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Abstract— A stochastic stability result for a class of adaptive uniform quantizer as a function of the source and the current
quantizers which were introduced by Goodman and Gersho is pin size:
presented. We consider a case where the input process is a
linear Markov source which is not necessarily stable. We present qG = IA{ (z¢)
a stochastic stability result for the estimation error and the A - A Q( Ay) 1)
quantizer, thus generalizing the stability result of Goodman and = e\ Tty S
Gersho to a Markovian, and furthermore to an unstable, setting. Here A, characterizes the uniform quantizer, as it is the bin

Furthermore, it is shown that, there exists a unique invariant _. . . .
distribution for the state and the quantizer parameters under size of the quantizer at time. In the model that we will

mild irreducibility conditions. The second moment under the Consider,Q(.) will take ratio between: and A as its input.
invariant distribution is finite, if the system noise is Gaussian. We consider an LTI discrete-time scalar system described
by

I. INTRODUCTION
Tpy1 = azy + dy, ()

A quantizer, @, for a scalar continuous variable is & Mapere -, is the state at time, and {d;} is a sequence of
R — R, characterized by a sequence of bifi$;} and their ;o5 mean independent, identically distributed (i.irgidom
representation(¢'}, such thatvi, Q(x) = ¢' if and only if \ariaples which satisfy the following:
xr € B,L

Of particular interest is the class of uniform quantizer\ssymption A: The {d;} sequence is such that each of the
In the following, we modify the description of a traditional.andom variables admits a probability distributiorwhich is
uniform quantizer by assigning the same value when the staigso|ytely continuous with respect to the Lebesgue measure
is in the overflow region of the quantizer. As such, a uniforrg, R, and for every open séb € R, »(D) > 0. Furthermore,

quantizer:@ : R — R with step sizeA and an (odd)K E[d?) = E[d?] < . o
number of levels satisfies the following fér=1,2..., K: Later we will consider a stronger assumption:
N (K +1) . Assumption_ B: The sequence{dt_} _is an i.i.d. Gaussian
Qx(z) = (# +E)A, if oz [y1,7) sequence with zero-mean and a finite variance. o
Remark: With Assumption B, we will obtain stronger results

with [v1,72) = [((k — 1) = 5)A, (k — =£)A). If [2| > A in the development of the paper. We could generalize Assump-
orx = %A, we let the quantizer output be null, denoting thaion B, by requiring the tail of the noise distributions to decay
the state is outside the granular region of the quantizee. Texponentially fast. o
value will be taken to be zero at the receiver. In the aboveg is the system coefficient withu| > 1, that

A general class of quantizers are those which are adaptiig. the system is open-loop unstable. The case Yuith< 1
Let S be a set of states for a quantizer stéitéet F : SxR —  (stable case), can be considered as a special case of dng sett
S be a state update-function. An adaptive quantizer has tag will be apparent in the development of the paper.

following state update equations: In the following, we discuss the quantization policy and
the notion of stability that we use in the main result. Before
Siy1 = F(St, Qe(x4)) however, we present a brief review of relevant literature.

Here, Q, is the quantizer applied at time z, is the input to A. Literature Review
the quantize),, andS; is thestate of the quantizer. We note  There is large literature on adaptive quantizer design. One
that, such a quantizer is implementable since the updates @aportant reference here is the work by Goodman and Gersho
be performed both at the encoder and the decoder. [2], where an adaptive quantizer was introduced and the-adap
One particular class of adaptive quantizers is introduged tive quantizer’s stationarity properties were investghivhen
Goodman and Gersho [2]. One such type has the followitige source fed to the quantizer is independent and idelytical
form with Q% being a uniform quantizer witi’ bins and bin- distributed with a finite second moment. Kieffer and Dunham
size A and Q determining the updates in the bin-size of th{8] have obtained conditions for the stochastic stabilifyao



number of coding schemes when the source considered is alsbheorem 2.1: ([6] Theorem 4.1) Letd € X be au—petite

stable, that is when it has an invariant distribution; wheget which is recurrent. If the Markov Chain jsirreducible,

various forms of stability of the quantizer and the estiowati and if sup,c 4 E[min(t > 0 : z; € A)|zg = z] < oo, then

error have been studied. In our case, however, the scherties Markov chain is positive Harris recurrent and it admits a

in [2] and [3] are not directly applicable, as the process waique invariant distribution.

consider is open-loop unstable, as well as Markovian. The existence of an invariant distribution is important pri
Zooming type adaptive quantizers, which will be describetarily because of the following Theorem:

further in the paper, have been recently introduced by Brtick Theorem 2.2 (Birkhoff’s Individual Ergodic Theorem):

and Liberzon [4] for the use in remote stabilization of opericonsider a positive Harris recurrent Markov process }

loop unstable, noise-free systems with arbitrary initiahdi- taking values inX, with invariant distribution 7(.). Let

tions. Nair and Evans [1] provided a stability result undex t f : X — R be a bounded function, measurable B(X).

assumption that the quantization is variable-rate and stowrhen, the following holds almost surely:

the first result for a noisy setup (with unbounded support for =

the noise probability measure) that on average it suffices to lim — Z flxy) = /f(x)w(da:).

use more thatog,(|a|) bits to achieve a form of stability. [1] T—o T =

used asymptotic quantization theory to obtain a time-veyyi B. Main Results

scheme, where the quantizer is used at certain intervals at &efgre proceeding further with the presentation of the main

very high rate, and at other times, the quantizer is not usedsyits, we further discuss the adaptive quantizers ceresid

We provide an approach which allows us to both provide & example of Goodman-Gersho [2] type adaptive quantizers

result for the case when the quantizer is fixed-rate as well § those that haveoom level coefficients as the quantizer

to obtain an invariance condition for a probability measome state. In the zooming scheme, the quantizer enlarges the bin

the quantizer parameters. sizes in the quantizer until the state process is in the range

of the quantizer, where the quantizer is in thafect-zoom

phase. Due to the effect of the system noise, occasionaly th
We first present a brief overview of stochastic stabilitgtate will be in the overflow region of the quantizer, leading

for Markov Chains. The reader is referred to [6] for furtheto an under-zoom phase. We will refer to such quantizers as

II. MAIN RESULTS OF THEPAPER

discussions. zooming quantizers.
. N . In the following, we will assume the communication chan-
A. Stochastic Sability of Markov Chains nel to be a discrete noiseless one with capafity

Let {z;,t > 0} be a Markov chain with state space Theorem 2.3_: Considerazooming type adaptive quantizer
(X,B(X)), and defined on a probability spad€,F,P), gpplled to the Ilpear system described by (2), under Assump-
where3(X) denotes the Boret—field onX, 2 is the sample tion A. If the noiseless channel has capacity, for same0,
space,F a sigma field of subsets &2, andP a probability R =1log,([|a] + €] + 1),
measure. LetP(z, D) := P(xy4+1 € D|z, = z) denote the ) . L _
transition probability fromz to D, that is the probability of tNeN. there exists an adaptive quantization policy such tha

the event{z;;, € D} given thatz; = x for D € B(X). there exists a compact s&twith

Definition 2.1: For a Markov chain with transition proba- sup E[min(t > 0: 2t € S)|zg = z] < o0,
bility defined as before, a probability measurds invariant z€S
on the Borel spacéX, B(X)) if thus S is a recurrent set.
The proof of this Theorem is given in Section II-C. In
m(D) = | P(z,D)n(dz), YD € B(X). particular, with R = log,([|a] + €] + 1), K = 2%, let us

define R’ = log, (2% —1). We will now consider the following
update rules. Fot > 0 and with Ay € R selected arbitrarily
andz_, = 0, consider the following:

Definition 2.2: A%Markov chain isu-irreducible, if for any
set B C X, such thatu(B) > 0, andVz € R, there exists
some integen > 0, possibly depending oB andx, such that

P"(z,B) > 0, where P"(z, B) is the transition probability B = adi1+ QR (z)
in n stages, that i (z;+,, € Blz; = x). 2 = axri_q — afi_q +di_q
Definition 2.3: A set A C X is u—petite on(X, B(X)) if A — AO 2t 3
for some distributionZ on N (set of natural numbers), and s tQ('AtQR/—l ) 3)
some non-trivial measurg, If there existd, e, > 0 with < ¢ and L > 7‘““';"’" such
o0 that,
> PMx,B)T(n) > u(B), VYzeA, BeBX). O(e) > |al +6 > 1
n=0 -
Definition 2.4: Consider a Markov proces$r;} taking |al ~ .
. . . —_ <lz| <
values inX. A compact setd € X, is recurrent if P(min(t > la] +€—n <Qz) <1 it 0slelsLA>L

0:2¢y € A) <oolzg=2) =1,V € A. Qz) =1 it 0<|z]<1,A<I4)



with the expected number of time stages between visi{$af 1) }
Eld;] <5 to C’ x Cy,. Consider the drift of thée,, h,) process in Figure
L‘alfel_ngR'fl ’ 1: When(e, hy) are inC, x Cj, the expected drift increases
] ) ] both |h| and |e|. When the{z;} process gets outsid€’ and
we will show that a recurrent set exists with the update rulq%t} outside C}, (under-zoomed), there is a drift fofh,}
described above. towards C,, however, |e;| will keep increasing on average.
_Ol_Jr r_esul_t on the exigtence and unigueness of an invariqupﬁa“y' when the process hit§), (perfect-zoom), then the
distribution is the following. process drifts toward€” . There exists an upper bound on the

Theorem 2.4: Under the setup of Theorem 2.3, for &gjye thath can take wher{e, } is inside the compact sets.
zooming quantizer, if the quantizer bin sizes are such that

their (base-2) logarithms are integer multiples of some scalar
s andlog,(Q(.)) take values in integer multiples &f and

the integers taken are relatively prime (that is they share
no common divisors except far), then the jointly Markov
process(x; — &, 4A;) forms a positive (Harris) recurrent
Markov chain, and, as such, has a unique invariant distaibut

The proof of this result is presented in Section 1I-D.

The findings above can be used to present a stronger result i
(with the additional Assumption B), the proof of which is I
omitted:

Theorem 2.5: Under the setups of Theorem 2.3, Theorem
2.4 and Assumption B, it follows that

tlim E[(z; — #¢)?%] < o0,

and this limit is independent of the initial states of th%ig. 1: Drift in the Error Process: When under-zoomed. the

quantizer and the system. - error increases on average; when perfectly-zoomed, tioe err
Remark: We note that the stability result for such a schemg, .1aases

requires new techniques to be used, as classical tools in
Markovian stability theory will not be applicable directlihis We first show that the sequendgy,t > 0} visits Cj,

is mostly because of the fact that, the quantizer helps Bduginitely often with probability 1 and the expected length o
the uncertainty on the system state only when the state isgfa excursion is uniformly bounded over all possible values
the granular region of the quantizer. The times when the stats (2,h) € C" x Cy. ONceC), is visited, then the estimation
is in this region are random. As such, in the following sSettio g(ror decreases on average. However, unless this is|met,
we use a two-stage Martingale approach to prove the existeng,q le;| keeps increasing stochastically. Lith,) = h? serve

of a recurrent set, and subsequently the stability results. ;¢ 4 Lyapunov function. Define a sequence of stopping times

C. Proof of Theorem 2.3; Recurrence for the perfect-zoom case with
Consider the update equations (3)-(4). Toward the proof, we n = 0,
will first obtain a supporting result. Let us define, foe Z,, Too1 = inf{k>7,:|h| <1}, 2€Zy
€y = Ty — Ty We have that, ifh;| > 1 (under-zoomed)
Lemma 2.1: Let B(R x R, ) denote the Boret—field on ) (a® + ’rjji]) )
R x R, . It follows that¥(C x D) € B(R x R,), Elhta| A hi] < =25 (h)

P<(€t’At) € (C x D)|(er—1, A1), ..., (eo,Ao)) Since when|h;| > 1, we have thafz;| > 27 _IL(\aHlilfn)’
it follows that

2 | E[d’]
= P03 € ©x Dlfeccs 1)), BB 1 v i) < (TR )b

i.e. (er, Ay) is a Markov chain. If |hy| < 1, then
Let us defineh; := ﬁ. Consider the following sets: N

2B | Bl

2 la| +€e—n.o
Co={z:]2|<E} Cn={h:|n <1}, Elhi] < B2 1) ( al )
with B/ = 2F'~1E, with E = L(MJ'F%). Further, let another - a?LZ 4 Eld2] ( la] +€— 72
set beC! = {z : |z| < F'}, and F/ = 28 ~1F with a = (L2R-1)2 |a

sufficiently largeF’ value to be derived below. We will study = Ki, (5)



where L’ = L‘alfj_n (this is a lower bound or\;). Hence, with

it follows that [ Bld?]
E[h}y — hi|A¢ he] < —phi + Kilgp, <1y, (6) K, —v—2log(rie=)
where1 ) is the indicator function for everit’ with {(2(1+K1)/P) log(|a]+0)
2L 2 _
K = 1 ;E[it](MHE 2, and G = 2log(F) + 2((1 + K1) /p) log(|a| + 8) + ¢.
(L2 , lal Hence, we have obtained another drift condition for the
(a® + EE[%]) sampled Markov chain. This shows that the newly constructed
p o= 1= (a+0)2 @) processA ;. hits C2 = {A : |A] < F'} infinitely often. Let us
) _ call this stopping time procesg and define it byrg = 70 = 0,
Since forA, B > 0, A* + B> < (A + B)? it follows that the ¢, y >0 '
hypothesis Lg[lf?ll < J in the theorem statement ensures , . , ,
p > 0. Now, defineM, := V(hy), and fort > 1 Tyr1 = Ty T If{E> 7 A < F ] < 13
t—1 = Tytk (10)
My :=V(hi) = p_(=p+ Kilecy) with & = inf{l > 0 : [A, | < F',|h, | < 1,7} = 7.}.
_ o =0 Hence, k is the number of visits such thdth : |h] < 1}
Define a stopping time: until e; hits C’. When there is an excursion outside this
N = min(N,min{i > 0: V(h;) > N,V (h;) < 1}). set, the expected length of the trip (in terms of the new

Markov process) is finite, that i&[r]] < co. This follows
As [h| > 1 when hy ¢ Ch, E[Mii1](es, hs),s < t] < because of the following: Definelfy = log(A32), and for
M;, vt > 0, it follows that, {M;} is a Super-Martingale some sufficiently smaltv > 0,
sequence. The stopping timé" is bounded and the Super-
Martingale sequence is also bounded for< 7. Hence,
we have, by the Martingale optional sampling theorem:
E[M,~)] < E[M]. Hence, we obtain

T,—1

M, =log(A2)) - (Z —a+Gla,, |<r)).
=0

M, is a Super-Martingale sequence foK 7, < 71 if a <

Tl Tl —%—, since
E[Y 1p<V(ho) + KiE[ ) Linec) =
=0 =0 E[M'rz-%—l‘sz} < M‘Fz'
Thus, pE[r™ — 1+ 1] < V(ho) + K1, and by the Mono- For any finite n, let us definek” = (min(k, min(l >
tone Convergence Theoremlimy .o E[r] = pE[r] < 0 : 1+ log(A2) > n)), which is a stopping time. Hence,
V(ho) + K1 =1+ K;. Hence, E[XF ' a] < Mo+ G. Sincetp > aE[r 41 — 7, it follows
Elrp — 7] < (1+ Ki)/p @) thataE[>F 7 —mn 1] < My + G, or E[k"] < MotG

Finally, taking the limit asn — oo, and by the Monotone

'Convergence Theorem, it follows thad[r] < —MOJG and
Mo+G <
St

uniformly for all h., € Cj. Once perfect-zooming occurs
2

that ish; € Cj, then we haveE[e?, ||A,, hy] < 2‘;%% +

E[d?]. By the strong Markov propertyA,., h,. ) is also a
Markov chain as{r, < n} € F,, the filtration generated by D. Proof of Theorem 2.4. Existence and Uniqueness of an

the quantizer state and the quantizer output at timfor any Invariant Probability Distribution

n > 7.. The probability thatr. ., # 7. +1, is upper bounded | our setting, (e, A;) form the Markov chain, as was

by the expression proved in Lemma 2.1. Before proceeding further, let us tecal

o 2 [la] + €] — |a] —e+n..,\ the following, which follows from an important result in

Pe(Ar,) = P<dfz > (Ar.(|al/2)( number theory, known asé&out’s Lemma.

If 7,41 # 7. + 1, then this means that the error is increasing Lemma 2.2: ([2] Theorem 2) Le}{ —A, B} t_)e two integers

on average and the system is once-again under-zoomed at H%h thatd > 0,5 > 0. Letll be the set of all integers that can

b= +gl. _ Y L d. with Ag o al tf)e obtained by summing positive integer multiples of eletsien
= Tz T L €rql = G€r, T Gr, W el T Jalte—n' "= in {—A, B}. If A, B are relatively prime, thefi = Z, that is,

With some probability, the quantizer will still be in the pet- Iis the set of all integers

zoom.phase.:TzH = 7= + 1. In case perfect'-zoom is lost, In view of the above results, we now show that the set of

there is a uniform bound on when the zoom is expected to Be . o .

recovered In sizes forms a _communlcatlon classiunder the hypothesis
’ of the theorem: Since we havk;,; = Q(

We can, after some omitted steps, show that, there E)?Sﬁows that A, 1t
1 >0, |G| < oo such that

_ 2t
Ellog(A%, )|A. hr] S1og(A2) =0+ Glya, (<), (9)  1082(Bes1)/s =logs(QU Tom=1))/s +1oga2(A) /s,

SUP(A,_ h,yecr xoy ElT] <

la| +€e—n

)



is also an integer. Furthermore, since the source process IV. SIMULATION

Lebesgue-irreducible (as the system noise admits a c@u  As a simulation study, we consider a linear system with
probability density function with positive mass on eveneop tne following dynamicsiz; 1 = 2.5z; + d;, where Eld)] =
set), and there is a uniform lower boutid on bin-sizes, the 0,E[d?] = 1, and{d,} are i.i.d. Gaussian variables. We use
error process takes values in any of the admissible quantigge zooming quantizer with ratibg,(4) = 2, since 4 is
bins with non-zero probability. the smallest integer as large 48.5] + 1. We have taken

Let the values taken biog,(Q(| 7#=l))/s be {—A, B}. L’ = 1. Figure 2 corroborates the stochastic stability result,
By the hypothesis of the theorem statementp are relatively by explicitly showing the under-zoomed and perfectly zodme
prime. Consider two integers, | > %_ Further, assume, phases, with the peaks in the plots showing the under-zoom
without any loss of generality that> k. Fromk to [, one can phases.

construct a sequence consisting-efA and B integers such

that the sum of these integers equals k for all [,k € N,

that is there existV4, Np € Z, such that 4000

2000} {
0 N \ L N T LLLLL

-2000

|- k=—-N4A+ NpB.

ﬂr_
i S

Consider first the case wheke> % +N4A. We show
that the probability ofN4 occurrences of perfect zoom, and
Np occurrences of under-zoom phases is bounded away from  -4000

Estimation Error

L L L L
1000 2000 3000 4000 5000

zero. This set of occurrences includes the event that in riéte fi Time
N4 time stages perfect-zoom occurs and later, successively,
Np times under-zoom phase occurs. The probability of this 000
event is lower bounded by 3000}
]
(P(dt € [~|a|2°*-L', —a|2s"°’+L’})> (P(dt > |a|251})> &
1000 H H 1
which is positive. A similar analysis can be performed when 0 UL PR VPO W SO Mk LUt UL
log, (L") R . 0 1000 2000 3000 4000 5000

k < ==2== 4+ N4A, by considering the opposite order of Time
events, where in the firsWz times, under-zoom occurs, and
in the successn_/eNA time stages, perfect-zoom occurs. As Fig. 2: Time horizon is 5000.
such, the selection of these events will always have non-zer
probability due to the Lebesgue irreducibility of the noise
distribution. Hence, for any two integeis! and for some REFERENCES
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IIl. CASE WITH A STABLE SOURCE

The stable source also follows from the analysis in the
paper, since the state process, and the bin size process visi
a compact set infinitely often, under the conditions presnt
We note that, when = 0, the setting of Goodman and Gersho
is obtained.



