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Abstract— A stochastic stability result for a class of adaptive
quantizers which were introduced by Goodman and Gersho is
presented. We consider a case where the input process is a
linear Markov source which is not necessarily stable. We present
a stochastic stability result for the estimation error and the
quantizer, thus generalizing the stability result of Goodman and
Gersho to a Markovian, and furthermore to an unstable, setting.
Furthermore, it is shown that, there exists a unique invariant
distribution for the state and the quantizer parameters under
mild irreducibility conditions. The second moment under the
invariant distribution is finite, if the system noise is Gaussian.

I. I NTRODUCTION

A quantizer, Q, for a scalar continuous variable is a map
R → R, characterized by a sequence of bins{Bi} and their
representation{qi}, such that∀i, Q(x) = qi if and only if
x ∈ Bi.

Of particular interest is the class of uniform quantizers.
In the following, we modify the description of a traditional
uniform quantizer by assigning the same value when the state
is in the overflow region of the quantizer. As such, a uniform
quantizer:Q : R → R with step size∆ and an (odd)K
number of levels satisfies the following fork = 1, 2 . . . ,K:

Q∆
K(x) = (

−(K + 1)

2
+ k)∆, if x ∈ [γ1, γ2)

with [γ1, γ2) = [((k − 1)− K
2 )∆, (k − −K

2 )∆). If |x| > K
2 ∆

or x = K
2 ∆, we let the quantizer output be null, denoting that

the state is outside the granular region of the quantizer. The
value will be taken to be zero at the receiver.

A general class of quantizers are those which are adaptive.
Let S be a set of states for a quantizer stateS. LetF : S×R →
S be a state update-function. An adaptive quantizer has the
following state update equations:

St+1 = F (St, Qt(xt))

Here,Qt is the quantizer applied at timet, xt is the input to
the quantizerQt, andSt is thestate of the quantizer. We note
that, such a quantizer is implementable since the updates can
be performed both at the encoder and the decoder.

One particular class of adaptive quantizers is introduced by
Goodman and Gersho [2]. One such type has the following
form withQ∆

K being a uniform quantizer withK bins and bin-
size ∆ and Q̄ determining the updates in the bin-size of the

uniform quantizer as a function of the source and the current
bin size:

qt = Q∆t

K (xt)

∆t+1 = ∆tQ̄(xt,∆t) (1)

Here ∆t characterizes the uniform quantizer, as it is the bin
size of the quantizer at timet. In the model that we will
consider,Q̄(.) will take ratio betweenx and∆ as its input.

We consider an LTI discrete-time scalar system described
by

xt+1 = axt + dt, (2)

where xt is the state at timet, and {dt} is a sequence of
zero-mean independent, identically distributed (i.i.d.)random
variables which satisfy the following:

Assumption A: The {dt} sequence is such that each of the
random variables admits a probability distributionν which is
absolutely continuous with respect to the Lebesgue measure
on R, and for every open setD ∈ R, ν(D) > 0. Furthermore,
E[d2

t ] = E[d2] <∞. ⋄
Later we will consider a stronger assumption:
Assumption B: The sequence{dt} is an i.i.d. Gaussian
sequence with zero-mean and a finite variance. ⋄
Remark: With Assumption B, we will obtain stronger results
in the development of the paper. We could generalize Assump-
tion B, by requiring the tail of the noise distributions to decay
exponentially fast. ⋄

In the above,a is the system coefficient with|a| ≥ 1, that
is, the system is open-loop unstable. The case with|a| < 1
(stable case), can be considered as a special case of our setting,
as will be apparent in the development of the paper.

In the following, we discuss the quantization policy and
the notion of stability that we use in the main result. Before,
however, we present a brief review of relevant literature.

A. Literature Review

There is large literature on adaptive quantizer design. One
important reference here is the work by Goodman and Gersho
[2], where an adaptive quantizer was introduced and the adap-
tive quantizer’s stationarity properties were investigated when
the source fed to the quantizer is independent and identically
distributed with a finite second moment. Kieffer and Dunham
[3] have obtained conditions for the stochastic stability of a



number of coding schemes when the source considered is also
stable, that is when it has an invariant distribution; where
various forms of stability of the quantizer and the estimation
error have been studied. In our case, however, the schemes
in [2] and [3] are not directly applicable, as the process we
consider is open-loop unstable, as well as Markovian.

Zooming type adaptive quantizers, which will be described
further in the paper, have been recently introduced by Brockett
and Liberzon [4] for the use in remote stabilization of open-
loop unstable, noise-free systems with arbitrary initial condi-
tions. Nair and Evans [1] provided a stability result under the
assumption that the quantization is variable-rate and showed
the first result for a noisy setup (with unbounded support for
the noise probability measure) that on average it suffices to
use more thanlog2(|a|) bits to achieve a form of stability. [1]
used asymptotic quantization theory to obtain a time-varying
scheme, where the quantizer is used at certain intervals at a
very high rate, and at other times, the quantizer is not used.
We provide an approach which allows us to both provide a
result for the case when the quantizer is fixed-rate as well as
to obtain an invariance condition for a probability measureon
the quantizer parameters.

II. M AIN RESULTS OF THEPAPER

We first present a brief overview of stochastic stability
for Markov Chains. The reader is referred to [6] for further
discussions.

A. Stochastic Stability of Markov Chains

Let {xt, t ≥ 0} be a Markov chain with state space
(X,B(X)), and defined on a probability space(Ω,F ,P),
whereB(X) denotes the Borelσ−field on X, Ω is the sample
space,F a sigma field of subsets ofΩ, andP a probability
measure. LetP (x,D) := P (xt+1 ∈ D|xt = x) denote the
transition probability fromx to D, that is the probability of
the event{xt+1 ∈ D} given thatxt = x for D ∈ B(X).

Definition 2.1: For a Markov chain with transition proba-
bility defined as before, a probability measureπ is invariant
on the Borel space(X,B(X)) if

π(D) =

∫

X

P (x,D)π(dx), ∀D ∈ B(X) .

Definition 2.2: A Markov chain isµ-irreducible, if for any
setB ⊂ X, such thatµ(B) > 0, and ∀x ∈ R, there exists
some integern > 0, possibly depending onB andx, such that
Pn(x,B) > 0, wherePn(x,B) is the transition probability
in n stages, that isP (xt+n ∈ B|xt = x).

Definition 2.3: A setA ⊂ X is µ−petite on(X,B(X)) if
for some distributionT on N (set of natural numbers), and
some non-trivial measureµ,

∞
∑

n=0

Pn(x,B)T (n) ≥ µ(B), ∀x ∈ A, B ∈ B(X).

Definition 2.4: Consider a Markov process{xt} taking
values inX. A compact setA ∈ X, is recurrent ifP (min(t >
0 : xt ∈ A) <∞|x0 = x) = 1,∀x ∈ A.

Theorem 2.1: ([6] Theorem 4.1) LetA ∈ X be aµ−petite
set which is recurrent. If the Markov Chain isµ-irreducible,
and if supx∈AE[min(t > 0 : xt ∈ A)|x0 = x] < ∞, then
the Markov chain is positive Harris recurrent and it admits a
unique invariant distribution.

The existence of an invariant distribution is important pri-
marily because of the following Theorem:

Theorem 2.2 (Birkhoff’s Individual Ergodic Theorem):
Consider a positive Harris recurrent Markov process{xt}
taking values in X, with invariant distribution π(.). Let
f : X → R be a bounded function, measurable onB(X).
Then, the following holds almost surely:

lim
T→∞

1

T

T−1
∑

t=0

f(xt) =

∫

f(x)π(dx).

B. Main Results

Before proceeding further with the presentation of the main
results, we further discuss the adaptive quantizers considered.
An example of Goodman-Gersho [2] type adaptive quantizers
are those that havezoom level coefficients as the quantizer
state. In the zooming scheme, the quantizer enlarges the bin
sizes in the quantizer until the state process is in the range
of the quantizer, where the quantizer is in theperfect-zoom
phase. Due to the effect of the system noise, occasionally the
state will be in the overflow region of the quantizer, leading
to an under-zoom phase. We will refer to such quantizers as
zooming quantizers.

In the following, we will assume the communication chan-
nel to be a discrete noiseless one with capacityR.

Theorem 2.3: Consider a zooming type adaptive quantizer
applied to the linear system described by (2), under Assump-
tion A. If the noiseless channel has capacity, for someǫ > 0,

R = log2(⌈|a| + ǫ⌉ + 1),

then, there exists an adaptive quantization policy such that
there exists a compact setS with

sup
x∈S

E[min(t > 0 : xt ∈ S)|x0 = x] <∞,

thusS is a recurrent set.
The proof of this Theorem is given in Section II-C. In

particular, withR = log2(⌈|a| + ǫ⌉ + 1), K = 2R, let us
defineR′ = log2(2

R−1). We will now consider the following
update rules. Fort ≥ 0 and with∆0 ∈ R selected arbitrarily
and x̂−1 = 0, consider the following:

x̂t = ax̂t−1 +Q∆t

K (zt)

zt = axt−1 − ax̂t−1 + dt−1

∆t+1 = ∆tQ̄(|
zt

∆t2R
′−1

|) (3)

If there existδ, ǫ, η > 0 with η < ǫ andL > |a|+ǫ−η
|a| such

that,

Q̄(x) ≥ |a| + δ if |x| > 1

|a|

|a| + ǫ− η
< Q̄(x) < 1 if 0 ≤ |x| ≤ 1,∆ > L

Q̄(x) = 1 if 0 ≤ |x| ≤ 1,∆ ≤ L(4)



with
√

E[d2
t ]

L |a|
|a|+ǫ−η2R′−1

< δ,

we will show that a recurrent set exists with the update rules
described above.

Our result on the existence and uniqueness of an invariant
distribution is the following.

Theorem 2.4: Under the setup of Theorem 2.3, for a
zooming quantizer, if the quantizer bin sizes are such that
their (base−2) logarithms are integer multiples of some scalar
s and log2(Q̄(.)) take values in integer multiples ofs, and
the integers taken are relatively prime (that is they share
no common divisors except for1), then the jointly Markov
process(xt − x̂t,∆t) forms a positive (Harris) recurrent
Markov chain, and, as such, has a unique invariant distribution.

The proof of this result is presented in Section II-D.
The findings above can be used to present a stronger result

(with the additional Assumption B), the proof of which is
omitted:

Theorem 2.5: Under the setups of Theorem 2.3, Theorem
2.4 and Assumption B, it follows that

lim
t→∞

E[(xt − x̂t)
2] <∞,

and this limit is independent of the initial states of the
quantizer and the system.

Remark: We note that the stability result for such a scheme
requires new techniques to be used, as classical tools in
Markovian stability theory will not be applicable directly. This
is mostly because of the fact that, the quantizer helps reduce
the uncertainty on the system state only when the state is in
thegranular region of the quantizer. The times when the state
is in this region are random. As such, in the following section,
we use a two-stage Martingale approach to prove the existence
of a recurrent set, and subsequently the stability results.⋄

C. Proof of Theorem 2.3: Recurrence

Consider the update equations (3)-(4). Toward the proof, we
will first obtain a supporting result. Let us define, fort ∈ Z+,

et := xt − x̂t.

Lemma 2.1: Let B(R × R+) denote the Borelσ−field on
R × R+. It follows that∀(C ×D) ∈ B(R × R+),

P

(

(et,∆t) ∈ (C ×D)|(et−1,∆t−1), ..., (e0,∆0)

)

= P

(

(et,∆t) ∈ (C ×D)|(et−1,∆t−1)

)

,

i.e. (et,∆t) is a Markov chain.
Let us defineht := zt

∆t2R′−1
. Consider the following sets:

Ce = {z : |z| ≤ E′} Ch = {h : |h| ≤ 1},

with E′ = 2R
′−1E, with E = L( |a|

|a|+ǫ−η ). Further, let another

set beC ′
e = {z : |z| ≤ F ′}, and F ′ = 2R

′−1F with a
sufficiently largeF value to be derived below. We will study

the expected number of time stages between visits of{(et, ht)}
to C ′

e×Ch. Consider the drift of the(et, ht) process in Figure
1: When(et, ht) are inCe ×Ch, the expected drift increases
both |h| and |e|. When the{zt} process gets outsideC ′

e and
{ht} outsideCh (under-zoomed), there is a drift for{ht}
towardsCh, however,|et| will keep increasing on average.
Finally, when the process hitsCh (perfect-zoom), then the
process drifts towardsC ′

e. There exists an upper bound on the
value thath can take when{et} is inside the compact sets.

|et|

|ht|

E F

1

Fig. 1: Drift in the Error Process: When under-zoomed, the
error increases on average; when perfectly-zoomed, the error
decreases.

We first show that the sequence{ht, t ≥ 0} visits Ch
infinitely often with probability 1 and the expected length of
the excursion is uniformly bounded over all possible values
of (z, h) ∈ C ′

e × Ch. OnceCh is visited, then the estimation
error decreases on average. However, unless this is met,|zt|
and|et| keeps increasing stochastically. LetV (ht) = h2

t serve
as a Lyapunov function. Define a sequence of stopping times
for the perfect-zoom case with

τ0 = 0,

τz+1 = inf{k > τz : |hk| ≤ 1}, z ∈ Z+

We have that, if|ht| > 1 (under-zoomed)

E[h2
t+1|∆t, ht] ≤

(a2 + E[d2]
|zt|2

)

(a+ δ)2
(ht)

2

Since when|ht| > 1, we have that|zt| > 2R
′−1L( |a|

|a|+ǫ−η ),
it follows that

E[h2
t+1|∆t, ht] ≤ (

a2 + E[d2]
E′2

(a+ δ)2
)(ht)

2.

If |ht| ≤ 1, then

E[h2
t+1] ≤

a2 (∆t)
2

4 + E[d2
t ]

(∆t2R
′−1)2

(
|a| + ǫ− η

|a|
)2

≤
a2 L′2

4 + E[d2
t ]

(L′2R′−1)2
(
|a| + ǫ− η

|a|
)2

=: K1, (5)



whereL′ = L |a|
|a|+ǫ−η (this is a lower bound on∆t). Hence,

it follows that

E[h2
t+1 − h2

t |∆t, ht] ≤ −ρh2
t +K11(|ht|≤1), (6)

where1(U) is the indicator function for eventU with

K1 =
a2 L′2

4 + E[d2
t ]

(L′2R′−1)2
(
|a| + ǫ− η

|a|
)2,

ρ = 1 −
(a2 + E[d2]

E′2 )

(a+ δ)2
(7)

Since forA,B > 0, A2 +B2 ≤ (A+B)2 it follows that the

hypothesis
√

E[d2t ]

L′2R′−1
< δ in the theorem statement ensures

ρ > 0. Now, defineM0 := V (h0), and for t ≥ 1

Mt := V (ht) −

t−1
∑

i=0

(−ρ+K11(hi∈Ch))

Define a stopping time:

τN = min(N,min{i > 0 : V (hi) ≥ N,V (hi) ≤ 1}).

As |ht| > 1 when ht /∈ Ch, E[Mt+1|(es, hs), s ≤ t] ≤
Mt, ∀t ≥ 0, it follows that, {Mt} is a Super-Martingale
sequence. The stopping timeτN is bounded and the Super-
Martingale sequence is also bounded fort ≤ τN . Hence,
we have, by the Martingale optional sampling theorem:
E[M(τN )] ≤ E[M0]. Hence, we obtain

E[

τN−1
∑

i=0

]ρ ≤ V (h0) +K1E[

τN−1
∑

i=0

1(hi∈C)]

Thus, ρE[τN − 1 + 1] ≤ V (h0) + K1, and by the Mono-
tone Convergence Theorem,ρ limN→∞E[τN ] = ρE[τ ] ≤
V (h0) +K1 = 1 +K1. Hence,

E[τz+1 − τz] ≤ (1 +K1)/ρ (8)

uniformly for all hτz
∈ Ch. Once perfect-zooming occurs,

that is ht ∈ Ch, then we haveE[e2t+1|∆t, ht] ≤
a2

22R′
∆2

t

4 +
E[d2

t ]. By the strong Markov property,(∆τz
, hτz

) is also a
Markov chain as{τz < n} ∈ Fn, the filtration generated by
the quantizer state and the quantizer output at timen, for any
n ≥ τz. The probability thatτz+1 6= τz + 1, is upper bounded
by the expression

Pe(∆τz
) := P

(

d2
τz
> (∆τz

(|a|/2)(
⌈|a| + ǫ⌉ − |a| − ǫ+ η

|a| + ǫ− η
))2

)

If τz+1 6= τz + 1, then this means that the error is increasing
on average and the system is once-again under-zoomed at time
t = τz + 1: eτz+1 = aeτz

+ dτz
with ∆τz+1 = |a|

|a|+ǫ−η∆τz
.

With some probability, the quantizer will still be in the perfect-
zoom phase:τz+1 = τz + 1. In case perfect-zoom is lost,
there is a uniform bound on when the zoom is expected to be
recovered.

We can, after some omitted steps, show that, there exist
ψ > 0, |G| <∞ such that

E[log(∆2
τz+1

)|∆τz
, hτz

] ≤ log(∆2
τz

) − ψ +G1(|∆τz |≤F
′), (9)

with

F ′ =

√

E[d2]

K2

√

√

√

√

√

−ψ−2 log(
|a|

|a|+ǫ−η
)

{

(2(1+K1)/ρ) log(|a|+δ)

}

,

andG = 2 log(F ) + 2((1 +K1)/ρ) log(|a| + δ) + ψ.
Hence, we have obtained another drift condition for the

sampled Markov chain. This shows that the newly constructed
process∆τz

hitsC ′
e = {∆ : |∆| ≤ F ′} infinitely often. Let us

call this stopping time processτ ′y and define it byτ ′0 = τ0 = 0,
for y > 0,

τ ′y+1 = τ ′y + inf{t > τ ′y : |∆t| ≤ F ′, |ht| ≤ 1|}

= τy + k (10)

with k = inf{l > 0 : |∆τz+l
| ≤ F ′, |hτz+l

| ≤ 1, τ ′y = τz}.
Hence,k is the number of visits such that{h : |ht| ≤ 1}
until et hits C ′

e. When there is an excursion outside this
set, the expected length of the trip (in terms of the new
Markov process) is finite, that isE[τ ′1] < ∞. This follows
because of the following: Define,M0 = log(∆2

0), and for
some sufficiently smallα > 0,

Mτz
= log(∆2

τz
) − (

τz−1
∑

l=0

−α+G1(|∆τz |≤F
′)).

Mτz
is a Super-Martingale sequence for0 ≤ τz ≤ τ ′1 if α <

ψ
1+K1

ρ

, since

E[Mτz+1
|Fτz

] ≤Mτz
.

For any finite n, let us definekn = (min(k,min(l >
0 : l + log(∆2

τl
) ≥ n)), which is a stopping time. Hence,

E[
∑kn−1
l=0 α] ≤M0 +G. Sinceψ ≥ αE[τl+1 − τl], it follows

that αE[
∑kn

l=1 τl − τl−1] ≤ M0 + G, or E[kn] ≤ M0+G
α .

Finally, taking the limit asn → ∞, and by the Monotone
Convergence Theorem, it follows thatE[τ ′1] ≤ M0+G

α and
sup(∆τz ,hτz )∈C′

e×Ch
E[τ ′1] ≤

M0+G
α . ⋄

D. Proof of Theorem 2.4: Existence and Uniqueness of an
Invariant Probability Distribution

In our setting,(et,∆t) form the Markov chain, as was
proved in Lemma 2.1. Before proceeding further, let us recall
the following, which follows from an important result in
number theory, known as Bézout’s Lemma.

Lemma 2.2: ([2] Theorem 2) Let{−A,B} be two integers
such thatA > 0, B > 0. Let I be the set of all integers that can
be obtained by summing positive integer multiples of elements
in {−A,B}. If A,B are relatively prime, thenI = Z, that is,
I is the set of all integers.

In view of the above results, we now show that the set of
bin sizes forms a communication class under the hypothesis
of the theorem: Since we have∆t+1 = Q̄(| zt

∆t2R′−1
|)∆t, it

follows that

log2(∆t+1)/s = log2(Q̄(|
zt

∆t2R
′−1

|))/s+ log2(∆t)/s,



is also an integer. Furthermore, since the source processxt is
Lebesgue-irreducible (as the system noise admits a continuous
probability density function with positive mass on every open
set), and there is a uniform lower boundL′ on bin-sizes, the
error process takes values in any of the admissible quantizer
bins with non-zero probability.

Let the values taken bylog2(Q̄(| zt

∆R′−1

t

|))/s be {−A,B}.

By the hypothesis of the theorem statement,A,B are relatively
prime. Consider two integersk, l ≥ log2(L

′)
s . Further, assume,

without any loss of generality thatl > k. Fromk to l, one can
construct a sequence consisting of−A andB integers such
that the sum of these integers equalsl − k for all l, k ∈ N,
that is there existNA, NB ∈ Z+ such that

l − k = −NAA+NBB.

Consider first the case wherek > log2(L
′)

s +NAA. We show
that the probability ofNA occurrences of perfect zoom, and
NB occurrences of under-zoom phases is bounded away from
zero. This set of occurrences includes the event that in the first
NA time stages perfect-zoom occurs and later, successively,
NB times under-zoom phase occurs. The probability of this
event is lower bounded by

(

P (dt ∈ [−|a|2sk−L′,−|a|2sk+L′])

)NA
(

P (dt > |a|2sl])

)NB

which is positive. A similar analysis can be performed when
k < log2(L

′)
s + NAA, by considering the opposite order of

events, where in the firstNB times, under-zoom occurs, and
in the successiveNA time stages, perfect-zoom occurs. As
such, the selection of these events will always have non-zero
probability due to the Lebesgue irreducibility of the noise
distribution. Hence, for any two integersk, l and for some
p > 0, P (log2(∆t+p) = ls| log2(∆t) = ks) > 0.

In our setting, the recurrent set consists of both∆t and
et. Hence, in this setting, the product space is the product
of a discrete-space and a real space. Foret, the Borel sets
are the open intervals, which are visited infinitely often, and
for ∆t, the individualatoms are visited infinitely often with
probability 1.

Now, we can connect the results of the previous section
with Theorems 2.3 and 2.1. The recurrent setC ′

e × Ch is
ν−petite, for some probability measureν as any Borel set in
the state space is visited starting fromC ′

e×Ch, and the chain
is irreducible. These two imply that the chain is positive Harris
recurrent. ⋄

III. C ASE WITH A STABLE SOURCE

The stable source also follows from the analysis in the
paper, since the state process, and the bin size process visit
a compact set infinitely often, under the conditions presented.
We note that, whena = 0, the setting of Goodman and Gersho
is obtained.

IV. SIMULATION

As a simulation study, we consider a linear system with
the following dynamics:xt+1 = 2.5xt + dt, whereE[dt] =
0, E[d2

t ] = 1, and{dt} are i.i.d. Gaussian variables. We use
the zooming quantizer with ratelog2(4) = 2, since 4 is
the smallest integer as large as⌈2.5⌉ + 1. We have taken
L′ = 1. Figure 2 corroborates the stochastic stability result,
by explicitly showing the under-zoomed and perfectly zoomed
phases, with the peaks in the plots showing the under-zoom
phases.
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Fig. 2: Time horizon is 5000.
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