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Characterization of Information Channels for
Asymptotic Mean Stationarity and Stochastic

Stability of Nonstationary/Unstable Linear Systems
Serdar Yüksel

Abstract—Stabilization of nonstationary linear systems over
noisy communication channels is considered. Stochastically stable
sources, and unstable but noise-free or bounded-noise systems
have been extensively studied in the information theory and con-
trol theory literature since the 1970s, with a renewed interest in the
past decade. There have also been studies on noncausal and causal
coding of unstable/nonstationary linear Gaussian sources. In this
paper, tight necessary and sufficient conditions for stochastic sta-
bilizability of unstable (nonstationary) possibly multidimensional
linear systems driven by Gaussian noise over discrete channels
(possibly with memory and feedback) are presented. Stochastic
stability notions include recurrence, asymptotic mean stationarity
and sample path ergodicity, and the existence of finite second mo-
ments. Our constructive proof uses random-time state-dependent
stochastic drift criteria for stabilization of Markov chains. For
asymptotic mean stationarity (and thus sample path ergodicity), it
is sufficient that the capacity of a channel is (strictly) greater than
the sum of the logarithms of the unstable pole magnitudes for
memoryless channels and a class of channels with memory. This
condition is also necessary under a mild technical condition. Suffi-
cient conditions for the existence of finite average second moments
for such systems driven by unbounded noise are provided.

Index Terms—Asymptotic mean stationarity, feedback, Markov
chains, nonasymptotic information theory, stochastic control, sto-
chastic stability.

I. PROBLEM FORMULATION

T HIS paper considers stochastic stabilization of linear sys-
tems controlled or estimated over discrete noisy chan-

nels with feedback. We consider first a scalar LTI discrete-time
system (we consider multidimensional systems in Section IV)
described by

(1)

Here, is the state at time , is the control input, the ini-
tial condition is a second-order random variable, and
is a sequence of zero-mean independent, identically distributed
(i.i.d.) Gaussian random variables. It is assumed that and
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Fig. 1. Control over a discrete noisy channel with feedback.

: the system is open-loop unstable, but it is stabilizable.
This system is connected over a discrete noisy channel with a
finite capacity to a controller, as shown in Fig. 1.
The controller has access to the information it has received

through the channel. The controller in our model estimates the
state and then applies its control.

Remark 1.1: We note that the existence of the control can
also be regarded as an estimation correction, and all results re-
garding stability may equivalently be viewed as the stability of
the estimation error. Thus, the two problems are identical for
such a controllable system and the reader unfamiliar with con-
trol theory can simply replace the stability of the state, with the
stability of the estimation error.
Recall the following definitions.

Definition 1.1: A finite-alphabet channel with memory is
characterized by a sequence of finite input alphabets ,
finite output alphabets , and a sequence of conditional
probability measures , from
to , with

Definition 1.2: A discrete memoryless channel (DMC) is
characterized by a finite input alphabet , a finite output al-
phabet , and a conditional probabilitymass function ,
from to . Let be a sequence of input
symbols, and let be a sequence of output sym-

bols, where and for all . Let denote
the joint mass function on the -tuple input and output
spaces. A DMC from to satisfies the following:

,
, where denote the component of the

vectors , respectively.

In the problem considered, a source coder maps the informa-
tion at the encoder to corresponding channel inputs. This is done
through quantization and a channel encoder. The quantizer out-
puts are transmitted through a channel, after being subjected to
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a channel encoder. The receiver has access to noisy versions of
the quantizer/coder outputs for each time, which we denote by

. The quantizer and the source coder policy are causal
such that the channel input at time , , is generated using
the information vector available at the encoder for

and , where is the probability measure for the
initial state. The control policy at time , also causal, is measur-
able on the sigma algebra generated by , for

and and is a mapping to .
We will call such coding and control policies admissible

policies.
The goal of this paper is to identify conditions on the channel

under which the controlled process is stochastically stable
in sense that is recurrent, is asymptotically mean sta-
tionary (AMS) and satisfies Birkhoff’s sample path ergodic the-
orem, and that is finite almost surely,
under admissible coding and control policies. We will make
these notions and the contributions of this paper more precise
after we discuss a literature review in the next section. The Ap-
pendix contains a review of relevant definitions and results on
stochastic stability of Markov chains and ergodic theory.
Here is a brief summary of this paper. In the following,

we will first provide a comprehensive literature review. In
Section II, we state the main results of this paper. In Section III,
we consider extensions to channels with memory, and in
Section IV, we consider multidimensional settings. Section V
contains the proofs of necessity and sufficiency results for sto-
chastic stabilization. Section VI contains concluding remarks
and discusses a number of extensions. This paper ends with
Appendix which contains a review of stochastic stability of
Markov chains and a discussion on ergodic processes.

A. Literature Review

There is a large literature on stochastic stabilization of
sources via coding, both in the information theory and control
theory communities.
In the information theory literature, stochastic stability results

are established mostly for stationary sources, which are already
in some appropriate sense stable sources. In this literature, the
stability of the estimation errors as well as the encoder state pro-
cesses is studied. These systems mainly involve causal and non-
causal coding (block coding, as well as sliding-block coding)
of stationary sources [29], [48], [53], and AMS sources [35].
Real-time settings such as sigma–delta quantization schemes
have also been considered in the literature; see, for example,
[36] among others.
There also have been important contributions on noncausal

coding of nonstationary/unstable sources: consider the fol-
lowing Gaussian AR process:

(2)

where is an independent and identical, zero-mean,
Gaussian random sequence with variance . If the
roots of the polynomial are all in the
interior of the unit circle, then the process is stationary and its
rate distortion function (with the distortion being the expected,
normalized Euclidean error) is given parametrically (in terms
of parameter ) by the following Kolmogorov’s formula [30],
[54], obtained by considering the asymptotic distribution of the
eigenvalues of the correlation matrix

with . If at least one root,
however, is on or outside the unit circle, the analysis is more
involved as the asymptotic eigenvalue distribution contains
unbounded components. The authors of [30], [40], and [34]
showed that, using the properties of the eigenvalues as well as
Jensen’s formula for integrations along the unit circle,
above should be replaced with

(3)

where are the roots of the polynomial . We refer the
reader to a review in [34] regarding rate-distortion results for
such nonstationary processes and on the methods used in [30]
and [40].
The author of [6] obtained the rate-distortion function for

Wiener processes, and in addition, developed a two-part coding
scheme, which was later generalized for more general processes
in [75] and [78], which we will discuss later further, to unstable
Markov processes. The scheme in [6] exploits the independent
increment property of Wiener processes.
Thus, an important finding in the aforementioned literature is

that the logarithms of the unstable poles in such linear systems
appear in the rate-distortion formulations, an issue which has
also been observed in the networked control literature, which we
will discuss further later. We also wish to emphasize that these
coding schemes are noncausal, that is the encoder has access to
the entire ensemble before the encoding begins.
In contrast with information theory, due to the practical

motivation of sensitivity to delay, the control theory literature
has mainly considered causal/zero-delay coding for unstable
(or nonstationary) sources, in the context of networked control
systems. In the following, we will provide a discussion on the
contributions in the literature which are contextually close to
our paper.
The authors of [12] studied the tradeoff between delay and re-

liability, and posed questions leading to an accelerated pace of
research efforts on what we today know as networked control
problems. The authors of [45], [85], and [66] obtained the min-
imum lower bound needed for stabilization over noisy channels
under a class of assumptions on the system noise and channels.
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This result states that for stabilizability under information con-
straints, in the mean-square sense, a minimum rate needed for
stabilizability has to be at least the sum of the logarithms of the
unstable poles/eigenvalues in the system; that is

(4)

Comparing this result with (3), we observe that the rate require-
ment is not due to causality but due to the (differential) entropy
rate of the unstable system.
For coding and information transmission for unstable linear

systems, there is an important difference between continuous
alphabet and finite-alphabet (discrete) channels as discussed in
[95]: when the space is continuous alphabet, we do not neces-
sarily need to consider adaptation in the encoders. On the other
hand, when the channel is finite alphabet, and the system is
driven by unbounded noise, a static quantizer leads to almost
sure instability (see [66, Proposition 5.1] and [95, Th. 4.2]).
With this observation, [66] considered a class of variable rate
quantizer policies for such unstable linear systems driven by
noise, with unbounded support set for its probability measure,
controlled over noiseless channels, and obtained necessary and
sufficient conditions for the boundedness of the following ex-
pression:

With fixed rate, [97] obtained a somewhat stronger expression
and established a limit

and obtained a scheme which made the state process and the
encoder process stochastically stable in the sense that the joint
process is a positive Harris recurrent Markov chain and the
sample path ergodic theorem is applicable.
The authors of [56] established that when a channel is present

in a controlled linear system, under stationarity assumptions,
the rate requirement in (4) is necessary for having finite second
moments for the state variable. A related argument was made
in [95] under the assumption of invariance conditions for the
controlled state process under memoryless policies and finite
second moments. In this paper, in Theorem 4.1, we will present
a very general result along this direction for a general class
of channels and a weaker stability notion. Such settings were
further considered in the literature. The problem of control over
noisy channels has been considered in many publications in-
cluding [2], [55], [59], [60], [65], [78], [84], [85] among others.
Many of the constructive results involve Gaussian channels or
erasure channels (some modeled as infinite capacity erasure
channels as in [79] and [42]). Other works have considered
cases where there is either no disturbance or the disturbance is
bounded, with regard to noisy sources and noisy channels. We
discuss some of these in the following.
It is to be stressed that the notion of stochastic stability is very

important in characterizing the conditions on the channel. The
authors of [59] and [60] considered stabilization in the following
sense, when the system noise is bounded:

and observed that one needs the zero-error capacity (with feed-
back) to be greater than a particular lower bound. A similar ob-
servation was made in [78], which we will discuss further in the
following. When the system is driven by noise which admits
a probability measure with unbounded support, the aforemen-
tioned stability requirement is impossible for an infinite horizon
problem, even when the system is open-loop stable, since for
any bound there exists almost surely a realization of a noise vari-
able which will be larger.
The authors of [77] and [78] considered systems driven by

bounded noise and considered a number of stability criteria: al-
most sure stability for noise-free systems, moment stability for
systems with bounded noise ( ) as
well as stability in probability (defined in [59]) for systems with
bounded noise. Stability in probability is defined as follows: for
every , there exists such that for all

. The authors of [77] and [78] also offered a novel and in-
sightful characterization for reliability for controlling unstable
processes, named, any-time capacity, as the characterization of
channels for which the following criterion can be satisfied:

for positive moments . A channel is -any-time reliable for a
sequential coding scheme if
for all . Here, is the message transmitted at time ,
estimated at time . One interesting aspect of an any-time de-
coder is the independence from the delay, with a fixed encoder
policy. The authors of [78] state that for a system driven by
bounded noise, stabilization is possible if the maximum rate
for which an any-time reliability of is satisfied is
greater than , where is the unstable pole of a linear
system.
In a related context, [55], [59], [78], and [58] considered the

relevance to Shannon capacity. The authors of [55] observed
that when the moment coefficient goes to zero, Shannon ca-
pacity provides the right characterization on whether a channel
is sufficient or insufficient, when noise is bounded. A parallel
argument is provided in [78, Section III.C.1], observing that in
the limit when , capacity should be the right measure
for the objective of satisfying stability in probability. Their dis-
cussion was for bounded-noise signals. The authors of [59] also
observed a parallel discussion, again for bounded-noise signals.
With a departure from the bounded-noise assumption,

[58] extended the discussion in [78] and studied a more
general model of multidimensional systems driven by an
unbounded-noise process considering again stability in prob-
ability. The author of [58] also showed that when the discrete
noisy channel has capacity less than , where is
defined in (1), there exists no stabilizing scheme, and if the
capacity is strictly greater than this number, there exists a
stabilizing scheme in the sense of stability in probability.
Many network applications and networked control applica-

tions require the access of control and sensor information to be
observed intermittently. Toward generating a solution for such
problems, [94] and [96] developed random-time state-depen-
dent drift conditions leading to the existence of an invariant dis-
tribution possibly with moment constraints, extending the ear-
lier deterministic state-dependent results in [63]. Using drift ar-
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guments, [95] considered noisy (both discrete and continuous
alphabet) channels, [97] considered noiseless channels, and [94]
considered erasure channels for the following stability criteria:
the existence of an invariant distribution and the existence of an
invariant distribution with finite moments.
The authors of [24], [56], and [57] considered general

channels (possibly with memory), and with a connection with
Jensen’s formula and Bode’s sensitivity integral, developed
necessary and sufficient rates for stabilization under various net-
worked control settings. The authors of [65] considered erasure
channels and obtained necessary and sufficient time-varying
rate conditions for control over such channels. The authors of
[17] considered second moment stability over a class of Markov
channels with feedback and developed necessary and sufficient
conditions, for systems driven by an unbounded noise. The
authors of [38] considered the stochastic stability of quantizer
parameters, parallel to the results of [97].
On the other hand, for more traditional information theoretic

settings where the source is revealed at the beginning of trans-
mission, and for cases where causality and delay are not im-
portant, the separation principle for source and channel coding
results is applicable for ergodic sources and information stable
channels. The separation principle for more general setups has
been considered in [89], among others. The authors of [92] and
[91] studied the optimal causal coding problem over, respec-
tively, a noiseless channel and a noisy channel with noiseless
feedback. Unknown sources have been considered in [15]. We
also note that when noise is bounded, binning-based strategies,
inspired from Wyner–Ziv and Slepian–Wolf coding schemes,
are applicable. This type of consideration has been applied in
[78], [95], and [37]. Finally, quantizer design for noiseless or
bounded-noise systems includes [25], [26], and [43]. Channel
coding algorithms for control systems have been presented re-
cently in [70], [83], and [81].
There also has been progress on coding for noisy channels for

the transmission of sources with memory. Due to practical rel-
evance, for communication of sources with memory over chan-
nels, particular emphasis has been placed on Gaussian chan-
nels with feedback. For such channels, the fact that real-time
linear schemes are rate-distortion achieving has been observed
in [5], [28]; and [2] in a control theoretic context. Aside from
such results (which involve matching between rate-distortion
achieving test channels and capacity achieving source distribu-
tions [28]), capacity is known not to be a good measure of in-
formation reliability for channels for real-time (zero-delay or
delay sensitive) control and estimation problems; see [91] and
[78]. Such general aspects of comparison of channels for cost
minimization have been investigated in [8] among others.
Also in the information theory literature, performance of

information transmission schemes for channels with feedback
has been a recurring avenue of research in information theory,
for both variable-length and fixed-length coding schemes [14],
[22], [41], [76]. In such setups, the source comes from a fixed
alphabet, except the sequential setup in [76] and [22].

B. Contributions of This Paper

In view of the discussion above, this paper makes the fol-
lowing contributions. The question: When does a linear system

driven by unbounded noise, controlled over a channel (pos-
sibly with memory), satisfy Birkhoff’s sample path ergodic the-
orem (or is asymptotically mean stationary)? has not been an-
swered to our knowledge. Also, the finite moment conditions
for an arbitrary DMC for a system driven by unbounded noise
have not been investigated to our knowledge, except for the
bounded-noise analysis in [78]. The contributions of this paper
are on these two problems. In this paper, we will show that the
results in the literature can be strengthened to asymptotic mean
stationarity and ergodicity. As a consequence of Kac’s lemma
[19], stability in probability can also be established. We will
also consider conditions for finite second moment stability. We
will use the random-time state-dependent drift approach [94] to
prove our achievability results. Hence, we will find classes of
channels under which the controlled process is stochasti-
cally stable in each of the following senses.
1) is recurrent: There exists a compact set such that

infinitely often almost surely.
2) is AMS and satisfies Birkhoff’s sample path ergodic
theorem. We will establish that Shannon capacity provides
a boundary point in the space of channels on whether this
objective can be realized or not, provided a mild technical
condition holds.

3) exists and is finite almost surely.

II. STOCHASTIC STABILIZATION OVER A DMC

A. Asymptotic Mean Stationarity and -Ergodicity

Theorem 2.1: For a controlled linear source given in (1) over
a DMC under any admissible coding and controller policy, to
satisfy the AMS property under the following condition:

the channel capacity must satisfy

Proof: See the proof of Theorem 4.1 in Section V-A

Remark 2.1: The condition is a
very weak condition. For example, a stochastic process whose
second moment grows subexponentially in time such that

satisfies this condition.
The aforementioned condition is almost sufficient as well, as

we state in the following.

Theorem 2.2: For the existence of a compact coordinate re-
current set (see Definition 7.4), the following is sufficient: the
channel capacity satisfies .

Proof: See Section V-C.

For the proof, we consider the following update algorithm.
The algorithm and its variations have been used in source coding
and networked control literature: see, for example, the earlier
papers [29], [48], and more recent ones [13], [58]–[60], [66],
[97], [98]. Our contribution is primarily on the stability analysis.
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Fig. 2. Uniform quantizer with a single overflow bin.

Let be a given block length. Consider the following setup.
We will consider a class of uniform quantizers, defined by two
parameters, with bin size , and an even number
(see Fig. 2). The uniform quantizer map is defined as follows:
for

where denotes the overflow symbol in the quantizer. We de-
fine to be the granular region of the
quantizer.
At every sampling instant , the

source coder quantizes output symbols in to a
set . A channel encoder
maps the elements in to corresponding channel inputs

.
For each time , the channel

decoder applies a mapping , such that

Finally, the controller runs an estimator

where denotes the indicator function for event . Hence,
when the decoder output is the overflow symbol, the estimation
output is 0.
We consider quantizers that are adaptive. In our setup, the

bin size of the uniform quantizer acts as the state of the quan-
tizer. At time the bin size is assumed to be a function
of the previous state and the past channel outputs.
We assume that the encoder has access to the previous channel
outputs. Thus, such a quantizer is implementable at both the en-
coder and the decoder.
With , , let us define

and let

for some and . When clear from the context,
we will drop the index in .
We will consider the following update rules in the controller

actions and the quantizers. For and with for some
, and , consider: for ,

(5)

where denotes the decoder output variable. If we use
and such that

(6)

we will show that a recurrent set exists. The above imply that
for all .

Thus, we have three main events: when the decoder output is
the overflow symbol, the quantizer is zoomed out (with a coeffi-
cient of . When the decoder output is not the overflow
symbol , the quantizer is zoomed in (with a coefficient of )
if the current bin size is greater than or equal to , and otherwise
the bin size does not change.
We will establish our stability result through random-time

stochastic drift criterion of Theorem 7.2, developed in [94] and
[96]. This is because of the fact that the quantizer helps reduce
the uncertainty on the system state only when the state is in the
granular region of the quantizer. The times when the state is in
this region are random. The reader is referred to Section B in
the Appendix for a detailed discussion on the drift criteria.
In the following, wemake the quantizer bin size process space

countable and as a result establish the irreducibility of the sam-
pled process .

Theorem 2.3: For an adaptive quantizer satisfying Theorem
2.2, suppose that the quantizer bin sizes are such that their log-
arithms are integer multiples of some scalar , and
takes values in integer multiples of . Suppose the integers taken
are relatively prime (that is they share no common divisors ex-
cept for 1). Then the sampled process forms a pos-
itive Harris recurrent Markov chain at sampling times on the
space of admissible quantizer bins and state values.

Proof: See Section V-D.

Theorem 2.4: Under the conditions of Theorems 2.2 and
2.3, the process is -stationary, -ergodic, and hence
AMS.

Proof: See Section V-E.

The proof follows from the observation that a positive Harris
recurrent Markov chain is ergodic. It uses the property that if
a sampled process is a positive Harris recurrent Markov chain,
and if the intersampling time is fixed, with a time-homogenous
update in the intersampling times, then the process is mixing,
-ergodic and -stationary.

B. Quadratic Stability and Finite Second Moment

In this section, we discuss quadratic and finite second mo-
ment stability. Such an objective is important in applications.
In control theory, quadratic cost functions are the most popular
ones for linear and Gaussian systems. Furthermore, the two-part
coding scheme of Berger in [5] can be generalized for more gen-
eral unstable systems if one can prove finite moment bounded-
ness of sampled end points.
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For a given coding scheme with block length and a mes-
sage set , and a decoding func-
tion define three types of
errors.
1) Type I-A: Error from a granular symbol to another granular
symbol. We define a bound for such errors. Define
to be

where conditioning on means that the symbol is trans-
mitted.

2) Type I-B: Error from a granular symbol to . We define
the following:

3) Type II: Error from to a granular symbol

Type II error will be shown to be crucial in the analysis of
the error exponent. Type I-A and I-B will be important for es-
tablishing the drift properties. We summarize our results in the
following.

Theorem 2.5: A sufficient condition for quadratic stability
(for the joint process) over a DMC is that

with

Proof: See Section V-F.

Let us define

When the block length is clear from the context, we drop the
index . We have the following corollary to Theorem 2.5.

Corollary 2.1: A sufficient condition for quadratic stability
(for the joint process) over a DMC is that

with rate .

Remark 2.2: For a DMC with block length , Shannon’s
random coding [27] satisfies

uniformly for all codewords with
being the decoder output (thus, the random exponent also ap-
plies uniformly over the set). Here, as and

for . Thus, under the aforementioned
conditions, the exponent under random coding should satisfy

.

Remark 2.3: The error exponent with feedback is typically
improved with feedback, unlike capacity of DMCs. However, a
precise solution to the error exponent problem of fixed-length
block coding with noiseless feedback is not known. Some par-
tial results have been reported in [21] (in particular, the sphere
packing bound is optimal for a class of symmetric channels for
rates above a critical number even with feedback), [4, Ch. 10],
[10], [18], [23], [39], [99], and [67]. Particularly related to this
section, [10] has considered the exponent maximization for a
special message symbol, at rates close to capacity. At the end of
this paper, a discussion for variable-length coding, in the context
of Burnashev’s [14] setup, will be discussed along with some
other contributions in the literature. In case feedback is not used,
Gilbert exponent [69] for low-rate regions may provide better
bounds than the random coding exponent.

Zero-Error Transmission for : An important practical setup
would be the case when is transmitted with no error and is not
confused with messages from the granular region. We state this
as follows.
Assumption A0: We have that for

for some .

Theorem 2.6: Under Assumption A0, a sufficient condition
for quadratic stability is

with rate and .

Proof: See Section V-G.

Remark 2.4: The result under (A0) is related to the notion
of any-time capacity proposed by Sahai and Mitter [78]. We
note that Sahai and Mitter considered also a block-coding setup,
for the case when the noise is bounded, and were able to ob-
tain a similar rate/reliability criterion as above. It is worth em-
phasizing that the reliability for sending one symbol for the
under-zoom phase allows an improvement in the reliability re-
quirements drastically.

III. CHANNELS WITH MEMORY

Definition 3.1: Let Class A be the set of channels which sat-
isfy the following two properties.
a) The following Markov chain condition holds:

for all .
b) The channel capacity with feedback is given by

(7)
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where and the directed mutual information
is defined by

DMCs naturally belong to this class of channels. For such
channels, it is known that feedback does not increase the ca-
pacity. Such a class also includes finite state stationary Markov
channels which are indecomposable [72], and non-Markov
channels which satisfy certain symmetry properties [82]. Fur-
ther examples are studied in [87] and [20].

Theorem 3.1: For a linear system controlled over a noisy
channel with memory with feedback in Class A, if the channel
capacity is less than , then the AMS property under the
following condition:

cannot be satisfied under any policy.

Proof: See the proof of Theorem 4.1 in Section V-A.

The proof of the above is presented in Section V-A.1 If the
channel is not information stable, then information spectrum
methods lead to pessimistic realizations of capacity (known as
the in probability of the normalized information density;
see [87] and [90]). We do not consider such channels in this
paper, although the proof is generalizable to some cases when
the channel state is Markov and the worst case initial input state
is considered as in [72].

IV. HIGHER ORDER SOURCES

The proposed technique is also applicable to a class of set-
tings for themultidimensional setup. Observe that a higher order
ARMA model of the form (2) can be written in the following
form:

(8)

where is the state at time , is the control input,
and is a sequence of zero-mean i.i.d. zero-mean Gaussian
random vectors of appropriate dimensions. Here, is the
system matrix with at least one eigenvalue greater than 1 in
magnitude, that is, the system is open-loop unstable. Further-
more, and are controllable pairs, that is, the state
process can be traced in finite time from any point in to any
other point in at most time stages, by either the controller or
the Gaussian noise process.
In the following, we assume that all modes with eigenvalues

of are unstable, that is have magnitudes
greater than or equal to 1. There is no loss here since if some
eigenvalues are stable, by a similarity transformation, the un-

1One can also obtain a positive result: if the channel capacity is greater than
, then there exists a coding scheme leading to an AMS state process

provided that the channel restarts itself with the sending of a new block. If this
assumption does not hold, then using the proofs in this paper we can prove
coordinate-recurrence under this condition. For the AMS property, however,
new tools will be required. Our proof would have to be modified to account for
the non-Markovian nature of the sampled state and quantizer process.

stable modes can be decoupled from stable modes; stable modes
are already recurrent.

Theorem 4.1: Consider a multidimensional linear system
with unstable eigenvalues, that is for .
For such a system controlled over a noisy channel with memory
with feedback in Class A, if the channel capacity satisfies

there does not exist a stabilizing coding and control schemewith
the property .

Proof: See Section V-A.

For sufficiency, we will assume that is a diagonalizable
matrix with real eigenvalues (a sufficient condition being that
the poles of the system are distinct real). In this case, the analysis
follows from the discussion for scalar systems; as the identical
recurrence analysis for the scalar case is applicable for each of
the subsystems along each of the eigenvectors. The possibly
correlated noise components will lead to the recurrence analysis
discussed earlier. We thus have the following result.

Theorem 4.2: Consider a multidimensional system with a di-
agonalizable matrix . If the Shannon capacity of the (DMC)
channel used in the controlled system satisfies

there exists a stabilizing (in the AMS sense) scheme.

Proof: See Section V-H.

The result can be extended to a case where the matrix is
in a Jordan form. Such an extension entails considerable details
in the analysis for the stopping time computations and has not
been included in the paper. A discussion for the special case of
discrete noiseless channels is contained in [46] in the context of
decentralized linear systems.

V. PROOFS

A. Proof of Theorem 4.1

We present the proof for a multidimensional system since this
case is more general. For channels under Class A (which in-
cludes the DMCs as a special case), the capacity is given by (7).
Let us define

Observe that for

(9)

(10)
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Here, (9) follows from the assumption that the channel is of
Class A. It follows that since for two sequences such that
: and is assumed to have a

limit

(11)

(12)

(13)

(14)

Equation (11) follows from the fact that the control action
is a function of the past channel outputs, (12) follows from
the fact that conditioning does not increase entropy, and (13)

from the observation that is an independent process.
Equation (14) follows from conditioning. The other equa-
tions follow from the properties of mutual information. By
the hypothesis, , it must be that

. Thus, the capacity also needs to
satisfy this bound.

B. Stopping Time Analysis

This section presents an important supporting result on stop-
ping time distributions, which is key in the application of The-
orem 7.2 for the stochastic stability results. We begin with the
following.

Lemma 5.1: Let denote the Borel -field on
. It follows that

i.e., is a Markov chain.

The above follows from the observations that the channel is
memoryless, the encoding only depends on the most recent sam-
ples of the state and the quantizer, and the control policies use
the channel outputs received in the last block, which stochasti-
cally only depend on the parameters in the previous block.
Let us define . We will say that the quantizer is

perfectly zoomed when , and under-zoomed otherwise.
Define a sequence of stopping times for the perfect-zoom case

with (where the initial state is perfectly zoomed at )

(15)
As discussed in Section II-B, there will be three types of

errors.
1) Type I-A: Error from a granular symbol to another granular
symbol. In this case, the quantizer will zoom in, yet an
incorrect control action will be applied. As in Section II-B,

is an upper bound for such an error.
2) Type I-B: Error from a granular symbol to . In this case,
no control action will be applied and the quantizer will be
zoomed out. As in Section II-B, is an upper bound
for such an error.

3) Type II: Error from to a granular symbol. At consecu-
tive time stages, until the next stopping time, the quantizer
should ideally zoom out. Hence, this error may take place
in subsequent time stages (since at time 0 the quantizer is
zoomed, this does not take place). The consequence of such
an error is that the quantizer will be zoomed in and an in-
correct control action will be applied. Let

We will drop the dependence on , when the block length
is clear from the context.

Lemma 5.2: The discrete probability distribution
is asymptotically, in the limit of large , domi-
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nated (majorized) by a geometrically distributed measure. That
is, for

(16)

where and as for every fixed ,
uniformly in and

(17)

Proof: Denote for
(18)

Without any loss, let and , so that
.

Before proceeding with the proof, we highlight the technical
difficulties that will arise when the quantizer is in the under-
zoom phase. As elaborated on above, the errors at time 0 are
crucial for obtaining the error bounds: at time 0, at most with
probability , an error will take place so that the quantizer
will be zoomed in, yet an incorrect control signal will be applied.
With probability at most , an error will take place so
that no control action is applied and the quantizer is zoomed
out. At consecutive time stages, until the next stopping time,
the quantizer should ideally zoom out but an error takes place
with probability and leads the quantizer to be zoomed
in, and a control action to be applied. Our analysis below will
address all of these issues.
In the following, we will assume that the probabilities are

conditioned on particular values, to ease the notational
presentation.
We first consider the case where there is an intra-granular,

Type I-A, error at time 0, which takes place at most with proba-
bility (this happens to be the worst case error for the stop-
ping time distribution). Now

(19)

In the above, is the number of errors in the transmissions
that have taken place until (but not including) time , except
for the one at time 0. An error at time 0 would possibly lead to
a further enlargement of the bin size with nonzero probability,
whereas no error at time 0 leads to a strict decrease in the bin
size.
The study for the number of errors is crucial for analyzing the

stopping time distributions. In the following, we will condition
on the number of erroneous transmissions for successive block
codings for the under-zoomed phase. Suppose that for
there are total erroneous transmissions in the time stages

when the state is in fact under-zoomed,
but the controller interprets the received transmission as a suc-
cessful one. Thus, we take .
Let be the time stages when errors take

place, such that

so that or and define
.

In the time interval the system is open
loop, that is, there is no control signal applied, as there is no
misinterpretation by the controller. However, there will be a
nonzero control signal at times . These are, how-
ever, upper bounded by the ranges of the quantizers at the corre-
sponding time stages. That is, when an erroneous interpretation
by the controller arises, the control applied
lives in the set: .
From (19), we obtain (20) which is shown at the bottom of the

next page. Regarding (20), let us now observe the following:

Since the control signal lives in:
, conditioned on having

errors in the transmissions, the bound writes as (22), which is
shown at the bottom of the next page, where
is a zero-mean Gaussian random variable with variance

. Here, (21), shown at the bottom of the next page,
considers the worst case when even if the quantizer is zoomed,
the controller incorrectly picks the worst case control signal
and the chain rule for the total probability: for two events :
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. The last inequality follows
since for any

.
Now, let us consider . In this case, (23), shown at

the bottom of the next page, follows, where in the last inequality
we observe that , since the state is zoomed at
this time.
In bounding the stopping time distribution, we will consider

the condition that

(24)

for some arbitrarily small but positive , to be able to establish
that

(25)
and that for sufficiently
large . Now, there exists such that

(20)

(21)

(22)
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and for this

(26)

This follows from considering a conservative configuration
among an increasing subsequence of times , such
that for all elements of this sequence

and for every element up until time ,
. Such an ordered se-

quence provides a conservative configuration which yet satis-
fies (26), by considering if needed, to be an element in the
sequence with a lower index value for which this is satisfied.
This has to hold at least for one time , since satis-
fies (24) . Such a construction ensures that is uniformly
bounded from below for every since
for large enough.
Hence, by (24), for some constant , the following

holds:

(27)

The above follows from bounding the complementary error
function by the following: , for

when is a zero-mean Gaussian measure. In the aforemen-
tioned derivation . The left-hand
side of (27) can be further upper bounded by, for any

(28)

with as exponentially

(29)

for any , due to the exponential dependence of (27)
in . Thus, combined with (24), conditioned on having
errors and a Type I-A error at time 0, we have the following
bound on (22):

(30)

with

(31)

We observe that the number of errors needs to satisfy the fol-
lowing relation for the aforementioned bound in (28) to be less
than 1:

Finally, the probability that the number of incorrect transmis-
sions exceeds is exponentially low, as we ob-
serve in the following. Let, as before, . We
consider now Chernoff–Sanov’s theorem: the sum of Bernoulli
error events leads to a binomial distribution. Let for ,

(23)
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. Then, the fol-
lowing upper bound holds [19], for every :

(32)

Hence

(33)

with . Hence

(34)

We could bound the following summation as follows:

(35)

(36)

(37)

where (35) – (36) hold since can be taken to be
by taking to be large enough and in the summations
taken to be . We also use the inequality

(38)

and that .
Thus, from (20) we have computed a bound on the stopping

time distributions through (34) and (37) . Following similar
steps for the Type I-B error and no error cases at time 0, we
obtain the bounds on the stopping time distributions as follows.
1) Conditioned an error in the granular region (Type I-A) at
time 0, the condition for the number of errors is that

and by adding (33) and (37), the stopping time is dominated
by

(39)

for which goes to 1 as .
2) Conditioned on the error that is the decoding output at
time 0, in the above, the condition for the number of errors
is that

and we may replace the exponent term with
and the stopping time is dominated by

(40)

for which goes to 1 as .
3) Conditioned on no error at time 0 and the rate condition

, the condition for the number of errors
is that

and we may replace the exponent term with .
The reason for this is that and the control
term applied at time reduces the error.
As a result, (22) writes as (41), shown at the bottom of the
next page, in this case. Since , the effect
of the additional 1 in the exponent for can be
excluded, unlike the case with above in (23) .
As a result, the stopping time is dominated by

(42)

for which goes to 1 as .
This completes the proof of the lemma.

C. Proof of Theorem 2.2

Once we have the Markov chain by Lemma 5.1, and the
bound on the distribution of the sequence of stopping times de-
fined in (15) by Lemma 5.2, we will invoke Theorem 7.2 or
Theorem 7.3 with Lyapunov functions ,

taken as a constant and a compact set.
As mentioned in Remark 2.2, for a DMC with block length

Shannon’s random coding method satisfies

with being the decoder output. Here, as and
for . Thus, by Lemma 5.2, we observe

that

(43)
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for some finite number . The finiteness of this expres-
sion follows from the observation that for , the ex-

ponent in becomes negative. Further-
more, is monotone decreasing in since is
decreasing in .
We now apply the random-time drift result in Theorem 7.2

and Corollary 7.1. First, observe that the probability that
is upper bounded by the probability

(44)

Observe that, provided that

We now pick the Lyapunov function
and a constant to obtain (46), shown at the bottom of the
next page, where is an arbitrarily small positive number.
In (45), shown at the bottom of the next page, we use the fact that
zooming out for all time stages after provides a worst case

sequence and that by Hölder’s inequality for a random variable
and an event the following holds:

(47)

Now, the last term in (45) will converge to zero with large
enough and for some , since by Lemma

is bounded by a geometric measure
and the expectation of is
finite and monotone decreasing in . The second term in (46)
is negative with sufficiently small.
These imply that, for some sufficiently large , the equation

(48)
holds for some positive and finite . Here, is finite since

is finite. With the uniform boundedness of (43) over the
sequence of stopping times, this implies by Theorem 7.3 that

is a recurrent set.

D. Proof of Theorem 2.3

The process is a Markov chain, as was observed
in Lemma 5.1. In this section, we establish irreducibility of this
chain and the existence of a small set (see Section B) to be able
to invoke Theorem 7.2, in view of (48) . The following gener-
alizes the analysis in [97] and [94].
Let the values taken by

(41)
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be . Here. are relatively prime. Let be
defined as

where is the initial condition of the param-
eter for the quantizer. We note that since are relatively
prime, by Bézout’s lemma (see [1]) the communication class
will include the bin sizes whose logarithms are integer multi-
ples of a constant except those leading to : since we
have , it follows that

is also an integer. Furthermore, since the source process
is “Lebesgue irreducible” (the system noise admits a proba-
bility density function that is positive everywhere), and there
is a uniform lower bound on bin sizes, the error process
takes values in any of the admissible quantizer bins with
nonzero probability. Consider two integers .
For all , there exist such that

We can show that the probability
of occurrences of perfect zoom, and occurrences of
under-zoom phases is bounded away from zero. This set of oc-
currences includes the event that in the first time stages per-
fect-zoom occurs and later, successively, times under-zoom

phase occurs. Considering worst possible control realizations
and errors, the probability of this event is lower bounded by

(49)

where is a Gaussian random variable.
The above follows from considering the sequence of zoom-ins
and zoom-outs and the behavior of . In the
aforementioned discussion, is the conditional error on
the zoom symbol given the transmission of granular bin , with
the lowest error probability. (If the lowest such an error prob-
ability is zero, an alternative sequence of events can be pro-
vided through events concerning the noise variables leading to
zooming.) Thus, for any two such integers and for some

,
We can now construct a small set and make the connection

with Theorems 2.2 and 7.2. Define

We will show that the recurrent set is small.

(45)

(46)



6346 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 10, OCTOBER 2012

Toward this end, we first establish irreducibility. For some
distribution on positive integers, , and an admissible
bin size

Here, , denoting a lower bound on the probability of vis-
iting from in some finite time, is nonzero by (49) and is
a positive map as the following argument shows. Let be
a time stage for which and thus, with :

. Thus,
it follows that for ,

(50)

Thus, in view of (50), satisfies for

The chain satisfies the recurrence property that

for any admissible . This follows from the construction
of

where

and observing that is majorized by a geometric mea-
sure with similar steps as in Section V-B. Once a state which is
perfectly zoomed, that is which satisfies , is vis-
ited, the stopping time analysis can be used to verify that from
any initial condition the recurrent set is visited in finite time with
probability 1.

We will now establish that the set is small. By [62,
Th. 5.5.7], under aperiodicity and irreducibility, every petite set
is small. To establish the petite set property, we will follow an
approach taken by Tweedie [88] which considers the following
test, which only depends on the one-stage transition kernel of
a Markov chain: if a set is such that the following uniform
countable additivity condition

is satisfied for every sequence , and if theMarkov chain is
irreducible, then is petite (see [88, Lemma 4] and [62, Propo-
sition 5.5.5(iii)]).
Now, the set satisfies the uniform countable addi-

tivity condition since for any given bin size in the countable
space constructed above, (51) shown at the bottom of the page
holds. This follows from the fact that the Gaussian random vari-
able satisfies

uniformly over a compact set , for any sequence ,
since a Gaussian measure admits a uniformly bounded density
function. Hence, is petite.
Finally, aperiodicity of the sampled chain follows from the

fact that the smallest admissible state for the quantizer can
be visited in subsequent time sampled time stages since

Thus, the sampled chain is positive Harris recurrent.

E. Proof of Theorem 2.4

By Kolmogorov’s extension theorem, it suffices to check that
the property holds for finite-dimensional cylinder sets, since
these sets generate the -algebra onwhich the stochastic process
measure is defined. Suppose first that the sampledMarkov chain
is stationary. Consider two elements

The above follows from the fact that the marginals
and are equal since the sampled Markov chain

(51)



YÜKSEL: CHARACTERIZATION OF INFORMATION CHANNELS FOR ASYMPTOTIC MEAN STATIONARITY AND STOCHASTIC STABILITY 6347

is positive Harris recurrent and assumed to be stationary, and the
dynamics for interblock times are time homogeneous Markov.
The above is applicable for any finite-dimensional set, thus for
any element in the sigma field generated by the finite-dimen-
sional sets, on which the stochastic process is defined. Now, let
for some event , , where denotes the shift oper-
ation (see Section A). Then

Note that a positive Harris recurrent Markov chain admits a
unique invariant distribution and for every

where is the unique invariant probability measure. Since
such a Markov chain forgets its initial condition, it follows that
for

Thus, , and the process is -ergodic.

F. Proof of Theorem 2.5

We begin with the following result, which is a consequence
of Theorem 7.2.

Lemma 5.3: Under the conditions of Theorem 2.3, we have
that if for some , , the following holds:

then .

Now, under the hypotheses of Theorem 2.3, and observing
that Type I-B and I-A errors are worse than the no error case at
time 0 for the stopping time tail distributions, we obtain (52) for
some finite . In (52), we use the property that and
(39)–(42).
We now establish that

This is a crucial step in applying Theorem 7.2.

(52)
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Following similar steps as in (52) shown at the bottom
of the previous page, the following upper bound on

is obtained:

(53)

Note now that

uniformly in with and given the rate condi-
tion by (44) . Therefore, the first
term in (53) converges to 0 in the limit of large , since

and we have the
following upper bound:

for sufficiently large .
For the second term in (53), the convergence of the first ex-

pression is ensured with

and as . By combining the second
and the third terms, the desired result is obtained.
To show that , we first show that for

some

(54)

Now

(55)

which follows from the observation that for random vari-
ables, .

Let us first consider the component:

(56)
for some , by Hölder’s inequality.
Moreover, for some

(57)

where the last inequality follows since for every fixed ,
the random variable has a
Gaussian distribution with finite moments, uniform on
. Thus

(58)
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for some finite (for a fixed finite ). In the aforementioned
discussion, we use the fact that we can pick such that

Such exists, by the hypothesis that
.

We now consider the second term in (55) . Since is the
quantizer output which is bounded in magnitude in proportion
with , the second term writes as

(59)

for some finite , by the bound on the stopping time and argu-
ments presented earlier.
Now, with (53), (55), (58) – (59), we can apply Theorem 7.2:

with some [whose existence is justified by (53)]

a compact set and , Theorem 7.2 applies and
.

Thus, with average rate strictly larger than , stability
with a finite second moment is achieved. Finally, the limit is
independent of the initial distribution since the sampled chain
is irreducible, by Theorem 2.3. Now, if the sampled process has
a finite secondmoment, the average secondmoment for the state
process satisfies

which is also finite, where denotes the expectation under the
invariant probability measure for . By the ergodic the-
orem for Markov chains (see Theorem 7.2), the above holds al-
most surely, and as a result

G. Proof of Theorem 2.6

Proof follows from the observation that the number of errors
in channel transmission when the state is under-zoomed is

zero. No errors take place in the phase when the quantizer is
being zoomed out.
Following (53), the only term which survives is

which is to be less than 1. We can take for this case.
Now

for . Hence, is sufficient,
since . The proof is complete once we recognize as

.

H. Proof of Theorem 4.2

We provide a sketch of the proof since the analysis follows
from the scalar case, except for the construction of an adaptive
vector quantizer and the associated stopping time distribution.
Consider the following system:

...
...

(60)

where is a diagonal matrix, obtained via a sim-
ilarity transformation and

, where consists of the eigenvectors of the matrix .
We can assume that, without any loss, is invertible since oth-
erwise, by the controllability assumption, we can sample the
system with a period of at most to obtain an invertible control
matrix.
The approach now is quantizing the components in the

system according to the adaptive quantization rule provided
earlier, except for a joint mapping for the overflow region. We
modify the scheme in (5) as follows: let for ,

. The vector quan-
tizer quantizes uniformly the marginal variables and we define
the overflow region as the quantizer outside the granular region:

and for

and for , the quantizer
quantizes the marginal according to (5) . Hence, here is the
bin size of the quantizer in the direction of the eigenvector ,
with rate . For

(61)
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with , , and such that

and .
Instead of (15), the sequence of stopping times is defined as

follows. With , define

where . Now, we observe that -dimensional

system

(62)

(63)

where we apply the chain rule for probability in (62) and
the union bound in (63). However, for each of the dimen-
sions, is dominated
by an exponential measure, and so is the sum. Furthermore,

still converges to 0 provided the rate con-
dition is satisfied for every , since

. Therefore,
analogous results to (45) – (48) are applicable.Once one imposes
a countability condition for the bin size spaces as in Theorem2.3,
the desired ergodicity properties are established.

VI. CONCLUDING REMARKS

This paper considered stochastic stabilization of linear sys-
tems driven by unbounded noise over noisy channels and es-
tablished conditions for asymptotic mean stationarity. The con-
ditions obtained are tight with an achievability and a converse.
This paper also obtained conditions for the existence of finite
second moments. When there is unbounded noise, the result we
obtained for the existence of finite secondmoments required fur-
ther conditions on reliability for channels when compared with
the bounded-noise case considered by Sahai and Mitter. We do
not have a converse theorem for the finite second moment dis-
cussion; it would be interesting to obtain a complete solution for
this setup.
We observed in the development that three types of errors

were critical. These bring up the importance of unequal error
coding schemes with feedback. Recent results in the literature
[10] have focused on fixed-length schemes without feedback,
and variable length with feedback and further research could be
useful for networked control problems.
The value of information channels in optimization and con-

trol problems (beyond stabilization) is an important problem in

view of applications in networked control systems. Further re-
search from the information theory community for nonasymp-
totic coding results will provide useful applications and insight
for such problems. These can also be useful to tighten the con-
ditions for the existence of finite second moments. Moderate
channel lengths [71], [73], [74], [76] and possible presence of
noise in feedback [22] are crucial issues needed to be explored
better in the analysis and in the applications of random-time
state-dependent drift arguments [94].
Finally, we note that the assumption that the system noise

is Gaussian can be relaxed. For the second moment stability, a
sufficiently light tail which would provide a geometric bound
on the stopping times as in (39) through (27) will be suffi-
cient. For the AMS property, this is not needed. For a noise-
less DMC, [97] established that a finite second moment for
the system noise is sufficient for the existence of an invariant
probability measure. We require, however, that the noise ad-
mits a density which is positive everywhere for establishing
irreducibility.

A. Variable-Length Coding and Agreement Over a Channel

Let us consider a channel where agreement on a binary event
in finite time is possible between the encoder and the decoder.
By binary events, we mean, for example, synchronization of
encoding times and agreement on zooming times. It turns out
that if the following assumption holds, then such agreements are
possible in finite expected time: the channel is such that there
exist input letters where
and . Here, can be equal to
and can be equal to . For example, the erasure channel

satisfies this property. Note that the aforementioned condition is
weaker than having a nonzero zero-error capacity, but stronger
than what Burnashev’s [14], [93] method requires, since there
are more hypotheses to be tested.
In such a setting, one could use variable-length encoding

schemes. Such a design will allow the encoder and the decoder
to have transmission in three phases: zooming, transmission,
and error confirmation. Using random-time, state-dependent
stochastic drift, we may find alternative schemes for stochastic
stabilization.

APPENDIX
STOCHASTIC STABILITY OF DYNAMICAL SYSTEMS

A) Stationary, Ergodic, and AMS Processes: In this sec-
tion, we review ergodic theory, in the context of information
theory (that is with the transformations being specific to the shift
operation). A comprehensive discussion is available in [80] and
[32], [33].
Let be a complete, separable, metric space. Let de-

note the Borel sigma field of subsets of . Let de-
note the sequence space of all one-sided or two-sided infinite se-
quences drawn from . Thus, for a two-sided sequence space if

, then with . Let
denote the coordinate function such that .

Let denote the shift operation on , that is .
That is, for a one-sided sequence space

.
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Let denote the smallest sigma field containing all
cylinder sets of the form
where , for all integers . Observe that

is the tail -field: , since
.

Let be a stationary measure on in the sense that
for all . The sequence of random

variables defined on the probability space is
a stationary process.

Definition 7.1: Let be the measure on a process. This
random process is ergodic if implies that

.
That is, the events that are unchanged with a shift operation

are trivial events. Mixing is a sufficient condition for ergod-
icity. Thus, a source is ergodic if

, since the process forgets its initial condition. Thus,
when one specializes toMarkov sources, we have the following:
a positive Harris recurrent Markov chain is ergodic, since such
a process is mixing and stationary. We will discuss this further
in the next section.

Definition 7.2: A random process is -stationary, (cy-
clostationary or periodically stationary with period ) if
the process measure satisfies for all

, or equivalently for any samples

Definition 7.3: A random process is -ergodic if
implies that .

Definition 7.4: A set is coordinate-recurrent if
for some

Definition 7.5: A process on a probability space
is AMS if there exists a probability measure such that

for all events . Here, is called the stationary mean of , and
is a stationary measure.

is stationary since, by definition , for
all events in the tail sigma field for the shift. A cyclostationary
process is AMS. See, for example, [9], [33] or [32] (Theorem
7.3.1), that is -stationarity implies the AMS property.
Asymptotic mean stationarity is a very important property.
1) The Shannon–McMillan–Breiman theorem (the entropy
ergodic theorem) applies to finite alphabet AMS sources
[33] (see an extension for a more general class [3]). In this
case, the ergodic decomposition of the AMS process leads
to almost sure convergence of the conditional entropies.

2) Birkhoff’s ergodic theorem applies for bounded measur-
able functions , if and only if the process is AMS [33].

Let

It follows that for an AMS process , with being
the stationary mean of the process, Birkhoff’s almost-sure er-
godic theorem states the following: if a dynamical system is
AMS with stationary mean , then all bounded measurable
functions have the ergodic property, and with probability 1

where denotes the expectation under measure and
is the resulting ergodic measure with initial state in the ergodic
decomposition of the asymptotic mean ([31] Theorem 1.8.2):

. Furthermore

In fact, the above applies for all integrable functions (inte-
grable with respect to the asymptotic mean).

Definition 7.6: A random process is second-moment stable
if the following holds:

Definition 7.7: A random process is quadratically stable
(almost surely) if the following limit exists and is finite almost
surely:

B) Stochastic Stability of Markov Chains and Random-
Time State-Dependent Drift Criteria: In this section, we re-
view the theory of stochastic stability of Markov chains. The
reader is referred to [62] for a detailed discussion. The results
on random-time stochastic drift follows from [94] and [96].
We let denote a Markov chain with state

space . The basic assumptions of [62] are adopted: it is as-
sumed that is a complete separable metric space, that is lo-
cally compact; its Borel -field is denoted . The transition
probability is denoted by , so that for any , ,
the probability of moving in one step from the state to the
set is given by . The
-step transitions are obtained via composition in the usual way,

, for any . The transi-
tion law acts on measurable functions and measures
on via
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A probability measure on is called invariant if .
That is

For any initial probability measure on , we can con-
struct a stochastic process with transition law , and satisfying

. We let denote the resulting probability measure on
sample space, with the usual convention for when the
initial state is . When , the resulting process is sta-
tionary.
There is at most one stationary solution under the following

irreducibility assumption. For a set , we denote

(64)

Definition 7.8: Let denote a sigma-finite measure on
.

i) The Markov chain is called -irreducible if for any
, and any satisfying , we have

ii) A -irreducible Markov chain is aperiodic if for any
, and any satisfying , there exists

such that

iii) A -irreducible Markov chain is Harris recurrent if
for any , and any

satisfying . It is positive Harris recurrent if in
addition there is an invariant probability measure .

Tied to -irreducibility is the existence of small or petite sets.
A set is small if there is an integer and a
positive measure satisfying and

A set is petite if there is a probability measure on
the nonnegative integers , and a positive measure satisfying

and

Theorem 7.1 [63]: Suppose that is a -irreducible
Markov chain, and suppose that there is a set
satisfying the following.
i) is -petite for some .
ii) is recurrent: for any .
iii) is finite mean recurrent: .

Then, is positive Harris recurrent.

Let be a sequence of stopping times, measurable
on a filtration generated by the state process with .

Theorem 7.2: [94], [96]: Suppose that is a -irreducible
and aperiodic Markov chain. Suppose, moreover, that there are
functions , , , a
small set , and a constant , such that the following holds:

(65)

Then the following hold.
i) is positive Harris recurrent, with unique invariant dis-
tribution .

ii) .
iii) For any function that is bounded by , in the sense

that , we have convergence of
moments in the mean, and the law of large numbers holds

Remark 7.1: We note that the condition
can be relaxed to provided that one can show
that there exists an invariant probability measure.
We conclude by stating a simple corollary to Theorem 7.2,

obtained by taking for all .

Corollary 7.1: [94], [96]: Suppose that is a -irreducible
Markov chain. Suppose, moreover, that there is a function

, a small set , and a constant , such that the
following hold:

(66)

Then, is positive Harris recurrent.

The following is a useful result for this paper.

Theorem 7.3: [62]: Without an irreducibility assumption,
if (66) holds for a measurable set , a function ,
with , then satisfies .
We have the following results. A positive Harris recurrent

Markov process (thus with a unique invariant distribution on
the state space) is also ergodic in the sense of ergodic theory
(the ergodic theorem for Markov chains has typically a more
specialized meaning with the state process being a coordinate
process in the infinite-dimensional space ; see [44]), which
however, implies the definition in the more general sense. This
follows from the fact that it suffices to test ergodicity on the sets
which generate the sigma algebra (that is the finite dimensional
sets), which in turn can be verified by the recurrence of the indi-
vidual sets; probabilistic relations in arbitrary finite sets charac-
terize the properties in the infinite collection, and that, mixing
leads to ergodicity.
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