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Stochastic Nestedness and the Belief
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Abstract—Solutions to decentralized stochastic optimization
problems lead to recursions in which the state space enlarges
with the time-horizon, thus leading to non-tractability of clas-
sical dynamic programming. A common joint information state
supplied to each of the agents leads to a tractable recursion, as
is evident in the one-step-delayed information sharing structure
case or when deterministic nestedness in information holds when
there is a causality relationship as in the case of partially nested
information structure. However, communication requirements
for such conditions require exchange of very large data noise-
lessly, hence these assumptions are generally impractical. In this
paper, we present a weaker notion of nestedness, which we term
as stochastic nestedness, which is characterized by a sequence
of Markov chain conditions. It is shown that if the information
structure is stochastically nested, then an optimization problem is
tractable, and in particular for LQG problems, the team optimal
solution is linear, despite the lack of deterministic nestedness or
partial nestedness. One other contribution of this paper is that, by
regarding the multiple decision makers as a single decision maker
and using Witsenhausen’s equivalent model for discrete-stochastic
control, it is shown that the common state required need not
consist of observations and it suffices to share beliefs on the state
and control actions; a pattern we refer to as k-stage belief sharing
pattern. We discuss the minimum amount of information exchange
required to achieve such an information pattern for £ = 1.
The information exchange needed is generally strictly less than
what is needed for deterministic nestedness and is zero whenever
stochastic nestedness applies. In view of nestedness, we present a
discussion on the monotone values of information channels.

Index Terms—Communication complexity, decentralized con-
trol, information-control structure (ICS), stochastic control, team
decision theory.

1. INTRODUCTION

ECENTRALIZED stochastic control problems span
D a large venue of applications, however, these contain
many issues yet to be further understood [29]. In a general
decentralized system, different information sets are available to
different decision makers who try to act on a common system
towards a common goal as in team problems [25] or towards a
variety of goals as in multi-criteria optimization problems [6]
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Fig. 1. Decentralized control system. Dashed lines depict communication links
between the stations.

(Fig. 1). Such team and decentralized multi-criteria optimiza-
tion problems are challenging since the information patterns
determining which agent has access to what information and
the influence of her actions, can fall into the categories such that
the generation of the optimal control laws can be very difficult,
as is evident in the Witsenhausen counterexample [40], and of
very high complexity [23].

We now proceed to make the decentralized system considered
in this paper precise.

A. Decentralized System Model

Let X be a space in which elements of a random sequence,
{x4,t € Z4 U {0}} live in. Let Y?, be another space for i =
1,2,...,L and let an observation channel C* be defined as a
stochastic kernel on X x Y¢, such that forevery z € X, p(.|z) isa
probability distribution on the (Borel) sigma-algebra o(Y?) and
for every A € a(Y?), p(Al.) is a function of . We will mostly
be concerned with cases when X and Y? are either finite sets or
are finite-dimensional real vector spaces. Let there be L decision
makers, {DMi,i = 1,2,...,L}. Let a Decision Maker (DM)
DM be located at one end of an observation channel C*, with
inputs z; generated as yi € Y? at the channel output. We refer to
a policy I as a sequence of control functions measurable with

respect to the sigma-algebra generated by

1= {4 Zi Yo o Zloun ) 21
15 = {v6. %5}

with control actions u§ € U?, with the notation for ¢ > 1

Yooy ={vl0<s<t—1}.
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Here Z; denotes the additional information that can be supplied
to DM at time . Let DM have a policy II* and under this
policy generate control actions {u,t > 0}, ui € U, and let
a dynamical system and observation channels be described by
the following discrete-time equations:

Ti41 :f(:vbut?ut:"'"/ut?

yé = gi (.1715, U;)

for some measurable functions f, {g¢}, with {w, } independent,
identical, white system noise process and {vi,i = 1,2,...,L}
be disturbance processes. The disturbance processes might be
correlated, but are independent of the system noise process. The
disturbance processes are uncorrelated across time.

Let XT = 3:01 X be the T-product space of X.
For the above setup, under a sequence of control policies
{II', 112, ..., I1*}, we define an Information-Control Structure

(ICS) as a probability space

T—-1 L T—-1 L
X"x [T TIY* x IT [V e0). P
t=0 k=1 t=0 k=1

Here, P is the probability measure on the (Borel) sigma-algebra
o (X" % [T,2 Tima Y5 X TLSg Theey UP).

Information Patterns determine the sub-fields for all decision
makers and time stages o(If) C o(XT x Hz:ol H1€=1 Y x
H,L-T:_Ol Hi:l U*). Hence, the control actions are measurable
on the sub-fields, which are characterized by I; for all DMs,
through the term Z; In other words, an Information Pattern de-
termines what the control action can depend on, inducing an
information-control structure.

With the above formulation, let the objective of the decision
makers be the minimization of

T-1

=0

over all policies IT',II%,...,II%, with initial condition

xo. Here, E’EOI’HQH“"'HL [| denotes the expectation over all
sample paths with initial state given by xy under policies
(I, 112, .. 1LY,

For a general vector g, let g denote {g*,¢?...,¢%}. LetIl =
{IT',T12,..., 11X} denote the ensemble of policies. Under an

ensemble of policies IT and a given information pattern, with an
initial condition x, the attained performance index is

T—-1

Too(M) = EX 1> (s, u)

t=0

In the above problem, information patterns affect the diffi-
culty of control design, especially as the horizon 7" or the cardi-
nality of X and U?, i € {1,2,..., L} increase.

B. Relevant Literature and Information Patterns

Various information structures have received particular in-
terest. It has been almost customary to categorize such infor-
mation structures as follows (see [7], [16], [30]):
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Centralized Information Structure: All DMs have the same
information regarding the current value of the state. Here Z} =
{y+} for all decision makers and time stages.

Quasi-Classical Information Structure: Whenever a dy-
namic programming recursion with a fixed complexity per time
stage, ensuring the existence of a solution, is possible, the infor-
mation structure is said to have a quasi-classical pattern; thus,
under such a structure, the optimization problem is computa-
tionally feasible and the problem is said to be tractable. This
structure includes the one-step delayed observation sharing
information pattern (see [18] and [6]), which allows the Deci-
sion Makers to share all their observations with a unit delay:
Zi = {yi_1}. If the agents also share their decisions, then
the information pattern is called one-step delayed information
sharing pattern: Z; = {y; 1,us 1}. ‘

We say the information available at DM" is nested in that of
DM’ at time ¢, if o(I}) C o(I}). Nestedness, as we will ob-
serve in the development of the paper, has very important im-
plications; but it will be a result of our paper to show that such
a characterization of information sets is too strong. It was ob-
served by Radner [25] that a static LQG team problem with
a non-nested information structure admits an optimal solution
which is linear. The proof for this result follows from the obser-
vation that the team cost is convex in the joint strategies of the
DM, and it suffices to find the unique fixed point. This, in turn,
is satisfied by a linear set of solutions for each DM. However,
the extension of this result to a dynamic setup is not always pos-
sible. The following information structure present cases where,
this result still holds in a dynamic setting.

Fartially Nested Information Structure: An information
structure is partially nested, if whenever the control actions of a
DM" affects the observations of another decision maker DM,
the information available at DM" is known noiselessly by the
affected decision maker, that is: Z/ = {y!, if DM' — DM}.
Here the notation DM’ — DM denotes the fact that the
actions of DM" affects the information at DM’ (which is also
known as signaling, see [43] for a review of signaling). The
partially nested structure effectively reduces the dynamic LQG
team problem to a static optimization problem in the sense
that the signaling (inner) agent (whose information sigma
algebra is a subset of the signaled (outer) agent’s information
sigma algebra) makes all her decisions statically and the outer
agent can generate such pure strategy decisions and the joint
decisions can be regarded as one single-DM’s decision, ef-
fectively making the problem static among such single DMs.
Due to the static nature of the problem, one shows that the
optimization is jointly convex in the decision variables and
there is a person-by-person optimal solution, which turns out
to be a linear set of solutions. Partially nested structures can
also have a dynamic evolution [11], and as a special case, this
includes the case where information propagation is faster than
dynamics propagation, where in the above definition, delay is
also considered [11], [26], [37].

Non-Classical Information Structures: 1If a decision maker’s,
DM, information is dependent on the actions of another, say
DMk, and DM’ does not have access to the information
available to DMk, this information structure is said to be
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non-classical. Hence, an information pattern which is not
partially nested is a non-classical information pattern. The
one-step delayed control sharing pattern Z{ = u;_; is one
such example [2], [6], [30].

Other information structures include the ones induced by the
n-step delayed information pattern with Z! = {y;_,,0;_n}.
Such a pattern does not lead to a separation property [36] for
n > 2. Here, by separation we mean that the conditional prob-
ability measure on a sufficient time in the past and the received
observations thereafter are sufficient statistics for the generation
of optimal control laws. Studies of this information pattern with
separation results are reported in [1] and [18]. The optimal con-
trol problems might also include different assumptions on the
ordering information of control actions, see [34] and the refer-
ences therein. A sequential design for decentralized optimiza-
tion problems has been recently reported in [19]. In a parallel
line of research related to the notion of partial nestedness, Voul-
garis [37], Bamieh and Voulgaris [5] and Rotkowitz and Lall
[27] have studied sufficiency conditions for tractability and con-
vexity in optimal decentralized control problems.

An important related information pattern is the
k-step  periodic information sharing pattern studied
by Yoshikawa [41] and Ooi et al [21] with Zf =
{Y[t—k—(t mod k),t—(t mod k)]»U[t—k—(¢t mod k),t—(t mod k)]},
where k € Z denotes the period of information sharing. This
pattern does admit a separation structure for the generation
of optimal control laws, and hence this leads to a tractable
information structure. We will discuss this pattern further in
the paper, and provide an alternative derivation of the main
results presented in [21] via Witsenhausen’s equivalent model
for discrete-stochastic control [39].

‘When the information structures are non-nested, controllers
might choose to communicate via their control actions, that is
might wish to pursue signaling. Different types of signaling can
occur: signaling to learn the dynamics of the system, signaling
what the belief (that is, the conditional probability measure) on
the state of the system is, signaling what the belief on the other
agents controls are or signaling what the agent’s own future con-
trol actions will be, depending on the effects on the cost per-
formance. These are all distinct issues and affect the classes of
problems that we will discuss in the remainder of the paper.

C. Contributions of the Paper: Stochastic Nestedness and the
Belief Sharing Information Pattern

The information structures leading to tractable solutions re-
quire large noiseless data transfer between decision makers. In
practice, it is not possible to send large amounts of data noise-
lessly especially in a real-time fashion. In particular, it is im-
possible to exchange a real number noiselessly over a practical
channel in finite time [10].

In this paper, we present a weaker notion of nestedness,
which we term as Stochastic Nestedness. We show that under
stochastic nestedness, there is a rich class of problems which
lead to tractable solutions despite the lack of deterministic
nestedness or partial nestedness. The stochastically nested
information structure entails a Markov chain condition be-
tween the observations at different sites and a state that is
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being controlled and in essence requires the information to be
stochastically more informative at a decision maker than at
another one together with the availability of actions.

In this paper, we also introduce another information pat-
tern, which we call Belief Sharing Information Pattern. Such
a pattern minimizes the information exchanges required for
tractability, without any loss of performance in comparison
with its counterpart in the observation sharing information
pattern. The belief-sharing pattern allows us to formulate an
optimization problem with minimum information exchange
leading to a finite-complexity dynamic programming recursion
to be applicable. We also address the communication rate
minimization problem.

Finally, we investigate the effects of various communication
channels on stochastic nestedness, when the channels are used
in a decentralized control system.

A brief summary of the rest of the paper is as follows. In the
following section we review the topic of optimal control under
partial observations as relevant to the topic of the paper and
then we introduce in Section III the notion of stochastic nest-
edness with various examples. We then investigate the issue of
a common information state and a sufficient statistic generated
by the common information state in Section IV, where we dis-
cuss the Belief Sharing Information Pattern. We then discuss
the information requirements leading to this information pat-
tern. Finally, in Section V, we investigate various communica-
tion channels as observation channels and study their influence
on nestedness, before presenting some concluding remarks in
Section VL.

II. CONTROL OF A MARKOV CHAIN UNDER
PARTIAL OBSERVATIONS

Many of the results in this paper will be based on the fact
that while controlling a partially observed Markov chain, one
could study the optimal control problem by enlarging the state
space, via replacing the state with the belief on the state in a
centralized setting (or a decentralized setting, in which case the
notion of state becomes more complicated) and applying the
control machinery on the belief process (see for example [3]).

Consider a state process {z;,ys,t > 0, € Zy U {0}} €
X X Y. The time-relationship of the processes are given by the
following equations:

Tp1 = f(wr, ug, wy)

Yt :g(xhvt)'

Here, z; is the state, u; € U is the control, (w,v;) € W x V
are second order, zero-mean, i.i.d noise processes and w; is in-
dependent of v,. We also assume that the state noise w; either
has a probability mass function, or admits a probability measure
which is absolutely continuous with respect to the Lebesgue
measure; this will ensure that the probability measure admits
a density function. Hence, the notation p(z) will denote either
the probability mass for discrete-valued spaces or probability
density function for uncountable spaces. The controller only
has causal access to the second component {y;} of the process.
A policy {IT} is measurable with respect to o({ys,s < t}).
We denote the observed history space as: Hy := P, H, =
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H;_1 x Y x U. Here P, denotes the space of probability mea-
sures on X. Hence, the set of (wide-sense) causal control poli-
cies are such that P(u(h;) € Ulh:) = 1, Vhy € Hy.

One could transform a partially observable Markov Decision
Problem to a Fully Observed Markov Decision Problem via an
enlargement of the sample space [31]. In particular, we obtain
via the properties of total probability the following dynamical
recursion:

m(x) ;=P (a:t = x|y67u671)
_ Yox Te-1(xe 1) P(yelwe) P(we]we 1, ue 1)
Zx Zx 7rt—1(xt—l)P(yt|$t)P($t|xt—laut—l).

Here, the summation needs to be exchanged with an integral in
case the variables live in an uncountable space. The conditional
measure process becomes a controlled Markov chain in P. Let
the cost function to be minimized be tT;Ol EY [e(zy, )]s
where EEO [| denotes the expectation over all sample paths
with initial state given by x¢ under policy II. We transform
the system into a fully observed Markov model as follows.
Define the new cost as &(m, u) = >y c¢(z,u)w(z), 7 € P. The
stochastic transition kernel ¢ is given by

q(x,ylm,u) = P(z,yla’,u)n(a’), = eP.
X

This kernel can be decomposed as gq(z,y|m,u) =
P(y|m,u)P(z|m,u,y). The second term here is the filtering
equation, mapping (7, u,y) € (P x U x Y) to P. It follows
that (P, U, K, ¢) defines a completely observable controlled
Markov process. Here, we have

IC(B|7T,U) = Z 1(P(.|7r,u,y)€B)P<y|7r7u)7 VB € U(P)
Y

with 1) denoting the indicator function. As such, one can ob-
tain the optimal solution by using the filtering equation as a suf-
ficient statistic in a centralized setting, as Markov policies (poli-
cies that use the Markov state as their sufficient statistics) are
optimal for control of Markov chains, under well-studied suffi-
ciency conditions for the existence of optimal selectors [15].

In a general decentralized setting, the above discussion also
applies, however, the notion of state z; and the Markov recur-
sion now involves a much larger space since the effective state
includes the actions of the other DM’s, and the beliefs of all
DM'’s on every other DM’s actions and the state and as the time
horizon increases, the beliefs on the beliefs and so on, leading to
a non-tractable optimization problem in a dynamic setting. This
issue still remains even if one adopts a team-decision based ap-
proach through Witsenhausen’s equivalent model.

III. STOCHASTICALLY NESTED INFORMATION STRUCTURE

In this section we will present a class of information patterns,
which is non-classical, yet its related optimization problems
admit tractable recursions and when applied to LQG problems,
leads to the optimality of linear policies. We will later build on
the findings of this section to present a new information sharing
pattern. First, however, we discuss why nestedness is important
for team decision problems.
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A. A Linear Quadratic Gaussian Example and Importance
of Nestedness
Consider a two-controller system evolving in R with the fol-
lowing description:
. 1,1 2,2
Tip1 = Axy + Bruy + B up + wy

yt =Clzy + v}

yt2 =C%zy + ’Ut2
with w, v!, v? zero-mean, i.i.d. disturbances. For py, p» > 0, let
the goal be the minimization of

1
(z el + ou [l + oo Wn;) 4 uwau3]

t=0

J=F

over the control policies of the form
I C_ —
Uy = Hy (y[O,t]) y U= 1727t_071-

For a two-stage problem, the cost is in general no-longer
quadratic in the action of the controllers acting in the first stage
t = 0: This is because these actions might affect the estimation
quality of the other controller in the second stage, if one DM can
signal information to the other DM in one stage. We note that
this condition is equivalent to C*A'B? # 0 or C2A'B' # 0
([43], Lemma 3.1), with [ 4+ 1 denoting the delay in signaling,
with [ = 0 in the problem considered. Hence, it is not imme-
diate whether the cost function is jointly convex in the control
policies, and as such finding a fixed point in the optimal policies
does not necessarily lead to the conclusion that such policies are
optimal.

Under the one-step delayed information structure case, or the
partially nested case, this ceases to be true; there is no need for
signaling, since all of the information that can be signaled is al-
ready available at the DMs that can be signaled. Thus, the cost
is convex in both the second stage controls and the first stage
ones; in particular, under any policy for the controls in the first
stage, the second stage controls are linear and independent of an
estimation error or improvement caused by control actions ap-
plied at the first stage. The optimization problem is still convex,
and linear policies are person-by-person-optimal, leading to a
globally optimal solution.

We will see that, one may not need nestedness or partial nest-
edness for the convexity argument above to hold. We now pro-
ceed to define stochastic nestedness. In essence, the following
show that it suffices that relevant information on the state/op-
timal cost given what is already available at the receiver end
is to be exchanged.

B. Stochastic Nestedness

Before proceeding further, we introduce a related notion:
Consider three random variables A, B,C in some common
probability space. If A and C are conditionally independent
given B, we say that

A B« C

form a Markov chain, and it follows that P(A|B,C) =
P(A|B).
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Definition 3.1: For measurable functions f,g',i €
{1,2,..., L}, consider a system described by

D1 = f(wr, e, wy)

UZ:(]l (xtvvz)7 7’6{172/711}

Under the decentralized model description of Section I-A: If
whenever DM — DM, it follows that:

J i
ZTo < Yo < Yo

forms a Markov chain

Il = {Z/[jo,t] , “foaT—l]}

and
i = T (o)

where h; is a deterministic function for ¢t € {0,1,...,7 — 1},
then the information structure is stochastically nested.

Theorem 3.1: Under the decentrahzed system description of
Section A, let w; = [ulu? ... ur]" and Q > 0,R > 0.
Consider an optimization problem with the objective functlonal
to be minimized as

T-1

Z .CEZ—‘QILt + ufRut

t=0

J=F

with the system dynamics
L .
Tir1 = Az + Z Biul + wy
j=1
=Clz+v, 1<i<L )
where 1o, w;, v are Gaussian and the disturbances and the noise
processes are such that the information structure is stochasti-
cally nested. In this case, the optimal control laws are linear.
Proof: First, let us consider the case with L = 2, that is
with two Decision Makers. We refer to these as inner and outer
DMs, such that the inner DM is DMi, and outer DM is denoted
by DM’ and

To < Y5 < Y
forms a Markov chain and
yi = he (yh)

for some deterministic function A. Now, it should be noted that
one can decompose the positive-definite matrix R > 0 as

| Ry Ry/2
r= |t ]

with R;; > 0 and R,, > 0. The proof for this argument follows
from the fact that for some vector v = [v ¥°], it must be that
vRvT > 0, for all v # 0. Taking v = v; = [v' 0] and v =
vy = [0 v°], the desired result follows. In the following, we
express u} Ruy as uil Riui+uil Rioul +ulT R,ou?, and adopt
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a Stackelberg type approach to obtain the optimal team solution.
Let the inner DM’s decision rule be given by, for a sequence of
functions 7} : Y+ — U
i = i (y[iovt]> . te{0,1,...,T—1).
Let the outer DM’s decision rule be given by, for a sequence of
functions ¢ : YO+ x U7 — e
ug =y (yﬁ]?t],ufoj_l]) , tef{o,1,...,T—1}.

In the following we drop the subscripts in v¢() functions, as the

domain of the functions will make the context clear. It follows
that:

inf E
yie

Z o} Qry + ' (y[o t])T R (yfo,t])

+7° (y 0, ) Riov° (yfo,t] ) Ufo,T—l])

+° (y . u[o T 1])T Ry’ (yf(),t]‘r “fO,Tl])}
—1

:iﬂfE Z (y[O,t])TRiwi(ny])
t=0
T-1
+ mf E Z i Quy
t=0
) e )
. T
+ 70 (yfo,t] , uio,Tfl]) Raa’Yo
X (yfo,ﬂv “'fo,T—“) 1 ] "
T-1 T
=inf P Zv"’(yf’o,t]) RiiVi(yfovt])
t=0
+inf B ; P(x|I}) H )

Here (2) follows from the fact that v° does not affect 7‘(yf])
since it does not affect y:. Here, c?( P(x;|I7)) denotes the fact
that the cost is only a function of the belief of the outer DM on
the state of the system. The problem reduces to a regular LQG
formulation for any ~°(.) policy, as these are not affected by
{u?} values, and can be treated as constants. In this case, the
inner optimization problem inf.. F [Z? 01 ®(P(z|1I7))] is a
classical LQG optimization problem, and is convex in the outer
DM’s decision policies as R,, > 0. Furthermore, the past ap-
plied control laws are known and hence the estimation error is
independent of the control laws applied by the inner DM and the
estimation law is always linear as the inner DM need not use
signaling as given the information at the outer DM, the inner
DM’s observation is useless due to the Markov chain condition:
Py > Yo, Wo,r—11) = P@e|yfy 4 ujo.r—1y) for t 2 0.
Hence, the problem is now reduced to an LQG problem given
the outcomes under the strategy of *(.). Thus, one can obtain

Authorized licensed use limited to: Queens University. Downloaded on December 9, 2009 at 11:16 from IEEE Xplore. Restrictions apply.



2778

the solutions for °(.) given “fo r—1)- 1t turns out that the so-
lution is an affine controller following the classical LQG ma-
chinery, that is it is of the form:

o __ o o o 1 o i o 1
uy = KY B [x4|I7] + Lt,t“t + Lt,t+1ut+1 +... Lt,T—luT—l

for all time stages ¢ € {0, 1,...,7 —1} and for matrices K; and
L.,y of appropriate dimensions. For details of such a derivation
the reader is referred to Theorem 2.1 of [42].

Now, one needs to optimize over “fo,T—ly With the linear
controls of the outer DM, there is an equivalent optimization
problem that the inner DM needs to solve. Let us denote the
cost as J(v%,v°*(v")), with 4°*(.) denoting the best response
of the outer DM to the inner DM’s policy. We now show that
this cost is strictly convex in 4* and hence in the control actions
uf()?T_l]. With the above solution for the outer DM, it follows
that the state dynamics evolve as follows:

Tep1 = Awy+ Bluj+ B° (Kfwy + LY ul + LYy + ...
+LYp_qur_y — KY (24 — E [2I7])) + we. (4)

Here, (z; — F[x:|I7]) is independent of the information avail-
able at DM’. To see this, one could append the information
at DM’ to I? and realize that the estimate would not change.
Hence, by the Projection Theorem, the estimation error would
be orthogonal to the information available at DM and hence at
DM". Furthermore (z;— E[x:|I}]) is Gaussian. Hence, the inner
DM solves another LQG optimization problem. Since R;; > 0
is positive definite and the system described by (4) is linear, it
follows that the cost function:

T-1

E Z rl Quy + utTRut|y6

t=0

is strictly convex in uf07T_1] and thus there exists a unique so-
lution.

Now, for the general case, we can regard the set of all DM’s
which can signal to DM’ as a single inner DM and apply the
above analysis, for every decision maker, leading to a unique
solution. Under such a nestedness condition, the optimal solu-
tions will be linear.

In case there is no signaling, the problem reduces to the setups
of Ho and Chu ([17], Section III) and Radner [25], which in
turn is a static, convex team problem. In this case, the optimal
solutions are linear. o

Remark: It should be noted that, if we relax the Markov chain
condition there will be an incentive for signaling from the inner
DM to the outer DM on what the inner DM thinks regarding
the initial state. The availability of the control actions is also
essential, for otherwise, there will be an incentive for the inner
DM to signal information on its future control actions. o

C. Comparison With the Control Sharing Information Pattern

The stochastically nested information structure discussed
above brings to mind the Control Sharing Information Pattern
of Aoki [2], Sandell and Athans [30] and Bismut [8]. In those
works, e-optimal policies were obtained for the control sharing
pattern. The € term arises due to the fact that the control policy
is to encode information on both the control action and the ob-
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servation, with as minimum damage as possible to the control
action; and this is possible due to the fact that a real number
carries infinite amount of information (when information is
measured in Shannon information theoretic bits). One way to
achieve this is as follows: Since rational numbers are dense
in R, for any ¢, there exists an n € Z such that an n-decimal
representation which is at most at an € distance from any real
number in a compact set is possible. Therefore, if one is to
represent a finite dimensional control variable in a compact
set U C R", and a finite dimensional observation variable in
a compact set Y C R™; these signals can be represented with
an arbitrarily small error by a single rational number. Thus,
one may embed in this number, the e-approximate decimal
expansions of the numbers to be represented; thus, leading
to a total of n(m + r) decimal letters, by allocating the most
significant nr letters for the control variable.

If the control and observation variables take values in a non-
compact set, then, by separability, a countable representation is
possible but the mapping in the transformation needs to be infi-
nite, and a uniform number of decimal letters will not be suffi-
cient, hence, the coding design becomes further impractical. In
practical applications, there cannot exist a noiseless exchange
of arbitrary real numbers, as this amounts to infinite amount of
information exchange. Also, note that, such a setup is extremely
sensitive to even an arbitrarily small noise [30].

In our setup, the resulting policy is optimal (and not only
e-optimal), and unlike the setups of [30] and [8], is applicable
to cases where (i) the control policy is discontinuous, or (ii)
the state space has finite cardinality (hence arbitrarily precise
representation of two signals is not possible via encoding these
into one-signal since there is only finite information that can
be transmitted in one signal), or (iii) the observation and con-
trol action sets are not compact, eliminating the possibility of
approximation with a uniform error as discussed earlier. These
are some conditions under which the assumptions of [30] and
[8] are not applicable.

The applicability of the above scenarios under the stochasti-
cally nested structure follows because in the information struc-
ture presented here, the signaling DM does not need to encode
any information on her observations, as what she can encode is
useless for the other decision makers which have more informa-
tive observations. The exchange of the control signals, however,
is essential.

In the following, we introduce a pattern, where further as-
sumptions on the cost function will be imposed to weaken the
stochastic nestedness condition.

D. Stochastically Decoupled Information Structure

We define a stochastically decoupled information structure as
follows.

Definition 3.2: Let a state be explicitly represented by its in-
dividual components x = [z! 22 ... 2L]", and evolve under

the following dynamics:
Zt+1 :f (Zt7u%7u$7"'7uf)

yi =g' (z},v)),
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for some measurable functions fi, g%, f and {w!} indepen-
dent state disturbance processes and {v;}, observation noise
processes for i € {1,2,...,L}. In the above (zi, wi, vi,i €
{1,2,..., L}, ) are second-order processes. Under the decen-
tralized system description of Section I-A, suppose each of the
DMs has access to the additional {z;} process

37; = [ytlvzt] )

If the information available at each controller is such that

R (yfo,t]:“fo,t—l]) - {xij):zﬂ»wfo,t—u:yfo,tp J# ‘}

form Markov chains, for all ¢ and 7, then such an information
structure is said to be stochastically decoupled.

Theorem 3.2: Let there be an optimization problem with the
objective to be minimized as

E

T—1
Z C1 (:17} u,) + c2 (a:% u,z) +...crp (a:fL,qu)] .

t=0

If the controllers have stochastically decoupled information
structures, then the optimal control problem is tractable and
a finite dimensional dynamic programming recursion can be
used to obtain the solutions.

Proof: Toward the proof, we first provide a lower bound
and then show that the optimal policies under centralized
structure leading to the lower bound is attainable with de-
centralized controllers under the nestedness condition. Let
x = {a',22,...,2L}. Suppose each of the DMs has access
to the other DMs’ total information, that is the information
structure is centralized, that is all have access to I;. In this case,
the sufficient statistic for the centralized controller is equal to

P(x¢|y¢,Ti—1)

_ P(Xt7)~’t|1t—1)

a Zx P(xt,y:/Ti-1)

_ P(Xt7Yt7Zt|It—1)

Y Pxe,ye 2 Lioq)

_ P(a|Te—1) P(x¢, ye[Te-1)

a > ox P(zeLi—1) P(x¢, y|Le—1)

P(zeL—1)P(x¢,y:|Ti—1)

a zt|It 1) 2ox P(xt,yelTi-1)
X¢|ye, Le—1)

Il
KEN/\/\

P (xﬂyt,x%x? s 7£2717It71)

(:L’ﬂyh (Ftl (xé7w€07t_1]71t_1>) e
(FT_ ( L_l’w[m 170 Le— 1)),It_1)

(xt|yt b 1) (5)

1

~

Il
AEN

i
X

Il
&mh

Il
o

2

Here, (5) follows from the Markov chain hypothesis
of the theorem and the rest of the arguments uses the
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properties of total probability. In the above, we write
i = Fi(xd, w[o t—1p> L= 1)), to express the explicit depen-
dence on the variables. Hence, the optimal centralized control
policy will act on each of the states %, i € {1,2,...,L} using
some local information.

Since the cost function is also decoupled, it turns out that one
can write the dynamic programming recursions as L decoupled
optimization problems. The cost can be written as a summation
of decoupled systems. The optimal centralized policy is imple-
mentable under a decentralized structure, such that the dynamic
programming can be carried out locally. o

An example with relaxed conditions which do obey Markov
chain conditions is the following. Consider a dynamical system
described by

xtl_H :alztl —f—utl —f—wtl
x%_,_l :azz? —f—u? —f—w?
3:?_'_1 :CL3$?+U% +ut2-|-w;3

yi = (o¢ +vp, o] + o + o7t 2?4+ o)

2 _ (.1 1 12 2 2 3 32
Ye = (xt T U7, T U, TE v )
where the goal is the minimization of

T-1

S () + () 1 () 4 02 W)]

t=0

J=F

with p1, p2 > 0 constants. The control actions are measurable
with the sigma-algebra generated by their causal observations
and past controls: I} = {yi, I{_;}, with I} = yj. This system
has a non-classical information structure, as controller 1 affects
the observation at controller 2, but controller 2 cannot recover
the information at controller 1. In the above, the third state acts
as a communications medium between the controllers. How-
ever, the communication channel is not needed by the Markov
chain condition. The optimal policy is linear.

In the following section we investigate the cases where there
is no apriori nestedness and we evaluate the information re-
quirements needed to obtain a quasi-classical information struc-
ture, basically by making the information structure stochasti-
cally nested.

IV. BELIEF SHARING INFORMATION PATTERN

The computationally attractive aspects of a partially nested,
or nested information structure comes with a price of ex-
changing all of the information available at the preceding
controllers noiselessly. This is, however, impractical. In the
analysis heretofore, we have weakened the information require-
ments for tractability in a class of decentralized optimization
problems. We now investigate the quantitative minimization of
the information requirements needed for tractability in a large
class of decentralized optimal control problems.

Before proceeding further, let us recall Witsenhausen’s equiv-
alent model ([34], [39]) for dynamic team problems in terms of
an extensive form static team problem. Let there be a common
information vector I at some time #, which is available at all of
the decision makers. Let at times ks — 1,k € Zy U{0} and T
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divisible by k, s € Z ., the decision makers share all their infor-
mation: I, | = {¥[o,ks—1], W[o,ks—1]} and for I§ = {P(z0)},
that is at time O the DMs have the same apriori belief on the ini-
tial state. Until the next observation instant t = k(s +1) — 1 we
can regard the individual decision functions specific to DM" as
{ut = 4 (Yjgs - Liis—1)} and we let @ denote the ensemble of
such decision functions. In essence, it suffices to generate @1, for
all s > 0, as the decision outputs conditioned on y[ ks+1,)7 under
s (y[kq a1 os— 1), can be generated. Witsenhausen achieved this
by transforming the effects of the control action into the costs
and formulating an equivalent control problem. In such a case,
we have that G,(., If,_;) is the joint team decision rule map-
ping I{, , into a space of action vectors: {u’(I¢, |, yfks’t] ),i €
{1,2..., L}t € {ks,ks+1,...,k(s+ 1) — 1}}. In this case,
the cost function is also modified as

|
oo (M) = B | D7 e (s (1) .7
s=0
with
k(s+1)—1
E( ( Iks 1) ) EH Z c(xt,ut)
t=ks

Lemma 4.1: Consider the decentralized system setup in Sec-
tion I-A, with the observation noise processes being indepen-
dent. Let I be a common information vector supplied to the
DMs regularly at every k time stages, so that the DMs have
common memory with a control policy generated as described
above. Then, {Z, := xps, 0s(., I, 1),s > 0} forms a Con-
trolled Markov chain.

Proof: Letuyg s = {um(.,1f,,_1),0 < m < s}. It fol-
lows that:

P (is+1 |ﬁ[0,s]7 :E[O,s])

-y

(x=Y)[ks,k(s+1)—1]

P (Zoi1: Tlks (s+1)= 1) ¥ [los k(s+1)—1] [T[0,5] F[0,5])

k(s+1)—1
(3%,Y ) ks k(s41)—1] m=ks

P (xm+1|xm,>ﬁs (y[ks,m]all(c:s—l) )
Ts, 6[0,871]757[0,571])

P (yp|om) P (v |wm) - P (yh|zm))

k(s+1)—1
(xsy)[ks.k(s+1)—1]

m=ks
P($m+1|$m,fls (y[ks,m]vl;s—l))
P (y,lﬂ|:1:m) P (y?ﬂ|:1:m) .L.P (y#|a:m))
= P (Zyqrli, (., Ife_q) , Zs) - (6)

<
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In view of the above, we now present a result on a separation
property. We note that the following also has been studied in
[21]. We present a shorter proof, using the result above directly.

Lemma4.2: Let I be acommon information vector supplied
to the DMs regularly at every k time steps. There is no loss in
performance if Ij,, , is replaced by P(Z,|I5,_;).

Proof: The cost can be written as a function of additive
costs

L1
Joo (M) = EX é(a,, T,)
s=0
with
k(s+1)—1
dug,z) =ER | N clwmw)
t=ks

For the minimization of an additive cost in Partially Observed
Markov Chains, it suffices to transform the state to an equivalent
state of conditional distributions [31] as discussed in Section II.
Hence P(Z,|I,_;) acts as a sufficient statistic (See also [3])
[32]. o

The essential issue for a tractable solution is to ensure a
common information vector which will act as a sufficient
statistic for future control policies. This can be done via sharing
information at every stage, or some structure possibly requiring
larger but finite delay.

Definition 4.1: Belief Sharing Information Pattern: An in-
formation pattern in which the DMs share their beliefs about
the system state is called the belief sharing information pat-
tern. If the belief sharing occurs periodically at every k-stages
(k > 1), the DMs also share the control actions they applied in
the last k — 1 stages, together with intermediate belief informa-
tion. In this case, the information pattern is called the k-stage
belief sharing information pattern. o

Remark: 1t should be noted that, the exchange of the control
actions is essential, as was discussed in view of stochastic nest-
edness. The DMs also need to exchange information for inter-
mediate beliefs. The following algorithmic discussion will make
this clear. o

We now discuss how the beliefs are shared sequentially. We
proceed by induction. Suppose at time ks — 1, the DMs have an
agreement on P(Z,|I5, ;) and know the policies used by each
of the DMs, hence know the ICS and the probability measure
P. Tt follows that:

Tog1 = P (Zoq1 |V [ks k(s +1)= 1] Ulks, k(s+1)=1]> Ts )

writes as

P (Es+17(y u)[ks k(s+1)— 1]|7rs)

Za‘csﬂ ( Ts+1, (

u)
Z Tks,k(s4+1)—1] (
Zz[ks,k(.<+l)—l]7-i's+lP( s+1

[ks (s+1) 1] [T )
LL’ yy,u )[ks,k(s+1)—1]|7rs)

) (ZE, Y, u)[ks,k(s-{—l)—l] |7Ts) .

N
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We now express the numerator in (7) more explicitly as

>

Tr(s+1)—1

L
(HP(y2(5+1)_1|xk(s+1),1>)
=1

>

Th(s+1)—2
L

(H P(y£(5+1)_2|:vk(s+1)_2))
1=1

(P (Th(s+1) [ Tr(s1)—15 W(s41)-1)

(P (Zh(s41)=1|Th(s41)—2> Wh(s+1)—2)

Z P(Trot2|Thst1, Ukst1)

LThs4+1

L
QL7 Wesalrrein))

=1

> <P($ks+1|37kS7 Ups)

Tks

L

(TT P Whslars))

reia))-)).

As such, if £ > 1, then the DMs also need to share the control
actions applied in the previous & — 1 time stages, as well as
beliefs on individual states.

When the belief-sharing occurs at every stage, then controls
can be generated by each of the DMs, hence the control actions
need not be shared. We will discuss this further, while consid-
ering the belief propagation algorithm in the following.

A. Belief Sharing Through an Iterative Belief Propagation
Algorithm

In this section, we present an iterative approach for the belief
sharing pattern. This will be an extension of the Belief Propa-
gation algorithm, which is a local message exchange algorithm
among several remote DMs/sensors located on vertices in a
graph through the edges [14]. In a belief propagation algorithm,
each DM has an apriori belief about the state of the system.
With local observations, the DMs generate an aposteriori infor-
mation, and then exchange these with the other DMs. Belief
propagation reaches to the correct measure (one that would
be achieved under a centralized information structure) if there
are no cycles, and hence if the topology of the communication
graph between the DMs forms a tree.

We briefly summarize now, how belief exchanges
can be performed to achieve the belief sharing pattern
in view of (7) and (8). We first consider a cycle-free
network of DMs. Consider Fig. 2. For m > 0, suppose the
DMs have an agreement on =ys4,,, before the DMs
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Fig. 2. Belief propagation converges to the true conditional measure in a finite
number of iterations in a cycle-free network.

receive local observations, that is, they all have access
to P(Tkstm|Ukstm—1, P(Trstm—1 |125+m_1))
for all xgs4,, values. Once DMs observe local mea-
surements y;. . L TSt DM sends to DM? its belief on 24,
P(2rsqm|Uksgm> P@hstm|Wkstm—1,P (ks pm—1Tgg 1 1)))-
Thus, DM! sends its belief about the state of the system at time
ks + m to DM?, for all possible 254, values. DM? then for
all sy values, generates its own belief on % ys4,, using its
local information, to obtain (only using the belief sent by DM*
and its own information, together with the prior belief)

P(xks+m|(y17yz)ks+m7p(xks+m|-))
_ P(y2|xks+M)P (xks+m|ylis+mvp(wks+m|-))
szHm P(92|xks+M)P ($k5+M|yis+m7P(xks+M|~))

P(zrstml.) for
P(zrstm|Ukstm—1, P(Thstm—1|lf1m_1)) (and is the
prior belief on xjs4., using the information from the
previous time stage). DM? then sends this information to
DM?, who upon receiving the information from DM?
generates the final conditional measure

where stands

P (xks+7n|(y17y27yg)ks+m7P(xks+M|~))~

In the next iteration DM? sends this belief information back to
DM?, and finally to DM*. Upon such a forward and backward
sweeping, all the DMs have access to the correct joint belief on
the state of the system, which we denote by P(2xsym |15 )

Now that all the DMs have the same belief on the state,
they share all their control actions that they applied at time
ks + m. With this information, all of the DMs have access to
P(Zstm+1|Wkstm, P(a:ks+m|l,’cs+m)). This now acts as a
common prior for the next iteration in this algorithm. DM* once
again sends its belief on the state xys4,,+1 and the iteration
continues. As such, upon such a double forward and backward
sweeping (first for the beliefs, then for the control actions),
all DMs have access to the correct joint belief on the state of
the system. Once this convergence occurs for all time stages
ks,ks+ 1,ks+2...,ks 4+ s — 1, the DMs start the iteration
for the next time stage, eventually agreeing on the conditional
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Plant

DM?
Fig. 3. When there are cycles in the communication topology, in our setting,
one needs to pick an ordering apriori and avoid cycles in the ordering until con-
vergence is reached.

measure for the time stage k(s + 1) — 1 and subsequently
having a common prior on k(s + 1).

Consider Fig. 3. In this case, as there is a cycle (loop) in the
communication topology, it is essential that the DMs have a
predefined route for information exchange for convergence to
the actual joint belief: If all DMs talk to their neighbors, then
one DM might have more than one paths to send a message to
another DM and hence her opinions might be incorrectly em-
phasized by a virtue of the cycle. For a large system, however,
for scalability considerations, it is more reasonable to apply the
belief propagation algorithm, at the expense of reaching an in-
correct agreement. In such a case of incorrect agreement, one
needs to apply the dynamic programming algorithm by consid-
ering the probability of such agreements and generating policies
accordingly. This requires further future research. For a discus-
sion of the convergence of loopy belief propagation algorithms,
with no control and in a static setting, we refer the reader to [20],
[33] and the references therein.

If the sharing occurs at every stage (that is, k£ = 1), then con-
trol actions are not shared, since every DM can generate every
DM’s control action given the joint belief, under deterministic
policies. In this case, we only need to apply the original belief
sharing algorithm, which, in the cycle-free case only requires
one forward and backward message passing.

In the following, we study communication requirements such
that such belief-sharing can be achieved for the case when k = 1.

B. Minimum Communication Rate Needed for the Belief
Sharing Pattern

The exchange of the common information states under deter-
ministic nestedness might lead to a large information exchange
noiselessly. This is impractical for many scenarios. However,
as a result of Lemma 4.1 and 4.2, what needs to be exchanged
is a sufficient amount of information such that the DMs have a
common P (Z4|I¢), so that their recursions can be based on this
information. The question that we are interested in this section
is the following: How much information exchange is needed be-
tween the decision makers so that the decision makers have an
agreement on the state of the system (that is the joint belief on
the state) and a dynamic programming recursion is possible?
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The information will be measured by the number of bits;
when the coding is variable-rate, information is measured by
the average number of bits needed to be exchanged among the
decision makers; whereas when the coding scheme is fixed-rate,
information is measured by the actual number of bits that is ex-
changed for any given time stage ¢ > 0.

Let us now introduce two standard information-theoretic no-
tions, namely entropy and mutual information. Mutual informa-
tion between an input random variable, X, and another one, Y,
isI(X;Y) = H(X)— H(X|Y), where H(X) is the entropy
of X (differential entropy if X is a continuous-alphabet valued
random variable), and H(X|Y) is the conditional entropy of
X given Y. The entropy of a variable is an important quantity
since the entropy provides an almost tight lower bound for the
expected number of bits for noiseless transmission of data [13].
The coding process of the controller at DM" is a mapping mea-
surable with respect to the sigma-algebra generated by I}. The
DM"’s coding policy to DM is a function of I} with its range
in Whi = {WH1(0), W1 (2),..., W (T — 1)}, the set of en-
tropy-coder variable-rate or fixed-rate codewords for commu-
nication from DM" to DM”. Hence, at each time stage ¢, DM"
sends R%7(t) bits over an external channel to DM”. Let R(t) =
{R%(t),i # j,i,5 € 1,2,...,L} such that belief sharing
is possible. Define R() := infr {31, ZJL-:L#Z. RY (1)},
such that belief sharing is realized for a given time stage ¢. We
wish to obtain such R(t) values.

The multi-terminal source coding theorems [13], although in-
sightful, are not always applicable for a real-time setting, as
the asymptotic partitioning arguments in classical information
theory [13] do not apply. In a control context, however, one
method to achieve the information theoretic bounds is via bin-
ning; see [43], [44] for discussions on binning in a decentralized
control context and [24] for a discussion on binning in a general
communications context.

1) One-Stage Belief Sharing Pattern: Let us consider the
one-stage belief sharing pattern, first for a two DM setup. In this
case, the information needed at both the controllers is such that
they all need to exchange the relevant information on the state,
and need to agree on p(z;|I}, I?), where I; denotes the infor-
mation available at DM". In the one-step Belief Sharing Pattern,
T+ = x4, since the period for information exchange k = 1.

We note that, when control policies are deterministic, the ac-
tions can uniquely be identified by both DMs. As such, control
signals need not be exchanged.

Theorem 4.1: To achieve the one-stage belief sharing infor-
mation pattern, the following rate region is achievable using
fixed-rate codes:

R(t)={ (R, R™) : R =log, (|S:])].

=Tl (sup 15211
St:{wi:P(a:t|yi’:y"’7P(.|.)) :
P (y;=y'IP(])) > 0,y" € Y'}
Srip= {P (mt|yg:yj,7r7",P(.|.)) :
P (y{:yf|7ri,P(.|.)) >0,y7 € Yj}}
where P(.|.) denotes P(x¢|If_;).
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Proof: Proof follows from a graph based combinatorial ex-
tension of the binning arguments used in [44] in the context of
decentralized communication for control systems (see [24] for
an asymptotic context). First DM? learns the conditional belief
of DM'; and then computes the joint belief using the algorithm
discussed in the previous section. DM? then sends the set of all
distinct possible aposteriori joint beliefs to DM consistent with
the belief at DM o

A discussion is also available when the communicate rate is
measured by the average number of bits.

Theorem 4.2: Suppose the observation variables are discrete
valued, that is Y?, ; = 1, 2 is a countable space. To achieve the
belief sharing information pattern, a lower bound on the min-
imum average amount of bits to be transmitted to DM* from
DM, 7,5 € {1,2}, i # j and in the opposite direction are

R >H (P (zt|lt‘"’_1,yi,yf) |P (el I{1) ,y;)

Ri"j >H (P (wt|lf_1,yz,y§) |P (xt|]7fc—1) 7ng;)

where 7! is the variable sent to DM* from DM?.

Proof: Let Z} be the random variable that is transmitted
from DM? to DM, In the following, let ||.]| denote the total
variation norm. It follows that:

R >inf {H (2}) : |P (w:|If_y, ZE,9})
-P (xtutc—lvytlvy?)H:O}
> inf {H (Zt1|P (zelI7_y) ytl) :
1P (el 771, 72 w2) = P (i) | = 0}
>inf {H (Z}|P (z: 1) )
—H (Z} P (w1, y79t) o P (2l IE_y) L yy )
1P (eI, ZE,ud) = P (el Ty wt w2) | =0}
=inf {I (Ztl;P ($t|Itc—1:?Jt2:?Jt1) |P (l’tlff—l) Utl) :
HP (welIf_y, Z} oyt ) = P (el If_y, ut 7)) H =0}
=inf {H (P (z:|If_1, 92,9} |P (2|11 1 0?)
—H (P (we|T;_y, 97 9t) |P (2l I71) 210
1P (el E_rs 28, d) = P (el Tt 93) ]| =0}
=H (P (x| If_y.viud) [P (2l I5_1) Lyt ) -

Here the last two steps follows from the observation that given
71 the conditional measures are identical, and the constraint is
independent of H (P(x¢|If_q,yi,yi)|P(ze|If ), yt). A par-
allel discussion applies to the reverse direction. o

We note that the information rate needed is less than one
needed for achieving the centralized information pattern. By the
above argument, one would need R > H (yi|y], I ;) for the
centralized information pattern as a lower bound. The entropy
of the conditional measure is at most as much as the entropy
of the observed variable. This is because, different outputs may
lead to the same values for P(y? = y|zs, I ). Hence, we have
the following corollary to Theorem 4.2.

Corollary 4.1: When the observation space is discrete, the
one-stage belief sharing information pattern requires less or
equal amount of information exchange between the controllers
than the centralized information pattern.
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Proof: We only provide a discussion for the lower bounds.
Following the proof of Theorem 4.2, the required rate for the
one-step delay sharing pattern would be lower bounded by
H(y2|yt, I_,). Tt follows that:

H (yt2|yt1/ Itc—l)
= H (y{lys, P (x:l I{_1))
> H (P (2] P (wel 1) v 97) ye s P (2el15-1)) -

The last argument follows from the following. Let
A;B be defined on a common probability space
and take values in a finite set and let ~ be a deter-
ministic function of A and B. Then, H(A|B) =
H(s(A, B)|A,B) + H(A|B) =H(x(A,B),A|B) =
H(A|k(A,B),B)+H(k(A,B)|B) > H(x(A,B)|B). Here,
we use the fact that H(k(A, B)|A, B) = 0, and use the proper-
ties of joint entropy. Now, since P(x¢|P(x4|If_1),yt,y?) is a
deterministic function of y2, given p(z¢|If_,),yt, as a result
of the filtering equation, the desired conclusion follows. o

We may also obtain an upper bound on the communication
rates for a two decision maker setting for variable-rate schemes.
The result is intuitive and its proof is omitted. In the following,
we assume that entropy bound is tight for variable-rate coding.

Proposition 4.1: To achieve the one-stage belief sharing in-
formation pattern, an upper bound on the minimum average
amount of bits to be transmitted to DM* from DM, 7,5 €

{1,2}, 7 # j, is given by
R <min {H (¢ (41, P(1)) IPCL)) : P (2 P15t v2)
=P (wlP(1).9i:¢ (. P(1)) ) }

where P(.|.) denotes P (x| ).

Remark: In the setup considered, the goal is that each DM
can compute the joint belief. We note here the interesting dis-
cussion between decentralized computation and communication
provided in Csiszar and Korner ([12], Thm. 4.6) and Orlitsky
and Roche [22]. However, the setting presented in these works
assumes an infinite copy of messages to be encoded and func-
tions to be computed, which is not applicable in a real-time set-
ting. o

For the multiple-decision maker case, one has a distributed
coding with side information scenario: In this case the deci-
sion makers will send correlated information to another decision
maker. This leads us to the following lower bound.

Proposition 4.2: To achieve the belief sharing information
structure, a lower bound on the minimum average amount of
bits that needs to be supplied to some DM*, {i = 1,2,...,L}
is given by

Ri Z H (P (xt|I;717yt17yt27' .. 7ytL) |P (xt|I:71) 73/;) .

C. Stochastic Nestedness in a Dynamic Setting

We now can extend the notion of stochastic nestedness to a
dynamic context. Let, as described earlier, at times ks, k € Z U
{0} and T divisible by k, s € Z, the decision makers share
information so that they agree on a common prior with I _,.
In this case, until the next observation instant ¢ = k(s + 1) — 1
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we regard the individual decision functions specific to DM as
{’U,i = ﬂ;(yfks,t]? Ilgsfl)}' )

Definition 4.2: For measurable functions f, ¢*, ¢ €
{1,2,..., L}, consider a system described by

Tt+1 :f($t7ut7wt)
v =g" (w4, 0)

Under the decentralized model description of Section I-A: If
whenever DM' — DM, it follows that:

j's - (yis'/lgs—l) A (yirs7lgs—1)

forms a Markov chain

i

I = {y[]ks,tp Ulks,k(s+1)—1]> 1125—1}

and

yé = ht (y;;:s?Izsfl)

where h; is a deterministic function for t € {ks,ks +
1,...,k(s+ 1) — 1}, then the information structure is stochas-
tically nested with a k-stage belief sharing pattern.

Theorem 4.3: Under the decentralized system description of
Section I-A, let u; = [uf u? ... utL]T and Q > 0,R > 0.
Consider an optimization problem with the objective to be min-
imized as

NT-1
J=E| > a{Qu+uf Ry
t=0

with the system dynamics

L
Tir1 = Az + Z Biul + w,
j=1
yi=Clzy+vj, 1<i<L ©9)
where g, w;,{vi} are Gaussian and the disturbances and
the noise processes are such that the information structure is
stochastically nested with a k-stage belief sharing pattern. In
this case, the optimal control laws are linear.

Proof: Proof follows from dynamic programming. We can
view all of the time-slots in [ks, k(s + 1) — 1] as a single stage,
and for each stage invoke Theorem 3.1, as the newly constructed
process will be Markov, even when the observation noises might
be correlated. Iteratively applying the algorithm backwards, we
observe that the quadratic nature of the cost functions and lin-
earity of the control policies are preserved. o

D. Case Studies

In the following, we provide a few explicit examples, which
exhibit the weaker conditions required by stochastic nestedness.

1) Zero-Capacity Channels:

Proposition 4.3: Consider the case in which the observation
channels for each of the DMs have zero capacity. In this case,
as

P (g, = nlzs) = P (9. = Blzs)
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for all ), B values that the observation can take, there is no fur-
ther information that is needed for the belief-sharing pattern.
Proof: By Theorem 4.2, a lower bound on the rate is

H (P (il I 1y 97) 1P (2l I71) ) = 0.

This rate bound is tight, since by Theorem 4.1, the rate achiev-
able by a fixed-rate scheme is zero as well. Same discussion
applies to the more than two DM cases, by Proposition 4.2. <

As such, there is no need for information exchange, since
there is no information generated by the observation for the
controller with regard to the state and no transmitted informa-
tion will be useful. Hence, the communication required for sto-
chastic nestedness is zero if all of the information channels are
channels with zero-capacity.

We note that, in such a case, the controls do not need to be
exchanged either, as there is already an agreement on the beliefs,
based on the apriori belief; and the optimal team decisions can
be generated decentrally.

It should be noted that, when the channels are zero-capacity
channels, the deterministic nestedness conditions would require
all the information to be exchanged, although the performance
benefit of this is zero. This example exhibits the efficiency dif-
ference between the two information patterns.

2) Stochastically Decoupled Structure: For this information
pattern, belief sharing is not needed, as the problem is tractable
under the mentioned structures and the problem is already par-
titioned into L independent, centralized optimal control under
partial observation problems.

3) Stochastically Nested Structure: In case there is stochastic
nestedness, the outer DM need not receive any information, ex-
cept for the control actions of the inner DM:

Proposition 4.4: Consider the case in x < y* < y2. There
is no further information exchange from DM' to DM? that is
needed for the belief-sharing pattern.

Proof: This follows from:

H (P (eI 1 e, 2) IP (2T 1) c9r) =0

and that this rate bound is tight. o

V. MONOTONE VALUE OF INFORMATION CHANNELS AND
APPLICATIONS OF THE INFORMATION REQUIREMENTS

In this section, we discuss the value of information channels
in decentralized control, in view of stochastic nestedness. Re-
call the definition of the Information Structures and the obser-
vation channels as stochastic kernels in Section I-A. Let us con-
sider two Decision Makers individually, let each of the decision
makers apply their controls under information structures 1.5,
1 = 1, 2. We make the following definitions.

Definition 5.1: An information structure IS2 is determin-
istically sequentially degraded with respect to another one,
IS1, if the observation variables are such that, for every
t € {0,1,...,7 — 1}, there exists a deterministic function
fi 2 YHT 5 Y*+1 guch that y[QO,t] = f(y[lo’t]), 0<t<T—10

Note that, in the above case, the information at DM? is deter-
ministically nested in DM, that is the sigma-algebra generated
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by the variables are at DM? is a subset of that at DM'. This is
the requirement needed in (deterministic) nestedness or (deter-
ministic) partial nestedness [16].

Definition 5.2: An information structure IS2 is stochastically
sequentially (or physically) degraded with respect to another
one, IS1, if the observation variables are such that

sy oy, 0<t<T-1
forms a Markov chain. o

In this case, note that the information at DM?2 is stochasti-
cally nested in DM!, provided the additional requirements on
the availability of control signals discussed in Section III. This
is the requirement needed for stochastic nestedness presented in
this paper. The name physically degraded comes from the infor-
mation theory literature [13].

Definition 5.3: An information structure IS2 is weakly
stochastically degraded with respect to another one, IS1, if the
observation variables are such that, there exists an auxiliary
random variable v’

P (y7 = ylze) = > P (yilee) P (47 = wlyt)
Y

and

P(y;=vylzy) =P (y; =ylv:), Vyey

that is, the observation with auxiliary variable is equivalent to
observing y! in distribution for 0 < t < T — 1. o

The above is related to Blackwell’s characterization of more
informativeness [4], [9] in the context of comparison of exper-
iments. Even though this is important in centralized stochastic
control, it does not have as much value in a decentralized con-
text as the observations at DM? are useful to DM™. In informa-
tion theory literature, channels satisfying equivalence to a phys-
ically degraded channel are termed as stochastically degraded
channels [13]. This requirement is weaker than the nestedness
condition.

Definition 5.4: An information structure IS2 is informa-
tion-theoretically degraded with respect to another one, IS1 if
I(xyyt) > I(wsy) 0< ¢ < T — 1. o

Mutual information, however, is not an appropriate quantita-
tive measure for the value of information in control systems, as
has been observed in [38] and [28]. In particular, different chan-
nels with same mutual information characteristics might lead to
significantly different performances; as an example consider the
estimation problem of a source over two channels, mutual in-
formation and estimation error do not have a direct relationship.
One can deduce the following:

Theorem 5.1: Deterministic nestedness implies stochastic se-
quential nestedness, which implies weakly stochastic nested-
ness, which in turn implies information-theoretic nestedness. ¢

From an optimal control view, however, we have only pre-
sented results for the first two structures above. Further work
needs to be pursued in this direction in connection with decen-
tralized control systems.

VI. CONCLUSION

This paper attempted to obtain further insight into the
problem of the value of information channels in decentral-
ized stochastic control. In this direction, we presented a new
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information structure, the stochastically nested information
structure, which is weaker than the previously known in-
formation structures (such as the nested, or partially nested
information structures, or the observation sharing information
patterns) which lead to tractable decentralized optimization
solutions, which also lead to the optimality of linear solutions
for LQG team optimization problems. We also presented a
new information sharing pattern, the belief sharing informa-
tion pattern. Under this pattern, the communication exchange
requirements are shown to be strictly less than those for deter-
ministic nestedness, or the deterministic observation sharing
patterns. We provided quantitative examples exhibiting the
benefit of the new information structure.

At the expense of communications, the controllers benefit
from a reduced computational complexity. Further work is
needed to obtain a tradeoff between computational complexity
and communications, although, we believe we have been able
to provide some discussion towards a unifying theory in this
direction. It is perhaps counterintuitive first to think that more
information means less complexity, because there is more data
to work on (or attach a parameter to, if one is to design a
suboptimal policy), but stochastic control theory shows that all
one needs is to construct a Markov Decision Problem (with an
appropriate Markovian state, and a cost function), and work
with the chain. The intractability for some decentralized control
problems (but not all) stems from not being able to construct
such a non-exploding chain in a general setting. Belief sharing
is an attempt to provide a systematic, rate-efficient way to
construct a tractable setting, via an appropriate Markov chain.
This pattern also provides a partial answer on what needs to be
exchanged in real-time to obtain optimal performance subject
to communication constraints when the communication allows
an agreement on beliefs.

One question requiring further study is the following: What
is the weakest set of assumptions that leads to the optimality
of linear policies for a distributed LQG problem. Are stochasti-
cally nested and decoupled information structures the weakest
structures one could find? Here, the common property is that
the relevant information affecting the cost of the future stages
is what need to be exchanged. Stochastic nestedness attempts to
express this intuitive property in a formal setting.

One related problem is how to optimally encode the con-
trol actions; such an analysis will explicitly depend on the cost
functions [35]. The discussion on monotone values of informa-
tion channels requires further work, in particular with regard to
stochastically degraded systems presented in the previous sec-
tion, in view of Blackwell’s notion of more informativeness. Fi-
nally, the analysis of belief propagation algorithms for the be-
lief sharing information pattern seems to be an interesting and
a practically important problem. Further directions will include
the analysis of such problems.
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