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Communication Constraints for Decentralized
Stabilizability With Time-Invariant Policies

Serdar Yüksel and Tamer Başar

Abstract—In this note, we study communication requirements for decen-
tralized control schemes when sensors and controllers are connected via
noiseless digital channels and system noises are bounded. Under various in-
formation structures, and within the class of time-invariant encoding and
control policies, we quantify achievable rates, and obtain fixed-rate and de-
layless encoders and decoders that achieve boundedness in the state esti-
mation errors at the controllers. We use distributed coding theoretic ap-
proaches to show that when the sensors do not collaborate, it is sufficient
for the controllers to share information amongst themselves but not with
the sensors. Sensor collaboration, however, leads to improvement in rate
performance.

Index Terms—Control under communication constraints, decentralized
control, distributed coding, multi-agent systems, quantization.

I. INTRODUCTION

With the recent advances in the communications technology, the use
of digital and wireless channels such as the Internet or bus lines [as
in a Controller Area Network (CAN)] in control systems have become
common place. Some examples include vehicle systems, and aerospace
applications [1], [2] as well as formation control [3]. Further, sensor
network applications increasingly involve control systems. In such re-
mote control problems, one major concern is the characterization of the
amount of information transfer needed to guarantee a desirable per-
formance. This information transfer would be between various com-
ponents of the networked control system, as depicted in Fig. 1. One
problem of interest is regarding the ability of the controllers to track
the plant state under communication constraints through various corre-
lated observations.

In this note, we study such a problem, that is the problem of informa-
tion transmission leading to stabilizability, under a number of decen-
tralized information structures. In all, we assume the coding and control
policies to be time-invariant and of the static feedback type, and that
there exists a centralized, or a locally centralized controller. A precise
problem formulation is now given next, followed by a brief review of
relevant literature.

A. Problem Formulation

Consider an n-dimensional discrete-time noisy LTI system with an
n-dimensional control input, where each control component has a di-
rect effect on a corresponding scalar state. More precisely, we have the
state dynamics

xt+1 = Axt +But + wt; t � 0 (1)
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Fig. 1. Decentralized networked control system. Solid lines indicate the inter-
action between the control stations and the plant. Dashed lines depict the pos-
sible communication links between the stations.

where A is an n � n matrix, B = diag(b1; . . . ; bn) is nonsingular,
xt is the state, ut is the control, the initial state x0 is a continuous
random vector with a known distribution with finite support, and wt

is an n�dimensional zero-mean i.i.d. noise process whose distribution
also has bounded support. Each control component (say, ui, the ith
subcontroller) has access only to the corresponding component of the
state (xi), but with this information transmitted from a sensor to the
(sub)controller over a bandlimited noiseless channel.

We denote the encoder output corresponding to xit, transmitted from
the ith sensor to the ith controller at time t by zit . We note that given
a partitioning of ;P = fBjg, where the Bj ’s are the subintervals, or
bins, with Bj = [�j ; �j+1), a quantizer Q is a mapping from to P .
For each xi 2 , we can also identify Q(xi) with a point qj 2 Bj ,
for some j such that xi 2 Bj . We denote by x̂i the estimate at the
controller for xi. In addition to allowing each (sub)controller i to have
access to zit at time t, we will also allow the controllers to exchange
some past information, as to be delineated below. We will identify six
information structures (ISs) (see Fig. 2), depending on what is avail-
able to and exchanged by the sensors and the controllers. In each case,
Ii
�;sensor;t (respectively, Ii

�;controller;t) will denote the information avail-
able to sensor i (respectively, controller i) at time t.

1) Centralized IS: This is the classical case. The sensors and the
controllers collaborate and share all the information they have. This
case is included here for the sake of completeness, where both the sen-
sors and the controllers can be viewed as single blocks

I
i
A;sensor;t = IA;sensor;t = fu[0;t�1]; z[0;t�1]; x[0;t]g

I
i
A;controller;t = IA;controller;t = fu[0;t�1]; z[0;t]; x̂[0;t�1]g:

2) Decentralized IS Where Controllers Communicate, and Relay
Their Estimates to the Sensors:

I
i
B;sensor;t = fuit�1; x̂t�1; x

i
tg

I
i
B;controller;t = fui[0;t�1]; z

i
[0;t]; x̂t�1g:

Here the sensors have access to the estimates formed at the control sta-
tions as well as the actions taken, but have access to the current value
of only their own corresponding states. The controllers share the past
estimate and action information, but receive the current coded state in-
formation only from their corresponding sensors. The controllers apply
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Fig. 2. In IS A, the sensors and controllers have full cooperation, and perform
joint encoding and decoding. In IS B, the sensors talk to each other and share
what they had sent at the previous time stage, and the control values they had
received, but the encoding and the decoding are not joint operations. In IS C,
the sensors do not talk to each other and have no access to controller estimates.
In IS D and IS E, the controllers collaborate while decoding the state, with the
sensors receiving feedback in IS E. In IS F, the controllers communicate with
delay.

their control upon the arrival of zit , that is, the data sharing between
the controllers takes place after the controllers generate their control
values. Here, the decoding at the controllers is not a joint operation.

3) Decentralized IS Where Only the Controllers Communicate, With
No Relaying to the Sensors: Here the controllers have the same infor-
mation as in IS B above, whereas each sensor i has access to the input
and output connected to the ith estimator, which is the relevant part of
the ith controller. As in IS B, the decoding at the controllers is not a
joint operation.

I
i
C;sensor;t = fuit�1; x

i
tg

I
i
C;controller;t = fui[0;t�1]; z

i
[0;t]; x̂t�1g

4) Decentralized IS Where Controllers Collaborate, and Relay
Their Estimates to the Sensors: Here the sensors have access to the
estimates formed at the control stations as well as the actions taken, but
have access to the current value of only their own corresponding states.
Controllers collaborate while decoding the data, that is, controller i
uses the entire z to decode the signal

I
i
D;sensor;t = fuit�1; x̂t�1; x

i
tg

I
i
D;controller;t = fui[0;t�1]; z[0;t]; x̂t�1g

5) Decentralized IS Where Controllers Collaborate With No Re-
laying to the Sensors: Here the sensors have access only to the current
value of only their corresponding states and what they have sent to the
corresponding controller. Controllers collaborate while decoding the
data

I
i
E;sensor;t = fut�1; x

i
tg

I
i
E;controller;t = fui[0;t�1]; z[0;t]; x̂t�1g:

6) Decentralized One-Step Delay IS With Relaying to the Sensors:
This is similar to IS B except that the controllers and the sensors ex-
change information with a delay of one time step

I
i
F;sensor;t = fu[t�2;t�1]; x̂[t�2;t�1]; x

i
tg

I
i
F;controller;t = fu[0;t�1]; z

i
[0;t]; x̂

i
t�1; x̂t�2g:

}
Remark: There are two types of side-information in the above struc-

tures. One is with regard to the controller estimates relayed to the sen-

sors, and the other is with regard to the joint encoding operation at
the sensors. We will see that there is no loss due to the absence of the
relayed estimate side information, whereas there is loss due to the ab-
sence of joint encoding at the sensors.

Throughout, we have zit = it(I
i
�;sensor;t) and

x̂it = �it(I
i
�;controller;t) for some sensor functions (encoders)

it and estimator functions (decoders) �it , where both of these
functions will have to be determined. Let eit := xit � x̂it, and Ki

be the number of levels in the fixed-rate quantizer used by sensor i;
1 � i � n. Note that then the rate on the channel connecting sensor i
to (sub)controller i (say, channel i) is Ri = log2(K

i), and the total
rate for the n channels is R =

i
Ri. For two vectors u; v, let the

notation u < v denote componentwise inequality, i.e., ui < vi; 8i.
Finally, let W (eit) denote the support width of the random variable
eit, that is the width of the connected domain over which all mass
associated with the distribution of eit is concentrated. Then, the main
problem we address in this paper is finding a set of achievable total
rates over n channels under which the support width of eit remains
finite for all time t, and for all i. Since the system is controllable, the
boundedness in the estimation error implies the existence of control
policies which keep the state bounded, and hence, in essence we
would be studying here a (decentralized) state-estimation problem.
More precisely, we have the following criterion.

Definition: Decentralized Stabilization: For a given information
structure (IS), a sum rate R is stabilizing if there exist an n-tuple of
rates (R1; . . . ; Rn) and corresponding controls (u1[0;1); . . . ; u

n
[0;1)),

compatible with the IS, such that n

i=1 R
i = R, and the closed-loop

system is stable almost surely (a.s.), that is there exists an M < 1
such that lim supT!1 kxT k1 < M a.s., where k � k1 is the sup
norm. }

B. Literature Review and Preliminaries

Decentralized stabilization has attracted considerable interest in the
literature with earlier works including [4], [5], and [6]. With regards
to communication theoretic issues, a diverse range of structures and
models in this framework have been analyzed by various authors; see,
for example [8]–[10] and [11]. Among these, [9] primarily studies the
case where the modes observable by the sensors are decoupled. Refer-
ence [10] shows that the minimum rate required for stability of multi-
sensor systems with a centralized controller, is the same as the rate
required in the centralized case. The analysis in [10] builds on the
observation that each of the sensors observes the eigenvalues of the
underlying system, with all covered, since the overall system is ob-
servable. Reference [13] further studies the multi-sensor problem with
constructions. A parallel work is [14], which considers multicontroller
systems with time-varying policies and quantifies the minimum achiev-
able rate for any connectivity and graph structure leading to decen-
tralized stabilizability. However, the policies adopted in [14] require
time-varying coding and control policies which may be somewhat diffi-
cult to implement. Here, we consider instead time-invariant, fixed-rate,
state-feedback control and encoding policies, and obtain achievable
(though somewhat higher) rates in this context.

Another contribution of this note is to the sensor network literature
where various distributed source coding and side information based
schemes have been studied; see, for instance [16], [17] and the refer-
ences therein. We investigate here further a two-fold side information
interpretation, one of which is due to the linear evolution of the dy-
namics, and the other one due to the well-studied distributed source
coding nature of the problem. Furthermore, we note that unlike the
studies in a strict communication framework, the encoding in a real-
time control system has to be not only causal, but also delay-free. We
use binning schemes, but because of the zero-delay restriction it is not
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possible to use asymptotic binning arguments that are typically em-
ployed in Wyner-Ziv coding [18].

In the balance of this note, we provide in Section II solutions
corresponding to each of the six information structures introduced.
Section III includes concluding remarks.

II. STABILIZING RATES

A. Information Structure A

As mentioned earlier, in the centralized case the system can be
viewed as a single multi-dimensional sensor and same dimensional
controller, and hence without any loss of generality the system matrix
can be considered to be in Jordan form (with B not necessarily diag-
onal). This observation leads to a minimum achievable rate that can
be obtained from that for each subsystem, as captured in the following
result. A proof of this result can be found in [19].

Theorem 2.1: Consider system (1) in a centralized setting. The min-
imum achievable rate under the stability criterion introduced is R =

i
log2(C(j�ij)); where C(x) is the smallest integer strictly larger

than x.

B. Information Structure B

In this scheme, the estimated states as well as the control signals are
shared between the controllers. Furthermore, the encoder at the sensor
has access to the corresponding receiver’s information. Since our goal
here is to obtain boundedness, innovations will be uniformly quantized
where quantizer reconstruction values are taken as the mid-points of the
bins. Let us consider the first component: If we subtract the predicted
value

a11x̂
1
t + a12x̂

2
t + . . . + a1nx̂

n
t + b1u

1
t

from the actual state xt+1, the innovation to be sent will then be an
appropriately weighted sum of the individual quantization errors. This
observation then leads to the result given below, with the quantizers
fixed to be time invariant, and using fixed length codewords. We first in-
troduce some notation: Let A+ be the matrix obtained by replacing all
entries of a matrix A with their absolute values. Let K denote the class
of diagonal n � n matrices K = diag(k1; . . . ; kn), where (1)=(ki)
are positive integers, and further that KA+ is stable.

Theorem 2.2: For IS B, under the restrictions of time-invariant quan-
tization and fixed length coding, the rate given by the solution of the
following optimization problem is stabilizing:

R� = min
K

i

log2(1=ki) (2)

Proof: The innovation process is given by eit+1 = ai1(x
1
t�x̂

1
t )+

. . . + ain(x
n
t � x̂nt )+wi

t � ai1e
1
t + . . . + aine

n
t +wi

t . Let the width
of the uncertainty in the quantization error, eit, be denoted by �i

t. Then
the uncertainty interval for eit+1 satisfies

W (eit+1) � jai1j�
1
t + . . . + jainj�

n
t +Di

where Di is the length of the connected domain (interval) over which
the i-th noise term has full support. Now using a Ki-level uniform
quantization reduces this by the same factor. Hence, we have the recur-
sion

�i
t+1 � jai1j�

1
t + . . . + jainj�

n
t +Di =Ki; 1 � i � n

Fig. 3. Wyner-Ziv framework of source coding with side information at the
decoder. In our setup y denotes the information shared between the controllers,
z is the quantization output at time t; x is the estimate of the state as a function
of the side information y and the received data z.

and in vector form

�t+1 � K(A+�t +D);

whereK = diag(k1; . . . ; kn); ki = 1=Ki. The sequence f�tg, being
generated by a discrete-time LTI system, is bounded (since the initial
state x0 has bounded support) if and only if KA+ is stable, that is
K 2 K, and this corresponds to a total rate of

i
log2(K

i). The result
then follows. }

Remark: In case no information is transmitted for a particular sub-
component of the controller, the number of levels required can be taken
to be 1, since the rate required will be zero for that channel. Hence, the
matrix K has elements at most equal to 1 on the diagonal. Further-
more, since

i
log2(

1

k
) = log2

1

k
, and logarithm is a monotonic

function, and K is diagonal, the optimization problem reduces to the
maximization problem: maxK det(K). }

Proposition 2.1: If A is diagonal, the solution of (2) is
R� =

i
log2(C(j�ij)), where C(x), as defined earlier, is the

modified ceiling function.
Proof: WhenA is diagonal, the condition for stability is: kij�ij <

1. If �i is not an integer, we have (1)=(ki) = d(j�ije); whereas if �i
is an integer, (1)=(ki) = j�ij + 1. Thus, the optimum rate is: R� =

i
log2(C(j�ij)): }

Proposition 2.2: The optimization problem (2) admits a solution for
any matrix A.

Proof: Let �+i ; 1 � i � n, be the eigenvalues of A+. Let k be
given by

(1=k) = C(max
i
j�+i j) =: C(j�+mj):

Then K := kIn�n will lead to a stable KA+ matrix. The rate in this
case becomes R = n log2(C(j�+mj)). There are only finitely many
choices for the matrix K which could be better than the one proposed,
and hence there exists an optimal solution. }

C. Information Structure C

For the third structure, where the sensors do not communicate with
each other, whereas the controllers share their data and their actions,
we have the following result.

Theorem 2.3: Under the restrictions of time-invariant quantization
and fixed length coding, the rate given by the solution of the problem
introduced in Theorem 2.2 is also stabilizing under IS C.

Proof: Side information, which is the other controllers’ estimates,
is only available at the controllers (see Fig. 3). We use binning (see [16],
[17]) for construction. The approach exploits the assumption that the
noise processes are bounded.

The data to be sent, xit+1, can be written as xit+1 = aix̂t+aiet+w
i
t,

where x̂t is the vector of the state estimates available at each subcon-
troller, et is the vector of quantization errors at time t, and ai is the
ith row of matrix A+. Let W (eit) denote the support width of the un-
certainty eit = xit � x̂it, and suppose that �i

q;t is a width of the total
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Fig. 4. Binning Structure, the encoder only sends one of the cosets. In our
scheme, d1q stands for � and d1 for � . The decoder, upon receiving the
coset symbol, generates its estimate by finding the bin with the same coset which
is closest to its estimate.

Fig. 5. The evolution of the uncertainty. Note that the evolution is parallel to
the directions of the eigenvectors, in addition to the bounded noise effects. The
encoders thus send correlated data and can exploit this dependency.

of cosets, as in Fig. 4. Further, let �i
t be a quantizer parameter with

W (eit) � �i
t.

In this scheme, the sensor only informs the receiver as to which coset
the state belongs to. The receiver will use the coset and decode the
signal using the available side information. The rate required will then
be log2(�

i
q;t=�

i
t). Suppose that the encoder sent C1. In this case, the

receiver will need to choose between the possible bins in the coset.
There exists a nearest bin without ambiguity, if the condition ai�i

t +
Di < �i

q;t+1 is satisfied. If Ki levels are used for quantization, then
(1=Ki)�i

q;t is a bound on the uncertainty interval at the next stage,
which is to be less than M . To be able to decode the correct bin using
the coset information, we need to satisfy

A+(K�q;t) +Di < �q;t+1; 8t:

Let � > 0, and 1n be the vector of ones. For stability it suffices to have

�q;t+1 � �1n � A+(K�q;t) +Di;8t:

The system will be stable if A+K is stable, which is identical to KA+

being stable, since for two square matrices A;B, the spectra of AB
and BA are identical. Define K as the diagonal matrix consisting of
the reciprocals of the number of quantization levels on its diagonals.
Recognizing this expression from the previous section, an optimization
problem can be formulated as in (2). }

D. Information Structure D

This is the IS where controllers use the entire received data to gen-
erate their decoding output. Here the controllers have some room to
improve their estimates using the correlated data received by the other

Fig. 6. The evolution of the uncertainty, with the same matrix in Fig. 5 being
used. Here, even though the sensors do not know what the controller esimates
are, still it suffices to send the coset information. If the controllers do not col-
laborate then each of their corresponding sensors will send information for five
symbols.

Fig. 7. For any level that sensor 1 has to send, there are only four levels, and
not five, that sensor 2 needs to send. Note that each sensor still sends the same
coset value for each marginal data. We encode log (25) bits if we do not let
controllers cooperate. If only the controllers cooperate, we would need log (20)
bits to be sent.

controllers. At each stage the sensors have access to the uncertainty
polygon that they are transmitting (see Fig. 5–8). Thus, each sensor is
capable of considering the support sizes of the errors at all the con-
trollers.

Let V (x̂t) = fxv;tg denote the vertices of the unit cube scaled by
M <1, and centered at x̂t. Since the system is linear, one can obtain
the following bound on the support size:

W ((Axi)t � A(x̂t)
i) � max

x2V (x̂ )
aix� min

x2V (x̂ )
aix+Di

In IS B, this expression was upper bounded, without considering the
correlation with the other components of e. However, since we allow
the controllers to cooperate in this case, there might be cases for which
the encoders might send information that takes into account this coop-
eration at the controllers. Let us introduce

Si
D(x̂t) : = fxt : jx

j
t � x̂jt j �M; 8j

W ((Axt)
k � (Ax̂t)

k) < M; k 6= ig
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Fig. 8. Joint encoding outperforms independent encoding. If the sensors are
allowed to collaborate, there would only be log (18) bits to be sent.

and define the number of levels needed to identify the state within a
precision of M , given the other sensor readings, as

K
i
�i := minfk : kM > sup

x 2S (x̂ )

W ((Axt)
i � (Ax̂t)

i)g: (3)

Such a time-invariant Ki
�i exists because of the finiteness of the deci-

sion sets. }
To avoid numerical issues in the construction, we provide the fol-

lowing sequential scheme. Define

S
i
s;D(x̂t) : = xt : jx

j
t � x̂

j
t j �M; 8j

W ((Axt)
k � (Ax̂t)

k) < M; k � i� 1;

and

K
i;[1;i�1]
s : = min k : kM > sup

x 2S (x̂ )

W ((Axt)
i � (Ax̂t)

i) :

This sets the stage for the following result.
Theorem 2.4: Suppose the controllers cooperate while decoding.

Let �i be the set of permutations of the sequence f1; 2; . . . ; ng, and
K

i;[1;i�1]
s be as defined above. The following rate is stabilizing under

IS D:

R
� = min

�
i

log2(K
i;[1;i�1]
s ):

E. Information Structure E

Here the sensors do not have access to the actual estimates at the
controllers. As in IS D, we need to bound the support sizeW ((Axt)

i�
(Ax̂t)

i), but this time without knowing what the actual value of x̂t is.
We thus bound the support size with

sup
x̂

f max
x2V (x̂ )

aix � min
V (x̂ )

aix+D
ig:

The controller has to decode the correct bin given only the coset infor-
mation, as in IS C. Introduce

S
i
E : = xt; x̂t : jx

j
t � x̂

j
t j �M; 8j

W ((Axt)
k � (Ax̂t)

k) < M; k 6= i :

To be able to decode the actual bin uniquely, we need the number of
cosets to be equal to at least

K
0i
�i := minfk : kM > sup

fx ;x̂ g2S

W ((Axt)
i � (Ax̂t)

i)g (4)

which is different from what we had obtained in IS E, due to the pres-
ence of the extra x̂t term in the constraint set SiE .

Theorem 2.5: There is no difference between the sum rates corre-
sponding to (3) and (4) (corresponding to under IS D and IS E, respec-
tively).

Proof: The objective function is identical in both cases. The only
difference is in the constraint set, due to the extra term x̂t in SiE .

Suppose there exists a pair fxt; x̂tg in the closure of SiE in (4) that
achieves the supremum ofW ((Axt�1)

i�(Ax̂t�1)
i). Due to linearity,

we have

(Axt)
i � (Ax̂t)

i = (A(xt � x̂t))
i
:

Thus, the supremum value is only a function of the difference between
the reconstruction value and the actual value. Thus, the value achieved
by the pair fx;x̂tg is identical to the one achieved by some arbitrary
fxt � x̂t + x̂0t; x̂

0
tg. Since the reconstruction value is arbitrary, the

constraint sets for the evaluation ofKi in IS E and IS F are identical.}
As in IS D, for a sequential scheme we introduce

S
i
E;s : = xt; x̂t : jx

j
t � x̂

j
t j �M; 8j

W ((Axt)
k � (Ax̂t)

k) < M; k � i� 1

and

K
0ij[1;i�1]
s : = min k : kM > sup

fx ;x̂ g2S

W ((Axt)
i � (Ax̂t)

i) :

We then have the following.
Theorem 2.6: Suppose the controllers cooperate while encoding.

Let �i be the set of permutations of the sequence f1; 2; . . . ; ng, and
Ki;[1;i�1] be as defined above. Then, the following rate is stabilizing:

R
� = min

�
i

log2(K
0ij[1;i�1]
s )

F. Information Structure F

This is the IS where control signals are exchanged with no delay,
whereas state estimate transmissions are delayed. In this scheme, state
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information on the stage before the last one is available. Consider the
first subsytem. Before quantization

e1t+1 = a11e
1
t + a12

i

a2ie
i
t�1 + a13

i

a3ie
i
t�1 + � � �+ w1

t :

Define diag(A) as an n � n diagonal matrix, whose diagonal entries
are those of A. Let N := (A� diag(A))A, and D be an n� 1 vector
with entries as the bounds,Di, on the noise terms. Now, for the support
size W of the estimation errors, we have

Wt+1 � K(N+)Wt�1 +Kdiag(A+)Wt +KD: (5)

Let Kn be the set of diagonal matrices whose non-zero entries have
integer reciprocals satisfying the stability condition in system (5). The
second-order system in (5) can be reduced to a first-order system in the
usual way: Define Wt�1 = rt;Wt = pt. Then (5) becomes

rt+1
pt+1

= ~B
rt
pt

+K
0

wt

~B :=
0 I

KN+ K(diag(A+
ii)):

and we need ~B to be stable. This analysis now leads to the following
result.

Proposition 2.3: Consider system (1), with information structure F .
Let K be the solution of the following optimization problem:

max
K

det(K) =: det(K�): (6)

Then the rate

R� =
i

log2(det(K
�))

is stabilizing.
Proposition 2.4: There exists a solution to (6).

Proof: We have j[ ~Bx]ij � k ~Bk1kxk1; 8i = 1; . . . ; 2n; 8x,
where k ~Bk1 = maxi

2n
j=1 j ~B(i;j)j; [ ~Bx]i denotes the i’th element

of the vector ~Bx, and ~B(i;j) denotes the ij’th entry of the matrix ~B.
We then have

( ~Bx)T ~Bx � 2n(kxk1)2(k ~Bk1)2;8x:

Let �m be an eigenvalue of ~B with maximum absolute value, and
x be its corressponding eigenvector. We then have j�mj2xT x �
2nk ~Bk21(kxk1)2, and since (kxk1)2 � xT x, this implies,

j�mj2 � 2nk ~Bk21: (7)

Now, let j�mj7 > 1. Note that due to the structure of ~B, the corre-
sponding, possibly complex, eigenvector is in the form [yT ; �my

T ]T .
This, in turn, implies that

KN+y +K(diag(A+
ii))�my = �2my:

Defining a new matrix (with possibly complex entries)

S� := [(1=�m)KN+ +K(diag(A+
ii))]

we have S� y = �my. But using an argument similar to the one that
led to (7), it suffices to bound

sup
� :j� j�1

p
nkS� k1

in order to bound the eigenvalues of S, which is possible by an appro-
priate selection of K : Let k = nC(kN+k1 + k(diag(A+

ii))k1), and
pick K = (1=k)In�n, which would lead to

sup
j� j�1

k(1=�m)KN+ +K(diag(A+
ii))k1 < 1=n:

Thus, j�mj < 1. Now, since there is only a finite number of solutions
that are better than the one proposed, the optimization problem (6) has
a solution. }

Proposition 2.5: If A is diagonal, (6) leads to a sum rate of

R� =
i

log2(C(j�ij)):

Proof: Proof follows from the observation that, in the diagonal
case, there is no need for the controllers to share their state estimates.}

III. CONCLUDING REMARKS

This note has studied communication rate requirements for decen-
tralized control systems, with the rates required for centralized schemes
being strictly lower. We have shown that the information sharing ar-
chitecture determines communication requirements and complexity. It
is known that in decentralized control systems time-varying policies
could lead to better performance than time-invariant policies [6], and
hence one would expect a similar type of an improvement in the con-
text of the problem here by resorting to time-varying policies [14]. We
have not included here, due to page limitations, any numerical exam-
ples illustrating the results. Simulations can be found in [12].
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On the Gap Between Positive Polynomials and SOS of
Polynomials

Graziano Chesi, Senior Member, IEEE

Abstract—This note investigates the gap existing between positive poly-
nomials and sum of squares (SOS) of polynomials, which affects several
analysis and synthesis tools in control systems based on polynomial SOS
relaxations, and about which almost nothing is known. In particular, a ma-
trix characterization of the PNS, that is the positive homogeneous forms
that are not SOS, is proposed, which allows to show that any PNS is the
vertex of an unbounded cone of PNS. Moreover, a complete parametriza-
tion of the set of PNS is introduced.

Index Terms—Hilbert’s 17th problem, linear matrix inequality (LMI),
optimization, positive polynomial, sum of squares (SOS).

I. INTRODUCTION

Positive polynomials play a key role in the analysis and synthesis of
control systems. This is due to the fact that conditions for establishing
stability of equilibrium points or computing performance indexes of
the system such as the H1 norm, can be reformulated in terms of
positivity of a Lyapunov function and negativity of its time derivative.
These functions are usually polynomials as natural extension of the
classic quadratic Lyapunov functions in the attempt of achieving less
conservative results. Unfortunately, establishing whether a polynomial
is positive or not, is still a difficult problem that cannot be solved sys-
tematically because it amounts to solving a nonconvex optimization. In
order to deal with this problem, gridding methods have been proposed,
for example based on the use of Chebychev points, but their conserva-
tiveness and computational burden are generally unacceptable, reason
that has motivated the search for alternative approaches.

This search has recently provided the sum of squares (SOS) relax-
ation (among the first contributions on SOS relaxation, see for example
[1]). In this approach, the positivity of a homogeneous form (equiv-
alently of a polynomial) is established by checking if it is a SOS of
homogeneous forms, operation which amounts to solving a linear ma-
trix inequality (LMI) feasibility problem, i.e., a convex optimization.
Due to the existence of powerful tools for solving LMIs [2], SOS re-
laxations have quickly become an essential tool in control. In robust
control, SOS relaxations have been employed to obtain less conserva-
tive conditions than those provided by quadratic Lyapunov functions to
assess robust stability of linear systems affected by parametric uncer-
tainty, in both cases of time-varying uncertainty [3]–[6] and time-in-
variant uncertainty [7]–[9]. An analogous use of SOS has been made
in the computation of robust performance indexes [10], [11]. SOS have
been exploited also in the field of nonlinear systems [12]–[15], hybrid
systems [16], [17] and time-delay systems [18]. See also [19]–[22] for
further applications of SOS.

“Can any positive homogeneous form be written as a SOS?” This
question was made by Hilbert in his 17th problem and has a negative
answer as it is known. It is hence known that, in spite of their popu-
larity, SOS relaxations can be conservative. However, almost nothing
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