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On Rates of Convergence for Markov Chains Under
Random Time State Dependent Drift Criteria
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Abstract—Many applications in networked control require in-
termittent access of a controller to a system, as in event-triggered
systems or information constrained control applications. Mo-
tivated by such applications and extending previous work on
Lyapunov-theoretic drift criteria, we establish both subgeometric
and geometric rates of convergence for Markov chains under state
dependent random time drift criteria. We quantify how the rate
of ergodicity, nature of Lyapunov functions, their drift properties,
and the distributions of stopping times are related. We finally
study an application in networked control.

Index Terms—Foster-Lyapunov criteria, Markov Chain Monte-
Carlo (MCMC), Markov processes, networked control systems,
stochastic stability.

I. INTRODUCTION AND LITERATURE REVIEW

S TOCHASTIC stability of Markov chains has an almost
complete theory, and forms a foundation for several other

general techniques such as dynamic programming, linear pro-
gramming approach to Markov Decision Processes [1], and
Markov Chain Monte-Carlo (MCMC) [2]. One powerful ap-
proach to establish stochastic stability is through single-stage
(Foster-Lyapunov) drift criteria [3]. The state-dependent crite-
ria [4]–[6] relax the one-stage criteria to criteria involving time
instances which are state-dependent but deterministic. Such
criteria form the basis of the fluid-model (or ODE) approach
to stability in stochastic networks and other general models [2],
[7]–[10]. Building on [3] and [4], [11] considered stability crite-
ria based on a state-dependent random sampling of the Markov
chain of the following form: It was assumed that there is pos-
itive real-valued function V on the state space X of a discrete-
time Markov chain {xt}t≥0, and an increasing sequence of
stopping times {Ti}t≥0, with T0 = 0, such that for each i

E
[
V
(
xTi+1

)
| FTi

]
≤ V (xTi)− δ (xTi) (1)

where the function δ : X → R is positive (bounded away from
zero) outside of a “small set,” and FTi denotes the filtration of
“events up to time Ti.” We will make this more precise later in
the paper. Further relevant work include [12] and [6].

Motivation for studying such problems comes from net-
worked control systems and communication systems: For many
networked control scenarios, access to information or appli-
cation of a control action in a system is limited to random
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event times. As examples for such settings, there has been
significant research on stochastic stabilization of networked
control systems and information theory; as in stabilization of
adaptive quantizers studied in source coding [13], [14] and con-
trol theory [15]–[18]. A specific example involving control over
an erasure channel is given in [11], where non-zero stabilizing
actions of a controller are applied to a system at certain event
driven times and stochastic stability is shown using drift con-
ditions and martingale techniques. For an extensive discussion,
see [19]. The methods of random-time drift criteria can also
be applied to models of networked control systems with delay-
sensitive information transmission, for example, for studying
the effects of randomness in the delay for transmission of sensor
or controller signals (see, e.g., [20]–[23]).

One other, increasingly prominent, area is event-triggered
feedback control systems (see, e.g., [24]–[28]) where the event
instances constitute the stopping-times. The study of such sys-
tems is practically relevant since an event-based clock is usually
more efficient than a time-triggered clock for control under
information or actuation costs. The literature on such systems
has primarily focused on the stabilization of such systems and
we hope that the analysis in this paper will be useful for both
stabilization and optimization of such systems: If the objective
is to compute optimal solutions to an average cost optimization
problem for an event triggered setup, a powerful approach is
the discounted limit approach [29], [30]. This method typically
requires geometric or sufficiently fast subgeometric conver-
gence conditions to establish the existence of a solution to
an average cost optimality equation or inequality [29]. The
rate of convergence results in this paper will be useful in
such contexts. Furthermore, rates of convergence to equilibrium
in Markov chains are useful in bounding the distribution of
transient events and the approximate computation of optimal
costs under ergodicity properties. In addition, as documented
extensively in the literature, Markov Chain Monte Carlo al-
gorithms require a tedious analysis on rates of convergence
bounds to obtain probabilistically guaranteed simulation times,
see, e.g., [2], [31]. Furthermore, as has been discussed in [32]
and [33], approximation methods for optimization of Markov
Decision Processes benefit from the presence of sufficiently fast
mixing/rates of convergence conditions.

In this paper, we extend recent works on random-time drift
analysis [11] to obtain criteria for rates of convergence under
subgeometric and geometric rate functions.

The rest of the paper is organized as follows. In Section II,
we provide background information on Markov chains and rates
of convergence to equilibrium. Section III contains the rate of
convergence results under random-time state-dependent drift
conditions. Section IV contains an example from networked
control.
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II. MARKOV CHAINS, STOCHASTIC STABILITY,
AND RATES OF CONVERGENCE

In this section, we review some definitions and background
material relating to Markov chains and their convergence to
equilibrium.

A. Preliminaries

We let {xt}t≥0 denote a discrete-time Markov chain with
state space X. The basic assumptions of [3] are adopted, see
[34] for a more comprehensive introduction: It is assumed
that X is a complete separable metric space; its Borel σ-field
is denoted by B(X). The transition probability is denoted
by P , so that for any x ∈ X, A ∈ B(X), the probability of
moving in one step from the state x to the set A is given
by P (xt+1 ∈ A|xt = x) = P (x,A). The n-step transitions
are obtained via composition in the usual way, P (xt+n ∈
A|xt = x) = Pn(x,A), for any n ≥ 1. The transition law
acts on measurable functions f : X → R and measures μ on
B(X) via Pf(x) :=

∫
X
P (x, dy)f(y), x ∈ X, and μP (A) :=∫

X
μ(dx)P (x,A), A ∈ B(X). A probability measure π on

B(X) is called invariant if πP = π, i.e.,∫
π(dx)P (x,A) = π(A), A ∈ B(X).

For any initial probability measure ν on B(X) we can con-
struct a stochastic process {xt} with transition law P satisfying
x0 ∼ ν. We let Pν denote the resulting probability measure
on the sample space (X,B(X))∞, with the usual convention
for ν = δx (where δx is the probability measure defined by
δx(A) = 1A(x) for all Borel A and 1E(x) denotes the indicator
function for the event {x ∈ E}) when the initial state is x ∈ X,
in which case we write Px for the resulting probability measure.
Likewise, Ex denotes the expectation operator when the initial
condition is given by x0 = x.

When ν = π (the invariant measure), the resulting process is
stationary. For a set A ∈ B(X) we denote

TA := min{t ≥ 1 : xt ∈ A}. (2)

Definition II.1: Let ϕ denote a σ-finite measure on B(X).
The Markov chain is called ϕ-irreducible if for any x ∈ X,
and any B ∈ B(X) satisfying ϕ(B) > 0, we have Px{TB <
∞} > 0. A ϕ-irreducible Markov chain is aperiodic if for
any x ∈ X, and any B ∈ B(X) satisfying ϕ(B) > 0, there
exists n0 = n0(x,B) such that Pn(x,B) > 0 for all n ≥ n0.
A ϕ-irreducible Markov chain is Harris recurrent if Px(TB <
∞) = 1 for any x ∈ X, and any B∈B(X) satisfying ϕ(B)>0.
It is positive Harris recurrent if in addition there is an invariant
probability measure π.

A maximal irreducibility measure is one with respect to
which all other irreducibility measures are absolutely contin-
uous. Define B+(X) = {A ∈ B(X) : ψ(A) > 0}, where ψ is a
maximal irreducibility measure. We refer to sets in B+(X) as
reachable.

A set A ∈ B(X) is full if ψ(Ac) = 0 for a maximal ir-
reducibility measure ψ. A set A ∈ B(X) is absorbing if
P (x,A) = 1 for all x ∈ A. In an irreducible Markov chain
every absorbing set is full.

Definition II.2: A set α ∈ B+(X) is an atom if for all x, y ∈
α, P (x, ·) = P (y, ·).

The concept of an atom is extremely important as it gives
us a fundamental unit, where all the points of a reachable set
act together. This allows, through the cycle equation, an invari-
ant probability measure π(A) = Eα[

∑Tα−1
k=0 1A(xk)]/Eα[Tα].

When the state space is not countable, one typically needs to
artificially construct such an atom, as we discuss further below.

Definition II.3: A set C ∈ B+(X) is (n0, ε, ν)-small if

Pn0(x,B) ≥ εν(B) ∀B ∈ B(X), x ∈ C

where n0 ≥ 1, ε ∈ (0, 1), and ν is a positive measure on
(X,B(X)).

An important fact is that small sets exist, see
[3, Theorem 5.2.1].

Fact II.1: For an irreducible Markov chain, every set A ∈
B+(X) contains a small set in B+(X).

Definition II.4: A set C ∈ B+(X) is called κ-petite if there
is a positive measure κ on B(X) and a probability distribution
a on Z+ = {0, 1, 2 . . .} such that

∞∑
n=0

a(n)Pn(x,B) ≥ κ(B) for all B ∈ B(X), x ∈ C. (3)

The convolution of two functions f, g : Z+ → R, denoted by
f ∗ g, is defined as usual by f ∗ g(n) =

∑n
k=0 f(k)g(n− k),

for all n ∈ Z+. The next lemma follows from [3, Lemma 5.5.2]
and allows us to assume without loss of generality that for an
irreducible Markov chain, if a set is κ-petite, then κ can be
replaced by maximal irreducibility measure (or equivalently κ
can be assumed maximal).

Lemma II.1: If an irreducible Markov chain has some set
C ∈ B+(X) that is κ-petite for some distribution a, then C is
ψ-petite for the distribution a ∗ f(n), where f(n) = 2−n−1 and
ψ is a maximal irreducibility measure.

An important result is the equivalence of small sets and petite
sets.

Theorem II.2 ([3, Theorem 5.5.3]): For an aperiodic and
irreducible Markov chain every petite set is small.

Small sets are analogous to compact sets in the stability
theory for ϕ-irreducible Markov chains. In most applications
of ϕ-irreducible Markov chains we find that any compact
set is small—in this case, {xt} is called a T-chain [3]. The
equivalence of small sets and petite sets can be used clev-
erly to show that all petite sets are petite for some distri-
bution that has finite mean. The next theorem follows from
[3, Propositions 5.5.5 and 5.5.6].

Theorem II.3: For an aperiodic and irreducible Markov
chain every petite set is petite with a maximal irreducibility
measure for a distribution with finite mean.

Invoking (3), we will use Theorem II.3 repeatedly with a set
C that is κ-petite for some distribution a(·) to achieve bounds
on hitting times for any B ∈ B+(X)

Ex

[TB−1∑
k=0

1C(xk)

]
≤ 1

κ(B)
Ex

[TB−1∑
k=0

∞∑
n=1

1B(xk+n)a(n)

]

≤ 1

κ(B)

∞∑
n=0

na(n) =: c(B) < ∞. (4)
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B. Regularity and Ergodicity

Regularity and ergodicity are concepts closely related
through the work of Meyn and Tweedie [3], [4] and Tuominen
and Tweedie [35]. The definitions below are in terms of func-
tions f : X → [1,∞) and r : Z+ → (0,∞).

Definition II.5: A set A ∈ B(X) is called (f, r)-regular if

sup
x∈A

Ex

[TB−1∑
k=0

r(k)f(xk)

]
< ∞

for all B ∈ B+(X). A finite measure ν on B(X) is called (f, r)-
regular if

Eν

[TB−1∑
k=0

r(k)f(xk)

]
< ∞

for all B ∈ B+(X), and a point x is called (f, r)-regular if the
measure δx is (f, r)-regular.

To make sense of ergodicity we first need to define the
f -norm, denoted ‖.‖f .

Definition II.6: For a function f : X → [1,∞) the f -norm
of a measure μ defined on (X,B(X)) is given by

‖μ‖f = sup
g≤f

∣∣∣∣
∫

μ(dx)g(x)

∣∣∣∣
where the supremum is taken over all measurable g such that
g(x) ≤ f(x) for all x.

The commonly used total variation norm, or TV -norm, is the
f -norm when f = 1, and is denoted by ‖ · ‖TV .

Definition II.7: A Markov chain {xt} with invariant distri-
bution π is (f, r)-ergodic if

r(n) ‖Pn(x, ·)− π(·)‖f → 0 as n → ∞ for all x ∈ X. (5)

If (5) is satisfied for a geometric r (so that r(n) = Mζn for
some ζ > 1, M < ∞) and f = 1 then the Markov chain {xt}
is called geometrically ergodic.

C. The Splitting Technique and the Coupling Inequality

Nummelin’s splitting technique [36] (see also [37]) is a
widely used method in the study of Markov chains; see, e.g.,
[3, Chapter 5], [35, Proposition 3.7 and Theorem 4.1], [31,
Section 4.2]. With an irreducible, aperiodic Markov chain {xt}
on state space X with transition probability P and a (m, δ, ν)-
small set C with finite return time, we construct an atom in
order to construct an invariant distribution for the chain.

We first review the splitting technique for the case m = 1
(i.e., C is a (1, δ, ν-small set). Construct a new Markov chain
{zt} on X× {0, 1} by letting zt = (xt, at), where {at} is a
sequence of random variables on {0,1}, independent of {xt},
except when xt ∈ C.

1) If xt �∈ C then xt+1 ∼ P (xt, ·)
2) If xt ∈ C, then

with probability δ : at = 1 and xt+1 ∼ ν(·)
with probability (1−δ) : at = 0 and xt+1 ∼ ((P (xt, ·)−
δν(·))/(1− δ)).

Thus the distribution of xt+1 given zt is

P (xt+1∈B | zt=(xt, at)∈C × {1} )=ν(B)

P (xt+1∈B | zt=(xt, at)∈C × {0} )= P (xt, B)− δν(B)

1− δ
.

Note that (P (xt, ·)− δν(·))/(1− δ) ≥ 0 is a valid probability
measure since C is (1, δ, ν)-small. If xt ∈ C, then

xt+1 ∼ δν(·) + (1− δ)
P (xt, ·)− δν(·)

1− δ
= P (xt, ·)

so the one-step transition probabilities are unchanged for {xt}.
This construction allows one to define S = C × {1} as an

atom for {zt}, and to construct an invariant distribution for {xt}
using {zt}.

We specified the technique for the one step transition proba-
bility, but the same construction applies for (m, ε, ν)-small sets
where m > 1 with the only change that the m− 1 steps after
hitting C at xt are distributed conditionally on xt and xt+m

(see [31, Section 4.2]). When m > 1, the Markov chain {zt}
does not have an atom; instead it has an “m-step atom” in the
sense that Pm((x, 1), ·) = Pm((y, 1), ·) for all x, y ∈ C.

A useful method to obtain bounds of convergence is through
the coupling inequality. The coupling inequality bounds the
total variation distance between the distributions of two random
variables by the probability they are different. Let X,Y be two
jointly distributed random variables. The following is the well
known coupling inequality:

‖P (X ∈ ·)− P (Y ∈ ·)‖TV ≤ P (X �= Y ).

This inequality is useful in discussions of ergodicity when
used in conjunction with parallel Markov chains, as in
[31, Theorem 4.1], and [38, Theorem 4.2]: One tries to create
two Markov chains, xt and x′

t, having the same one-step
transition probability distribution but driven independently until
they are coupled on a small set with some fixed probability
whenever they visit the small set. Here, x′

t is a stationary
Markov chain. By the Coupling Inequality and the previ-
ous discussion with Nummelin’s splitting technique we have
‖Pn(x, ·)− π(·)‖TV ≤ P (xn �= x′

n), where x′
n ∼ πPn = π.

D. Drift Criteria for Positivity

We now consider specific formulations of the random-time
drift criterion (1). Throughout the paper the sequence of stopping
times {Ti}i≥0 is assumed to be non-decreasing, with T0 = 0.

Theorem II.4 is the general result of [11], providing a single
criterion for positive Harris recurrence, as well as finite “mo-
ments” (the steady-state mean of the function f appearing in the
drift condition (6)). The drift condition (6) is a refinement of (1).

Theorem II.4 [11]: Suppose that {xt} is a ϕ-irreducible
and aperiodic Markov chain. Suppose moreover that there are
functions V : X → (0,∞), δ : X → [1,∞), f : X → [1,∞), a
small set C on which V is bounded, and a constant b ∈ R,
such that

E
[
V
(
xTi+1

)
| FTi

]
≤V (xTi)− δ (xTi) + b1C (xTi)

E

⎡
⎣ Ti+1−1∑

k=Ti

f(xk)

∣∣∣∣∣∣FTi

⎤
⎦ ≤ δ (xTi) . i ≥ 0. (6)
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Then the following hold:
(i) {xt} is positive Harris recurrent, with unique invariant

distribution π
(ii) π(f) :=

∫
f(x)π(dx) < ∞.

(iii) For any function g that is bounded by f , in the sense that
supx |g(x)|/f(x)<∞, we have convergence of moments
in the mean, and the strong law of large numbers holds

lim
t→∞

Ex [g(xt)] =π(g)

lim
N→∞

1

N

N−1∑
t=0

g(xt) =π(g) a.s., x ∈ X.

E. Rates of Convergence: Geometric Ergodicity

In this section, following [3] and [31], we review results
stating that a strong type of ergodicity, geometric ergodicity,
follows from a simple drift condition. An irreducible Markov
chain is said to satisfy the univariate drift condition if there
are constants λ ∈ (0, 1) and b < ∞, along with a function
V : X → [1,∞), and a small set C such that

PV ≤ λV + b1C . (7)

Using the coupling inequality, Roberts and Rosenthal [31]
prove that geometric ergodicity follows from the univariate drift
condition. We also note that the univariate drift condition allows
us to assume that V is bounded on C without any loss (see [31,
Lemma 14]).

Theorem II.5 ([31, Theorem 9]): Suppose {xt} is an ape-
riodic, irreducible Markov chain with invariant distribution π.
Suppose C is a (1, ε, ν)-small set and V : X → [1,∞) satisfies
the univariate drift condition with constants λ ∈ (0, 1) and b <
∞. Then {xt} is geometrically ergodic.

That geometric ergodicity follows from the univariate drift
condition with a small set C is proven by Roberts and Rosenthal
by using the coupling inequality to bound the TV -norm, but an
alternate proof is given by Meyn and Tweedie [3] resulting in
the following theorem.

Theorem II.6 ([3, Theorem 15.0.1]): Suppose {xt} is an
aperiodic and irreducible Markov chain. Then the following are
equivalent:

(i) Ex[TB ] < ∞ for all x ∈ X, B ∈ B+(X), the invariant
distribution π of {xt} exists and there exists a petite set
C, constants γ < 1, M > 0 such that for all x ∈ C

|P (x,C)− π(C)| < Mγn.

(ii) For a petite set C and for some κ > 1

sup
x∈C

Ex[κ
TC ] < ∞.

(iii) For a petite set C, constants b > 0 λ ∈ (0, 1), and a
function V : X → [1,∞] (finite for some x) such that

PV ≤ λV + b1C .

Any of the conditions imply that there exists r > 1, R <
∞ such that for any x

∞∑
n=0

rn ‖Pn(x, ·)− π(·)‖V ≤ RV (x).

We note for future reference that if (iii) above holds, (ii) holds
for for all κ ∈ (1, λ−1).

F. Rates of Convergence: Subgeometric Ergodicity

Here, we review the class of subgeometric rate functions (see
[38, Section 4], [6, Section 5], and [3], [4], [35], [39]). Let Λ0

be the family of functions r : Z+ → [0,∞) satisfying

r is non-decreasing, r(1) ≥ 2

and

log r(n)

n
↓ 0 as n → ∞.

The second condition implies that for all r ∈ Λ0

r(m+ n) ≤ r(m)r(n) for all m,n ∈ Z+. (8)

The class of subgeometric rate functions Λ defined in [35]
is the class of sequences r for which there exists a function
r0 ∈ Λ0 such that

0 < lim inf
n→∞

r(n)

r0(n)
≤ lim sup

n→∞

r(n)

r0(n)
< ∞.

The main theorems we use to construct conditions on sub-
geometric rates of convergence are due to Tuominen and
Tweedie [35].

Theorem II.7 ([35], Theorem 2.1): Suppose {xt} is an ir-
reducible and aperiodic Markov chain with state space X and
transition probability P . Let f : X → [1,∞) and r ∈ Λ be
given. The following are equivalent:

(i) There exists a petite set C ∈ B(X) such that

sup
x∈C

Ex

[TC−1∑
k=0

r(k)f(xk)

]
< ∞.

(ii) There exist a sequence {Vn} of functions Vn : X →
[0,∞], a petite set C ∈ B(X), and b > 0 such that V0 is
bounded on C

V0(x) = ∞ implies V1(x) = ∞

and

PVn+1 ≤ Vn − r(n)f + br(n)1C , n ∈ Z+. (9)

(iii) There exists an (f, r)-regular set A ∈ B+(X).
(iv) There exists a full absorbing set S which can be covered

by a countable number of (f, r)-regular sets.
Theorem II.8 ([35, Theorem 4.1]): Suppose an aperiodic

and irreducible Markov chain {xt} satisfies the equivalent
conditions (i)–(iv) of Theorem II.7 with f : X → [1,∞) and
r ∈ Λ. Then the Markov chain is (f, r)-ergodic, i.e.,

lim
n→∞

r(n) ‖Pn(x, ·)− π‖f = 0.

The proof of this result relies on a first-entrance last-
exit decomposition [3] of the transition probabilities; see
[3, Section 13.2.3].

The conditions of Theorem II.7 may be hard to check,
especially (ii), comparing a sequence of Lyapunov functions
{Vk} at each time step. We briefly discuss the methods of
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Douc et al. [39] (see also Hairer [38]) that extend the subge-
ometric ergodicity results and show how to construct subgeo-
metric rates of ergodicity from a simpler drift condition. [39]
assumes that there exists a function V : X → [1,∞], a concave
monotone non-decreasing differentiable function φ : [1,∞] →
(0,∞], a set C ∈ B(X) and a constant b ∈ R such that

PV + φ◦V ≤ V + b1C . (10)

If an aperiodic and irreducible Markov chain {xt} satisfies
the above with a petite set C, and if V (x0) < ∞, then it
can be shown that {xt} satisfies Theorem II.7(ii). Therefore
{xt} has invariant distribution π and is (φ ◦ V, 1)-ergodic so
that limn→∞ ‖Pn(x, ·)− π(·)‖φ◦V = 0 for all x in the set {x :
V (x) < ∞} of π-measure 1. The results by Douc et al. build
then on trading off (φ ◦ V, 1) ergodicity for (1, rφ)-ergodicity
for some rate function rφ, by carefully constructing the function
utilizing concavity; see [39, Propositions 2.1 and 2.5] and
[38, Theorem 4.1(3)].

To achieve ergodicity with a nontrivial rate and norm one can
invoke a result involving the class of pairs of ultimately non-
decreasing functions, defined in [39]. The class Y of pairs of
ultimately non-decreasing functions consists of pairs Ψ1,Ψ2 :
X → [1,∞) such that Ψ1(x)Ψ2(y) ≤ x+ y and Ψi(x) → ∞
for one of i = 1, 2.

Proposition II.9: Suppose {xt} is an aperiodic and irre-
ducible Markov chain that is both (1, r)-ergodic and (f, 1)-
ergodic for some r ∈ Λ and f : X → [1,∞). Suppose Ψ1,Ψ2 :
X → [1,∞) are a pair of ultimately non-decreasing functions.
Then {xt} is (Ψ1 ◦ f,Ψ2 ◦ r)-ergodic.

Therefore we can show that if (Ψ1,Ψ2) ∈ Y and a Markov
chain satisfies the condition (10), then it is (Ψ1 ◦ φ ◦ V,Ψ2 ◦
rφ)-ergodic.

III. RATES OF CONVERGENCE UNDER RANDOM-TIME

STATE-DEPENDENT DRIFT

The second condition of Theorem II.7 assumes that a deter-
ministic sequence of functions {Vn} exists and satisfies the drift
condition (9).

We apply Theorem II.7 to the case where the Foster-
Lyapunov drift condition holds not for every n but for a
sequence of stopping times {Tn}. Our goal is to reveal a relation
between the stopping times {Tn} where a drift condition holds
and the rate function r, so that we obtain (f, r)-ergodicity.

A. A General Result on Ergodicity

The following result builds on and generalizes
[11, Theorem 2.1].

Theorem III.1: Let {xt} be an aperiodic and irreducible
Markov chain with a small set C. Suppose there are func-
tions V : X → (0,∞) with V bounded on C, f : X → [1,∞),
δ : X → [1,∞), a constant b ∈ R, and r ∈ Λ such that for a
sequence of stopping times {Tn}

E
[
V
(
xTn+1

)
| xTn

]
≤ V (xTn)− δ (xTn) + b1C (xTn)

E

⎡
⎣ Tn+1−1∑

k=Tn

f(xk)r(k)

∣∣∣∣∣∣FTn

⎤
⎦ ≤ δ (xTn) . (11)

Then {xt} satisfies Theorem II.7 and is (f, r)-ergodic.

Proof: The proof is similar to the proof of the Comparison
Theorem of [3] as well as [11, Theorem 2.1(i)]. We may assume
r ∈ Λ0. We define sampled hitting times γB = min{n > 0 :
xTn ∈ B} for all B ∈ B+(X) and γN

B = min(N, γB). Since
{xTn} satisfies the drift condition, it follows that for x ∈ C:

Ex

⎡
⎣γN

C −1∑
n=0

δ(xTn)

⎤
⎦≤V (x) + bEx

⎡
⎣γN

C −1∑
n=0

1C (xTn)

⎤
⎦≤V (x) + b

which is finite since V is bounded on C by assumption. An
application of the monotone convergence theorem then gives

Ex

[
γC−1∑
n=0

δ(xTn)

]
≤ V (x) + bEx

[
γC−1∑
n=0

1C(xTn)

]
≤ V (x) + b

Since TB ≤ TγB
for all B ∈ B+(X) by definition, we have

Ex

[TC−1∑
n=0

f(xn)r(n)

]
≤ Ex

[
γC−1∑
n=0

δ (xTn)

]
≤ V (x) + b

so C is a petite set which satisfies

sup
x∈C

Ex

[TC−1∑
n=0

r(n)f(xn)

]
≤ sup

x∈C
V (x) + b < ∞.

This means that the Markov chain {xn} satisfies Theorem II.7(i)
and is (f, r)-ergodic. �

B. On Petite Sets and Sampling

Unfortunately the techniques we reviewed earlier that rely
on petite sets (specifically Theorem II.3) become unavailable in
the random time drift setting as a petite set C for {xn} is not
necessarily petite for {xTn}. To be able to relax conditions on
the behavior of V on C, we can place one of the following two
conditions on the stopping times or require that V is bounded
on C.

For an analogous application of Theorem II.3 in the random
time setting we define sampled hitting times for any B ∈
B+(X) as γB = min{n > 0 : xTn ∈ B}.

Lemma III.2: Suppose {xt} is an aperiodic and irreducible
Markov chain. If there exists sequence of stopping times {Tn}
independent of {xt}, then any C that is small for {xt} is petite
for {xTn}.

Proof: Since C is petite, it is small by Theorem II.2 for
some m. Let C be (m, δ, ν)-small for {xt}

P T1(x, ·) =
∞∑

k=1

P (T1 = k)P k(x, ·)

≥
∞∑

k=m

P (T1 = k)

∫
Pm(x, dy)P k−m(y, ·)

≥
∞∑

k=m

P (T1 = k)

∫
1C(x)δν(dy)P

k−m(y, ·) (12)
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which is a well defined measure. Therefore defining κ(·) =∫
ν(dy)

∑∞
k=m P (T1 = k)P k−m(y, ·), we have that C is

(1, δ, κ)-small for {xTn}. �
The above allows us to uniformly boundEx[

∑γB−1
n=0 1C(xTn)]

when the stopping times are independent of the Markov chain,
by an application of Theorem II.3 and (4).

The independence of stopping times {Tn} of {xt} is a
restrictive condition that event triggered systems cannot satisfy
since in such systems the stopping times depend explicitly on
the state process hitting certain sets. One useful example where
independence of stopping times can be enforced is given in
[21] where a system controlled over an unreliable network is
affected by variable transmission delays between the controller
and the plant.

For the event-triggered case we will derive a useful result
which will be used to show that in the drift equations of the form
(11), the Lyapunov function V may not need to be assumed
bounded on C.

The proof of the next result follows directly from the defini-
tion of Tn.

Lemma III.3: Suppose {Tn} are the subsequent hitting times
of a sequence of sets {En} in B+(X), so that Tn+1 = min{t >
Tn : xt ∈ En+1}. If

⋂∞
n=0 En ∈ B+(X) then for any reachable

B ⊂
⋂

n En, we have TγB
= TB .

Assumption III.1: The stopping times are as in Lemma III.3
and C ⊂

⋂∞
n=0 En.

Recall that by Theorem II.3 a petite set C is petite
with a maximal irreducibility measure κ for a distribution
a with finite mean, so for any B ∈ B+(X) we have that∑∞

n=0 a(n)P
n(x,B) ≥ κ(B)1C(x). Assumption III.1 then

implies that if any C is petite for {xt}, then for some C̃ ⊂ C ⊂⋂∞
n=0 En, we have that

Ex

⎡
⎣γC̃−1∑

k=0

1C (xTk)

⎤
⎦ ≤Ex

⎡
⎣TC̃−1∑

k=0

1C(xk)

⎤
⎦

≤ 1

κ(C̃)
Ex

⎡
⎣TC̃−1∑

k=0

∑
n

1C̃(xk+n)a(n)

⎤
⎦

=
1

κ(C̃)

∑
n

a(n)Ex

⎡
⎣TC̃−1∑

k=0

1C̃(xk+n)

⎤
⎦

≤ 1

κ(C̃)

∑
n

a(n)n = c(C̃) < ∞. (13)

Hence if the stopping times satisfy the conditions in
Lemma III.2 or Lemma III.3, we can drop the condition
that V is bounded on C, by applying [3, Chap. 11] and [3,
Proposition 5.5.6] to {xTn} and noting that by (11), {xt}
satisfies Theorem II.7(i). This follows since the drift condition
implies for any B ∈ B+(X), Ex[

∑γB−1
n=0 δ(xTn)] ≤ V (x) +

bEx[
∑γB−1

n=0 1C(xTn)], where the last term is bounded if the
conditions of either Lemma III.2 or Lemma III.3 and Assump-
tion III.1 are satisfied.

It is interesting to note that the two extreme cases of the
stopping times, either independent of or completely dependent
on the Markov chain, both give similarly useful relaxations.

C. Subgeometric Ergodicity

The second inequality (11) may be hard to check as it
does not provide means for checking the relation between the
stopping times {Tn} and the rate function r since the function
depends on k in a non-explicit fashion. In the following, the
relationship of the criteria with the rate function r is relative to
the stopping time.

We assume that r ∈ Λ0 and thus r satisfies r(m+ n) ≤
r(m)r(n).

Theorem III.4: Let {xt} be an aperiodic and irreducible
Markov chain with a small set C. Suppose there exist V : X →
[1,∞) which is bounded on C and for some ε > 0, λ ∈ (0, 1),
λV (x) ≤ V (x)− ε for all x �∈ C, and b ∈ R such that for an
increasing sequence of stopping times {Tn}

E
[
V
(
xTn+1

)
| FTn

]
≤ λV (xTn) + b1C (xTn) . (14)

If

sup
k

E

⎡
⎣Tk+1−1∑

n=Tk

r(n− Tk) | FTk

⎤
⎦ =: M < ∞ (15)

and

sup
k

E [r(Tk+1 − Tk) | FTk ] ≤ λ−1 (16)

then {xt} satisfies Theorem II.7 with f = 1 and is (1, r)-
ergodic.

Proof: Suppose that instead of (14), we have that

E [V (xn+1) | Fn] ≤ λV (xn) + b1C(xn). (17)

It follows then that the sequence {Mn} defined by:

Mn = λ−nV (xn)−
n−1∑
k=0

b1C(xk)λ
−(k+1)

with M0 = V (x0), is a supermartingale. Then, with (14),
defining γN

B = min{N, γB} for B ∈ B+(X) gives, by Doob’s
optional sampling theorem

Ex

[
λ−γN

B V

(
xT

γN
B

)]
≤ V (x)

+ Ex

⎡
⎣γN

B −1∑
n=0

b1C (xTn)λ
−(n+1)

⎤
⎦ (18)

for any B ∈ B+(X), and N ∈ Z+.
Since V is bounded above on C, we have that C ⊂ {V ≤

L1} for some L1 and thus

sup
x∈C

Ex

[
λ−γN

C V

(
xT

γN
C

)]
≤ L1 + λ−1b

and by the monotone convergence theorem, and the fact that
V is bounded from below by 1 everywhere and bounded from
above on C

sup
x∈C

Ex

[
λ−γCV

(
xTγC

)]
≤ L1(L1 + λ−1b).
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Now, for any r ∈ Λ, we have

sup
x∈C

Ex

[TC−1∑
n=0

r(n)

]
≤ sup

x∈C
Ex

⎡
⎣TγC−1∑

n=0

r(n)

⎤
⎦

and since r(m+ n) ≤ r(m)r(n) by (8), we obtain through
iterated expectations that

sup
x∈C

Ex

[TC−1∑
n=0

r(n)

]

≤ sup
x∈C

Ex

⎡
⎣ γC−1∑

k=0

E

⎡
⎣E
⎡
⎣Tk+1−1∑

n=Tk

r(n− Tk) | FTk

⎤
⎦

×
k∏

m=1

r(Tm − Tm−1)

⎤
⎦
⎤
⎦.

Now, with (15), (16), and by the fact that V is bounded from
below by 1, it follows that:

sup
x∈C

Ex

⎡
⎣TγC−1∑

n=0

r(n)

⎤
⎦

≤ sup
x∈C

Ex

[
γC−1∑
n=1

Ex

[
MV (xTn)λ

−n
]]

≤ L1 sup
x∈C

Ex

[
γC−1∑
n=0

M
(
V (x) + λ−1b

)]
(19)

so that

sup
x∈C

Ex

⎡
⎣TγC−1∑

n=0

r(n)

⎤
⎦ ≤ ML1(L1 + λ−1b) sup

x∈C
Ex[γC ].

From (14) and the condition λV (x) ≤ V (x)− ε for x �∈ C, we
get that for all x ∈ C

Ex

[
V
(
xTγC

)]

≤
(
V (x)− Ex

[
γC−1∑
n=0

ε

]
+ Ex

[
γC−1∑
n=0

b1C (xTn)

])

and thus

sup
x∈C

Ex[γC ] ≤
L1 + b

ε
.

Therefore C ∈ B+(X) is a petite set such that supx∈C
Ex[
∑TC−1

n=0 r(n)] is finite and so {xt} satisfies Theorem II.7(i)
with f = 1 and is (1, r)-ergodic. �

Remark III.1: We note that just as in the previous theorem, if
the stopping times satisfy Lemma III.2, we can focus on return
times for a petite set A ⊆ {V ≤ L} with (V (x)/W (x)) ≤
V (x)− ε for all x �∈ A instead of C. Similarly, if the stop-
ping times satisfy Lemma III.3 and Assumption III.1 we

can focus on return times for a petite set A in
⋂

n En with
(V (x)/W (x)) ≤ V (x)− ε for all x �∈ A ∩ (

⋂
n En) instead of

C. This allows us to relax the conditions for V .
As an example, with r(n) = 2nα, let for all k, E[

∑Tk+1−1
m=Tk

(m− Tk)α|FTk ] < ∞ and E[(Tk+1−Tk)α|FTk ] ≤ λ−1. Then,
the chain is polynomially ergodic. Note that one can obtain
explicit expressions for a large class of sums of powers of the
form

∑T1
k=0 k

α with α ∈ Z+.
We also note that if r satisfies supk Ex[r(Tk+1 − Tk)|xTk ] ≤

M for some finite M , then by Jensen’s inequality r1/s satis-
fies the bound supk E[r1/s(Tk+1 − Tk)|FTk ] ≤ λ−1 if s > 1 is
large enough so that M1/s ≤ λ−1.

Suppose now that the sequence of stopping times are
state-dependent but deterministic, that is Tk+1 = Tk + n(xTk),
T0 = 0.

Corollary III.5: Let {xt} be an aperiodic and irreducible
Markov chain with a small set C. Suppose there exist V :
X → [1,∞) which is bounded on C and with for some ε > 0,
λ ∈ (0, 1), λV (x) ≤ V (x)− ε for all x �∈ C, and b ∈ R such
that for an increasing sequence of stopping times {Tn}

E
[
V
(
xTn+1

)
| FTn

]
≤ λV (xTn) + b1C (xTn) . (20)

Then for any r ∈ Λ and M > 0 that satisfy

n(x0)∑
k=0

r(k) ≤ M, r (n(x0)) ≤
1

λ
, x0 ∈ X

then {xt} satisfies Theorem II.7 with f = 1 and it is (1, r)-
ergodic.

We note that Theorem III.4 above is useful for proving (1, r)-
ergodicity and Theorem III.1 is really only useful for proving
(f, 1)-ergodicity, where r, f satisfy the respective hypotheses.
In order to be able to prove more rate results, we may use results
by Douc et al. [39] on the class Y of pairs of ultimately non-
decreasing functions defined in Section II-F. If a Markov chain
{xt} satisfies Theorem III.4 with (1, r) and Theorem III.1 with
(f, 1), then {xt} is (Ψ1 ◦ f,Ψ2 ◦ r)-ergodic for (Ψ1,Ψ2) ∈ Y
by Proposition II.9.

Before ending this section, we revisit a criterion by Connor
and Fort [6] who studied rates of convergence under drift
criteria which are based on state-dependent but deterministic
sampling times so that

Pn(x)V (x) ≤ λV (x) + b1C(x)

where n : X → Z+ is the state dependent time where the drift
condition is enforced. Now, consider the case where n is
random and we have a sequence of stopping times {Tk} defined
as Tk+1 = Tk + n(xTk) with T0 = 0. Theorem 3.2(i) of [6] can
be partly generalized to the random-time case as follows.

Theorem III.6: Let {xt} be an aperiodic and irreducible
Markov chain with a small set C. Suppose that the stopping
times {Tn} satisfy the conditions of Lemma III.2 and that
there exist a function V : X → [1,∞), V bounded on C, and
constants b ∈ R and λ ∈ (0, 1) such that for an increasing
sequence of stopping times {Tn} with T0 = 0

Ex

[
V
(
xTk+1

)
| FTk

]
≤ λV (xTk) + b1C (xTk) .
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If there exists a strictly increasing function R : (0,∞) →
(0,∞) such that R(t)/t is non-increasing and E[R(Tk+1 −
Tk)|xTk ] ≤ V (xTk), then there exists a constant D such that
Ex[R(TC)] ≤ DV (x). If in addition the invariant distribution
π of {xt} exists, π(V ) < ∞, then the Markov chain is (1, R)-
ergodic.

Proof: Since R(t)/t is non increasing, it follows that
logR(t)/t → 0 and R ∈ Λ. It also follows that R(a+ b) ≤
R(a) +R(b) for any a, b > 0. With R also increasing we
have that

Ex [R(TC)] ≤Ex [R (TγC
)] = Ex

[
R

(
γC−1∑
k=0

Tk+1 − Tk

)]

≤Ex

[
γC−1∑
k=0

R(Tk+1 − Tk)
]

=Ex

[
γC−1∑
k=0

Ex [R(Tk+1 − Tk) | FTk ]

]

≤Ex

[
γC−1∑
k=0

V (xTk)

]
.

With the drift condition P Tk+1−TkV ≤ V − (1− λ)V + b1C
and V bounded on C, we have

(1− λ)Ex

[
γC−1∑
k=0

V (xTk)

]
≤ V (x) + b

where T0 = 0 and so we obtain Ex[R(TC)] < DV (x) for some
D > 0.

If the invariant distribution π of {xt} exists and π(V ) <
∞, then by [3, Theorem 14.2.11] there exists a small set A
and M ∈ R such that supx∈A Ex[

∑TA−1
k=0 V (xk)] < M . Defin-

ing the hitting time σA = min{t ≥ 0 : xt ∈ A}, the function
W (x) = Ex[

∑σA

n=0 V (xn)] satisfies the drift condition PW ≤
W − V +M1A with A petite, and by Theorem II.3

Ex

[TB−1∑
k=0

V (xk)

]
≤ W (x) +MEx

[TB−1∑
k=0

1A(xk)

]

≤ W (x) +Mc(B)

for any B ∈ B+(X). Therefore, since R is increasing

Ex

[TC−1∑
k=0

R(k)

]
≤ Ex

[TC−1∑
k=0

E [R(TC) | Fk]

]

≤ Ex

[TC−1∑
k=0

DV (xk)

]
≤ D (W (x) +Mc(C)) . (21)

To complete the proof, we show that W is bounded on C. If the
stopping times are independent and thus satisfy the conditions
of Lemma III.2, then C is petite for the randomly sampled
chain {xTn} and the drift condition in the hypothesis gives
Ex[R(TB)] ≤ (c(B) + 1)V (x) for any B ∈ B+(X). Since W

satisfies a drift condition, {W < ∞} is full and absorbing and
we can find a petite set in {W < ∞}.

Combining the above with (21) gives

sup
x∈B

Ex

[TB−1∑
k=0

R(k)

]
≤ sup

x∈B
(c(B) + 1) (W (x) + b) < ∞

for an appropriate petite set B when the conditions of
Lemma III.2 are satisfied. Thus {xt} satisfies Theorem II.7(i)
with (f, r) = (1, R) and it is (1, R) ergodic. �

D. Geometric Ergodicity

We use the same reasoning as before to obtain geometric
ergodicity from a random time univariate drift condition.

Theorem III.7: Let {xt} be an aperiodic and irreducible
Markov chain with a small set C. If there exists a function
V : X → [1,∞), V bounded on C, constants b ∈ R, B >
0, and λ, β ∈ (0, 1) such that for a sequence of stopping
times {Tn}

E
[
V
(
xTn+1

)
| FTn

]
≤ λV (xTn) + b1C (xTn)

and

P (Tn+1 − Tn = k | xTn) ≤ Bβk, for all n, k, and xTn �∈ C

with

1−Bλ

β
> 1

and

sup
x∈C

Ex[a
T1 ] < ∞ (22)

for some a > 1, then xt is geometrically ergodic.
Proof: By Theorem II.6 for r ∈ (1, λ−1)

sup
x∈C

Ex[r
γC ] < ∞.

Let ρ ∈ (1, (1−Bλ)/β)). Then

Ex

[
ρTn+1−Tn | FTn

]
≤ B

1− ρβ
< λ−1 (23)

for x �∈ C. By a use of iterated expectations

Ex

[
ρTγC

]
= Ex

[
γC−1∏
n=0

ρTn+1−Tn

]
< Ex

[
λ−(γC−1)ρT1

]
. (24)

By letting 1 < ρ < min(a, (1−Bλ)/β)), we obtain that C ∈
B+(X) is a small set with a uniformly bounded Ex[ρ

TγC ] for
x ∈ C. Therefore by Theorem II.6 the chain {xt} is geometri-
cally ergodic. �

We also note that the rate of ergodicity relies on the constants
m and δ for some (m, δ, ν)-small set C, so the ergodicity rate
cannot be made explicit using only the information in the drift
condition.
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Fig. 1. Control of a system over a noisy channel.

IV. AN EXAMPLE IN NETWORKED CONTROL

We revisit the motivating example in [11], concerning the
stabilization problem over erasure channels. In particular, we
apply the results of the previous section to establish a rate
of convergence to equilibrium provided that the information
transmission rate satisfies a certain inequality. We consider a
scalar LTI discrete-time system described by

xt+1 = axt + but + wt, t ≥ 0 (25)

where xt is the state at time t, ut is the control input, the initial
state x0 is a random variable with a finite second moment,
and {wt} is a sequence of zero-mean i.i.d. Gaussian random
variables, also independent of x0. We assume that the system is
open-loop unstable and controllable, that is, |a| ≥ 1 and b �= 0.
This system is connected over a noisy channel to a controller,
as shown in Fig. 1. The channel is assumed to have finite
input alphabet M and finite output alphabet M′. A source
coder maps the source symbols (state values) to corresponding
channel inputs. The quantizer outputs are transmitted through
the channel, after passing through a channel encoder. The
receiver has access to noisy versions of the quantizer/coder
outputs for each time instant t, which we denote by q′t ∈ M′.

The problem is to identify conditions on the channel so that
there exist coding and control schemes leading to the stochas-
tic stability of the controlled process. For a thorough review
of such problems with necessity and sufficiency conditions,
see [19].

The source output is quantized as follows:

QΔ
K(x) =

⎧⎪⎪⎨
⎪⎪⎩

(
k − 1

2 (K + 1)
)
Δ, if x ∈

[(
k − 1− 1

2K
)
Δ ,(

k − 1
2K
)
Δ
)(

1
2 (K − 1)

)
Δ, if x = 1

2KΔ

0, if x �∈
[
− 1

2KΔ, 1
2KΔ

]
where K is a positive integer. The quantizer outputs are
transmitted through a memoryless erasure channel, after being
subjected to a bijective mapping, which is performed by the
channel encoder. At time t, the channel encoder Et maps the
quantizer output symbols to corresponding channel inputs qt ∈
M := {1, 2 . . . ,K + 1} so that Et(Qt(xt)) = qt. The con-
troller/decoder has access to noisy versions of the encoder out-
puts q′t ∈ M′ := M∪ {e}, with e denoting the erasure symbol,
generated according to a probability distribution for every fixed
q ∈ M. The channel transition probabilities are given by

P (q′ = i|q = i) = p, P (q′ = e|q = i) = 1− p, i ∈ M.

At each time t, the controller/decoder applies a mapping Dt :
M∪ {e} → R, given by

Dt (q
′
t) = E−1

t (q′t)× 1{q′t �=e} + 0× 1{q′t=e}.

Let {Υt} denote the sequence of i.i.d. binary random variables,
representing the erasure process in the channel, where the
event Υt = 1 indicates that the signal is transmitted with no
error through the channel at time t. Let p = E[Υt] denote
the probability of success in transmission. The following key
assumptions are imposed: Given K ≥ 2 introduced in the defi-
nition of the quantizer, define the rate variables

R = log2(K + 1) R′ = log2(K). (26)

We fix positive scalars δ and α satisfying |a|2−R′
< α < 1 and

α(|a|+ δ)p
−1−1 < 1. With L > 0 a constant, let Q̄ : R× R×

{0, 1} → R be defined as

Q̄(Δ, h, p) =

⎧⎨
⎩

|a|+ δ, if |h| > 1, or p = 0
α, if 0 ≤ |h| ≤ 1, p = 1,Δ > L
1, if 0 ≤ |h| ≤ 1, p = 1,Δ ≤ L.

For each t ≥ 0 and with Δ0 ∈ R selected arbitrarily, let

ut = − a

b
x̂t

x̂t =Dt (q
′
t) = ΥtQ

Δt

K (xt)

Δt+1 =ΔtQ̄

(
Δt,

∣∣∣∣ xt

Δt2R
′−1

∣∣∣∣ ,Υt

)
. (27)

Given the channel output q′t �= e, the controller can simultane-
ously deduce the realization of Υt and the event {|ht| > 1},
where ht = xt/(Δt2

R′−1). This is due to the fact that if the
channel output is not the erasure symbol, the controller knows
that the signal is received with no error. If q′t = e, however, then
the controller applies 0 as its control input and enlarges the bin
size of the quantizer.

By [11, Lemma 3.1], (xt,Δt) is a Markov chain.
Consider now a sequence of stopping times which denote

the times when there is a successful transmission of a source
symbol in the granular region of the quantizer

T0 = 0, Tz+1 = inf {k > Tz : |hk| ≤ 1, pk = 1} , z ∈ Z+.

By [11, Proposition 3.1], the stopping time distribution is
bounded uniformly by a geometric measure.

Lemma IV.1 ([11, Proposition 3.1]): The discrete probability
measure P (Ti+1 − Ti = k|xTi ,ΔTi) satisfies

(1− p)k−1≤P (Ti+1 − Ti ≥ k | xTi ,ΔTi) ≤ (1− p)k−1 + o(1)

where o(1) → 0 as ΔTi → ∞ uniformly in xTi .
As a consequence, the probability P (Ti+1−Ti ≥ k|xTi ,ΔTi)

tends to (1− p)k−1p as ΔTi → ∞.
Theorem IV.2: Suppose that

a2
(
1− p+

p

(2R − 1)2

)
< 1. (28)

Then, under the coding and control policy considered, the chain
(xt,Δt) is geometrically ergodic.
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Proof: By the proof of [11, Theorem 3.2], with
V (x,Δ) = Δ2, and with

0 < ε < 1− pα2

1− (1− p) (|a|+ δ)2

b < ∞ and C a small set, it follows that:

E
[
V
(
xTz+1

,ΔTz+1

)
| xTz

]
≤ (1− ε)V (xTz ,ΔTz ) + b1{(xTz ,ΔTz )∈C}. (29)

Together with Lemma IV.1, and (34) in [11] leading to (22),
these imply that for some λ = 1− ε ∈ (0, 1), B ∈ (p, p/λ)
for some sufficiently large C, and β = 1− p, Theorem III.7
holds. �

Remark IV.1: We recall from [11] that under (28), the system
is quadratically stable in the sense that for each initial condition
(x0,Δ0), limt→∞ E[x2

t ] = Eπ[x
2
0] < ∞. We also note that by

[11] if the goal is to only have the existence of an invariant
probability measure, the requirements on the channel reduce to
the conditions that |a|2−R′

< α < 1 and α(|a|+ δ)p
−1−1 < 1.

V. CONCLUSION

In this paper, we established random-time state-dependent
drift criteria for Markov chains using Lyapunov-theoretic meth-
ods. We established drift criteria both for sub-geometric and
geometric rates of convergence, where the conditions revealed
the relationship between the distributions of the stopping times,
the drift of the Lyapunov functions at random times, and the
ergodicity rates. Future work includes the application of these
results in event triggered control systems, as well as information
theory problems for variable-length decoding.
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