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Stochastic Stabilization of Noisy Linear Systems
With Fixed-Rate Limited Feedback

Serdar Yüksel

Abstract—Fixed-rate quantizers whose bin levels are adaptive have been
used in the networked control literature as efficient schemes for stabilizing
open-loop unstable noise-free linear systems with arbitrary initial condi-
tions connected over noiseless channels. In this note, stochastic stability
results for such simple adaptive quantizers when the system noise has un-
bounded support for its probability measure are presented. It is shown that,
there exists a unique invariant distribution for the state and the quantizer
parameters under mild conditions. The second moment under the invariant
distribution is finite, if the system noise is Gaussian.

Index Terms—Networked control systems, quantization, stability, sto-
chastic systems.

I. INTRODUCTION

We consider a remote stabilization problem where a controller
having access to quantized measurements acts on a plant, which is
open-loop unstable. A setup is depicted in Fig. 1.

Before proceeding further with the description of the system, we
discuss the quantization policy investigated. A quantizer,�, for a scalar
continuous variable is a map � , characterized by a sequence of
bins ���� and their representation ����, such that ��,���� � �� if and
only if � � ��. Of particular interest is the class of uniform quantizers.
In the following, we modify the description of a traditional uniform
quantizer by assigning the same value when the state is in the overflow
region1 of the quantizer. As such, a uniform quantizer: ��

� � �
with step size � and ��� (with � even) number of bins satisfies the
following for � � �� � 	 	 	 � �:
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� 	
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A general class of quantizers are those which are adaptive. Let be
a set of states for a quantizer state �. Let  � 	 � be a state
update-function. An adaptive quantizer has the following state update
equations: ���� �  �������� ���. Here, �� is the quantizer applied
at time �, �� is the input to the quantizer ��, and �� is the state of the
quantizer. Such a quantizer is implementable since the updates can be
performed at both the encoder and the decoder.

One particular class of adaptive quantizers is introduced by
Goodman and Gersho [2]. One such type has the following form with
��
� being a uniform quantizer with � � � bins and bin-size � and ��
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1As such, when ��� � ������, the receiver knows that the source is in the
overflow region of the quantizer.

Fig. 1. Control over a finite-rate noiseless channel with fixed-rate quantized
observations.

determining the updates in the bin-size of the uniform quantizer as a
function of the source and the current bin size:

�� � �
�
�

����� ���� � ��
���������� (1)

Here �� characterizes the uniform quantizer, as it is the bin size of the
quantizer at time �. In the model that we will consider, �� (which we
will replace with the term �) will take ratio between � and �, and �
as its input.

In this technical note, we consider an LTI discrete-time scalar system
described by

���� � ��� � ��� � ��� � � (2)

where � is the system coefficient with ��� 
 �, that is, the system is
open-loop unstable. We take � �� �. Here �� is the state at time �, ��
is the control input, �� is a second-order random variable, and ����
is a sequence of zero-mean independent, identically distributed (i.i.d.)
random variables which satisfy the following:

Assumption A: ���� is an i.i.d random sequence such that the
random variables admit a probability distribution � which is absolutely
continuous with respect to the Lebesgue measure on , and for every
open set � � , ���� � �. Furthermore, �
��� � � �
���� �. �

Assumption B: ���� is an i.i.d. Gaussian sequence with zero-mean
and �
���� �. �

This system is connected over a noiseless channel with a finite
capacity to an estimator (controller). The controller has access to the
information it has received through the channel. The controller in our
model estimates the state and then applies its control. As such, the
problem reduces to a state estimation problem since such a scalar
system is controllable. Hence, the stability of the estimation error is
equivalent to the stability of the state itself.

A. Literature Review and Contributions of the Paper

There has been considerable amount of research in the literature on
quantizer design for such a stabilization problem, for a detailed re-
view see [10]. Due to space constraints, we are unable to provide a
detailed account here and only review some of the directly related lit-
erature to this note. Zooming type adaptive quantizers, which will be
described further in the technical note, have been recently introduced
by Brockett and Liberzon [1], for remote stabilization of open-loop
unstable, noise-free systems with arbitrary initial conditions. Nair and
Evans [4] provided a stability result under the assumption that the quan-
tizer is variable-rate and showed that for a noisy setup (with unbounded
support for the noise probability measure) that on average it suffices
to use more than ��������� bits to achieve a form of stability. [4] used
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asymptotic quantization theory to obtain a time-varying scheme, where
the quantizer is used at certain intervals at a very high rate, and at other
times, the quantizer is not used. Contradistinctively with the result of
Nair and Evans, we provide a technique which allows us to both provide
a result for the case when the quantizer is fixed-rate as well as to obtain
an invariance condition for a probability measure on the quantizer pa-
rameters. There is also a large body of literature on quantizer design in
the communications and information theory community. One impor-
tant reference is the work by Goodman and Gersho [2], where an adap-
tive quantizer was introduced and the adaptive quantizer’s stationarity
properties were investigated when the source fed to the quantizer is a
second order and i.i.d. sequence. In fact, zooming type quantizers is a
special class of Goodman and Gersho’s adaptive quantization scheme.
Kieffer and Dunham [3], have obtained conditions for the stochastic
stability of a number of coding schemes when the source considered
is also stable, where various forms of stability of the quantizer and the
estimation error have been studied. In our case, however, the schemes
in [2] and [3] are not directly applicable, as the process we consider is
open-loop unstable, as well as Markovian. In view of the literature, the
contributions of this note are stated as follows.

• Results on the existence of an invariant distribution is pre-
sented. To our knowledge, the first result showing that
��� ����������� � 	 ������ ����� � � � is obtained,
when the system is driven by a Gaussian disturbance. This result
paves the way for solving average cost infinite horizon optimal
control problems under quantization constraints.

• The obtained result uses a fixed-rate quantization scheme. This is
implementable in a practical setting.

II. MAIN RESULTS OF THE PAPER

A. Stochastic Stability of Markov Chains

Let us first present a brief discussion on stochastic stability of
Markov Chains; for a list of definitions on Markov Chains the reader
is referred to [5] and [6]. Let ���� � � 
� be a Markov chain with
state space � ��� ��, and defined on a probability space ��� ���,
where �� � denotes the Borel �-field on ,  is the sample space,
� a sigma field of subsets of , and � a probability measure. Let
� ����� �	 � ����� � �	�� 	 �� denote the transition probability
from � to �.

Definition 2.1: For a Markov chain, a probability measure 	 is in-
variant on the Borel space � ��� �� if 	��� 	 � �����	�
��,

� � �� �.

Definition 2.2: A Markov chain is �-irreducible, if for any set � �
�� � with ����  
, 
� � , there exists some integer �  
, pos-
sibly depending on� and �, such that�������  
, where�������
is the transition probability in � stages, that is � ����� � �	�� 	 ��.

Definition 2.3: A set � � is �-petite on � ��� �� if for some
distribution � on (set of natural numbers), and some non-trivial mea-
sure � , �

��� �
������� ��� � ����, 
� � �, � � �� �.

Definition 2.4: A �-irreducible Markov chain is aperiodic if for any
� � , and any � � �� � satisfying ����  
, there exists �� 	
����� �� such that �������  
 for all � � ��.

Theorem 2.1: ([6] Theorem 4.1) Let � � be a �-petite set (for
some measure �). If the Markov Chain is �-irreducible (for some mea-
sure �), aperiodic, and if ������ �������  
 � �� � ��	�� 	 �� �
�, then the Markov chain is positive Harris recurrent; it thus admits a
unique invariant distribution.

The existence of an invariant distribution is important primarily be-
cause of the following:

Theorem 2.2 (Birkhoff’s Sample Path Ergodic Theorem): Consider
a positive Harris recurrent Markov process ���� taking values in

, with invariant distribution 	���. Let � �  be such that
����	�
�� � �. Then, the following holds almost surely:

���
���

�

�

���

���

����� 	 ����	�
���

B. Main Results

Before proceeding further with the presentation of the main results,
we further discuss the adaptive quantizers considered. An example of
Goodman-Gersho [2] type adaptive quantizers, which also has been
shown to be effective in control systems, are those that have zoom level
coefficients as the quantizer state [1]. In the zooming scheme, the quan-
tizer enlarges the bin sizes in the quantizer until the state process is in
the range of the quantizer, where the quantizer is in the perfect-zoom
phase. Due to the effect of the system noise, occasionally the state will
be in the overflow region of the quantizer, leading to an under-zoom
phase. We will refer to such quantizers as zooming quantizers. In the
following, we will assume the communication channel to be a discrete
noiseless one with capacity �.

Theorem 2.3: Consider an adaptive quantizer applied to the linear
control system described by (2), under Assumption A. If the noiseless
channel has capacity, for some �  
, � 	 ������	�	� ��� ��, there
exists an adaptive quantization policy such that there exists a compact
set � with ������ �������  
 � �� � ��	�� 	 �� � �, thus � is a
recurrent [6] set. �

With � 	 �	�	���, � 	 ���������, let us define �� 	 �������.
We will consider the following update rules. For � � 
 and with �� 
� for some � � �, and ��� � , consider:

�� 	 �
�

�
���� ��� 	 ��

� ����� ���� 	 ��
��

��
���� ��

��� �

(3)
If we use �� �� �  
 with � � � and �  
 such that

������� 	 	�	 � � �� 	�	  �

������� 	
	�	

	�	 � �� �
�� 
 � 	�	 � ���  �

������� 	� �� 
 � 	�	 � ��� � � (4)

with � ��
�� �����	�	��	�	 � � � ����� ���� � �, we will show
that a recurrent set exists. We note that the above imply that �� �
��	�	��	�	� �� ��� 	� �� for all � � 
 (the following are some pos-
sible values: � 	 � � 	�	, � 	 ���, � 	 ���
����

�	�
). The proof of

Theorem 2.3 is given in Section III-A. Our result on the existence of
an invariant distribution is the following, the proof of which is in Sec-
tion III-B.

Theorem 2.4: Under the setup of Theorem 2.3, for the adaptive
quantizer in (3), if the quantizer bin sizes are such that their (base-2)
logarithms are integer multiples of some scalar  , and �����

����� ���
take values in integer multiples of  where the integers taken are rela-
tively prime (that is they share no common divisors except for 1), then
the process ��������� is a positive (Harris) recurrent Markov chain,
and, as such, has a unique invariant distribution. �

Remark 2.1: The existence of an invariant distribution is of fun-
damental importance in the optimization of infinite horizon stochastic
control systems. The Ergodic Theorem lets one adopt the linear pro-
gramming approach for the optimization of Markov Decision Processes
[7]. �

The following result is on moment stability, the proof of which is
presented in Section III-C:

Theorem 2.5: Under the setups of Theorem 2.3, Theorem 2.4 and
Assumption B, it follows that ������ ����� � � �, and this limit is
independent of the initial state of the system. �
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Fig. 2. Sample path for a stochastically stable quantizer. The variables picked
are as follows: � � �, � � ���, � � ����, � � ����.

Remark 2.2: The rate required is close to the lower bound presented
by Wong and Brockett: ��������� [8]. In our case, the additional 1
term is for the overflow bin for the under-zoom phase. As ��� � �,
�������� � �� � ��������� � ������ � ������ ������������� � 	,
such quantizers are efficient. �

Remark 2.3: We note that the stability result for such a scheme re-
quires new techniques to be used, as classical tools in Markovian sta-
bility theory will not be applicable directly. This is because of the fact
that, the quantizer helps reduce the uncertainty on the system state only
when the state is in the granular region of the quantizer. The times
when the state is in this region are random. As such, in the following
section, we use a two-stage martingale approach to prove the existence
of a recurrent set, and subsequently the stability results. �

Remark 2.4: We note that, our results above show that there is a
limit value for the sequence of second moments ��
��� �� � � �	.
Earlier, Nair and Evans [4] reported that �� ����
��� � � �, using
variable-rate schemes. Our result uses a time-invariant rate (that is a
fixed-rate) and ensures the existence of a limit distribution. �

As a simulation study, we consider a linear system with the following
dynamics:

���� � �	��� � 
� � ��

where �
��� � 	, �
��� � � �, and ���	 are i.i.d. Gaussian vari-
ables. We use the zooming quantizer with rate ������� � �, since 4
is the smallest integer as large as 
�	�� � �. We have taken �� � �.
Fig. 2 above corroborates the stochastic stability result, by showing the
under-zoomed and perfectly-zoomed phases, with the peaks in the plots
showing the under-zoom phases.

III. PROOFS OF THE RESULTS

A. Proof of Theorem 2.3: Recurrence

Toward the proof, we will first obtain a supporting result.
Lemma 3.1: Let ��  �� denote the Borel -field on  �.

It follows that:

� �������� � �� ��������������� � � � � ��������

� � �������� � �� ���������������

��� �� � ��  ��, i.e. ������� is a Markov chain.

Proof: We observe that ���� � ��� � ���� � ��, and ����� �
��
�

������. Thus

� �������� � �� ��������������� � � � � ��������

� � ��� � ����� � ������������� � � � � ��������

 � ��� � �������������� � � � � ��������

� � ��� � ��������������� ��� � ��������������

� � �������� � �� ��������������� 	

The equations above follow from the update equations in the quantizer
(3). �

Let us define �� �� �������
� ���. Consider the following sets:

�� � �� � ��� � �	, �� � �� � ��� � �	, with � � �� ����.
Further, let another set be � �

� � �� � ��� � �	, with a sufficiently
large � value to be derived below. We will study the expected number
of time stages between visits of ����� ���	 to � �

�  ��. Consider the
drift of the ���� ��� process in Fig. 3: When ��� �� are in ����, the
expected drift increases both ��� and ���. When the ���	 process gets
outside� �

� and �� outside�� (under-zoomed), there is a drift for �� to-
wards��, however, ���� will keep increasing on average. Finally, when
the process hits�� (perfect-zoom), then the process drifts towards� �

�.
We first show that the sequence ���� � � 		 visits �� infinitely often
with probability 1 and the expected length of the excursion is uniformly
bounded over all possible values of ��� �� � � �

���. Let � ���� � �
�
�

serve as a Lyapunov function. Define a sequence of stopping times for
the perfect-zoom case with (where the initial state is perfectly zoomed)

�� � 	� ���� � ��� �� � �� � ���� � �	 � � � �	

We have that, if ���� � � (under-zoomed) �
��������� ��� � ���� �
��
���������

������ � ��������
�. Since when ���� � �, we have that

���� � �� ������������ � � � ���, it follows that:

� ��������� �� �
�� �

�
	 �
�

��� ���
����

�	

If ���� � �, then

� ����� �
�� �� �

�
�� ���

����� ���
�

��� � �� �

���

�

�
�� 


�
� � ���

����� ���
�

��� � �� �

���

�

�� �� (5)

where�� � ���������������� (this is a lower bound on ��). Hence,
it follows that:

� ����� � �
�
� ���� �� � ����� ������� ���� (6)

where �� is the indicator function for event � with � � � � ���� �
��
������

������� ����. Since for �,  � 	, �� � � � ��� ��

it follows that the hypothesis �
��� ����
��� ��� � � ensures � � 	.

Now, let us define� �
� �� �� � �,!� �� � ����, and for � � �

!� �� � �����

���

�	�

���� �
���� � � 	

Define a stopping time: �� � ���"����# � 	 � � ���� �
"	����# � 	 � � ���� � �	�. Since, �
!�������� ���� $ � �� �
!�, �� � 	, it follows that, �!�	 is a supermartingale sequence.
The stopping time �� is bounded and the supermartingale sequence
is also bounded for � � �� . Hence, we have, by the Martingale Op-
tional Sampling Theorem: �
!�� �� � �
!��. Hence, we obtain
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Fig. 3. Drift in the error process. When under-zoomed, the error increases on
average; when perfectly-zoomed, the error decreases.

�� � ��

���
�� � � ���� ���

��� � ��
���

��� �� ��. Thus, ����� �
� � �� � � ���� �� �

�, and by the Monotone Convergence Theorem

� ��	
���

���� � 
 ���� � � � ���� �� �
� � � �� �

��

������ � �� � � � �� �
� �� (7)

uniformly for all �� � 	�. By the strong Markov property �
� � �� �
is also a Markov chain as ��� � �� � ��, the filtration generated by
the quantizer state and the quantizer output at time �. The probability
that ���� �
 �� � �, is upper bounded by the probability

 ����� �� � �� 	 �� �� ��

���

��� � �� �

������ �� � �� �� �� �� ��

���

��� � � � �


  ��� �� � ���������


��� � �� � ��� � � � �

��� � �� �

�


 	 ��� � � (8)

If ���� �
 �� � �, then this means that the error is increasing on av-
erage and the system is once-again under-zoomed at time � 
 �� � �:

� �� 
 �
� � �� with �� �� 
 ��������� � � � ����� . (when
�� 	 �). With some probability, the quantizer will still be in the per-
fect-zoom phase: ���� 
 �� � �. In case perfect-zoom is lost, there is
a uniform bound on when the zoom is expected to be recovered. It fol-
lows that, conditioned on increment in the error, until the next stopping
time, the process will increase exponentially and hence


� 
 �� �� 
� �

� �� ��


��

��
���
�� �

We now show that, there exist � � �, ��� �� such that

� ��� ��
� ��� � �� � ��� ��

� � � ������ �	��� (9)

Now, it follows that:

� ��� ��
� ��� � ��

� ��� 	 ��� �� � ���
���

��� � �� �
� ��� ��

�

� 	 ��� �� ������� � ��� ��� ���� � �� � � ��� ��� �� �

We now proceed to further upper bound ��������
� ���� � �� �. To-

ward this end, we have

 ��� � �� �������

��� � �� � ��� � �� �

��� � �� �

�

�
� ���

�� ������� 
������������
������

�

�
� ���

����� ��
(10)

where we use Markov’s inequality, with �� 
 ���������
��� �
�� � ��� � � � ������� � � � ���, and it follows that: 	��� � �
������ ������� ���. Now, for large 
� values, by substituting the
uniform bound in (7), if the following holds, there is a drift to 	 �

�. For
(9) to hold, it suffices that the following equation is satisfied for large
enough �� values, for some � � �:

	 ��� � � � �� �
� �� ��� ���� � �� �

� ���
���

��� � �� �
� �� � �� (11)

Thus, we have ��������
� ���� � �� � � ������

� � � � �
����� �	� � with

� � 

� ����� �� �� �� �

�� ��� ��� ���� � ��

�� �� � � ��� ���
������

and � 
 � ����� �� � ���� � � �
����� ������� � �� � �. Hence, we

have obtained another drift condition for the sampled Markov chain.
This shows that the newly constructed process �� hits the set ��
 
��
� � � �� infinitely often. This is equivalent to 
� hitting the set
	 �
� 
 �
  �
� � � 
 �� ��� ��. Let us call this stopping time

process � �� and define it by � �� 
 �� 
 �, and for � � �

� ���� 
 � �� � ��� � � � ��  ��
� � � �� ��
� � �


 � �� �

�

�����

�� � ���� (12)

with � 
 ����� � �  ��� � � � �� ��� � � �� � �� 
 ���. Hence, �
is the number of visits such that ��  ��
� � �� until 

 hits 	 �

�. When
there is an excursion outside this set, the expected length of the trip
(in terms of the original Markov process) is finite, that is ��� ��� � �.
This follows because of the following: Define,�� 
 ������

��, and for
some sufficiently small � � �

�� 
 ��� ��
� �

� ��

���

�������� �	� ����� �	�� �

�� is a supermartingale sequence for � � �� � � �� if � � ������ �
� �
������, since ���� ��� � � �� . For any finite �, let us define

�� 
 	�����	���� � �  � � ������
� � 	 ��, which is a stopping

time. Since� 	 �����������, it follows that: ��� �

���
�������� �

�� �� � � �������. Finally, taking the limit as �  �, and by the
Monotone Convergence Theorem, it follows that:

���
�� �� ��� ��

� � �� �
�� ��� � �������

�
�

�
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B. Proof of Theorem 2.4: Existence and Uniqueness of an Invariant
Probability Distribution

Before proceeding further, let us recall the following.
Lemma 3.2: (Bézout’s Lemma, [2]) Let ������ be two integers,

� � �, � � �. Let be the set of all integers that can be obtained by
summing positive integer multiples of elements in ������. If ���
are relatively prime, then � , that is, is the set of all integers.

We now show that the set of admissible quantizers forms a com-
munication class under the hypothesis of the theorem: Since we have
���� � �����������

� ����������, it follows that:

�	
�����������	
�
��

��
���� ��

��� ��� �	
�������

is also an integer. Furthermore, since the source process �� is
Lebesgue-irreducible (as the system noise admits a probability density
function with positive mass on every open set), and there is a uniform
lower bound 	� on bin-sizes, the error process takes values in any of
the admissible quantizer bins with non-zero probability. Let the values
taken by �	
��

�����������
� ����������� be ������, with ���

relatively prime. Thus, for all 
� � � �, 
� � � ��	
��	
�����, there

exist ��� �� � � such that 
 � � � ���� ����.
Consider first the case where � � ��	
��	

����� ����. We show
that the probability of �� occurrences of perfect zoom, and �� oc-
currences of under-zoom phases is bounded away from zero. This set
of occurrences includes the event that in the first �� time stages per-
fect-zoom occurs and later, successively, �� times the under-zoom
phase occurs. The probability of this event is lower bounded by

��
������� �

 �� � ����� � 	�� ���� � 	�
�

�

��
������� �

 �� � ����� �� � ��

�

� ��

A similar analysis can be performed when � � ��	
��	
���������,

by considering the opposite order of events, where in the first ��

times, under-zoom occurs, and in the successive �� time stages, per-
fect-zoom occurs. As such, for any two integers �� 
 and for some
� � �,  ��	
�����	� � 
�� �	
����� � ��� � �. In our setting,
the recurrent set consists of both �� and ��. Hence, in this setting, the
product space is the product of a discrete-space and a real space. For
��, the Borel sets are the open intervals, which are visited infinitely
often, and for ��, the individual atoms are visited infinitely often with
probability 1.

Now, we can connect these results with Theorems 2.3 and 2.1. We
have established irreducibility in the discussion above and recurrence
in Theorem 2.3. The chain is aperiodic, as the bin with the smallest
admissible size can be visited in subsequent time stages. Finally, the
recurrent set � �� � �
 is �-petite, for some subprobability measure �
as any given Borel set is visited starting from the compact set� ����


with a uniformly lower bounded probability (over this compact set).
Thus, the chain is positive Harris recurrent. �

C. Proof of Theorem 2.5: Finite Second Moment

Toward the proof, we state a number of supporting results:
Lemme 3.3: Let � � �, �� � � and �� � ����� �� . It follows that,

for � � �:

 ��� � �� 	 ������ ������ � ��� �

with

��� �
� ���

�� ����� � � �
��� � �

��� � � � �� �� ��� � � � �

���� �

� ���
�



�� �������

���
� � ����

�

Proof: It follows that for � � �:

 ��� � ��

� 

�

�	�

�� �� � ���� � ����� �� �� ��� � �� �

��� ���

�� �� ���� � �����
��� � �� �

��� ��

	  �� �� � ���� � ����� �� �� ��� � � � �

��� ���

�� �� ���� � �����
��� � � � �

��� �� (13)

�  �� �� �

���

�	�

�������

�� � ����� ����� �� �� ��� � � � �

��� ���

�� ����� �����
��� � � � �

��� ��

�  �� �

���

�	�

�������

�� � ��� � �

���
���

�� �� ��� � �� �

���� ���

�� �� ��� � �

���
��� ��� � � � �

���� ��

	 �

���

�	�

������� � �� �� ��� � �

���
���

���� � �� �

���� � ��� ��

	 ������ ������ � ��� � (14)

with ���, � , � and � as defined earlier in the Lemma statement. Here,
(13) follows from the chain property of a probability measure. Equation
(14) follows by bounding the complementary error function: For � �
�: �

�
 ���� 	

�
����� ����,  ��� being the Gaussian measure. �

Now, since a decaying exponential decays faster than a polynomial,
and the bound above is decreasing in ��, there exists an ! �� such
that, with " � ���� � ���, and for all �� � 	�

 ������������� ������ � ��� �	!"��� �� �� (15)

Lemma 3.4: We have that, if for some # � �, $ ��, the following
holds:

#�

� ��

�	�

��
����� %� 	 ��

� � � ��
� ���� %�

�$���� �
 ���� 	� ��

then, ���
�����
� � � �.
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The proof of this argument follows from the finite moment drift con-
ditions [6], [9]. Let us now observe that (with a simple bounding argu-
ment in the last inequality)

�

� ��

���

��
� ���

�

�

���

� ��� � ��

���

���

� ��
���� � ����

� ��
�

�

���

� ��� � ��

���

���

����� ����

� ��
�

�

���

��	���
���� � ���� � �

���� � ��� � �

����
�

�

�� 	�� ����� ���
�

�

�� 	��
�

���� � ��� � �



Let us obtain a bound on ����
� ����. It follows that:

� ��
� ���

� � ��� � ��� ��
� ��� � ����

� � ��� � ��� ��
� ��� � ����

� � ��� � ����
�

���

��� � � � 

�

� � ��� � ��

�

���

� ��� � ��� ��
���� � ����

� � ��� � ����
�

���

��� � � � 

�

� � ��� � ��

�

���

�	
�� ���� � ���� ��

�

� � ��� � ����
�

���

��� � � � 

�

� � ��� � ��� ���� � ��� 	��
� ��

�

�� 	�� ���� � ���



Thus, we require, for some � � 	, and sufficiently large ��

� ��� � ����
�

���

��� � �� 

�

�� ��� � ��� ���� � ��� 	��
� ��

�

�� 	�� ���� � ���

� �����
�

�

�� 	�� ���� � ���
�

�

�� 	��

�
�

���� � ��� � �
� ��

�


Since 
��� �� � ��� � �� � 	, by (10)

�� ��� � �
� ���

����� ��

for some sufficiently small �, say

� �

�� ���
�������

�

� �
��	 �����
�

� �
��	

�
�����
� ��

the desired stability result follows for ����, that is 
����� ����
� � �

�.
We have the final result:
Lemma 3.5: If � � 
���������	���, then 
����� ����� � ��.

Proof: Since when ���� � �, ���� � ���
� ��, it suffices to have

the following to satisfy 
����� ����� � � �: For some � � 	

��

� ��

���

�
�
� ���� �� � ���� ��� ��

� � � �
�
� ���� ��

������ � ���� �� ��


This is ensured by the finiteness of �� � ��
��� ��� ���� ���

�

� ��

���

�
�
� ���� �� � �

�

���

����� ��
�
� ���� ��

� �

�

���

����� � ���� � ���� ����� ����� ��� ���� ��

� �

�

���

����� � ���� � ��	� ���� ��

� �

�

���

���� � ���	� �	� ���� �� 
 (16)

In the inequality, we use the Cauchy–Schwarz inequality twice. The
first term in (16) is finite by (15), by picking 	 to be large enough. The
second term’s boundedness follows:

�

�

���

���� � ���	� �	� ���� ��

� �

�

���

�

��� � �

	�

���

���

���

�
����

��

	

���� ��

��
 (17)

In (17) we use the fact that �
��� �

������ is Gaussian with a finite vari-
ance of �	�, and that the fourth moment of a Gaussian random variable
is monotonically increasing in its variance, and that the finite moments
of a Gaussian random variable with a finite variance are finite. This
completes the proof. 


Thus, with � � 
������� � �	 � ��, stability with a finite second
moment is achieved. Finally, the limit is independent of the initial dis-
tribution since the Chain is irreducible, by Theorem 2.4. 


IV. CONCLUSION

In this technical note, we provided a stochastic stability result for an
open-loop unstable system driven by noise using a class of fixed-rate
adaptive quantizers. In particular, we showed that such quantizers are
rate-efficient, in addition to being simple. One important result in this
technical note is the observation that there exists a limit for the se-
quence of second moments ������ �� � � �� and this limit is finite.
This result allows us to formulate an optimal quantization problem
when the noise process has unbounded support and the state space for
the quantizer bin edges are unbounded. We believe the approach pre-
sented in this technical note will find applications in various networked
control problems with random stopping times.
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On Uncontrollable Discrete-Time Bilinear
Systems Which are “Nearly” Controllable

Lin Tie, Kai-Yuan Cai, and Yan Lin

Abstract—In this note, for a class of uncontrollable discrete-time bilinear
systems, it is shown that the controllable region “nearly” covers the whole
space while the uncontrollable region is only a hypersurface. As a result,
for almost any initial state and any terminal state of the system, the former
can be transferred to the latter. In addition, the two-dimensional control-
lability counterexamples in [1] are generalized to arbitrary finite-dimen-
sional cases.

Index Terms—Controllable region, cyclicity, discrete-time bilinear
systems, hypersurface, Jacobian determinant, near-controllability, sign
patterns.

I. INTRODUCTION

Bilinear systems have been investigated for decades owing to
their great importance in applications ranging from engineering to
economics [1]–[6]. Specifically, the problems of controllability and
attainability have been extensively studied in the dynamics and control
literature [7]–[16]. For continuous-time bilinear systems, Lie algebra
is widely applied to obtain various necessary and sufficient conditions
for controllability and attainability [3], [6]. For discrete-time bilinear
systems, however, the related results are rather sparse [12]–[16]. Only
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sufficient conditions for controllability were obtained in [12], [13],
whereas necessary and sufficient conditions were reported in [15], [16]
under strong restrictions on controlled plants. In addition, results on
controllability were presented in [17], [18] for analytic and invertible
discrete-time nonlinear systems.

In this note, we study the discrete-time homogeneous bilinear system

��� � �� � �� � ���������� (1)

where ���� � �, ���� � and � � ���. Note that none of the ex-
isting results in [12]–[16] is devoted to the controllability of system (1)
(although the Lie-algebraic approach presented in [17], [18] is avail-
able for investigating the controllability property of such systems, we
provide a constructive methodology here). This note will show that, at
least under the condition of the eigenvalues of � being non-zero real
and distinct, interesting results can be obtained for the controllability
problem. Such a matrix can always be put in diagonal form

� � ���	���� 
 
 
 � ��� (2)

by a linear transformation of coordinates. Hence, the system

��� � �� � � � ����

��
. . .

��

����

�

� � ������
. . .

� � ������

���� (3)

is obviously uncontrollable at the state � � ��� � � � ���
� if some com-

ponent of � vanishes. This may lead one to conjecture that most states
of the system (3) are uncontrollable and therefore, (3) is uncontrollable
in the “strongest” sense. In this note, we will show the conjecture is,
however, invalid. That is, the system (3) has a large controllable re-
gion such that for almost any initial state � and any terminal state 	, �
can be transferred to 	. Accordingly, a new controllability property of
discrete-time bilinear systems, i.e., the notion of near-controllability is
introduced in this note.

II. MAIN RESULTS

Let us first give the following definitions concerning controllability,
uncontrollability and near-controllability.

Definition 1 [12], [13]: System (1) is said to be controllable if for
any initial state � � �

� � �

� � � � ���� and any terminal state
	 � �

� , there exist a positive integer 
 and a finite control sequence
���� �� � �� �� 
 
 
 � 
� such that � can be transferred to 	.

Definition 2: A state � is said to be uncontrollable if there does
not exist an attainable open neighborhood of itself, where an attainable
open neighborhood of � is an open neighborhood of � such that any
state belonging to it can be reached from �.

Definition 3: A system is said to be nearly controllable if there exists
a set � � � of zero Lebesgue measure such that, for any initial state
� � ��� and any terminal state 	 � �, there exist a positive integer

 and a finite control sequence ���� �� � �� �� 
 
 
 � 
� such that � can
be transferred to 	.

Definition 3 is equivalent to that for almost any initial state and any
terminal state of the system, the former can be transferred to the latter.
Moreover, it implies that almost any state of the system is locally con-
trollable. Next, to prove the main theorem concerning local controlla-
bility and near-controllability, we need the following lemmas.
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