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A Counterexample in Distributed
Optimal Sensing and Control

Serdar Yiiksel, Member, IEEE, and Sekhar Tatikonda, Member, IEEE

Abstract—This note exhibits that in a distributed multi-sensor, single-
controller scenario, for the minimization of a quadratic cost function, linear
sensing policies over Gaussian channels are, in general, not optimal. This
is in contrast with the corresponding single-sensor problem, which does
admit an optimal linear solution.

Index Terms—Control over communications channels, decentralized
control, linear time invariant (LTI).

I. INTRODUCTION

This note studies a distributed sensing problem. Consider a two-
sensor, single controller, linear time invariant (LTI) system

s(t4+ 1) =as(t) +r(t) + d@@),
yi(t) =s(t) + v (t), i=1,2. (1)

Here, s(t) € R is the state of the system with the initial state s(0)
a zero-mean Gaussian random variable with variance o2, r(t) € R
is the control signal, and y;(¢) € R is the observation available at
sensor station ¢ at time t. Here {d(t),v1(¢), v2(¢)} are i.i.d. zero-mean
Gaussian disturbance processes with variances {0'3, 0'3.1 R 032

The sensors transmit their signals at time ¢, which we denote by
{u1(t),uz(t)}, over two noisy Gaussian channels where the channel
outputs

zi(t) = ui(t) +w;(t), =12

are received by the controller. Here wi(t) are zero-mean Gaussian
random variables with variances {03,7 ,i=1,2}.

Upon observing the channel outputs, the controller generates its con-
trol r(¢).

In the following, we discuss the information structures under which
the sensor signals {u1(t), u2(t)} and the control signal r(¢) are gen-
erated. A pictorial description for the sequence of events for a single-
stage is presented in Fig. 1.

Before proceeding further, we provide a discussion on the notation
of this note. Bold-face letters denote the ensemble of vectors such that
v(t) = {y1(t), y2(¢)}. The notation y([7, j]) represents the sequence
{y(k),i < k < j}. E[.] denotes the expectation operator, that is
E[x] = [ap(dx), with p(.) denoting the distribution of the random
variable X. When the distribution under which the expectation is per-
formed is not clear, we write E,[#] = [ zp(dz), denoting explicitly
that pt(dx) corresponds to the random variable X. Pr(.) denotes the
probability of an event in the Borel sigma-algebra generated by the
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product Euclidean spaces for the random variables in (1) over a finite
horizon.

We now describe the information structure:

One-Step Delayed Information Structure 15: The sensor action
u;(t) (i = 1,2) is the output of a mapping v;(.) measurable with
respect to the sigma-field generated by

() = {yi(t). Z(1)}
and is a mapping to R. Here
Z(t) ={y ([0,t —1]),z ([0, t — 1])}

is the common past information, where z1 (), z2(t) are the information
received by the controller. The controller policy ¢(.) is measurable
with respect to the sigma-algebra generated by

I'(t) = {z ([0,t —1])}

and is a mapping to R.
We also have a power constraint on the sensors, such that

Eui(t)’] <P, i=1.2.

We now state the objective functional and formalize the problem
statement:

Problem P1: The objective is to minimize the following cost func-
tion:

J(v1,72,¢) =F

.
Zsz(f) + q'rz(f)] ()

t=0

for some ¢ > 0, over all admissible sensor and control policies under
the information structure IS presented above. 23
We now revisit a result due to Bansal and Basar [1]:
Theorem 1.1: Consider Fig. 1, with only one sensor, one channel
and with vy = 0. Then the optimal sensor policy is to apply

u(t) = aft) (s(t) — Es(t)|z ([0, = 1])])

where a(t) = /P/E[(s(t) — E[s(t)|z([0,t — 1])])2], with P de-
noting the power constraint on the sensor signal.

We note that, for a one-stage problem with T' = 1, the optimality
of a linear sensing policy still holds even when v1 # 0. This was also
shown by Bansal and Bagar in another publication [2].

The following is the result of this note.

Theorem 1.2: For the multi-sensor setting, there exist non-linear
sensing schemes which outperform linear sensing policies under the
Information Structure 1.5, such that a lower cost value is attained for
Problem P1.

II. PROOF OF THEOREM 1.2

In the following we provide an example where this is satisfied. We
take T = 1, and seek to minimize E[Y",_, s*(t) 4+ ¢r?(t)], under the
aforementioned information structure.

A. Optimal Controller

The cost can be written as

E [qr*(1) + (as(0) + r(0) + d(0))* + ¢r* (0) + s*(0)] .
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Fig. 1. Controller has access to (21, z2).

Using the completion of squares method [2], we obtain

J(Aﬁ s V2, W) =F

qr’(1) + <ms(0) + 1+ qT(O))

(o (1- 1) +1) P00 o

Observing the fact that the estimation error is orthogonal to the best
estimate at the controller, the optimal control at time ¢ = () can be
evaluated as

a
7(0) = ———FE[5(0)]|21(0), 22(0
r(0) 114 [5(0)]z1(0), 22(0)]
with
r(l)=0.
Hence, the total cost for 7' = 1 can be written as

J(v1,72,¢) = 20 [(5(0) — E[5(0)]z(0)])°]

a E
1+y¢q
+E [s*(0)] <a? <1 - ﬁ) + 1) +E[E0)]. @

As such, the remaining issue becomes the minimization of the estima-
tion error variance E,o[(s(0) — E[s(0)|z(0)])?].

In the following, we present the performance of the best linear
sensing policies, and introduce an alternative sensing scheme. We
conclude the proof by a comparison of the performances under the
two schemes.

B. Performance of the Best Linear Sensing Policies

Under linear policies, if one writes the joint channel from the input
to the output, the controller, at time 0, has access to (we drop the time-
index O to make the notation easier to present)

z1 =18+ a1v1 + wy
and
Zo = 28 + aove + wa.

The observed variables can be scaled (this does not affect the informa-
tion content of the received data, since there is only a scaling involved)
so as to obtain induced channels

Zii=zifor = s+ v +wi/aa
Zoi=zofas = s+ vo + wa/as.
Here
o = P ol = Py
. E[s?]| + 02, 2 Els?] 4+ 02,.

The optimal Minimum Mean Square Estimate Decoder policy is linear
[4], with the output §

s = /3151 + /5252

with the coefficients 3, 32 satisfying
E[sfzg] = ﬁgE [222] + yﬁlE[fgfl].
The performance of the optimal linear coding and decoding can be

computed from the performance of a Minimum Mean Square Estimate
Decoder ([4]): In particular, the estimation error reduces to

o

E[s°] - [E[sZ]E[.s“)]] AT [E[aZ]E[.sZ]] Q)
where
LB B
i E[s?] E[s*] + U;ng

with the induced channel noise variances

— 2 1
=0vy + Py

We note that we took the powers to be equal to Py and P respec-
tively, as the value in (5)

1+ 1 2
E[s?] (”2 ’ +o2 ’ )
w wl,

is strictly increasing in the induced channel noise variances and lower
power pairs would have lead to a higher estimation error variance.

C. Alternative Sensing Policy

We now provide an alternative sensing scheme, which we will show
to perform better than the optimal linear policy. Toward obtaining the
sensing scheme, we first revisit a relevant result from the informa-
tion theory literature to guide the construction of the alternative coding
scheme.

For a distributed joint source-channel code minimizing a
mean-square distortion to be optimal, the following two condi-
tions are sufficient (for example see [6]):

1) All channels send independent information.

2) All channels utilize the capacity (source-channel needs to be
matched in that the rate-distortion achieving test channel is the
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channel itself and the the source maximizing the capacity is the
distribution of the source itself).
In the linear case discussed in the previous subsection, the transmitted
signals are inevitably correlated.

Accordingly, the encoding policy will try to send as useful informa-
tion as possible: The information to be sent needs to be non-redundant;
and hence independent. In the scheme that will be provided, one of
the coders will transmit the magnitude of the signals she received at
time O (we drop the time-index hereafter to make the notation easier to
follow), and the other will transmit the sign of the signal.

Lemma 2.1: Let1 y be the indicator function. The random variables
1(s+4vy >0y and |s + vz| are independent.

Proof: Let k > 0 and let Pr(.) be replaced by P(.) in the fol-
lowing. It follows by the fact that a Gaussian random variable has a
symmetric density function:

P (|5 +v2] = K[l (o, >0) = 1)
P(s=k—v2,5+v1 >0)

- P(s+wvi >0)
P(s=—-rk—v2,s+v1 >0)

P(s+ v >0)
=2{P(s =Kk —v2,01 > —5)

+P(s=—K —vo,v1 > —5)}
=2{P(s=kK—wv2,v1 > —5,02 > 0)

4+ P(s=—k —v2,v1 > —5,02 > 0)

+P(s =K —wvy,v1 > —8,02 <0)

+P(s=—k—v2,01 > —s,v2 < 0)}
=2{P(s =K —wv2,v1 > —5,v2 > 0)

+ P(s=—Kk—v2,v1 > —s,v2 > 0)

4+ P(s = —k —v2,v1 > 8,02 > 0)

+P(s =Kk —va,v1 > 5,02 > 0)}
=2{P(s=kK—wv2,v2 >0)+ P(s=—k —wv2,u2 > 0)}
={P(s=r—ws,v2 > 0)+ P(s=—kr — v3,v2 < 0)

+P(s=kK—v2,02 <0)+ P(s=—k —v2,v2 > 0)}

={P(s=r—v2)+P(s=—k—wv2)}
= P(|s+ v2| = r) (6)

+

Hence, the random variables are independent. o

As such, the messages carried by the two channels are indepen-
dent; even though they do not satisty the matching conditions with the
channel (only a Gaussian source is matched to a Gaussian channel).
Hence the approach is to express the signal estimate as

ﬁz?l,]

with @, denoting the magnitude information and u; denoting the sign
information on the random variable s. To minimize the power of the
transmitted signal at the sensor, we write &2 = w2 + 7, where 7 is
E. ., [|E[s|s +v1]|] and only transmit the information on 2. As such,
the decoder policy ((z1,22) : R x R — R will be as follows:
8(z1,22) = ({21, 22) = (f2(22) + ) 1 (1)
with @2 (22 ) being the best linear decoder estimate of the shifted mag-
nitude of the source, and @1 (z) the information regarding the sign of
the source.
We can write the estimation error variance as

E[(s—3)%] = Pr(ui # @) E [(uz — i2)*|us # 1]
+P7'(U1 = ﬁl)E [(’LLQ - ﬁ2)2|U1 = ﬁl] . (7)
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‘We note that, because of the symmetry in the coding, it does not matter
whether the sent sign is positive or negative.

One of the sensors will transmit the magnitude of the signal by
scaling it with a coefficient k&

uz =k (|Elsls + o1]| = Es o [|[Es|s + e]]])

which reduces to

us = k < B[]

or

E[s?]

B || (st v
HE[sZHE[vﬂ( +or)

) o

us =k (|(s +v1)| = E[|(s + v0)])

where
/ P

K= -
E[(Its + vl = El(s +v)D7] -

Finally, upon the linear decoding operation at the decoder, the
mean-square estimation error with regard to u» can be written as (with
Eluz] = 42)

_ z [ug] + FE [UJ%] /ﬁ

E [(uz — E[ltz])z] =F [uﬁ] )
We now consider the transmission of the sign of the expected signal,
which is transmitted in the form of ;. The transmission for u; is a
binary signal with opposite amplitudes. The maximum likelihood error
is given by:

Pr(wy >V Pr)

which is identical to one half of Complementary Error function for
Gaussian random variables

1 P Tl e
=( = —e " dE.
2? ( 20;1,1) | s (o
o
290,

However, we should observe that, the transmitted sign might not be
the actual sign of s. For this we also need that

sign(s + v1) = sign(s).

In the following, the error is further upper bounded by including errors
in the sign of the signal. Let p. (s7) denote the error in the expectation
of the sign information such that, pe(sé) := 1 — Pr(sigu(s + v1) =
sign(s)), and let p, (s¢) denote the error probability in the transmission
of the sign information given by (10): The overall estimation error can
be upper bounded by

(1= pe(si) (L= pi(s) {E [(u2 = E[u2])*]}
+{1 = (1 =pe(si) (1= pe(si))}

x {E [(uz — E[ug])“)] + 41/2}. (11)

We first compute

[
E[]+ E[w3]/ 7

E [(uz — E[ug])Q] =F [ug] —

¥

N

as a function of E[s?]. We have that, for a Gaussian random variable

B {(Jel = Elll)*] = Bl - £ = 217 (1- 2)

™
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which follows from the result that for a Gaussian distribution:

R/ Jelja(dr) =

Hence, E[(u2 — E[uz])?] becomes

E[z?]2

2
™

T

. 2
E[v? - = -
SIGH B (1= 2) + Edl iy

B[]

E°](1-2)

with E[v®] = E[s*] + E[v3].
The error in the sign information is equivalent to Pr(v, > —s) if
s < 0and Pr(v; < —s) if s > 0, which is equal to

2

—s

2
e 295 ds.

N >
pf(m)—?/ mﬂ(ﬁam)
s=0

Hence, we have the upper bound on the estimation error variance as

o (1‘;Q< o )) {E [ = Elus))"]}

w1

(= mnin (=3 2)

. (E [(11,2 — E[UQ])Z] + 47;2) (12)
with E[(u2 — Efuz])?]
5 ) E[v?] (1_2)
Elv 1—— - - = 13
[v"] ( 7r> Efv?] (1—%)+E[w§]/ﬁ (13)

and

E[’] = E[s°]+ E [7)3] .

D. Comparison

We now compare (5) with (12) in the overall cost (4).

Let us pick the values as ¢ = 1.2, ¢ = 0.005, P, = 10, P» = 40,
E[s*] = 5, E[vi] = 0, E[v3] = 0, E[w3] = E[wi] = 2, E[d*] =
0.2.

One checks that with these values an upper bound on the cost .J(.)
with the alternative coding scheme is 5.36, whereas the optimal linear
scheme leads to a cost of 5.51.

Hence, there exists a scheme in which linear policies are outper-
formed.

III. DISCUSSION

For a scalar, single-sensor controller system, even when the infor-
mation structure is not partially nested [5] (the sensor action affects the
controller, but the controller does not have access to the sensor infor-
mation), the optimal sensing policy for the system and cost studied had
been shown to be linear in [2].

This note exhibited that the optimality of linear policies does not
extend to the multi-sensor case.

The optimality of linear policies occur infrequently in distributed
quadratic optimization problems: On one hand, we have the discussion
regarding information structures (nestedness and weakened versions
of nestedness), on another hand we require the channel noise to be
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Gaussian, the source to be Gaussian, and the cost to be quadratic. The
reason in our case linear policies are suboptimal is primarily because
the Gaussian-source channel matching does not occur here: the optimal
source distribution for a parallel Gaussian channel is not realizable
by a real-time code which encodes a single realization of a Gaussian
random variable. If it were possible to extract two Gaussian random
variables a(t), b(t) deterministically such that, s(¢) = a(¢) + b(¢) and
Ela(t)b(t)] = 0,and (a(t), b(t)) jointly Gaussian, linear polices could
have been optimal. However, such a scheme is not possible with a linear
transformation. This is possible, however, in an infinite-dimensional,
block-version of the problem [7]. This is also possible if the size of the
space the source lives in matches to the dimensionality of the channels
by applying a linear transformation leading to independent variables to
be transmitted, for example if it were possible to send two uncorrelated
Gaussian signals of each dimension one through each of the Gaussian
channels.

In the literature, discussions regarding a lack of incentive for sig-
naling (that is the controllers communicating via feedback) and nest-
edness conditions are presented as sufficient conditions leading to op-
timality of linear policies for LQG team problems [3]. The notion of
partial-nestedness requires further refinement since there are problems
which are not partially nested, but solvable when there is a clear distinc-
tion between the incentives on communications and control [1]. Fur-
thermore, the objective in the system optimization is also important in
the tractability of the optimization problems as discussed in [8]. Cur-
rent efforts are in the direction towards understanding these issues.

REFERENCES

[1] R. Bansal and T. Basar, “Simultaneous design of measurement and
control strategies for stochastic systems with feedback,” Automatica,
vol. 25, pp. 679-694, Sep. 1989.

[2] R. Bansal and T. Bagar, “Solutions to a class of linear-quadratic-
Gaussian LQG stochastic team problems with nonclassical informa-
tion,” Syst. Control Lett., vol. 9, pp. 125-130, 1987.

[3] A. Rantzer, “Linear quadratic team theory revisited,” in Proc. IEEE
Amer. Control Conf., Minneapolis, MN, Jun. 2006, pp. 1637-1641.

[4] H. V.Poor, An Introduction to Signal Detection and Estimation. New
York: Springer-Verlag, 1988.

[5] Y.C.Ho and K. C. Chu, “Team decision theory and information struc-
tures in optimal control problems—Part 1,” IEEE Trans. Automat. Con-
trol, vol. AC-17, no. 1, pp. 15-22, Feb. 1972.

[6] S. Shamai, S. Verdu, and R. Zamir, “Systematic lossy source/channel
coding,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 564-579, Mar.
1998.

[71 A. B. Wagner, S. Tavildar, and P. Viswanath, “Rate region of the
quadratic Gaussian two-encoder source-coding problem,” IEEE Trans.
Inform. Theory, vol. 54, no. 5, pp. 1938-1961, May 2008.

[8] M. Rotkowitz, “Linear controllers are uniformly optimal for the Wit-
senhausen counterexample,” in Proc. IEEE Conf. Decision Control,
San Diego, CA, Dec. 2006, pp. 553-558.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 8, 2009 at 05:34 from IEEE Xplore. Restrictions apply.



