vector

be denoted by , and the covariance matrix of the com-
ponentwise errors be denoted by . Clearly, .
Let be finite, which also makes a matrix with finite en-
tries. Now, among random vectors with a fixed covariance ma-
trix, the differential entropy is maximized by a jointly Gaussian
distribution, which in turn has a finite entropy. Hence, the min-
imum rate, , achieving a distortion level of , satisfies
the following inequality for any nonnegative–definite matrix
whose trace equals :

(15)

Dividing both sides by , and letting , the desired result
follows.

ii) In this part of the proof, we employ results and bounds
from asymptotic quantization theory [26]. Suppose that is
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the number of quantization levels, is the second mo-
ment of the distance between the quantizer’s input and output,
and is the signal pdf. Then, for large , the distortion of the
quantization satisfies where

and is a constant. Without any loss of generality, let the initial
state be confined to the -dimensional unit cube. Suppose that
at time has pdf . The resulting distortion then satisfies

(16)

Now, given a real number , and a support volume
, the quantity is maximized over all pdf’s by

the uniform distribution. Since , and
, we have

Hence, distortion remains bounded in , if . For variable
length encoding, the distortion satisfies [26], [27]

(17)

where is a term independent of the source distribution.
Using the facts that and

and noting that by our assumption,
all eigenvalues of are unstable, the rate required for bounded-
ness of the terminal-time distortion is .

Remark 3: In the result of Proposition 4.2, if had both
stable and unstable eigenvalues, then the expression for the min-
imum rate would be .

Finally, we consider stability in support size.
Proposition 4.1: Consider the -dimensional system

. Under time-invariant quantization, the minimum
achievable fixed-length quantizer rate for stability in support
size is where is the smallest
integer that is strictly larger than (and is thus a modified
ceiling function).

Proof: For diagonalizable systems, the condition for sta-
bility follows from that of scalar systems.

For the nondiagonalizable case, suppose that the system is in
Jordan form, with be the Jordan block corresponding to an
eigenvalue . Then, a bound on the uncertainty region, after
quantization, satisfies

for the mode . Letting be a diagonal matrix, with the re-
ciprocal of the number of levels on its diagonals, we can rewrite
the above as a linear system: , with

and the condition for stability becomes for
each . Thus, the result follows.

V. CONCLUDING REMARKS

In this paper, we have studied the rate requirements for
stability of the state estimation error in LTI systems under
three types of criteria. Information theory and source-coding
theory have been used to derive achievable bounds, and optimal
quantizers have been designed as implementable codes. The
optimal performance under each criterion has been quantified,
with lower bounds which are tight in some cases. We have
observed that uniform quantization is indeed very efficient. We
also demonstrated that entropy is not necessarily an appropriate
measure for rate analysis in multidimensional control systems,
unless one carefully separates out the stable and unstable modes
of the system.

Multisensor and multicontroller systems can also be studies
in an analogous fashion. In a multisensor problem, without
system and channel noise, one can use the techniques here
to show that the information theoretic lower bounds are tight
[19], [11]. Likewise, in the multicontroller case, one can, under
the strong connectivity assumption, obtain encoding schemes
based on quantization in the absence of a centralized plant
decoder, where the plant acts as a relay [12].

The techniques used here can also be applied to systems
driven by noise. However, the construction for coder and
controllers requires a study that involves stochastic analysis,
since almost sure stabilizability is not possible in that case [6].
The techniques used here can be used to obtain necessary and
sufficient conditions on the channels, coder and controllers for
the existence of an invariant distribution [28], [29].

APPENDIX

A. Proof of Lemma 3.1

The Kullback–Leibler divergence between two probability
density functions (pdfs) and is defined as

Since , the pdf of , in
terms of the pdf of is .
Suppose that at each time , a uniform quantizer
with a spacing is used. Then, at time
, the centralized support interval of the density will be

. Hence, after steps, the
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conditional quantization error probability density, given that
where is the th quantization bin, becomes

Thus, the Kullback–Leibler divergence between the uniform pdf
with a support size and the quantization error pdf is

and by a change of variables, this becomes

By the continuity of , and using the mean-value theorem, to-
gether with the fact that , the distance expres-
sion is equivalent to

for some . Again by the
continuity of , given any such that

. Therefore, for is bounded
from above by

and bounded from below by . Hence, the
Kullback–Leibler divergence asymptotically converges to

.

B. Proof of Lemma 3.2

A weak* continuous functional on a weak* compact set ad-
mits a minimum [30]. Hence, the lemma follows by showing
that, for each , the set of quantization output distributions sat-
isfying the conditional entropy bound is weak* compact, and the
differential entropy to be minimized is weak* continuous over
the set of quantizers that lead to satisfaction of the conditional
entropy bound.

For the former, we use the properties of entropy for discrete
random variables. Fix , and let be a random variable taking
values on the set of integers, corresponding to the bin index of
the quantizer. Since the quantizer bins are nonoverlapping, there
exists a , such that for all . Hence, by
Markov’s inequality, for each positive integer

This shows that the tails of the distribution of are arbitrarily
small and, hence, by Prohorov’s theorem [31], the set of such
quantizer output distributions is tight. Tightness is equivalent to
relative weak* compactness (that is, weak* compactness of the
closure of the set), but since the set of output distributions is
closed (because of the inequality constraint on the entropy), it
is weak* compact.

We next show the second desired property, that is the differ-
ential entropy (3) is weak* continuous over the set of admissible
quantizers.

Let denote the conditional estimation error. We first argue
that the density is continuous in , where the metric is
the total variation. This result follows from the definition of a
quantizer and the fact that has a continuous probability den-
sity function (pdf) for all . Hence, it will suffice to show that
the differential entropy is weak* continuous in the pdf of the es-
timation error, and this will be true (as shown below) if the error
entropy is uniformly integrable.

By assumption, using Markov’s inequality, the following
holds for all :

Again, following Prohorov’s theorem, at time , the set of input
distributions is compact in weak* topology [31]. Let be the
set of estimation error densities. We suppress the time index,
and let denote the pdf for the error.

The Gaussian density maximizes the entropy among distribu-
tions with the same variance, and hence, via Jensen’s inequality

for all . This implies that

where is the indicator function. Thus, is
uniformly integrable and, hence, the entropy contributions from
distant sets are negligible. Then, in view of tightness, we can
essentially work with values of from a compact set. Now,
for a sufficiently large positive integer, let

. Let be two pdf’s in . By a
slight abuse of notation, let denote the entropy of
with pdf’s , .

We then have

where denotes the complement of . We have a uniform
bound on the second term for each $$, which we denote by

for all .
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We have

where and are finite positive constants. The finiteness of
(and validity of the first bound) follows from the facts that

is a continuous function for
, and for . Finiteness of (and

validity of the second bound) follows from . Let
.

Now, consider two quantizers and .
Let denote the bins in the quantizer . De-
fine

Given , we can pick large enough so that . Then,
there exist an , and

such that for every uniformly integrable , the bound
implies which in turn

implies , where denotes the total
variation norm. This then completes the proof of weak* conti-
nuity.

C. Proof of Lemma 3.3

We first show that both the constraint functional and the ob-
jective functional are Fréchet differentiable, and admit Fréchet
derivatives, with the Fréchet derivative for the former being
onto. This will then imply the existence of a Lagrange multi-
plier. Let be a probability mass
function. The Gateaux differential of
at , with increment , is

which can be written as:

where with
, and denotes the inner product.

Thus, the Gateux differential exists, and so do the Gateaux
and Fréchet derivatives, which are both equal to , and are onto.
The objective functional, the entropy, is continuously differen-
tiable in . We show that is continuously differ-
entiable in . Here, is the decoder function minimizing the
entropy of the estimation error. Given , we rewrite

as where the
decoder function now takes only as its argument. We
have

Since the estimation error is independent of the reconstruc-
tion given the reconstruction, the first inequality becomes an
equality. For any deterministic, one-to-one decoder function,
the second inequality also becomes an equality since

However, the conditional entropy is Fréchet dif-
ferentiable in , as was shown previously in the study of the
constraint functional. These then imply the existence of a La-
grange multiplier [30], which is further positive (because of the
nature of the constraint).

Now, for , introduce the Lagrangian

Since , we have

for some functional . However, since there is perfect ac-
cess to and , the optimal choice for will be a function
of only .
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[11] S. Yüksel and T. Başar, “On the absence of rate loss in decentralized
sensor and controller structure for asymptotic stability,” in Proc. IEEE
Amer. Control Conf., Minneapolis, MN, Jun. 2006, pp. 5562–5567.
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