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Abstract—This paper is concerned with the following problem:
Given a stochastic non-linear system controlled over a noisy
channel, what is the largest class of channels for which there
exist coding and control policies so that the closed loop system is
stochastically stable? Stochastic stability notions considered are
stationarity, ergodicity or asymptotic mean stationarity. We do
not restrict the state space to be compact, for example systems
considered can be driven by unbounded noise. Necessary and
sufficient conditions are obtained for a large class of systems
and channels. A generalization of Bode’s Integral Formula for
a large class of non-linear systems and information channels is

obtained.

I. INTRODUCTION

Consider an N -dimensional controlled non-linear system

described by the discrete-time equations

xn+1 = f(xn, un, wn), (1)

for a (Borel measurable) function f , with {wt} being an inde-

pendent and identically distributed (i.i.d) system noise process.

This system is connected over a noisy channel with a finite

capacity to a controller, as shown in Figure 1. The controller

has access to the information it has received through the chan-

nel. A source coder maps the source symbols, state values, to

corresponding channel inputs. The channel inputs are trans-

mitted through a channel; we assume that the channel is a

discrete channel with input alphabet M and output alphabet

M′.
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Figure 1: Control over a noisy channel with feedback.

We refer by a Coding Policy Π, a sequence of functions

{γe
t , t ≥ 0} which are causal such that the channel input at

time t, qt ∈ M, under Πcomp is generated by a function of

its local information, that is,

qt = γe
t (I

e
t ),

where Ie
t = {x[0,t], q

′
[0,t−1]} and qt ∈ M, the channel input

alphabet given by M := {1, 2, . . . ,M}, for 0 ≤ t ≤ T − 1.
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Here, we have the notation for t ≥ 1: x[0,t−1] = {xs, 0 ≤
s ≤ t− 1}. The channel maps qt to q′t in a stochastic fashion

so that P (q′t|qt, q[0,t−1], q
′
[0,t−1]) is a conditional probability

measure on M′ for all t ∈ Z+. If this expression is equal to

P (q′t|qt), the channel is said to be a memoryless channel, that

is, the past variables do not affect the channel output q′t given

the current channel input qt.

The receiver/controller, upon receiving the information from

the channel, generates its decision at time t, also causally: An

admissible causal controller policy is a sequence of functions

γ = {γt} such that

γt : M
′t+1 → R

m, t ≥ 0,

so that ut = γt(q
′
[0,t]). We call such encoding and control

policies, causal or admissible.

In the networked control literature, the goal in the encoder

and controller design is typically either to optimize the sys-

tem according to some performance criterion or stabilize the

system. For stabilization, linear systems have been studied

extensively where the goal has been to identify conditions so

that the controlled state is stochastically stable, as we review

briefly later.

This paper is concerned with necessary and sufficient con-

ditions on information channels in a networked control system

for which there exist coding and control policies such that the

controlled system is stochastically stable in one or more of

the following senses: (i) The state {xt} and the coding and

control parameters lead to a stable (positive Harris recurrent)

Markov chain and (ii) {xt} is asymptotically stationary, or

asymptotically mean stationary (AMS) and satisfies Birkhoff’s

sample path ergodic theorem, (iii) {xt} is ergodic.

A. Literature review

Due to space constraints, we are unable to provide a de-

tailed account of the literature. We refer the reader to the full

paper for a detailed literature review [35]. In the literature, the

study of non-linear systems have typically considered noise-

free controlled systems controlled over discrete noiseless chan-

nels. Many of the studies on control of non-linear systems

over communication channels have focused on constructive

schemes (and not on converse theorems), primarily for noise-

free sources and channels. For noise-free systems, it typically

suffices to only consider a sufficiently small invariant neigh-

borhood of an equilibrium point to obtain stabilizability condi-

tions. Entropy based arguments can be used to obtain converse

results: The entropy, as a measure of uncertainty growth, of a



dynamical system has two related interpretations: A topologi-

cal (distribution-free / geometric) one and a measure-theoretic

(probabilistic) one. The distribution-free entropy notion for a

dynamical system taking values in a compact metric space is

concerned with the time-normalized number of distinguishable

paths/orbits by some finite ǫ > 0 the system’s paths can take

values in as the time horizon increases and ǫ → 0. With

such a distribution-free setup [23] studied the stabilization of

deterministic systems controlled over discrete noiseless finite

capacity channels: The topological entropy gives a measure

of the number of distinct control inputs needed to make a

compact set invariant for a noise-free system. [23] extends the

notion of topological entropy to controlled dynamical systems,

and develops the notion of feedback entropy or invariance

entropy [6], see also [5] for related results. For a comprehen-

sive discussion of such a geometric interpretation of entropy

in controlled systems, see [13]. The results for deterministic

systems pose questions on set stability which are not suffi-

cient to study stochastic setups. Stochasticity also allows for

control over general noisy channels, and thus applicable to

establish connections with information theory (we note that

a distribution-free counterpart for such studies requires one

to investigate zero-error capacity formulations, however many

practical channels including erasure channels, have zero zero-

error capacity). On the other hand, the measure-theoretic (also

known as Kolmogorov – Sinai or metric) entropy is more rel-

evant to information-theoretic as well as random noise-driven

stochastic contexts since in this case, one considers the typical

distinguishable paths/orbits of a dynamical system and not all

of the sample paths a dynamical system may take (and hence

the topological entropy typically provides upper bounds on the

measure-theoretic entropy).

The stability criteria outlined earlier have been studied ex-

tensively for linear systems of the form

xt+1 = Axt +But +Gwt, (2)

where xt ∈ R
N is the state at time t, ut ∈ R

m is the control

input, and {wt} is a sequence of zero-mean i.i.d. Rd-valued

Gaussian random vectors. Here, (A,B) and (A,G) are con-

trollable pairs. Assume that all eigenvalues {λi, 1 ≤ i ≤ N} of

A are unstable, that is have magnitudes greater than or equal to

1. There is no loss here since if some eigenvalues are stable, by

a similarity transformation, the unstable modes can be decou-

pled from the stable ones and one can instead consider a lower

dimensional system; stable modes are already stochastically

stable. For noise-free linear systems controlled over discrete-

noiseless channels, Wong and Brockett [31], Baillieul [1]; and

more generally, Tatikonda and Mitter [28] (see also [27]) and

Nair and Evans [22] have obtained the minimum lower bound

needed for stabilization over a class communication channels

under various assumptions on the system noise and channels;

sometimes referred to as a data-rate theorem. This theorem

states that for stabilizability under information constraints, in

the mean-square sense, a minimum average rate per time stage

needed for stabilizability has to be at least
∑

i log2(|λi|). The

particular notion of stochastic stability is crucial in character-

izing the conditions on the channels; see [19], [26], and [17].

Towards generating a solution approach for systems driven

by unbounded noise, [33] and [37] developed a martingale-

method for establishing stochastic stability, which later led to

a random-time state-dependent drift criterion arriving at the

existence of an invariant distribution possibly with moment

constraints, extending the earlier deterministic state dependent

results in [20]. [34] considered discrete noisy channels, pos-

sibly with memory, with noiseless feedback.

In the information theory literature, for non-stationary linear

Gaussian sources Gray and Hashimoto (see [10], [12] and

[11]) and Berger [3] have obtained rate-distortion theoretic

results which are in agreement with data-rate results in net-

worked control (see [36] for a detailed review). These find-

ings, although for non-causal codes, reveal that the information

requirements for unstable linear systems do not come from

a restriction because of causality in coding, but due to the

inherent differential entropy growth rate of the sources.

The following definition (see Definition 3.1 in [34]) will be

useful in the analysis later in the paper.

Definition 1. Channels are said to be of Class A type, if

• they satisfy the following Markov chain condition:

q′t ↔ qt, q[0,t−1], q
′
[0,t−1] ↔ {x0, wt, t ≥ 0}, (3)

• their capacity with feedback is given by:

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′

[0,t−1]
), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1]), (4)

where the directed mutual information is defined by

I(q[0,T−1] → q′[0,T−1]) =

T−1
∑

t=1

I(q[0,t]; q
′
t|q

′
[0,t−1])+I(q0; q

′
0).

Memoryless channels belong to this class; for such channels,

feedback does not increase the capacity [7]. Such a class also

includes finite state stationary Markov channels which are

indecomposable [24]. Further examples can be found in [29]

and in [8].

Theorem 1. [36] [34] Consider a multi-dimensional linear

system with all eigenvalues unstable, that is |λi| ≥ 1 for i =
1, . . . , N . For such a system controlled over a Class A type

noisy channel with feedback, if the channel capacity satisfies

C <
∑

i

log2(|λi|),

(i) there does not exist a stabilizing coding and control scheme

with the property lim infT→∞
1
T h(xT ) ≤ 0, (ii) the system

cannot be made AMS or ergodic.

Theorem 2. [36] [34] Consider a multi-dimensional system

with a diagonalizable matrix A controlled over a discrete

memoryless channel. If the Shannon capacity of the channel

satisfies

C >
∑

|λi|>1

log2(|λi|),



there exists a stabilizing scheme which makes the process {xt}
AMS. Furthermore, if the channel is a discrete noiseless chan-

nel or an erasure channel, this condition implies the existence

of a policy leading to stationarity and ergodicity for {xt}.

II. SUBLINEAR ENTROPY GROWTH AND A

GENERALIZATION OF BODE’S INTEGRAL FORMULA FOR

NON-LINEAR SYSTEMS

In the paper, instead of a general RN -valued non-linear state

model (1), we will consider non-linear systems of the form

xn+1 = f(xn, wn) +Bun, (5)

xn+1 = f(xn) +Bun + wn, (6)

xn+1 = f(xn, un) + wn (7)

In all of the models above, xn is the RN -valued state, wn is the

R
p-valued noise variable, un is R

m valued and wn assumed

to be an independent noise process with wn ∼ ν.

We assume throughout that f is continuously differentiable

in the state variable. For a possibly non-linear differentiable

function f : RN → R
m, the Jacobian matrix of f is an n×m

matrix function consisting of partial derivatives of f such that

J(f)(i, j) =
∂(f(x))i

∂xj
, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We will often have the following assumption.

Assumption 1. In the models considered above f(·, w) : RN →
R

N is invertible for every realization of w.

In the following |J(f)| will denote the absolute value of

the determinant of the Jacobian. Furthermore, with fw(x) =
f(x,w), we define J(f(x,w)) := J(fw(x)).

Assumption 2. There exist L1,M1 ∈ R so that for all x,w

L1 ≤ log2(|J(f(x,w))|) ≤ M1

Theorem 3. Consider the networked control problem over a

Class A channel. (i) Let f have the form in (5), (ii) Assumptions

1 and 2 hold, and (iii) x0 have finite differential entropy. Let

πt(A) := P (xt ∈ A) for Borel A. a) If there is an admissible

coding and control policy such that

lim inf
t→∞

h(xt|q
′
[0,t−1])/t ≤ 0,

or

lim inf
t→∞

h(xt)/t ≤ 0,

it must be that

C ≥ lim inf
T→∞

1

T

T
∑

t=1

∫

πt(dx)

(
∫

ν(dw) log2(|J(f(x,w))|)

)

(8)

b) If there is an admissible coding and control policy such

that

lim sup
t→∞

h(xt|q
′
[0,t−1])/t ≤ 0,

or

lim sup
t→∞

h(xt)/t ≤ 0,

it must be that

C ≥ lim sup
T→∞

1

T

T
∑

t=1

∫

πt(dx)

(
∫

ν(dw) log2(|J(f(x,w))|)

)

In either case, if L := infx,w log2 |J(f(x,w))|, then C ≥ L.

For a proof, see [35].

Remark 1. The condition lim supt→∞ h(xt)/t ≤ 0 is a weak

condition: A process whose second moment grows subexpo-

nentially s.t. lim supT→∞
log(E[x2

T ])
T ≤ 0, satisfies this condi-

tion.

The proof of Theorem 3 reveals an interesting connection

with and generalization of Bode’s Integral Formula (and what

is known as the waterbed effect) [4] [21] to non-linear systems,

which we state formally in the following. The result also sug-

gests that an appropriate generalization for non-linear systems

is through an information theoretic approach that recovers

Bode’s original result for the linear case as we discuss fur-

ther below. Some earlier discussions under different conditions

were reported in [38], [9] and [16].

Theorem 4. (i) Let f have the form in (5), (ii) Assumption 1

hold, and (iii) x0 have finite differential entropy. Under any

admissible policy with lim supt→∞ h(xt)/t ≤ 0, it must be

that

lim sup
T→∞

1

T
I(q[0,T−1] → q′[0,T−1])

≥ lim sup
T→∞

1

T

T−1
∑

t=0

∫

πt(dx)

∫

ν(dw) log2(|J(f(x,w))|)

Remark 2. [Reduction to Bode’s Integral Formula for Lin-

ear Systems and Gaussian Noise] If the system considered

is linear with all open-loop eigenvalues unstable, the channel

is an additive noise channel so that q′t = qt + vt for some sta-

tionary Gaussian noise, and time-invariant control policies are

considered leading to a stable system, then with the more com-

mon notation of yt = q′t, the right hand side of the statement

in Theorem 4 would be the sum of the unstable eigenvalues

of the linear system matrix. For a stationary Gaussian process

[see [7], page 274] the entropy rate can be written as

1

2
log(2πe) +

∫ 1/2

−1/2

1

2
log(S(f))df

with S denoting the spectral density of the process.With

I(q′t; q[0,t]|q
′
[0,t−1]) = h(q′t|q

′
[0,t−1])− h(vt|v[0,t−1]),

the left hand side of (9) reduces to the difference between

the entropy rate of the process q′t (i.e., limt→∞ h(q′t|q[0,t−1]))
and that of the stationary noise process vt. Then, the left hand

side of (9) equals
∫ 1/2

−1/2
1
2 log(

Sy(f)
Sv(f)

)df, which then is equal

to the integral of the log-sensitivity function (corresponding

to the transfer function from the disturbance process vt to the

output process q′t). This leads to the celebrated Bode’s Integral

Formula. ⋄



III. ASYMPTOTIC MEAN STATIONARITY AND ERGODICITY

In the following, we build on, but significantly modify the

approaches in [36] and [18] to account for non-linearity of the

system. Consider the system (6), under a given control policy,

controlled over a channel.

Assumption 3. We assume

M := sup
x∈RN

log2 |J(f(x))| < ∞,

L := inf
x∈RN

log2 |J(f(x))| > −∞.

Proposition 1. Consider the system (6) controlled over a Class

A type noisy channel with feedback with h(x0) < ∞ under

Assumption 3. If C < L,

lim sup
T→∞

P (|xT | ≤ b(T )) ≤
M − (L− C)

M
,

for all b(T ) > 0 such that limT→∞
1
T log2(b(T )) = 0.

An implication of this result follows.

Theorem 5. Consider the system (6) controlled over a Class

A type noisy channel with feedback, and let Assumption 1

hold. If, under some causal encoding and controller policy,

the state process is AMS, then the channel capacity C must

satisfy C ≥ L.

For a proof, see [35]. We recover the following result for

linear systems in [36] as a special case.

Corollary 1. For the linear case with f(x) = Ax with eigen-

values |λi| ≥ 1, C ≥
∑

k log2(|λi|) is a necessary condition

for the AMS property under any admissible coding and control

policy.

Remark 3. In information theory, a well-established result is

that for noiseless coding of information stable sources (this

includes all finite state stationary and ergodic sources) over

a class of information stable noisy channels (which includes

the channels we consider here), an asymptotically noise-free

recovery is possible if the channel capacity is greater than the

source entropy through the use of non-causal codes, see e.g.

[30] [14]. However, for the problem we consider (i) the source

is non-stationary and open-loop unstable, (ii) the encoding is

causal, and (iii) the source process space is not finite-alphabet.

Nonetheless, we see that the invariance properties of the source

process appear in the rate bounds that we obtain. ⋄

IV. STATIONARITY AND POSITIVE HARRIS RECURRENCE

UNDER STRUCTURED (STATIONARY) POLICIES

In many applications, one uses a state-space formulation for

coding and control policies. In the following, we will consider

stationary update rules which have the form that

qt = γe(xt,mt)

ut = γd(mt, q
′
t),

mt = η(mt−1, q
′
t−1), (9)

for functions γe, γd, and η. In the form above, m is a S-valued

memory or quantizer state variable. A large class of adaptive

encoding policies have the form above. This includes, delta

modulation, differential pulse coded modulation (DPCM), adap-

tive differential pulse coded modulation (ADPCM), Goodman-

Gersho type adaptive quantizers, as well as the coding schemes

used for stabilization of networked control systems under fixed-

rate codes [33].

In this section, instead of asymptotic mean stationarity, we

will consider the more stringent condition of (asymptotic) sta-

tionarity of the controlled source process. For ease in presen-

tation we will assume that mt takes values in a countable set,

even though the extension to more general spaces is possible.

Lemma 1. If the channel is memoryless, the process (xt,mt)
forms a Markov chain.

For this Markov chain, let πt(B) = E[1{(xt,mt)∈B}] for all

Borel B. With a slight abuse of notation, assume that πt has a

density which is denoted by the same letter. We assume here

that the channel is memoryless.

Theorem 6. Suppose that the encoding, control and the mem-

ory update laws are given by (9). (i) Let f have the form (5)

or (6), (ii) Assumptions 1 and 2 hold, (iii) h(x0) < ∞. For the

positive Harris recurrence of the process xt,mt, which implies

the existence of a unique invariant measure (ergodicity) π, with

density also to be denoted by π, it must be that

C ≥

∫

π(dx)

(
∫

ν(dw) log2(|J(f(x,w))|)

)

, (10)

provided that (
∫

ν(dw) log2(|J(f(x,w))|) is π-integrable and

lim supt→∞
1
th(xt) ≤ 0.

For a proof, see [35].

Remark 4. The preceding theorem affirms an information the-

oretic and ergodic theoretic result that the Shannon capacity

of the channel should be greater than the entropy rate of

a dynamical system. Likewise, the Lyapunov exponent-like

expression of the averages of log2(|J(f(., wt))|)) is present

in the converse bound. We note that for a noise-free system

with a random initial condition, Pesin’s formula [32] provides

a characterization of the measure-theoretic entropy through

Lyapunov exponents. ⋄

V. DISCRETE NOISELESS CHANNELS AND A POLICY

LEADING TO STATIONARITY AND ERGODICITY

In this section, we provide achievability results and a stabi-

lizing coding/control policy. As discussed earlier, the study of

non-linear systems have typically considered noise-free con-

trolled systems; e.g. [2], [15], and [25]. As also noted earlier,

for noise-free systems, it typically suffices to only consider

a sufficiently small invariant neighborhood of an equilibrium

point to obtain stabilizability conditions which is not neces-

sarily the case when the system is driven by an additive noise

process. We consider such an example in the following.



Theorem 7. Consider a non-linear system of the form (7),

where {wt} is a sequence of zero-mean Gaussian random

vectors and there exists a control function κ(z) such that

|f(x, κ(z))|∞ ≤ |a||x−z|∞ for all x, z ∈ R
N , with κ(0) = 0.

For the stationarity and ergodicity of {xt} (and thus with a

unique invariant probability measure), it suffices that C >
N log2(|a|) + 1.

The proof of this result builds on the construction of an

adaptive quantizer, a sequence of stopping times which allow

for the transmission of information from the granular region

of the adaptive quantizer, and the application of random-time

stochastic drift criteria [37]. We refer the reader to [35].

Remark 5. The approach adopted in the proof of Theorem 7

applies for more general channels (such as erasure channels or

discrete memoryless channels) subject to more tedious bounds.

⋄

VI. CONCLUSION

In this paper, conditions on information channels leading

to stochastic stability of non-linear systems controlled over

noisy channels have been investigated. Stochastic stability no-

tions considered were asymptotic mean stationarity, ergodicity

and stationarity. Results for linear systems are recovered as a

special case.

REFERENCES

[1] J. Baillieul. Feedback designs for controlling device arrays with
communication channel bandwidth constraints. In 4th ARO Workshop
on Smart Structures, State College, PA, August 1999.

[2] J. Baillieul. Data-rate requirements for nonlinear feedback control.
In Proc. 6th IFAC Symp. Nonlinear Control Syst., Stuttgart, Germany,
pages 1277–1282, 2004.

[3] T. Berger. Information rates of Wiener processes. IEEE Transactions
on Information Theory, 16:134–139, 1970.

[4] Hendrik W Bode. Network analysis and feedback amplifier design. D.
van Nostrand New York, 1945.

[5] F. Colonius and C. Kawan. Invariance entropy for control systems. SIAM

Journal on Control and Optimization, 48(3):1701–1721, 2009.

[6] F. Colonius and C. Kawan. Invariance entropy for outputs. Mathematics

of Control, Signals, and Systems, 22(3):203–227, 2011.

[7] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,
New York, 1991.

[8] R. Dabora and A. Goldsmith. On the capacity of indecomposable finite-
state channels with feedback. Proceedings of the Allerton Conf Commun

Control Comput, pages 1045–1052, September 2008.

[9] N. Elia. When Bode meets Shannon: control-oriented feedback commu-
nication schemes. IEEE Transactions on Automatic Control, 49(9):1477–
1488, 2004.

[10] R. M. Gray. Information rates of autoregressive processes. IEEE

Transactions on Information Theory, 16:412–421, 1970.

[11] R. M. Gray and T. Hashimoto. A note on rate-distortion functions for
nonstationary Gaussian autoregressive processes. IEEE Transactions on

Information Theory, 54:1319–1322, March 2008.

[12] T. Hashimoto and S. Arimoto. On the rate-distortion function for the
nonstationary Gaussian autoregressive process. IEEE Transactions on

Information Theory, 26:478–480, 1980.

[13] C. Kawan. Invariance Entropy for Deterministic Control Systems.
Springer, 2013.

[14] J. C. Kieffer. Zero-error stationary coding over stationary chan-
nels. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
56(1):113–126, 1981.

[15] D. Liberzon and J. P. Hespanha. Stabilization of nonlinear systems with
limited information feedback. IEEE Transactions on Automatic Control,
50(6):910–915, 2005.

[16] N. C. Martins and M. A. Dahleh. Feedback control in the presence
of noisy channels: “Bode-like fundamental limitations of performance.
IEEE Transactions on Automatic Control, 53:1604–1615, August 2008.

[17] N. C. Martins, M. A. Dahleh, and N. Elia. Feedback stabilization of
uncertain systems in the presence of a direct link. IEEE Transactions
on Automatic Control, 51(3):438–447, 2006.

[18] A. S. Matveev. State estimation via limited capacity noisy communica-
tion channels. Mathematics of Control, Signals, and Systems, 20:1– 35,
2008.

[19] A. S. Matveev and A. Savkin. An analogue of Shannon information
theory for detection and stabilization via noisy discrete communication
channels. SIAM J. Control Optim, 46:1323–1367, 2007.

[20] S. P. Meyn and R. Tweedie. State-dependent criteria for convergence of
Markov chains. Ann. Appl. Prob, 4:149–168, 1994.

[21] Rick H Middleton. Trade-offs in linear control system design. Automat-
ica, 27(2):281–292, 1991.

[22] G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems
with finite feedback data rates. SIAM J. Control and Optimization,
43:413–436, July 2004.

[23] G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran. Topological
feedback entropy and nonlinear stabilization. IEEE Transactions on

Automatic Control, 49(9):1585–1597, 2004.
[24] H. H. Permuter, T. Weissman, and A. J. Goldsmith. Finite state

channels with time-invariant deterministic feedback. IEEE Transactions

on Information Theory, 55(2):644–662, February 2009.
[25] C. De Persis and A. Isidori. Stabilizability by state feedback implies

stabilizability by encoded state feedback. Systems & Control Letters,
53(3):249–258, 2004.

[26] A. Sahai and S. Mitter. The necessity and sufficiency of anytime
capacity for stabilization of a linear system over a noisy communication
link part I: Scalar systems. IEEE Transactions on Information Theory,
52(8):3369–3395, 2006.

[27] S. Tatikonda. Control under Communication Constraints. PhD disser-
tation, Massachuetsess Institute of Technology, Cambridge, MA, 2000.

[28] S. Tatikonda and S. Mitter. Control under communication constraints.
IEEE Transactions on Automatic Control, 49(7):1056–1068, 2004.

[29] S. Tatikonda and S. Mitter. The capacity of channels with feedback.
IEEE Transactions on Information Theory, 55(1):323–349, January
2009.

[30] S. Vembu, S. Verdú, and Y. Steinberg. The source-channel separation
theorem revisited. IEEE Transactions on Information Theory, 41:44–54,
1995.

[31] W. S. Wong and R. W. Brockett. Systems with finite communication
bandwidth constraints - part ii: Stabilization with limited information
feedback. IEEE Transactions on Automatic Control, 42:1294–1299,
September 1997.

[32] L-S. Young. Entropy in dynamical systems. In Entropy, Editors:
A. Greven, G. Keller, and G. Warnecke, pages 313–327. Princeton
University Press, 2003.

[33] S. Yüksel. Stochastic stabilization of noisy linear systems with fixed-rate
limited feedback. IEEE Transactions on Automatic Control, 55:2847–
2853, December 2010.

[34] S. Yüksel. Characterization of information channels for asymptotic mean
stationarity and stochastic stability of non-stationary/unstable linear
systems. IEEE Transactions on Information Theory, 58:6332–6354,
October 2012.

[35] S. Yüksel. Stationary and ergodic properties of stochastic non-linear
systems controlled over communication channels. arXiv preprint, 2016.
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