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Random-Time, State-Dependent Stochastic Drift
for Markov Chains and Application to Stochastic

Stabilization Over Erasure Channels
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Abstract—It is known that state-dependent, multi-step Lya-
punov bounds lead to greatly simplified verification theorems for
stability for large classes of Markov chain models. This is one
component of the “fluid model” approach to stability of stochastic
networks. In this paper we extend the general theory to random-
ized multi-step Lyapunov theory to obtain criteria for stability and
steady-state performance bounds, such as finite moments. These
results are applied to a remote stabilization problem, in which a
controller receives measurements from an erasure channel with
limited capacity. Based on the general results in the paper it is
shown that stability of the closed loop system is assured provided
that the channel capacity is greater than the logarithm of the
unstable eigenvalue, plus an additional correction term. The
existence of a finite second moment in steady-state is established
under additional conditions.

Index Terms—Information theory, Markov chain Monte-Carlo
(MCMC), Markov processes, networked control systems, sto-
chastic stability.

I. INTRODUCTION

S TOCHASTIC stability of Markov chains has a rich and
complete theory, and forms a foundation for several other

general techniques such as dynamic programming and Markov
Chain Monte-Carlo (MCMC) [24]. This paper concerns exten-
sions and application of a class of Lyapunov techniques, known
as state-dependent drift criteria [27]. This technique is the basis
of the fluid-model (or ODE) approach to stability in stochastic
networks and other general models [3], [9], [10], [12], [13], [15],
[22], [24].
In this paper we consider a stability criterion based on a state-

dependent random sampling of the Markov chain of the fol-
lowing form: It is assumed that there is a function on the
state space taking positive values, and an increasing sequence
of stopping times , with , such that for
each ,

(1)
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where the function is positive (bounded away from
zero) outside of a “small set”, and denotes the filtration of
“events up to time ”. Under suitable conditions on theMarkov
chain, the drift , and the sequence , we establish corre-
sponding stability and ergodicity properties of the chain. The
main results extend and unify previous research on stability and
criteria for finitemoments obtained in [10], [15], [22], [24], [27].
Motivation for this research arose from our interest in ap-

plications to networked control, and information theory with
variable length and variable delay decoding [5], [33], [34], and
non-asymptotic information theory [31]. Specifically, in some
network protocol, team decision and networked control appli-
cations there is only intermittent access to sensor information,
control action or some common knowledge on which decisions
can be made. The timing may be random, depending on avail-
ability of communication resources. One important example is
the event-triggered control setup considered in [2], [32], [35],
among others.
One particular example in networked control under informa-

tion constraints is reported in [40], for establishing stochastic
stability of adaptive quantizers for Markov sources where
random stopping times are the instances when the encoder
can transmit granular information to a controller. We will also
consider such an application in detail in the paper. In this
context, there has been a significant amount of research on
stochastic stabilization of networked control systems under
information constraints. For a detailed review see [36] and [23].
Stochastic stability of adaptive quantizers have been studied
both in the information theory community (see [16], [18],
[19]) as well as control community ([4], [21], [30], [40]). [30]
provided a stability result under the assumption that a quantizer
is variable-rate for systems driven by noise with unbounded
support for its probability measure. [30] used asymptotic
quantization theory to obtain a time-varying scheme, where
the quantizer is used at certain intervals at a very high rate,
and at other time stages, the quantizer is not used. For such
linear systems driven by unbounded noise, [40] established
ergodicity, under fixed-rate constraints, through martingale
methods. These papers motivated us to develop a more general
theory for both random-time drift as well as the consideration
of more general noise models on the channels. In a similar
line of work, [17] also considered stability of the state and
quantization parameters, [28] studied the problem concerning
time-varying channels and provided a necessity and sufficiency
result for boundedness of second moments, [39] studied the
problem of control over an erasure channel in the absence
of noise, and [43] considered discrete noisy channels with
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48 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 1, JANUARY 2013

noiseless feedback for systems driven by Gaussian noise using
the machinery developed in the current paper. [41] obtained
conditions for the existence of an invariant probability measure
for noisy channels, considering deterministic, state-dependent
drift, based on the criteria developed in [27].
We believe our results will provide constructive tools to ad-

dress related stability issues in a large class of networked control
problems.
The contributions of this paper can be summarized as follows
• Stochastic stability theory for Markov chains based on
random-time, state-dependent stochastic drift criteria. A
range of conditions are used to establish conditions for
positive recurrence, and existence of finite moments.

• The results are applied to stochastic stabilization over an
erasure network, where a linear system driven by Gaussian
noise is controlled. This paper establishes that in such an
application of stabilization of an unstable system driven by
Gaussian noise over erasure channels, for stochastic sta-
bility, Shannon capacity is sufficient (up to an additional
correction term). For the existence of finite moments, how-
ever, more stringent criteria are needed. Regarding infor-
mation rate requirements, our construction is tight up to
an additional symbol, in comparison with necessary con-
ditions presented in [28].

The remainder of the paper is organized as follows. The im-
plications of the drift criterion (1) to various forms of stochastic
stability are presented in the next section. The rest of the paper
focuses on an application to control over a lossy erasure network
with quantized observations. The paper ends with concluding
remarks in Section IV. Proofs of the stochastic stability results
and other technical results are contained in the Appendix.

II. STOCHASTIC STABILITY

A. Preliminaries

We let denote a Markov chain with state
space . The basic assumptions of [25] are adopted: It is as-
sumed that is a complete separable metric space, that is lo-
cally compact; its Borel -field is denoted . The transition
probability is denoted by , so that for any , ,
the probability of moving in one step from the state to the
set is given by . The
-step transitions are obtained via composition in the usual way,

, for any . The transi-
tion law acts on measurable functions and measures
on via,

and

A probability measure on is called invariant if .
That is,

For any initial probability measure on we can con-
struct a stochastic process with transition law , and satisfying

. We let denote the resulting probability measure on
sample space, with the usual convention for when the
initial state is . When then the resulting process is
stationary.
There is at most one stationary solution under the following

irreducibility assumption. For a set we denote,

(2)

Definition 2.1: Let denote a sigma-finite measure on .
(i) The Markov chain is called -irreducible if for any

, and any satisfying , we have

(ii) A -irreducible Markov chain is aperiodic if for any
, and any satisfying , there exists

such that

(iii) A -irreducible Markov chain is Harris recurrent if
for any , and any

satisfying . It is positive Harris recurrent if in
addition there is an invariant probability measure .

Intimately tied to -irreducibility is the existence of a suitably
rich collection of “small sets”, which allows Nummelin’s split-
ting technique to be applied leading to verification for Harris re-
currence. A set is small if there is an integer
and a positive measure satisfying and

Small sets are analogous to compact sets in the stability theory
for -irreducible Markov chains. In most applications of -irre-
ducibleMarkov chains we find that any compact set is small—In
this case, is called a -chain [25].
To relax the -irreducibility assumption we can impose in-

stead the following continuity assumption: A Markov chain is
(weak) Feller if the function is continuous on , for every
continuous and bounded function .
We next introduce criteria for positive Harris recurrence for
-irreducible Markov chains, and criteria for the existence of
a steady-state distribution for a Markov chain satisfying the
Feller property.

B. Drift Criteria for Positivity

We now consider specific formulations of the random-time
drift criterion (1). Throughout the paper the sequence of stop-
ping times is assumed to be non-decreasing, with

. In prior work on state-dependent criteria for stability it
is assumed that the stopping times take the following form,

where is a deterministic function of the state. The
results that follow generalize state dependent drift results in [27]
to this random-time setting. We note that a similar approach
has been presented recently in the literature in [14] for random-
time drift (see Theorem 4), which readily generalizes the state
dependent drift results in [27]. The conditions presented in [14]
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are more restrictive for the stopping times than what we present
here. Furthermore we present discussions for existence of finite
moments, as well as extensions for non-irreducible chains.
The proofs of these results are presented in the Appendix.
Theorem 2.1 is the main general result of the paper, providing

a single criterion for positive Harris recurrence, as well as finite
“moments” (the steady-state mean of the function appearing
in the drift condition (3)). The drift condition (3) is a refinement
of (1).
Theorem 2.1: Suppose that is a -irreducible and aperiodic

Markov chain. Suppose moreover that there are functions
, , , a small set ,

and a constant , such that the following hold:

(3)

Then the following hold:
(i) is positive Harris recurrent, with unique invariant dis-
tribution

(ii)
(iii) For any function that is bounded by , in the sense

that , we have convergence of
moments in the mean, and the Law of Large Numbers
holds:

Remark 2.1: We note that, for (ii) in Theorem 2.1, the con-
dition that , , can be relaxed to

, , provided that one can estab-
lish (i), that is the positive Harris recurrence of the chain first.
This result has a corresponding, albeit weaker, statement for

a Markov chain that is Feller, but not necessarily satisfying the
irreducibility assumptions:
Theorem 2.2: Suppose that is a Feller Markov chain, not

necessarily -irreducible. If in addition (3) holds with com-
pact, then there exists at least one invariant probability measure.
Moreover, there exists such that, under any invariant
probability measure ,

(4)

We conclude by stating a simple corollary to Theorem 2.1,
obtained by taking for all .
Corollary 2.1: Suppose that is a -irreducible Markov

chain. Suppose moreover that there is a function
, a small set , and a constant , such that the fol-

lowing hold:

(5)

Then is positive Harris recurrent.

Fig. 1. Control over a discrete erasure channel with feedback. Coder represents
the quantizer and the encoder.

III. APPLICATION TO STOCHASTIC STABILIZATION
OVER AN ERASURE CHANNEL

The results of the previous section are now applied to a re-
mote stabilization problem, in which the plant is open-loop un-
stable, and the controller has access to measurements from an
erasure channel—see Fig. 1.
We begin with a scalar model; extensions to the multivariate

setting are contained in Section III-E.

A. Scalar Control/Communication Model

Consider a scalar LTI discrete-time system described by

(6)

Here is the state at time , is the control input, is a given
initial condition, and is a sequence of zero-mean indepen-
dent, identically distributed (i.i.d.) Gaussian random variables.
It is assumed that and : The system is open-loop
unstable, but it is stabilizable.
This system is connected over an erasure channel with finite

capacity to a controller, as shown in Fig. 1. The controller has
access to the information it has received through the channel.
The controller estimates the state and then applies its control.
We will establish bounds on data rates which lead to various
versions of stochastic stability for the closed loop system.
The details of the communication channel are specified as fol-

lows: The channel source consists of state values, taking values
in . The source is quantized: The quantizer, at time , is
represented by a map , characterized by a sequence
of non-overlapping intervals , with ,
such that if and only if ; that is,

The quantizer outputs are transmitted through a memoryless
erasure channel, after being subjected to a bijective mapping,
which is performed by the channel encoder: The channel
encoder maps the quantizer output symbols to corresponding
channel inputs . An encoder at
time , denoted by , maps the quantizer outputs to such
that .
The controller/decoder has access to noisy versions of the

coder outputs for each time, which we denote by
, with denoting the erasure symbol, generated according to

a probability distribution for every fixed . The channel
transition probabilities are given by:
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For each time , the controller/decoder applies a mapping
, given by:

We restrict the analysis to a class of uniform quantizers, defined
by two parameters: bin size , and an even number .
The set consists of elements. The uniform quantizer
map is defined as follows: For , as shown in the
equation at bottom of the page.
We consider quantizers that are adaptive, so that the bin

process can vary with time. The bin size at time is as-
sumed to be a function of the previous value and the past
channel output .

B. Stochastic Stabilization Over an Erasure Channel

Consider the following time-invariant model. Let denote
an i.i.d. binary sequence of random variables, representing the
erasure process in the channel, where the event indicates
that the signal is transmitted with no error through the erasure
channel at time . Let denote the probability of suc-
cess in transmission.
The following key assumptions are imposed throughout this

section: Given introduced in the definition of the quan-
tizer, define the rate variables

(7)

We fix positive scalars satisfying , and

(8)

and

(9)

We note that the (Shannon) capacity of such an erasure
channel is given by [8]. From (7)–(9) it follows
that if , then exist such that the
above are satisfied.
To define the bin-size update rule we require another constant

, chosen so that , where we take the lower
bound as 1 for convenience; any positive number would suffice.
Define the mapping ,

Then with selected otherwise arbitrarily, define

(10)

The update equations above imply that

(11)

Given the channel output , the controller can deduce
the realization of and the event simultaneously.
This is due to the observation that if the channel output is not the
erasure symbol, the controller knows that the signal is received
with no error. If , then the controller applies 0 as its
control input and enlarges the bin size of the quantizer.
Lemma 3.1: Under (10), the process is a Markov

chain.
Proof: The system state dynamics can be expressed

, where . It follows
that the pair process evolves as a nonlinear state space
model,

(12)

in which is i.i.d.. Thus, form a Markov chain
(see [25, Ch. 2]).
Our result on the existence and uniqueness of an invariant

probability measure is the following.
Theorem 3.1: For an adaptive quantizer satisfying (7)–(9),

suppose that the quantizer bin sizes are such that their
base-2 logarithms are integer multiples of some scalar ,
and takes values in integer multiples of . Then
the process forms a positive Harris recurrent Markov
chain, with a unique invariant probability measure . If the in-
tegers taken are relatively prime (that is they share no common
divisors except for 1), then the invariant probability measure is
independent of the value of the integer multiplying .
Under slightly stronger conditions we obtain a finite second

moment:
Theorem 3.2: Suppose that the assumptions of Theorem 3.1

hold, and in addition we have the bound

(13)

It then follows that for each initial condition ,

Remark 3.1: We note that Minero et al. [28], in Theorem 4.1,
observed that a necessary condition for mean square stability is
that the following holds:

Thus, our sufficiency proof almost meets this bound except for
an additional transmitted symbol.
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Fig. 2. Drift in the Markov Process. When under-zoomed, the error increases
on average and the quantizer zooms out; when perfectly-zoomed, the error de-
creases and the quantizer zooms in.

We now consider the th moment case. This moment can
become useful for studying multi-dimensional systems for
a sequential analysis of the modes, as we briefly discuss in
Section III-E.
Theorem 3.3: Consider the scalar system in (6). Let
, suppose that the assumptions of Theorem 3.1 hold, and in

addition we have the inequality,

It then follows that with the adaptive quantization policy con-
sidered, .

C. Connections With the Drift Criteria and the Proof Program

Stability of the control/communication model is established
using the random-time stochastic drift criteria presented in the
previous section, applied to theMarkov chain (see
Lemma 3.1). We provide an overview here, and the details can
be found in the Appendix.
Fig. 2 provides some intuition on the construction of

stopping times and the Lyapunov functions. Recall that
was introduced in (10). The arrows shown

in the figure denote the mean one-step increments of :
That is, the arrow with base at is defined by,

With fixed, and with , two sets are
used to define the small set in the drift criteria,

for , and . Denote
, and assume that is chosen sufficiently large

so that whenever .
When is outside and outside (the under-zoomed
phase of the quantizer), there is a drift for towards . When
the process reaches (the perfectly-zoomed phase of the
quantizer), then the process drifts towards .
We next construct the sequence of stopping times required

in the drift criteria of Section II-B. The controller can receive
meaningful information regarding the state of the system when
two events occur concurrently: the channel carries information
with no error, and the source lies in the granular region of the
quantizer: That is, (or )
and . The stopping times are taken to be the times at

which both of these events occur. With, , , we
define and

These stopping times are nearly geometric when the bin size
is large. The proof of Proposition 3.1 is presented in Section
V-B1.
Proposition 3.1: The discrete probability measure

satisfies,

where as uniformly in .
The next step is to establish irreducibility structure. The proof

of the following is contained in Section V-B2.
Proposition 3.2: Under the assumptions of Theorem 3.1, the

chain is -irreducible for some , it is aperiodic, and
all compact sets are small.
We now provide sketches of the proofs of the main results.

The details are collected together in the Appendix.
Sketch of Proof of Theorem 3.1: The logarithmic function

for some serves as the
Lyapunov function in (3), with set as a constant. Note
that by (11), .
Together with Propositions 3.1 and 3.2, we apply Theorem

2.1 in the special case of Corollary 2.1. Proposition 3.2 implies
the existence of a unique invariant measure. Details of the proof
are presented in Section V-B3.
Sketch of Proof of Theorem 3.2: A quadratic Lyapunov func-

tion is used, along with
for some , and for some .
The bound (3) is established in Section V-B4, so that the limit

exists and is finite by Theorem 2.1. Details of the
proof are presented in Section V-B4.
Sketch of Proof of Theorem 3.3: Theorem 2.1 is applied with

the Lyapunov function ,
for some , and for some .
Details of the proof are presented in Section V-B4.

D. Simulation

Consider a linear system

with , is an i.i.d. Gaussian sequence. The
erasure channel has erasure probability . For stability
with a finite second moment, we employ a quantizer with rate

bits. That is, a uniform quantizer with 5 bins. We have taken
. Figs. 3 and 4 illustrate the conclusions of the stochastic

stability results presented in Theorems 3.1 and 3.2. The plots
show the under-zoomed and perfectly-zoomed phases, with the
peaks in the plots showing the under-zoom phases. For the plot
with 5 levels, the system is positive Harris recurrent, since the
update equations are such that , and
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Fig. 3. Sample path for a stochastically stable system with a 5-bin quantizer.

Fig. 4. Sample path with a 17-bin quantizer; a more desirable path.

. These values satisfy the ir-
reducibility condition since , and hence
the communication conditions in Theorem 3.1 are satisfied. Fur-
thermore, (9) is satisfied since

Increasing the bit rate by only two bits in Fig. 4 leads to a much
more desirable sample path, for which the severity of rare events
is reduced.

E. Extension to Multi-Dimensional Systems

The control laws and analysis can be extended to multi-di-
mensional models. Consider the multi-dimensional linear
system

(14)

where is the state at time , is the control input,
and is a sequence of zero-mean independent, identically
distributed (i.i.d.) -valued zero-mean Gaussian random vari-
ables. Here is the system matrix with at least one eigen-
value greater than 1 in magnitude, so that the system is open-
loop unstable. Without any loss of generality, we assume

to be in Jordan form. Suppose that is invertible for ease in
presentation.
The approach for the scalar systems is applicable, however

some extension is needed. Toward this goal, one can adopt two
approaches.
In one scheme, one could consider a sequential stabilization

of the scalar components. In particular, we can perform an anal-
ysis by considering a lower to upper sequential approach, con-
sidering stabilized modes at particular stopping times as noise
with a finite moment. Using an inductive argument, one can first
start with the lowestmode (in thematrix diagonal) of the system,
and stabilize that mode so that there is a finite invariant th mo-
ment of the state. We note that the random process for the upper
mode might not have Markov dynamics for its marginal, but the
joint system consisting of all modes and quantizer parameters
will be Markov. Such a sequential scheme ensures a successful
application of the scalar analysis presented in this paper to the
vector case. One technicality that arises in this case is the fact
that the effective disturbance affecting the stochastic evolution
of a repeated mode in a Jordan block is no longer Gaussian, but
can be guaranteed to have a sufficiently light tail distribution by
Theorem 3.3.
Another approach is to adopt the discussions in [44] and Sec-

tion IV of [43] (see also [23] for related constructions) and apply
a vector quantizer by transmitting the quantizer bits for the en-
tire -valued state. In particular, by defining a vector quantizer
as a product of scalar quantizers along each (possibly general-
ized) eigenvector with a common under-zoom bin, letting de-
note the ratio of the state and the bin range of the corresponding
th scalar quantizer and defining a sequence of stopping times
as follows with and for

the analysis can be carried over through a geometric bound on
the distribution of subsequent stopping times, obtained by an
application of the union bound. See [43] for details.

IV. CONCLUSION

This paper contains two main contributions. One is on a gen-
eral drift approach for verifying stochastic stability of Markov
Chains. The other is on stabilization over erasure channels. We
believe that the results presented in this paper will have many
applications within the context of network stability, and net-
worked control systems as well as information theoretic appli-
cations. Important previous research on performance bounds for
variable-length decoding schemes use stopping time arguments
[5], [31], and this could form the starting point of a Lyapunov
analysis.
The methods of this paper can be applied to a large class of

networked control systems and problems involving delay-sen-
sitive information transmission. For networked control systems,
the effects of randomness in delay for transmission of sensor or
controller signals (see for example [6], [29]) is an application
area where the research reported here is relevant. Another re-
lated area is event-triggered feedback control systems [2], [32],
[35].
Rates of convergence under random-time drift is one direc-

tion of future research. It is apparent that the nature of the drift
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as well as the distribution of stopping times used for drift will
play a role in the rate of convergence. We refer the reader to [11]
and [7], for results when the drift times are deterministic.
Positive Harris recurrence can be a crude measure of stability,

as seen in the numerical results in this paper. Computing the
sensitivity of performance to the bit rate is an important future
research problem for practical applications. For example, it was
observed in Fig. 4 that increasing the bit rate by only two bits
leads to much more desirable sample paths, and the magnitudes
of rare events are significantly reduced. A Markovian frame-
work is valuable for sensitivity analysis, as applied in the rein-
forcement learning literature (see commentary in Section 17.7
of [25]).

APPENDIX I

A. Proofs of the Stochastic Stability Theorems

1) Proof of Theorem 2.1 (i): The proof is similar to the proof
of the Comparison Theorem of [25]: Define the sequence

by , and for ,

Under the assumed drift condition we have,

which implies the super-martingale bound,

For a measurable subset we denote the first hitting
time for the sampled chain,

(15)

Define for any . Then
for any , and

Applying the bound and that
, the following bound is obtained from the smoothing

property of the conditional expectation:

Hence by the monotone convergence theorem,

Consequently we obtain that

as well as recurrence of the chain, for any
. Positive Harris recurrence now follows from [26] Thm.

4.1.
The following result is key to obtaining moment bounds. The

inequality (17) is known as drift condition (V3) [25]. Define,

(16)

Lemma 5.1: Suppose that satisfies all of the assumptions
of Theorem 2.1, except that the -irreducibility assumption is
relaxed. Then, there is a constant such that the following
bounds hold

(17)

(18)

Proof: The drift condition (17) is given in Theorem 14.0.1
of [25].
The proof of (18) is based on familiar super-martingale argu-

ments: Denote , and and for ,

(19)

The super-martingale property for follows from the as-
sumed drift condition:

(20)

As in the previous proof we bound expectations in-
volving the stopping time beginning with its truncation

.
The super-martingale property gives , and

once again it follows again by the monotone convergence the-
orem that satisfies the bound (18) as claimed.
2) Proof of Theorem 2.1 (ii) and (iii): The existence of a

finite moment follows from Lemma 5.1 and the following gen-
eralization of Kac’s Theorem (see [25, Theorem 10.4.9]):

(21)

where is any set satisfying , and
. The super-martingale argument above ensures that the

expectation under the invariant probability measure is bounded
by recognizing as a recurrent set.
(iii) now follows from the ergodic theorem for Markov

chains, see [25, Theorem 17.0.1].
3) Proof of Theorem 2.2: The existence of an invariant prob-

ability measure in (i) follows from Theorem 12.3.4 of [25] (the
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solution to the drift condition (V2) can be taken to be the mean
hitting time, ). See also [20, Theorem 3.1].
The proof of (ii) is similar. Rather than work with the mean

return time to , we consider the function defined in Lemma
5.1. We have by the Comparison Theorem of [25],

Hence for any ,

(22)

Suppose that is any invariant probability measure. Fix
, let , and apply Fatou’s Lemma as follows,

Fatou’s Lemma is justified to obtain the first inequality, be-
cause is bounded. The second inequality holds by (22) and
since . The monotone convergence theorem then gives

.

B. Proofs of Stability: Stochastic Stabilization Over an
Erasure Channel

1) Proof of Proposition 3.1: We obtain upper and lower
bounds below.
Lemma 5.2: The discrete probability measure

satisfies

where as uniformly in .
Proof: Denote for ,

(23)

Without any loss, let , , so that
.
Now, at time 0, upon receiving a message successfully, the

estimation error satisfies , as such we have
that .
The probability for is bounded as follows:

(24)

(25)

In the above derivation, (24) follows from the following: For
any three events in a common probability space

Now, observe that for ,

(26)
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where (26) follows from (8), for this condition ensures that the
term

is positive for , and bounding the complementary error
function by the following: , for

. In the above derivation, the constants are:

and

Let us define:

and

We can bound the probability defined in (23). Since a de-
caying exponential decays faster than any decaying polynomial,
for each , there exists an such that for all

,
(27)

Thus, we have that

(28)

Now by definition, and for ,

(29)

We obtain,

(30)

where

(31)

It now follows that,

(32)

with . It follows that
if is taken such that

(33)

then , and for all

(34)

Lemma 5.3: The discrete probability measure
satisfies

for all realizations of .
Proof: This follows since

As a consequence of Lemma 5.2 and Lemma 5.3, the prob-
ability tends to as

.
2) Proof of Proposition 3.2: Let the values taken by

be . Let

Since we have by (10)

it follows that,
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is also an integer. We will establish that forms a com-
munication class, where is the initial con-
dition of the parameter for the quantizer. Furthermore, since
the source process is “Lebesgue-irreducible” (for the system
noise admits a probability density function that is positive ev-
erywhere) and there is a uniform lower bound on bin-sizes,
the error process takes values in any of the admissible quantizer
bins with non-zero probability. In view of these, we now estab-
lish that the Markov chain is irreducible.
Given , there exist such that

. In particular, if at time 0, the quantizer
is perfectly zoomed and , then there exists a sequence
of events consisting of erasure events (simultaneously sat-
isfying ) and consequently zoom-in events taking
place with probability at least:

(35)

so that , uniformly in .
In the following we will consider this sequence of events.
Now, for some distribution on positive integers,

and an admissible bin size,

Here , denoting a lower bound on the probability of vis-
iting from in some finite time, is non-zero by (35) and is
positive as the following argument shows: Let be the time
stage for which and thus by the construction in (35),
with : .
Thus, it follows that, for , ,

(36)

Now, define the finite set
. The chain satisfies the recurrence prop-

erty that for any admissible .
This follows, as before in Section V-B1, from the construction
of

where

and observing that is majorized by a geometric mea-
sure with similar steps as in Section V-B1. Once a state which is
perfectly zoomed, that is which satisfies , is vis-
ited, the stopping time analysis can be used to verify that from
any initial condition the recurrent set is visited in finite time with
probability 1.
In view of (35), we have that the chain is irreducible.

We can now show that the set is small. We will show
first that this set is petite: A set is petite if there is
a probability measure on the non-negative integers , and a
positive measure satisfying and

By Theorem 5.5.7 of [25], under aperiodicity and irreducibility,
every petite set is small. To this end, we will establish aperiod-
icity at the end of the proof.
To establish the petite set property, we will follow an

approach taken by Tweedie [37], [38] which considers the
following test, which only depends on the one-stage transition
kernel of a Markov chain: If a set is such that, the following
uniform countable additivity condition

(37)

is satisfied for every sequence , and if the Markov chain
is irreducible, then is petite (see Lemma 4 of Tweedie [38]
and Proposition 5.5.5 (iii) of Meyn-Tweedie [25]).
Now, the set satisfies (37), since for any given bin

size in the countable space constructed above, we have that

This follows from the fact that the Gaussian random variable
satisfies

uniformly over a compact set , for any sequence ,
since a Gaussian measure admits a uniformly bounded density
function.
Therefore, is petite.
If the integers are relatively prime, then by Bézout’s

Lemma (see [1]), the communication class will include the bin
sizes whose logarithms are integer multiples of a constant ex-
cept those leading to .
We finally show that the Markov chain is aperiodic. This fol-

lows from the fact that the smallest admissible state for the quan-
tizer, , can be visited in subsequent time stages with
non-zero probability, since

3) Proof of Theorem 3.1: With the Lyapunov function
, for , we have that
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Thus, the drift satisfies:

(38)

By (31), the summability of , and the dominated
convergence theorem,

(39)

Provided (9) holds, it follows from Lemma 5.2 and Lemma 5.3
that for some ,

(40)

For in a compact set and lower bounded by defined by
(11), is uniformly bounded. This fol-
lows from the representation of the drift given in (38). Finally,
since,

it follows that and as a result

(41)

Consequently, under the bound (9), there exist ,
, such that,

(42)

Thus combined with Proposition 3.2, (41), and (42), Corollary
2.1 leads to positive Harris recurrence.

4) Proof of Theorem 3.2: First, let us note that by (30) and
(34), for every , we can find sufficiently large such
that

Under the assumed bound , we can fix
such that .
Next, observe that for all initial conditions for which
,

(43)

where the last equality follows from Lemma 5.2 and the domi-
nated convergence theorem.
Now, if (13) holds, we can find such that ,

and
(44)

and simultaneously (9) is satisfied. We note that (44) implies (9)
since by Jensen’s inequality:

and (9) is equivalent to the term on the right hand side being
negative.
To establish the required drift equation, we first establish the

following bound for all :

(45)

for some .
Without loss of generality take so that . Observe

that for any , by Hölder’s inequality,

(46)

Moreover, for some ,
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(47)

where the last inequality follows since for every fixed ,
the random variable has a
Gaussian distribution with finite moments, uniform on
.
Thus,

for some .
The last inequality is due to the fact there exists such

that

and we can pick with . Such
and exist by the hypothesis that .
Hence, with

a compact set, and , Theorem 2.1 applies and
.

5) Proof of Theorem 3.3: The proof follows closely that of
Theorem 3.2.
Again by Hölder’s inequality, for any ,

(48)

As in (47), for some ,

and consequently,

(49)

where, once again, the last inequality is due to the fact that there
exists a such that

and we can pick such that ;
such and exist by the property .
Hence, with ,

a compact set, and , Theorem 2.1 applies,
establishing in the desired conclusions, and in particular that

exists and is finite.
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