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On Optimal Causal Coding of Partially Observed
Markov Sources in Single and Multiterminal Settings

Serdar Yüksel

Abstract—The optimal causal (zero-delay) coding of a partially
observed Markov process is studied, where the cost to be mini-
mized is a bounded, nonnegative, additive,measurable single-letter
function of the source and the receiver output. A structural result is
obtained extending Witsenhausen’s and Walrand-Varaiya’s struc-
tural results on optimal causal coders to more general state spaces
and to a partially observed setting. The decentralized (multiter-
minal) setup is also considered. For the case where the source is an
i.i.d. process, it is shown that an optimal solution to the decentral-
ized causal coding of correlated observations problem is memory-
less. ForMarkov sources, a counterexample to a natural separation
conjecture is presented.

Index Terms—Networked control systems, quantization, source
coding.

I. INTRODUCTION

T HIS paper considers optimal causal encoding/quantiza-
tion of partially observed Markov processes. We begin

with providing a description of the system model. We consider
a partially observed Markov process, defined on a probability
space and described by the following discrete-time
equations for :

(1)

(2)

for (Borel) measurable functions , , , 2, with
i.i.d., mutually independent noise processes

and a random variable with probability measure . Here,
we let , and , where , are complete,
separable, metric spaces (Polish spaces) and, thus, include
countable spaces or , .
Let an encoder, encoder , be located at one end of an obser-

vation channel characterized by (2). The encoders transmit their
information to a receiver (see Fig. 1), over a discrete noiseless
channel with finite capacity; that is, they quantize their informa-
tion. The information at the encoders may also contain feedback
from the receiver, which we clarify in the following.
Let us first define a quantizer.
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Definition 1.1: Let with .
Let be a topological space. A quantizer is a Borel
measurable map from to .
When the spaces and are clear from context, we will

drop the notation and denote the quantizer simply by .
We refer by a composite quantization policy of en-

coder a sequence of functions which are
causal such that the quantization output at time , , under

is generated by a causally measurable function of its
local information, that is, a mapping measurable on the sigma-
algebra generated by

and , to a finite set , the quantization output al-
phabet at time given by

for and , 2. Here, are fixed in advance
and do not depend on the realizations of the random variables.
Here, we have the notation for

Let

be information spaces such that for all , . Thus

We may express, equivalently, the policy as a com-
position of a quantization policy and a quantizer. A quanti-
zation policy of encoder , is a sequence of functions ,
such that for each , is a mapping from the information
space to a space of quantizers . A quantizer, subsequently,
is used to generate the quantizer output. That is for every and ,

and for every , we will adopt the following
representation:

(3)

mapping the information space to in its most general form.
We note that even though there may seem to be duplicated in-
formation in (3) (since a map is used to pick a quantizer, and
the quantizer maps the available information to outputs) we will
eliminate any informational redundancy: a quantizer action will
be generated based on the common information at the encoder
and the receiver, and the quantizer will map the relevant private
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Fig. 1. Partially observed source under a decentralized structure.

information at the encoder to the quantization output. Such a
separation in the design will also allow us to use the machinery
of Markov decision processes to obtain a structural method to
design optimal quantizers, to be clarified further, without any
loss in optimality.
That is, let the information at the receiver at time

be . The common information, under
feedback information, in the encoders and the receiver is the set

. Thus, we can express the composite

quantization policy as

(4)

mapping the information space to . We note that any
composite quantization policy can be expressed in the
aforementioned form; that is, there is no loss in the space of
possible such policies, since for any , one could define

Thus, we let have policy and under this policy generate
quantizer actions , ( is the quantizer
used at time ). Under action , and given the local informa-
tion, the encoder generates , as the quantization output at time
.
The receiver, upon receiving the information from the en-

coders, generates its decision at time , also causally: an admis-
sible causal receiver policy is a sequence of measurable func-
tions such that

where denotes the decision space.
For a general vector , let denote and let

denote the ensemble of policies and .
Hence, denotes .
With the aforementioned formulation, the objective of the de-

cision makers (DMs) is the following minimization problem:

over all policies , with the random initial condition
having probability measure . Here, , is a nonnegative,
bounded, measurable function and for .
We also assume that the encoders and the receiver know the

a priori distribution .
Before concluding this section, it may be worth emphasizing

the operational nature of causality, as different approaches have
been adopted in the literature. The encoders at any given time
can only use their local information to generate the quantization
outputs. The receiver, at any given time, can only use its local in-
formation to generate its decision/estimate. These happen with
zero delay, that is if there is a common clock at the encoders and
the receiver, the receiver at time needs to make its decision
before the realizations , , have taken place. This
corresponds to the zero-delay coding schemes of, for example,
Witsenhausen and Linder-Lugosi in [52] and [29], but is dif-
ferent from the setup of Neuhoff and Gilbert [40], which allows
long delays at the decoder. Our motivation for such zero-delay
schemes comes mainly from applications in networked con-
trol systems, when sensors need to transmit information to con-
trollers who need to act on a system; such systems cannot tol-
erate long delays, in particular when the source is open loop
unstable and disturbance exists in the evolution of the source.

A. Relevant Literature

Some related studies of the aforementioned setup include op-
timal control with multiple sensors and sequential decentralized
hypothesis testing problems and multiaccess communications
with feedback [3]. Related papers on real-time coding include
the following: the authors of [40] established that the optimal
causal encoder minimizing the data rate subject to a distortion
for an i.i.d sequence is memoryless. If the source is th-order
Markov, then the optimal causal fixed-rate coder minimizing
any measurable distortion uses only the last source symbols,
together with the current state at the receiver’s memory [52].
The authors of [46] considered the optimal causal coding
problem of finite-state Markov sources over noisy channels
with noiseless feedback. The authors of [43] and [37] con-
sidered optimal causal coding of Markov sources over noisy
channels without feedback. The authors of [36] considered
the optimal causal coding over a noisy channel with noisy
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feedback. The authors of [30] considered the causal coding of
stationary sources under a high-rate assumption.
Our paper is particularly related to the following two efforts

in the literature: Borkar et al. [11] study a related problem of
coding of a partially observed Markov source; however, the
construction for the encoders is restricted to take a particular
form which uses the information at the decoder and the most
recent observation at the encoder (not including the observa-
tion history). As another point of relevance with our paper, [11]
regarded the actions as the quantizer functions, which we will
discuss further. In contrast, the only restriction we have in this
paper is causality, in the zero-delay sense. On the other hand,
we do not claim the existence results that the authors in [11]
are making. Another work in the literature which is related to
ours is by Nayyar and Teneketzis [38], considering a multiter-
minal setup. The authors of [38] consider decentralized coding
of correlated sources when the encoders observe conditionally
independent messages given a finitely valued random variable
and obtain separation results for the optimal encoders. The paper
also considers noisy channels. In our setup, there does not exist
a finitely valued random variable which makes the observations
at the encoders conditionally independent.
The authors of [47] and [31] consider optimal causal vari-

able-rate coding under side information and the authors of [55]
consider optimal variable-rate causal coding under distortion
constraints. The studies in [31] and [55] are in the context of
real-time, zero-delay settings, whereas [47] considers causality
in the sense of Neuhoff and Gilbert [40] as discussed in the pre-
vious section.
We will also obtain structural results for optimal decentral-

ized coding of i.i.d. sources. There are algorithmic results avail-
able in the literature when the encoders satisfy the optimal struc-
ture obtained in the paper; important resources in this direction
include [24], [21], and [48].
A parallel line of consideration which has a rate-distortion

theoretic nature is on sequential-rate distortion proposed in [42]
and the feedforward setup, which has been investigated in [45]
and [17].
Our work is also related to Witsenhausen’s indirect rate dis-

tortion problem [51] (see also [15]). We will observe that the
separation argument through the disconnection principle of [51]
applies to our setting in a dynamic context. Further related pa-
pers include [6] and [28].
In our paper, we also use ideas from team decision theory;

see [50], [54], [34], [35], and [13] for related discussions and
applications.

B. Contributions of the Paper

1) The optimal causal coding of a partially observed Markov
source is considered. For the single-terminal case, a struc-
tural result is obtained extending Witsenhausen’s and
Walrand and Varaiya’s structural results on optimal causal
(zero-delay) coders to a partially observed setting and to
sources which take values in a Polish space. We show that
a separation result of a form involving the decoder’s belief
on the encoder’s belief on the state is optimal.

2) The decentralized (multiterminal) setup is also considered.
For the case where the source is an i.i.d. process, it is shown

that the optimal decentralized causal coding of correlated
observations problem admits a solution which is memory-
less. For Markov sources, a counterexample to a natural
separation conjecture is presented. The decentralized con-
trol concept of signaling is interpreted in the context of de-
centralized coding.

3) The results are applied to a linear-quadratic-Gaussian
(LQG) estimation/optimization problem. The aforemen-
tioned results induce an optimality result for separation
of estimation and quantization, where the estimation is
obtained with a Kalman filter (KF) and the filter output is
quantized.

We now summarize the rest of this paper. In Section II, we
present our results on optimal coding of a partially observed
Markov process when there is only one encoder. Section III
discusses the decentralized setting for a multiencoder setup
and presents a counterexample for a separation conjecture and
provides a separation result when the source is memoryless.
This paper ends with the concluding remarks of Section V,
following an application example on linear, Gaussian systems
in Section IV. The proofs of the results are presented in the
Appendix.

II. SINGLE-TERMINAL CASE: OPTIMAL CAUSAL CODING OF A
PARTIALLY OBSERVED MARKOV SOURCE

A. Revisiting the Single-Terminal, Fully Observed Case

Let us revisit the single-encoder, fully observed case: in this
setup, for all . There are two related approaches in
the literature as presented explicitly by Teneketzis in [43]; one
adopted by Witsenhausen [52] and one by Walrand and Varaiya
[46]. The author of [43] extended the setups to the more general
context of nonfeedback communication.

Theorem 2.1 (see [52]): Any (causal) composite quantization
policy can be replaced, without any loss in performance, by one
which only uses and at time .
Walrand and Varaiya considered sources living in a finite set,

and essentially obtained the following.

Theorem 2.2 (see [46]): Any optimal (causal) composite
quantization policy can be replaced, without any loss in per-
formance, by one which only uses the conditional probability
measure , the state , and the time information
, at time .
The difference between the aforementioned structural results

is the following: in the setup suggested by Theorem 2.1, the
encoder’s memory space is not fixed and keeps expanding as
the decision horizon in the optimization, , increases. In
Theorem 2.2, the memory space of an optimal encoder is fixed.
In general, the space of probability measures is a very large one;
however, it may be the case that different quantization outputs
may lead to the same conditional probability measure on the
state process, leading to a reduction in the required memory.
Furthermore, Theorem 2.2 allows one to apply the theory of
Markov decision processes. We note that [11] applied such a
machinery to obtain existence results for optimal causal coding
of partially observed Markov processes.
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B. Optimal Causal Coding of a Partially Observed Markov
Source

Consider the setup earlier in (2) with a single encoder. Thus,
the system considered is a discrete-time scalar system described
by

(5)

where is the state at time , and is a sequence of
zero-mean, mutually independent, identically distributed (i.i.d.)
random variables with finite second moments. Let the quan-
tizer, as described earlier, map its information to a finite set

. At any given time, the receiver generates a quantity as
a function of its received information, that is as a function of

. The goal is to minimize ,
subject to constraints on the number of quantizer bins in ,
and the causality restriction in encoding and decoding.
Let for a Polish space , be the space of probability

measures on , the Borel —field on (generated by open
sets in ). At this point we pause to provide a brief discussion
on the space .
Let be the set of all Borel measurable and bounded func-

tions from to . We first wish to find a topology on ,
under which functions of the form

aremeasurable on .Wewill need this to construct the struc-
ture of optimal quantizers later in this section.
Let be a sequence in . Recall that is

said to converge to weakly if

for every continuous and bounded . The sequence
is said to converge to setwise if

for every measurable and bounded . For two proba-
bility measures , , the total variation metric is given
by

where the infimum is over all measurable real such that
. A sequence is said to

converge to in total variation if .
These three convergence notions are in increasing order of

strength: convergence in total variation implies setwise conver-
gence, which in turn implies weak convergence. Total varia-
tion is a very strong notion for convergence. Furthermore, the
space of probability measures under total variation metric is not
separable. Setwise convergence also induces an inconvenient
topology on the space of probability measures, particularly be-
cause this topology is not metrizable ([20, p. 59]). However, the

space of probability measures on a complete, separable, metric
(Polish) space endowed with the topology of weak convergence
is itself a complete, separable, metric space [4]. The Prohorov
metric, for example, can be used to metrize this space, among
other metrics. This topology has found many applications in in-
formation theory and stochastic control. For these reasons, one
would like to work with weak convergence.
By the aforementioned definitions, it is evident that both set-

wise convergence and total variation are sufficient for measur-
ability of the function class , since under these topologies

is (sequentially) continuous on for every
. However, as we state in the following, weak con-

vergence is also sufficient (see [4, Th. 15.13] or [8, p. 215]).

Theorem 2.3: Let be a Polish space and let be the
set of all measurable and bounded functions under
which

defines a measurable function on under the weak conver-
gence topology. Then, is the same as of all bounded
and measurable functions.
Hence, will denote the space of probability measures

on under weak convergence. Now, define to be
the regular conditional probability measure given by

The existence of this regular conditional probability measure
for every realization follows from the fact that both the
state process and the observation process are Polish. It is known
that the process evolves according to a nonlinear filtering
equation [see (14)], and is itself a Markov process (see [10],
[49], and [11]).
Let us also define as the regular conditional

measure

The following are the main results of this section.

Theorem 2.4: Any (causal) composite quantization policy
can be replaced, without any loss in performance, by one which
only uses as a sufficient statistic for . This
can be expressed as a quantization policy which only uses

to generate a quantizer, where the quantizer uses to
generate the quantization output at time .

Theorem 2.5: Any (causal) composite quantization policy
can be replaced, without any loss in performance, by one which
only uses for . This can be expressed as a quan-
tization policy which only uses to generate a quantizer,
where the quantizer uses to generate the quantization output
at time .
The proofs of the aforementioned results are presented in the

Appendix. We present two remarks in the following.

Remark 2.1: Our aforementioned results are not surprising.
In fact, once one recognizes the fact that forms a Markov
source, and the cost function can be expressed as a function
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, for some function , one could
almost directly apply Witsenhausen’s [52] as well as Walrand
and Varaiya’s [46] results to recover the structural aforemen-
tioned results (except the fact thatWalrand and Varaiya consider
sources living in a finite alphabet). The proofs in the Appendix
are presented for completeness and to address the technical in-
tricacies.

Remark 2.2: Having the actions as the quantizers, and not
the quantizer outputs, allows one to define a Markov decision
problem with well-defined cost functions and state and action
spaces. By the proof of Theorem 2.5, we will observe that

forms a Markov chain, which is a key observation:
thus, the action space can be constructed as some topological
space of quantizers acting on . Borkar et al. [11] adopted
this view while formulating an MDP optimization problem,
where the quantizer acts on . (As mentioned earlier, our
separation result is different from [11] due to the structure
imposed on the quantizers in [11].) See also [56] and [58] for a
topology on quantizers.

C. Extensions to Finite Delay Decoding and Higher Order
Markov Sources

The results presented are also generalizable to settings where
1) the source is Markov of order ; 2) a finite delay is
allowed at the decoder; and 3) the observation process depends
also on past source outputs in a sense described in (6). For these
cases, we consider the following generalization of the source by
expanding the state space.
Suppose that the partially observed source is such that the

source is Markov of order , or there is a finite delay
which is allowed at the decoder. In this case, we can augment
the source to obtain . Note that
is Markov. We can thus consider the following representation:

(6)

where , and ,
are mutually independent, i.i.d. processes.
Any per-stage cost function of the form can be

written as for some . For the finite delay case, the
cost per-stage can further be specialized as . For the
Markov case with memory, the cost function per-stage writes
as . Now, by replacing with ,
let be given by

and be the regular conditional mea-
sure defined by

Hence, we have the following result, which is a direct exten-
sion of Theorems 2.4 and 2.5.

Theorem 2.6: Suppose that the partially observed source is
such that, the source is Markov of order , or there is a fi-
nite delay which is allowed at the decoder. With

, satisfies (6). Then, we have the fol-
lowing extensions.

1) Any causal composite quantization policy can be replaced,
without any loss in performance, by one which only uses

as a sufficient statistic for . This can be
expressed as a quantization policy which only uses
to generate a quantizer, where the quantizer uses to gen-
erate the quantization output at time .

2) Any causal composite quantization policy can be replaced,
without any loss in performance, by one which only uses

for . This can be expressed as a quantiza-
tion policy which only uses to generate a quantizer,
where the quantizer uses to generate the quantization
output at time .

For a further case where the decoder’s memory is limited or
imperfect, the results apply by replacing the full information
at the receiver considered so far in our analysis with the lim-
ited memory under additional technical assumptions on the de-
coder’s update of its memory (in particular, (15) in the proof of
Theorem 2.5 does not apply in general). However, an equivalent
result of Theorem 2.4 applies also for the limited memory set-
ting. Such memory settings have been considered in [52], [46],
and [36].

III. MULTITERMINAL (DECENTRALIZED) SETUP

A. Case With Memoryless Sources

Let us first consider a special, but important, case when
is an i.i.d. sequence. Further, suppose that the

observations are given by

(7)

for measurable functions , , 2, with (across
time) an i.i.d. noise process. We do not require that and
are independent for a given . We note that our result below is
also applicable when the process is only independent
(across time), but not necessarily identically distributed.
One difference with the general setup considered earlier in

Section I is that we require the observation spaces , , 2,
to be finite spaces ( can still be Polish).
Suppose the goal is again the minimization problem

(8)

over all causal coding and receiver decision policies.
We now make a definition. In the following, denotes the

indicator function of an event .

Definition 3.1: We define the class of nonstationary memo-
ryless team policies at as follows:

(9)

where, in the above, are arbitrary measurable func-
tions.
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Theorem 3.1: Consider the minimization of (8). An optimal
composite quantization policy over all causal policies is an ele-
ment of . Such a policy exists.
The proof is presented in the Appendix.
Hence, an optimal composite quantization policy only uses

the product form admitted by a nonstationary memoryless team
policy. It ignores the past observations and past quantization
outputs. We note that the proof also applies to the case when
the source is memoryless, but not necessarily i.i.d.
Onemay ask why feedback could be useful when the source is

i.i.d. Feedback may be useful for at least two reasons: 1) feed-
back can be used as a signaling mechanism for the encoders
to communicate with each other (which we discuss further in
Sections III-B and III-C), and 2) feedback can provide common
randomness to allow a convexification of the space of possibly
randomized decentralized encoding strategies. Consider the op-
timization problem discussed in (8)

The function is concave in the choice of a team policy
(see [57, Th. 4.1] for the case with ; the proof also

holds for the current setting). As such, if the space of joint en-
coding policies is convexified by common randomness, an op-
timal solution would exist at an extreme point, which in turn
does not require a use of common randomness. This explains
why common randomness generated by past quantization out-
puts does not present further benefit in the current setting.
We note before ending this section that if there is an en-

tropy constraint on the quantizer outputs, then feedback might
be useful for finite-horizon problems as it provides common
randomness, which cannot be achieved by time sharing in a fi-
nite-horizon problem. The authors of [40] observed that ran-
domization of two scalar quantizers (operationally achievable
through time sharing) is optimal in causal coding of an i.i.d.
source subject to distortion constraints, which also applies in
the side information setting of [47]. On the other hand, for the
zero-delay setting, when one considers the distortion minimiza-
tion problem subject to an entropy constraint, the authors of
[25] observed that the distortion–entropy curve is nonconvex,
leading to a benefit of common randomness for achieving points
in the lower convex hull of this curve. Further relevant discus-
sions on randomization and optimal quantizer design are present
in [19] and [56].

B. Case With Markov Sources: A Counterexample With
Signaling

We now consider Markov sources and exhibit that it is, in
general, not possible to obtain a separation result of the form
presented for the single-terminal case.
We will consider a two-encoder setup for the following re-

sult, where the encoders have access to the feedback from the
receiver (see Fig. 1). We have the following result.

Proposition 3.1: Consider the setup in (1) and (2) and let
, , , 2. An optimal composite

quantization policy cannot, in general, be replaced by a policy
which only uses to generate for , 2.

Proof: It suffices to produce an instance where an optimal
policy cannot admit the separated structure. Toward this end, let
, , be uniformly distributed, independent, binary num-

bers; , be defined by

such that , , and . Let
the observations be given as follows:

where is the x-or operation. That is

Let the cost be

That is, the cost is , where are the
information bits sent to the decoder for and 1.
We further restrict the information rates to satisfy

, . That is, the encoder 2 may only
send information at time .
Under arbitrary causal composite quantization policies, a cost

of zero can be achieved as follows: if encoder 1 sends the value
to the receiver, and at time 1, encoder 1 transmits and

encoder 2 transmits (or ), the receiver can uniquely
identify the value of , for every realization of the random vari-
ables.
For such a source, an optimal composite policy cannot be

written in the separated form, that is, an optimal policy of en-
coder 2 at time 1 cannot be written as , for some mea-
surable function . To see this, note the following: the condi-
tional distribution on at encoder 2 at time 1 is such that the
conditionalmeasure on is uniform and independent, that
is for all values of , .
If a policy of the structure of is adopted, then it is not pos-
sible for encoder 2 to recall its past observation to extract the
value of . This is because will be a distribution only on
and , which will be uniform and independent, given .
Thus, the information will not be available in the memory
and the receiver will have access to at most and and

(the last variable containing no useful infor-
mation). The optimal estimator will be , leading to
a cost of .

C. Discussion: Connections With Team Decision Theory

In this section, we interpret the results of the previous sec-
tions. We first provide a brief discussion on information struc-
tures in a decentralized optimization problem: consider a col-
lection of DMs where each has access to some local informa-
tion variable. Such a collection of DMs who wish to minimize a
common cost function and who has an agreement on the system
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(that is, the probability space on which the system is defined,
and the policy and action spaces) is said to be a team. Such a
team is dynamic if the information of one DM is affected by
the policy of some other DM. If there is a prespecified order
of action for the DMs, the team is said to be sequential. Witsen-
hausen [50] provided the following characterization of informa-
tion structures in a dynamic sequential team: Under a central-
ized information structure, all DMs have the same information.
If a DM’s, say , information is dependent on the policy of
another DM, say , and does not have access to the
information available to , this information structure is said
to admit a nonclassical information structure. A decentralized
system admits a quasi-classical information structure, if it is not
nonclassical.
In a decentralized optimization problem, when the informa-

tion structure is nonclassical, DMs might choose to communi-
cate via their control actions: this is known as signaling in de-
centralized control (see, for example, [54]).
With the characterization of information structures above,

every lossy coding problem is nonclassical, since a receiver
cannot recover the information available at the encoder fully,
while its information is clearly affected by the coding policy of
the encoder. However, in an encoding problem, the problem it-
self is the transmission of information. Therefore, we suggest
the following: signaling in a coding problem is the policy of an
encoder to use the quantizers/encoding functions to transmit a
message to other DMs, or to itself to be used in future stages,
through the information sent to the receiver. In the informa-
tion theory literature, signaling has been employed in coding for
multiple access channels with feedback in [14], [12], and [44].
In these papers, the authors used active information transmis-
sion to allow for coordination between encoders.
The reason for the negative conclusion in Proposition 3.1 is

that in general for an optimal policy

(10)

when the encoders have engaged in signaling (in contrast with
what we will have in the proof of the separation results). The
encoders may benefit from using the received past observation
variables explicitly.
Separation results for such dynamic team problems typically

require information sharing between the encoders (DMs),
where the shared information is used to establish a sufficient
statistic living in a fixed state space and which admits a con-
trolled Markov recursion (hence, such a sufficient statistic can
serve as a state for the decentralized system). For the proof of
Theorem 2.5, we see that forms such a state. For the proof of
Theorem 3.1, we see that information sharing is not needed for
the encoders to agree on a sufficient statistic, since the source
considered is memoryless. Furthermore, for the multiterminal
setting with a Markov source, a careful analysis of the proof of
Theorem 3.1 (see (21) and (24) and the subsequent discussion)
reveals that if the encoders agree on through
sharing their beliefs for , then a separation result involving
this joint belief can be obtained. See [54] for a related infor-
mation sharing pattern and discussions. Further results on such

Fig. 2. Separation of estimation and quantization: when the source is Gaussian,
generated by the linear system (11), the cost is quadratic, and the observation
channel is Gaussian, the separated structure of the encoder above is optimal.
That is, first the encoder runs a Kalman Filter (KF), and then causally encodes
its estimate. For one-shot and independent observations setups, this result was
observed in [5], [7], [6], [15], and [18]. Our result shows that an extension of
this result applies for the optimal causal encoding of partially observed Markov
sources as well.

a dynamic programming approach to dynamic team problems
are present in [2], [32], [39], [35], among other references.

Remark 3.1: In the context of multiterminal systems, for the
computation of the capacity of multiple access channels with
memory and partial state feedback at the encoders, a relevant
discussion has been reported in [13] (section V). This is in the
same spirit as our current paper in that the authors [13] obtain
an optimality result when the channel is memoryless, and point
out the difficulties arising in the case of channels with memory
in view of intractability of the optimization problem: one cannot
identify a finite-dimensional sufficient statistic for the encoders
to use. Along a relevant direction, [38, Sec. III.D], in the con-
text of real-time coding, discusses the issue of the growing state
space.

IV. APPLICATION TO LQG ESTIMATION PROBLEMS

Consider a LQG setup, where a sensor quantizes its noisy
information to an estimator. Let , , and the
evolution of the system be given by the following:

(11)

Here, is a mutually independent, zero-mean Gaussian
noise sequence with , (where for a
vector , denotes its transpose), is a zero mean Gaussian
variable, and , are matrices of appropriate dimensions. Sup-
pose the goal is the computation of

(12)

with denoting a Gaussian distribution for the initial state,
a positive-definite matrix (see Fig. 2).

The conditional measure is Gaussian for
all time stages, which is characterized uniquely by its mean and
covariance matrix for all time stages. We have the following.

Theorem 4.1: For the minimization of the cost in (12), any
causal composite quantization policy can be replaced, without
any loss in performance, by one which only uses the output of
the Kalman Filter (KF) and the information available at the re-
ceiver.

Proof: The result can be proven by considering a direct
approach, rather than as an application of Theorems 2.4 and 2.5
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(which require bounded costs; however, this assumption can be
relaxed for this case), exploiting the specific quadratic nature of
the problem. Let denote the norm generated by an inner
product of the form for , for posi-
tive-definite . The projection theorem for Hilbert spaces
implies that the random variable is orthogonal
to the random variables , where is included
due to the Markov chain condition

We, thus, obtain the following identity:

The second term is to be minimized through the choice of the
quantizers. Hence, the term , which is com-
puted through a KF, is to be quantized (see Fig. 2). Recall that
by the KF (see [33]) with

and for

the following recursion holds for and with :

Thus, the pair is a Markov source, where the evo-
lution of is deterministic. Even though the cost to be
minimized is not bounded, since itself is a fully observed
process, the proof of Theorem 2.4 can be modified to develop
the structural result that any causal encoder can be replaced
with one which uses and the past quantization out-
puts (this result can be proven also using [52, Th. 1], since this
source is fully observed by the encoder). Likewise, the proof of
Theorem 2.5 shows that, for the fully observed Markov source

, any causal coder can be replaced with one which
only uses the conditional probability on and the realization

at time t.
Thus, the optimality of Kalman filtering allows the encoder

to only use the conditional estimate and the error covariance
matrix without any loss of optimality (see Fig. 2), and the op-
timal quantization problem also has an explicit formulation. The
aforementioned result is related to findings in [15] (also see
[5] and [18]), and partially improves them in the direction of
Markov sources.
We note that the aforementioned result also applies to the set-

tings when a controller acts on the system, that is, there exists
for and a matrix such that .
In this case, the well-known principle of separation and con-
trol in control theory allows the aforementioned results to be
applicable. In particular, the conditional estimation error is not
affected by the control actions, under an optimal policy.

V. CONCLUSION

For the optimal causal coding of a partially observed Markov
source, the structure of the optimal causal coders is obtained and
is shown to admit a separation structure. We observed in partic-
ular that separation of estimation (conditional probability com-
putation) and quantization (of this probability) applies under
such a setup. We also observed that the real-time decentralized
coding of a partially observed i.i.d. source admits a separation.
Such a separation result does not, in general, extend to decen-
tralized coding of partially observed Markov sources.
The results and the general program presented in this paper

apply also to coding over discrete memoryless noisy channels
with noiseless feedback. We note that Walrand and Varaiya [46]
considered the noisy channel setting in their analysis in the pres-
ence of noiseless feedback.
The separation result will likely find many applications

in sensor networks and networked control problems where
sensors have imperfect observation of a plant to be controlled.
One direction is to find explicit results on the optimal policies
using computational tools. One promising approach is the ex-
pert-based systems, which are very effective once one imposes
a structure on the designs; see [26] for details.
One further problem is on the existence and design of op-

timal quantizers. Existence of optimal quantizers, even in the
context of vector quantization for -valued random variables,
requires stringent conditions. Such proofs typically have the
form of Weierstrass theorem: a lower semicontinuous function
over a compact set admits a minimum. Existence results for op-
timal quantizers for a one-stage cost problem have been inves-
tigated by Abaya and Wise [1] and Pollard [41] for continuous
cost functions which are nondecreasing in the source-recon-
struction distance. The authors of [56] obtained existence results
for more general cost functions under the restriction that the
code bins/cells are convex and the source admits a density func-
tion. For dynamic quantizers, the authors of [58] established the
existence of optimal quantization policies under the assumption
that the quantizers admit the structure suggested by Theorem
2.5 for fully observed Markov sources and the code cells are
convex for a class of Markov sources. Also for dynamic vector
quantizers, the authors of [11] investigated the existence results
when there is a bound on the quantizer bins.
Theorem 2.5 motivates the problem of optimal quantization

of probability measures. This remains as an interesting problem
to be investigated in a real-time coding context, with impor-
tant practical consequences in control and economics applica-
tions. With a separation result paving the way for an MDP for-
mulation, one could proceed with the analysis of [11] with the
evaluation of optimal quantization policies and existence results
for infinite-horizon problems. Toward this direction, Graf and
Luschgy, in [22] and [23], have studied the optimal quantiza-
tion of probability measures.
One related question to be pursued further is the following:

When is there an incentive for signaling in coding problems?
When the observations are correlated for sources with memory
or when the real-time coding of possibly independent sources
over a general MAC type channel is considered, there may be
an incentive for signaling. Further results on this will provide
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some light on some outstanding problems such as the capacity
of MAC channels with feedback [14].

APPENDIX

A. Proof of Theorem 2.4

We transform the problem into a real-time coding problem
involving a fully observed Markov source. At time ,
the per-stage cost function can be written as follows, where
denotes a fixed receiver policy

(13)

where and

In the aforementioned derivation, the fourth equality follows
from the property that

We note that is measurable on
under weak convergence topology by Theorem 2.3 and the fact
that the cost is measurable and bounded.
It should be noted that for every composite quantization

policy, one may define as a random variable on the proba-
bility space such that the joint distribution of
matches the characterization that ,
since

The final stage cost is, thus, written as

which is equivalent to, by the smoothing property of conditional
expectation, the following:

Now, we will apply Witsenhausen’s two-stage lemma [52]
to show that we can obtain a lower bound for the double ex-
pectation by picking as a result of a measurable function of
, . Thus, we will find a composite quantization policy

which only uses which performs as well as one
which uses the entire memory available at the encoder. To make
this precise, let us fix the decision function at the receiver
corresponding to a given composite quantization policy at the
encoder , let , and define for every

These sets are Borel, by the measurability of on . Such
a construction covers the domain set consisting of
but with overlaps. It covers the elements in ,
since for every element in this product set, there is a minimizing

(note that is finite). To avoid the overlaps, we adopt
the following technique which was introduced in [52]. Let there
be an ordering of the elements in as , and for

in this sequence define a function as

with . Thus, for any random variable appropriately
defined on the probability space

Thus, the new composite policy performs at least as well as the
original composite coding policy even though it has a restricted
structure.
As such, any given policy can be replaced with one which

uses only without any loss of performance, while
keeping the receiver decision function fixed. It should now
be noted that is a Markov process: note that the following
filtering equation applies [10]
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and
. These imply that [see [10]; see also the discussion

following (15)] the following defines a Markov kernel (that is,
a regular conditional probability measure)

(14)

We have, thus, obtained the structure of the optimal encoder for
the final stage. We iteratively proceed to study the other time
stages. In particular, since is Markov, we could proceed
as follows (in essence using Witsenhausen’s three-stage lemma
[52]): for a three-stage cost problem, the cost at time can
be written as, for measurable functions ,

Since

and since under , is a function of and , ,
the expectation above is equal to, for some measurable ,

. Following similar steps as ear-
lier, it can be established now that a composite quantization
policy at time 2 uses and , without any loss.
By a similar argument, an encoder at time ,

only uses . The encoder at time uses ,
where is the prior distribution on the initial state.
Now that we have obtained the optimal structure for a com-

posite map, we can express this as

such that the quantizer action is gen-
erated using only , and the quantizer outcome is gener-
ated by evaluating for every .

B. Proof of Theorem 2.5

At time , the per-stage cost function can be written
as

Thus, at time , an optimal receiver (which is de-
terministic without any loss of optimality, see [9]) will use

as a sufficient statistic for an optimal decision (or
any receiver can be replaced with one which uses this sufficient
statistic without any loss). Let us fix such a receiver policy
which only uses the posterior as its sufficient
statistic. Note that

and further

(15)

The term is determined by the quantizer action
(this follows from Theorem 2.4). Furthermore, given ,

relation (15) is measurable on (that is, in
) under weak convergence.

To prove this technical argument, consider the numerator
in (15) and note that the function
defined as is measurable under weak conver-
gence topology as a consequence of Theorem 2.3, for each

. By [16, Th. 2.1], this implies that relation in
(15) is measurable on (since the topology considered
in [16] is not stronger than the weak convergence topology, the
result in [16] holds in this case as well).
Let us denote the quantizer applied, given the past realiza-

tions of quantizer outputs as . Note that is determin-
istically determined by and the optimal receiver
function can be expressed as (as a measurable func-
tion), given . The cost at time can be ex-
pressed, given the quantizer , for some Borel function
, as , where

with

(16)

Now, one can construct an equivalence class among the past
sequences which induce the same , and can replace

the quantizers for each class with one which induces a
lower cost among the finitely many elements in each such class,
for the final time stage. Thus, an optimal quantization output
may be generated using and .
Since there are only finitely many past sequences and finitely
many , this leads to a Borel measurable selection of for
every , leading to a quantizer and a measurable selection in
, .
Since such a selection for only uses , an optimal

quantization output may be generated using
and . Hence, can be replaced with

for some , without any performance loss.
The same argument applies for all time stages: at time
, the sufficient statistic both for the immediate cost and the

cost-to-go is , and thus for the cost impacting
the time stage , as a result of the optimality result
for . To show that the separation result generalizes to all
time stages, it suffices to prove that is a controlled
Markov chain, if the encoders use the aforementioned structure.
Toward this end, we establish that for , for all

, (18) holds.
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Here, (17) shown at the bottom of the page, uses
the fact that is identified by

, which in turn is uniquely identified
by and . Furthermore, the relation in (18),
shown at the bottom of the page, defines a regular conditional
probability measure since for all

is measurable in , given (as a consequence of the
measurability of (15) in ). Hence, by the result of Dubins and
Freedman mentioned previously ([16, Th. 2.1]), we conclude
that for any measurable function of

for every given . Now, once again an equivalence relation-
ship between the finitely many past quantizer outputs, based on
the equivalence of the conditional measures they induce,
can be constructed. With the controlled Markov structure, we
can follow the same argument for earlier time stages. There-
fore, it suffices that the encoder uses only as its sufficient
statistic for all time stages, to generate the optimal quantizer. An
optimal quantizer uses to generate the optimal quantization
outputs.

C. Proof of Theorem 3.1

The proof is given in three steps.
Step (i): In decentralized dynamic decision problems where

the DMs have the same objective (that is, in team problems),
more information provided to the DMs does not lead to any
degradation in performance, since the DMs can always choose
to ignore the additional information. In view of this, let us relax
the information structure in such a way that the DMs now have

access to all the previous observations, that is the information
available at encoders 1 and 2 are

The information pattern among the encoders is now the one-step
delayed observation sharing pattern. We will show that the past
information can be eliminated altogether, to prove the desired
result.
Step (ii):The second step uses the following technical lemma.

Lemma A.1: Under the relaxed information structure in
step (i), any decentralized quantization policy at time ,

, can be replaced, without any loss in performance, with
one which only uses , satisfying the following
form:

(19)

for measurable functions and .
Proof: Let us fix a composite quantization policy .

At time , the per-stage cost function can be written as

(20)

For this problem, is a sufficient statistic for an op-
timal receiver. Hence, at time , an optimal receiver
will use as a sufficient statistic for an optimal
decision as the cost function conditioned on is written
as , where is the decision of the re-
ceiver. Now, let us fix this decision policy at time . We now
note that (21), shown at the bottom of the next page, follows.
In (21), we use the relation

, where denotes the marginal probability
on (recall that the source is memoryless). The term

(17)

(18)



YÜKSEL: ON OPTIMAL CAUSAL CODING OF PARTIALLY OBSERVED MARKOV SOURCES 435

in (21) is determined by the composite
quantization policies:

The above is valid since each encoder knows the past observa-
tions of both encoders. As such, can be written
as, for some function : . Note that

appears due to the term . Now, con-
sider the following space of joint (team) mappings at time , de-
noted by :

(22)
For every composite quantization policy, there exists a distribu-
tion on random variables such that

(23)

Furthermore, with every composite quantization policy and
every realization of , , we can associate an
element in the space , , such that the induced
stochastic relationship in (23) can be obtained

We can thus express the cost, for some measurable function
in the following way:

where

Now let and define for every realization
(with the decision policy considered earlier

fixed)

As we had observed in the proof of Theorem 2.4, such a con-
struction covers the domain set consisting of but
possibly with overlaps. Note that for every , there
exists a minimizing function in , since is a finite set. In this
sequence, let there be an ordering of the finitely many elements
in as , and define a function

as

with . Thus, we have constructed a policy which
performs at least as well as the original composite quantiza-
tion policy. It has a restricted structure in that it only uses

to generate the team action and the local informa-
tion , to generate the quantizer outputs.
Now that we have obtained the structure of the optimal en-

coders for the last stage, we can sequentially proceed to study
the other time stages. Note that given a fixed , is i.i.d.
and hence Markov. Now, define . For a three-stage
cost problem, the cost at time can be written as, for mea-
surable functions ,

Since ,
the aforementioned expression is equal for some
for some measurable . By a similar argument, an optimal
composite quantizer at time , , only uses

(21)
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. An optimal (team) policy generates the quan-
tizers , using , , and the quantizers use to
generate the quantizer outputs at time for , 2.
Step (iii): The final step will complete the proof. At time
, an optimal receiver will use as a sufficient

statistic for the optimal decision. We now observe that

(24)

Thus, , is a function of . Now, let us
note that

(25)

where the term is determined by the quan-
tizer team action . As such, the cost at time
can be expressed as a measurable function . Thus,
it follows that an optimal quantizer policy at the last stage,

, may only use to generate the quantizers, where
the quantizers use the local information to generate the quan-
tization output. At time , the sufficient statistic for
the cost function is both for the immediate
cost and the cost-to-go, that is, the cost impacting the time stage

, as a result of the optimality result for and the
memoryless nature of the source dynamics. The same argument
applies for all time stages.
Hence, any policy without loss can be replaced with one in

defined in (9). Since there are finitely many policies in
this class, an optimal policy exists.
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