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a b s t r a c t

In this paper, we consider stabilization of multi-dimensional linear systems driven by Gaussian noise
controlled over parallel Gaussian channels. For such systems, it has been recognized that for stabilization
in the sense of asymptotic stationarity or stability in probability, Shannon capacity of a channel is an
appropriate measure on characterizing whether a system can be made stable when controlled over the
channel. However, this is in general not the case for quadratic stabilization. On a related problem of joint-
source channel coding, in the information theory literature, the source-channel matching principle has
been shown to lead to optimality of uncoded or analog transmission and when such matching conditions
occur, it has been shown that capacity is also a relevant figure ofmerit for quadratic stabilization. A special
case of this result is applicable to a scalar LQG system controlled over a scalar Gaussian channel. In this
paper, we show that even in the absence of source-channel matching, to achieve quadratic stability, it
may suffice that information capacity (in Shannon’s sense) is greater than the sum of the logarithm of
unstable eigenvalue magnitudes. In particular, we show that periodic linear time varying coding policies
are optimal in the sense of obtaining a finite second moment for the state of the system with minimum
transmit power requirements for a large class of vector Gaussian channels. Our findings also extend the
literature which has considered noise-free systems.

© 2015 Elsevier B.V. All rights reserved.
1. Problem formulation

Consider the following linear time invariant system:

X̄t+1 = AX̄t + BŪt + W̄t , t ∈ N, (1)

where X̄t ∈ Rn is a state process, Ūt ∈ Rn is a control process,
W̄t ∈ Rn is an independent and identically distributed sequence
of Gaussian random variables with zero mean and covariance
KW . The system matrix A and the input matrix B are of appro-
priate dimensions and we assume that the pair (A, B) is control-
lable. Let {λ1, λ2, . . . , λn} be the eigenvalues of the system matrix
A. Without loss of generality we assume that all the eigenvalues
of A are outside the unit disc (1 ≤ |λi| < ∞ for all i), i.e., all
modes are unstable. The initial state of the system X0 is assumed
to be a random variable with zero mean and covariance Λ0 with
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Trace {Λ0} < ∞. The initial state X0 is assumed to be indepen-
dent of the plant noise variable W̄t . Consider the scenario depicted
in Fig. 1, where a sensor observes an n-dimensional state process
and transmits it to a remote controller overm parallel independent
Gaussian channels. At any time instant t , St :=


s1,t , s2,t , . . . , sm,t


and Rt :=


r1,t , r2,t , . . . , rm,t


are the input and output of the chan-

nel, where ri,t = si,t + zi,t and zi,t ∼ N (0,Ni) are zero mean
white Gaussian noise components with N1 ≤ N2 ≤ · · · ≤ Nm.
We assume that there is a noiseless causal feedback link from the
controller to the sensor and the plant. Let ft : R(n+m)t+n

→ Rm

denote the sensing policy such that St = ft(X[0,t], R[0,t−1]), where
X[0,t] := {X0, X1, . . . , Xt} and the sensor is assumed to have an
average transmit power constraint E[∥St∥2

] ≤ PS . Further, let
πt : Rm(t+1)

→ Rn be the controller policy, then we have Ut =

πt

R[0,t]


. The common goal of the sensor and the controller is to

stabilize the system (1) in the mean square sense, defined as fol-
lows.

Definition 1.1 ([1, Definition 2.2]). A system is said to be mean
square stable if there existsM < ∞ such that supt E[∥Xt∥

2
] < M .
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Fig. 1. Control over parallel Gaussian channels.

Literature review. Stabilization of linear systems over commu-
nication channels has been studied in [2–4,1,5–17]. If the goal is
stabilization in the sense of asymptotic mean stationarity [18] or
similar notions such as stability in probability [1,6], Shannon ca-
pacity is the right measure on what is possible or not (see [18] for
a detailed account of such results in the literature). But if the goal
is stabilization in the sense of having finite second moments, then
Shannon capacity may not the right measure [1].

A related, but different problem, is the joint source-channel
coding problem. In this context, the Gaussian source-channel
setting is an important special case due to the possible mean-
square optimality of linear coding policies as a consequence of
what is known as source-channel matching [19–21]. Using the
data-processing theorem of information theory and dynamic pro-
gramming (see e.g. [20,22,18]), it can be shown that when source-
channel matching occurs, linear coding policies for controlled
linear Gaussian sources are optimal for the minimization of
quadratic distortion measures across Gaussian channels. How-
ever, such a source-channel matching does not apply in a large
class of settings involvingmulti-dimensional sources and channels
[23–26]. Along a similar context, we note that recent work [27] has
obtained structural properties of channels which can be used to re-
alize optimal causal channel codes for a class of multi-dimensional
Gaussian sources with memory.

In the control literature, these problems have been considered
where the sufficiency of information capacity1 being greater than
a lower bound has been observed in a class of settings [10–12],
which, however, consider noise-free plants. It is observed in [11]
that LTI schemes are not optimal for stabilization over paral-
lel channels. For optimal encoding in the unmatched case, lin-
ear encoding is also not optimal in general [29,30]. Even in the
class of memoryless coding schemes, linear coding is not optimal
for the transmission of memoryless Gaussian sources over mem-
oryless Gaussian channels with quadratic distortion measures
[23,25,31,32].

That a scalar Gaussian channel allows for stability when its in-
formation capacity is greater than the sum of the logarithm of un-
stable eigenvalue magnitudes of a linear system, not only in the
sense of ergodicity but also in the sense of quadratic stability, is
not surprising. The reason for this argument is that for such chan-
nels, the data processing inequality arguments lead to the optimal-
ity of linear coding and decoding policies for the minimization of
the quadratic estimation error for the state (see Chapter 11 in [18]).
One can also show that for a scalar Gaussian channel, the error ex-
ponentwith feedback is not bounded [33–35] and using arguments
in [1,14,18], one expects that quadratic stability is possible even for
systems driven by unbounded noise.

Results on controlling a vector linear system over a scalar
Gaussian channel have been obtained in [36] confirming this
line of thought, where linear time-varying policies have been

1 The definition of information capacity for Gaussian channels can be found in
page 263 in [28].
shown to be sufficient for mean-square stability. However, there
does not exist result in the literature that considers noisy multi-
dimensional linear systems controlled over multi-dimensional
Gaussian channels. For such channels, in general, the information
theoretic approach based on the data-processing inequality does
not lead to tight bounds on optimal joint-source-channel coding
schemes, unlike the scalar case.

Contributions of the paper: In this paper, we consider
quadratic (second moment) stabilization of multi-dimensional
linear systems (sources) represented by (1) over vector-valued
Gaussian channels. We show that for a large class of source-
channel pairs, information capacity being greater than the sum
of the logarithm of unstable eigenvalue magnitudes of the linear
system (1) is sufficient for quadratic stability and linear sensing
and control schemes are optimal, even when the source-channel
matching principle does not hold.

In the literature, stabilization results have been presented
for noiseless multi-dimensional plants over multidimensional
channels in [11,12,36,37] and for noisy multi-dimensional plants
over scalar channels in [36]. Our paper extends these results to
more general setups and establishes optimality of linear sensing
and control schemes for the moment stabilization of a wide class
of noisy linear plants over vector Gaussian channels.2

2. Sufficient conditions and a linear time-varying scheme

We have the following sufficiency result.

Theorem 2.1. The system (1) can be mean square stabilized over m
parallel independent Gaussian channels using a linear scheme if there
exist fij ∈ Q such that fij ≥ 0,

m
j=1 fij ≤ 1,

n
i=1 fij ≤ 1 and

log (|λi|) <

m
j=1

fijCj, ∀i ∈ {1, 2, . . . , n}, (2)

where λi are eigenvalues of the system matrix A in (1) and Cj :=

1
2 log(1 +

Pj
Nj

) is the information capacity of jth channel.

Proof. For the proof, we propose a periodic linear time varying
scheme sensing and control scheme. We first give the scheme for
a system with invertible input matrix B, assuming that B = I in
(1): Consider that the control actions in (1) are taken periodically
after every K time steps, i.e., at t = lK − 1 for l ∈ N (Ut = 0
for t ≠ lK − 1). Under this control strategy, the state equation at
t = lK is given by

X̄t+K = AK X̄t + Ūt+K−1 +

K−1
i=0

AK−i−1W̄t+i. (3)

For AK
∈ Rn×n there exist a real non-singular matrix T and a real

matrix Ã such that Ã = T−1AKT = diag

J1, . . . , Jp


, where Jp is a

Jordan block of dimension (algebraic multiplicity) np [39]. A Jordan
block Jp ∈ Rnp×np associatedwith a real eigenvalueλ ofmultiplicity
np has the following form:

Jp =


λ 1

λ
. . .

. . . 1
λ

 , (4)

2 Part of results without proofs have been included in a book chapter that
provides an overview of some recent results on stabilization and control over
Gaussian networks [38].
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and a Jordanblock Jp ∈ Rnp×np associatedwith a complex conjugate
pair of eigenvalues λ = σ ± jω is given by,

Jp =


D I

D
. . .

. . . I
D

 (5)

where D =


σ ω

−ω σ


. Now apply the linear transformation Xt =

T−1X̄t such that T−1AKT is in a real Jordan normal form. Under this
transformation, (3) is written as

Xt+K = ÃXt + Ut+K−1 + Vt , for t = lK , l ∈ N, (6)

where Ã := T−1AKT , Ut := T−1Ūt , and Vt := T−1K−1
i=0 AK−i−1

W̄t+i. The matrix Ã is in real Jordan formwith eigenvalues λ̃i = λK
i ,

where λi are the eigenvalues of A.
Now consider that the sensor observes the state vector Xt :=

[x1,t , x2,t , . . . , xn,t ]T periodically at t = lK . The sensor has access to
m parallel Gaussian channels overwhich it wishes to communicate
the state vector Xt to the remote decoder/controller. We propose
the following periodic linear transmit strategy: Consider that
within each period of K time steps, the encoder linearly transmits
different components xi,t of the state vector Xt on different
channels such that the following two conditions are satisfied in
every time step t: (i) Each channel is used for the transmission
of at most one state component, i.e., two state components are
not transmitted over one channel simultaneously, (ii) None of
the state components is transmitted over more than one channel
simultaneously. Let kij ∈ N be the number of times the jth channel
having information capacity Cj =

1
2 log(1+

Pj
Nj

) is used to transmit
the state xi,t . Under the proposed scheme, we have

kij ≥ 0,
m
j=1

kij ≤ K ,

n
i=1

kij ≤ K . (7)

We assume that xi,t is Gaussian distributed due to the following
argument: If the initial state xi,0 is not Gaussian distributed, then
one can perform an initialization step as in [36, Appendix B, page
2379] to make it Gaussian. This Gaussianization step was first
introduced in [34] for the problem of reliable communication
over a Gaussian channel with noiseless feedback and it has
been used in [36,40,41] for the problem of stabilization over
Gaussian channels with noiseless feedback. After performing this
initialization step, the state is always Gaussian distributed since
the sensing and control policies are linear and the noise variables
are Gaussian. Therefore without loss of generality, we assume that
xi,t is Gaussian distributed.

Let x̂i,t denote the decoder’s MMSE estimate of xi,t at the end of
each transmission period of K time steps. It is shown in Appendix A
that under the proposed linear scheme, minimum mean-squared
error of each state component is given by

E


xi,t − x̂i,t
2

= 2
−2

m
j=1

kijCj
E

x2i,t

. (8)

Let us define X̂t := [x̂1,t , x̂2,t , . . . , x̂n,t ]T . The controller then takes
following actions Ut+K−1 = −ÃX̂t at t = lK − 1. Let fij :=

kij
K .

It is shown in Appendix B that if we can choose {K , kij} such that
fij satisfies the conditions given in Theorem 2.1, then the plant is
mean-square stable.

Theorem 2.1 holds for a system with a controllable (A, B) pair
by the following argument: For a system with controllable (A, B),
any input can be realized by n consecutive actions of the controller.
Since the state encoder has access to the channel outputs, the
encoder–decoder pair can always keep refining estimates of the
state components during the K time steps according to the scheme
given in Appendix A. At the end of K time steps, an estimate X̂ is
available at the controller side. Now the controller wishes to apply
an input −AX̂ , which can be realized in the following n time steps
due to the assumption that the pair (A, B) is controllable. During
these n time stepswhen the controller is applying actions to realize
the input −AX̂ , the encoder–decoder pair will keep refining the
state estimate. �

3. Tightness of the linear scheme

We first present a necessary condition for stabilization.

Theorem 3.1. The linear system in (1) can be mean square stabilized
over the given parallel Gaussian channel only if

log (|det (A) |) <
1
2

m
j=1

log

1 +

P⋆
j

Nj


, (9)

where P⋆
j = max{γ −Nj, 0} and γ is chosen such that

m
j=1 P

⋆
j = PS .

Proof. The proof simply follows from [14, Theorem 4.1] and the
fact that the R.H.S. of the inequality in (9) is the information
capacity of the parallel Gaussian channel [42]. Note that the proof
in [14] applies for the Gaussian channel by approximating it as a
limit of discrete channels [43, Lemma 5.5.1]. �

Papers [11,12] derive conditions for mean-square stabilization
of noiseless linear plants over parallel Gaussian channels. The
necessary condition in [11, Theorem 6] is not tight in general and
its achievability is not guaranteed by LTI schemes. The paper [12]
proposes a non-linear scheme for a noise-free scalar plant and
derives a sufficient condition [12, Theorem 6], which coincides
with the necessary condition (9). Thus the non-linear scheme
in [12] is optimal for stabilization of noiseless scalar plant. A
time varying version of this non-linear scheme is optimal for
stabilization of noiseless multi-dimensional plants [36]. In the
following we present the conditions under which the proposed
linear scheme is optimal for mean-square stabilization of noisy
multi-dimensional plants over vector Gaussian channels.

Theorem 3.2. The linear scheme is optimal for mean-square stabiliz-
ing an n-dimensional plant over m parallel Gaussian channels if there
exist fij ∈ Q such that fij ≥ 0,

m⋆

j=1 fij ≤ 1,
n

i=1 fij = 1 and

log (|λi|) <

m⋆
j=1

fij
2

log

1 +

P⋆
j

Nj


, (10)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m⋆
}, where P⋆

j
is the optimal power allocation given by the water-filling solution
[42, pp. 204–205] and m⋆

≤ m is the number of active channels for
which optimal transmit power is non-zero.

Proof. According to the water-filling solution [42, pp. 204–205],
the optimal power allocation over sub-channels for maximizing
capacity is given by P⋆

j = max{γ − Nj, 0}, where γ is chosen such
that

m
i=j P

⋆
j = PS . Since we have assumed N1 ≤ N2 ≤ · · · ≤ Nm,

there exists 0 ≤ m⋆
≤ m such that P⋆

j > 0 for j ≤ m⋆ and
P⋆
j = 0 for j > m⋆. Suppose we allocate the powers to the sub-

channels according to the water filling solution, i.e., we now have

m⋆ active parallel channels with capacities Cj =
1
2 log


1 +

P⋆
j
Nj


for
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1 ≤ j ≤ m⋆. According to Theorem 2.1, the system in (1) is mean-
square stable under the linear time varying scheme if there exist
fij ∈ Q such that fij ≥ 0,

m
j=1 fij ≤ 1,

n
i=1 fij ≤ 1 and

log (|λi|) <

m⋆
j=1

fij
2

log

1 +

P⋆
j

Nj


, (11)

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m⋆
}. Summing over

1 ≤ i ≤ n, we get

n
i=1

log(|λi|) <

n
i=1

m
j=1

fijCij =

m
j=1


n

i=1

fij


Cj. (12)

Observe that if
n

i=1 fij = 1, then (12) can be written as

log (|det (A) |) =

n
i=1

log(|λi|) <
1
2

m
j=1

log

1 +

P⋆
j

Nj


, (13)

which is the same condition as (9), i.e., the necessary and
the sufficient conditions coincide. Thus the proposed scheme is
optimal in the sense that there does not exist any other scheme
that can stabilize the plant with a lower transmission power,
when there exist coefficients fij that satisfy the conditions given
in Theorem 3.2. �

Remark 3.1. A general vector Gaussian channel can be decom-
posed into an equivalent parallel channel by employing linear
pre-processing at the encoder and linear post-processing at the de-
coder [42, pp. 292]. If the equivalent parallel channel satisfies the
conditions in Theorem 3.2, then the proposed linear scheme is also
optimal over the given vector Gaussian channel.

Remark 3.2. The verification of the existence of coefficients fij
satisfying the conditions given in Theorem 3.2 is a linear program
and is computationally feasible. In the following we provide some
particular instances where linear scheme is optimal. In all the
following examples, we assume that

n
i=1 log(|λi|) <

m
j=1 Cj

because this is a necessary condition for stabilization.

1. If n = m, log(λi) < Ci, then we can choose fii = 1 and fij = 0
for j ≠ i.

2. If m = 2, n = 3, with λ1 = λ2 = λl
3, C2 =

l
2C1 for any l ∈ N,

then we can choose, f11 = f21 = 0.5, f31 = 0, f12 = f22 =

0, f32 = 1.
3. If m = 1 (scalar channel), then we can choose fi1 =

log(|λi|)n
i=1 log(|λi|)

for all i.

4. Conclusions

We studied the problem of mean-square stabilization of a noisy
multi-dimensional linear systems over vector Gaussian channels
subject to an average transmit power constraint. A linear time
varying sensing and control scheme is proposed and the conditions
which guarantee optimality of the linear scheme are derived. For
a given system and a given channel, the optimality of the linear
policies can be verified by solving a linear program. We observe
that the linear scheme is optimal for a wide class of linear systems
and Gaussian channels in the sense that there does not exist any
other scheme that can mean-square stabilize the system using a
lower transmissionpower. Interestingly, linear policies are optimal
for quadratic stabilization even if the source-channel matching
principle does not hold.
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Appendix A. Estimation with noiseless feedback

For simplification we drop the subscripts of xi,t and consider
that a variable x has to be transmitted/estimated over m parallel
Gaussian channels, where jth sub-channel has capacity Cj =
1
2 log


1 + Pj/Nj


for j = 1, 2, . . . ,m. Assume that the encoder

uses the first channel k1 times, the second channel k2 times, and so
on. Consider the following scheme based on the Schalkwijk Kailath
coding scheme [34]: At t = 1, the encoder transmits s1,1 =


P1

E[x2]
x

over the first channel, the decoder receives r1,1 = s1,1 + z1,1, and
computes the MMSE estimate x̂1 =

E[xr1,1]
E[r21,1]

r1,1, where x̂t denotes

the estimate of x at time t . Further the estimation error at any time
t is denoted as ϵt := x− x̂t and the encoder can compute the error
due to noiseless feedback link. By computation, the variance of ϵ1 is

E[ϵ2
1 ] =

N1

P1 + N1
E[x2] = 2−2C1E[x2], (A.1)

where C1 =
1
2 log (1 + P1/N1). For 2 ≤ t ≤ k1, the encoder trans-

mits s1,t =


P1

E[ϵ2t-1]
ϵt-1, the decoder estimates ϵ̂t-1 =

E[ϵt-1r1,t ]
E[r21,t ]

r1,t

and updates its estimate of x as x̂t = x̂t-1 − ϵ̂t-1. The associated
estimation error is, ϵt = x − x̂t = ϵ̂t-1 − ϵt-1. The variance of esti-
mation error is computed asE[ϵ2

t ] = 2−2C1E[ϵ2
t−1], which together

with (A.1) implies

E[ϵ2
k1 ] = 2−2k1C1E[x2]. (A.2)

Similarly, for the next k2 time steps the encoder transmits over the
second sub-channel having capacity C2, and then over the third
channel and so on. At the end of transmission over the jth sub-
channel the variance of estimation error is given by

E[ϵ2
k1+k2+···+kj ] = 2−2kjCjE[ϵ2

kj-1 ]. (A.3)

Accordingly the estimation error at the end of whole transmission
period, i.e., at t =

m
j=1 kj, is given by

E[(x − x̂t)2] = 2−2kmCmE[ϵ2
km-1

] = 2
−2

m
j=1

kjCj
E[x2]. (A.4)

Appendix B. Proof of Theorem 2.1

Under the proposed linear scheme, we can write (6) as

Xt+K = Ã

Xt − X̂t


+ Vt , t = lK , l ∈ N, (B.1)

where Ã is in real Jordan form with eigenvalues λ̃i. Some of these
eigenvalues can be either real or complex and distinct or have
algebraic multiplicity. According to (B.1), the state component
corresponding to a real distinct eigenvalue λ̃i is given by

xi,t+K = λ̃i(xi,t − x̂i,t) + vi,t . (B.2)

For a complex eigenvalue pair λ̃i = λ̃∗

i+1, the state components are
given by

xi,t+K = σ̃ (xi,t − x̂i,t) + ω̃(xi+1,t − x̂i+1,t) + vi,t ,

xi+1,t+K = −ω̃(xi,t − x̂i,t) + σ̃ (xi+1,t − x̂i+1,t) + vi+1,t . (B.3)
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If λ̃r = λ̃r+1 = · · · = λ̃s = λ̃ for some r ≤ s, then according to (4)
and (B.1) the corresponding states are given by

xi,t+K =λ̃(xi,t − x̂i,t) + (xi+1,t − x̂i+1,t) + vi,t ,

xs,t+K =λ̃(xs,t − x̂s,t) + vs,t , (B.4)

for i = r, . . . , s − 1. Finally, if λ̃r = λ̃∗

r+1 = λ̃r+2 = λ̃∗

r+3 · · · =

λ̃⋆
s = σ̃ + jω̃ for some r ≤ s, then according to (5) and (B.1) the

corresponding states are given by

xi,t+K = σ̃ (xi,t − x̂i,t) + ω̃(xi+1,t − x̂i+1,t) + (xi+2,t − x̂i+2,t)

+ vi,t , for i = r, r + 2, . . . , s − 2,

xi+1,t+K = −ω̃(xi,t − x̂i,t) + σ̃ (xi+1,t − x̂i+1,t)

+ (xi+3,t − x̂i+3,t) + vi+1,t ,

for i = r + 1, r + 3, . . . , s − 1,

xs−1,t+K = σ̃ (xs-1,t − x̂s-1,t) + ω̃(xs,t − x̂s,t) + vs-1,t ,

xs,t+K = −ω̃(xs-1,t − x̂s-1,t) + σ̃ (xs,t − x̂s,t) + vs,t .

(B.5)

In the following we find conditions which are sufficient for
mean-square stabilization of the state components given by (B.2),
(B.3), (B.4), and (B.5), that covers all possible Jordan blocks for
the system matrix A. We first consider the state equation (B.2)
corresponding to a unique real eigenvalue λ̃i. Let kij be the number
of times the jth channel is used for the transmission of state xi,t
associated with the unique real eigenvalue λ̃i. The secondmoment
of xi,t+K at t = lK is,

E

x2i,t+K


= λ̃2

i E

(xi,t − x̂i,t)2


+ E


v2
i,t


(a)
= λ̃2

i 2
−2

m
j=1

kijCj
E

x2i,t

+ νi, (B.6)

where (a) follows from (8) and νi := E

v2
i,t


for i = 1, 2, . . . , n.

We observe that E

x2i,t

is bounded if λ̃2

i 2
−2

m
j=1 kijCj < 1. Thus the

state xi,t is stable if

λ̃2
i 2

−2
m
j=1

kijCj
< 1 ⇒ log


|λ̃i|


<

m
j=1

kijCj. (B.7)

Next consider the states in (B.3), which are associated with a
unique complex eigenvalue pair λ̃i, λ̃i+1. Since |λ̃i| = |λ̃i+1|, we
assume that kij = ki+1j, i.e., all the channels are equally used for
the transmission of xi,t and xi+1,t . The second moments of xi,t+K
and xi+1,t+K at t = lK are given by

E

x2i,t+K


= 2

−2
m
j=1

kijCj 
σ̃ 2E


x2i,t

+ ω̃2E


x2i+1,t


+ 2σ̃ ω̃E


xi,t − x̂i,t

 
xi+1,t − x̂i+1,t


+ νi, (B.8)

E

x2i+1,t+K


= 2

−2
m
j=1

kijCj 
ω̃2E


x2i,t

+ σ̃ 2E


x2i+1,t


− 2σ̃ ω̃E


xi,t − x̂i,t

 
xi+1,t − x̂i+1,t


+ νi+1.

(B.9)

By summing (B.8) and (B.9) we get,

E

x2i,t+K


+ E


x2i+1,t+K


=

σ̃ 2

+ ω̃2 2−2
m
j=1

kijCj

×

E

x2i,t

+ E


x2i+1,t


+ νi + νi+1. (B.10)

The sum E

x2i,t+K


+ E


x2i+1,t+K


is bounded if


σ̃ 2

+ ω̃2


2−2
m

j=1 kijCj < 1. Since |λ̃i|
2

= |λ̃i+1|
2

=

σ̃ 2

+ ω̃2
2 and kij =
ki+1j, we have the following conditions for stabilization:

log

|λ̃i|


<

m
j=1

kijCj, log

|λ̃i+1|


<

m
j=1

ki+1jCj. (B.11)

Now consider the state components {xi,t}si=r corresponding to
the Jordan block associated with real eigenvalue given in (B.4).
Since all the states are equally unstable, we let krj = kr+1j = · · · =

ksj =: kij. Following the same steps as in (B.6), we can show that

xs,t is stable if log

|λ̃|


<
m

j=1 kijCj. For i = r, . . . , s − 1, if we
assume that xi+1,t is stable, the second moment of xi,t+K at t = lK
can be bounded as

E

x2i,t+K

 (a)
= λ̃2E


xi,t − x̂i,t

2
+ E


xi+1,t − x̂i+1,t

2
+ 2λ̃E


xi,t − x̂i,t

 
xi+1,t − x̂i+1,t


+ νi

(b)
= λ̃22

−2
m
j=1

kijCj
E

x2i,t

+ 2

−2
m
j=1

kijCj
E

x2i+1,t


+ 2λ̃E


xi,t − x̂i,t

 
xi+1,t − x̂i+1,t


+ νi

(c)
≤ λ̃22

−2
m
j=1

kijCj
E

x2i,t

+ 2

−2
m
j=1

kijCj
E

x2i+1,t


+ 2λ̃


E


xi,t − x̂i,t
2E


xi+1,t − x̂i+1,t

2
+ νi

= λ̃22
−2

m
j=1

kijCj
E

x2i,t

+ 2

−2
m
j=1

kijCj
E

x2i+1,t


+ 2λ̃2

−2
m
j=1

kijCj
E

x2i,t


E

x2i+1,t


+ νi

(d)
≤ b1E


x2i,t

+ b2


E

x2i,t

+ b3, (B.12)

where (a) follows from (B.4); (b) follows from (8); (c) follows
by Cauchy–Schwarz inequality; (d) follows from the assumption
that xi+1,t is stable i.e., E


x2i+1,t


< M (we have already shown

that xs,t is stable if log

|λ̃|


<
m

j=1 kijCj) and by defining b1 :=

λ̃22−2
m

j=1 kijCj , b2 := 2λ̃2−2
m

j=1 kijCj
√
M , and b3 := 2−2

m
j=1 kijCjM

+ νi. We now find a condition to ensure convergence of the
sequence,

αt+1 = b1αt + b2
√

αt + b3, (B.13)

by making use of the following lemma.

Lemma B.1 ([36, Lemma 6.1]). Let T : R → R be a non-decreasing
continuous mapping with a unique fixed point x⋆

∈ R. If there exists
u ≤ x⋆

≤ v such that T (u) ≥ u and T (v) ≤ v, then the sequence
generated by xt+1 = T (xt), t ∈ N converges starting from any initial
value x0 ∈ R.

We observe that the mapping T (α) = b1α + b2
√

α + b3 with
α ≥ 0 is monotonically increasing since b1, b2 > 0. It will have
a unique fixed point α⋆ if and only if b1 < 1, since b2, b3 > 0.
Assuming that b1 < 1, there exists u < α⋆ < v such that
T (u) ≥ u and T (v) ≤ v. Therefore by LemmaB.1, the sequence {αt}

is convergent if b1 = λ̃22−2
m

j=1 kijCj < 1 ⇒ log(λ̃) <
m

j=1 kijCj.
Since |λ̃i| = λ̃, xi,t is stable if

log

|λ̃i|


<

m
j=1

kijCj. (B.14)
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⋆)
E

x2i,t+K


+ E


x2i+1,t+K

 (a)
=

σ̃ 2

+ ω̃2 2−2
m
j=1

kijCj 
E

x2i,t

+ E


x2i+1,t


+ 2

−2
m
j=1

kijCj 
E

x2i+2,t


+ E


x2i+3,t


+ 2σ̃E


xi,t − x̂i,t

 
xi+2,t − x̂i+2,t


+ 2σ̃E


xi+1,t − x̂i+1,t

 
xi+3,t − x̂i+3,t


+ 2ω̃E


xi+1,t − x̂i+1,t

 
xi+2,t − x̂i+2,t


− 2ω̃E


xi,t − x̂i,t

 
xi+3,t − x̂i+3,t


+ νi + νi+1

(b)
≤

σ̃ 2

+ ω̃2 2−2
m
j=1

kijCj 
E

x2i,t

+ E


x2i+1,t


+ 2

−2
m
j=1

kijCj 
E

x2i+2,t


+ E


x2i+3,t


+ 2σ̃2

−2
m
j=1

kijCj


E

x2i,t


E

x2i+2,t


+


E

x2i+1,t


E

x2i+3,t



+ 2ω̃2
−2

m
j=1

kijCj


E

x2i+1,t


E

x2i+2,t


+


E

x2i,t


E

x2i+3,t


+ νi + νi+1

(c)
≤

σ̃ 2

+ ω̃2 2−2
m
j=1

kijCj 
E

x2i,t

+ E


x2i+1,t


+ 2

−2
m
j=1

kijCj
M + 2σ̃2

−2
m
j=1

kijCj
M


E

x2i,t

+


E

x2i+1,t



+ 2ω̃2
−2

m
j=1

kijCj
M


E

x2i,t

+


E

x2i+1,t


+ νi + νi+1

(d)
≤ b1


E

x2i,t

+ E


x2i+1,t


+ b2


E

x2i,t

+ E


x2i+1,t


+ b3 (

Box I.
Finally, let us consider the states given in (B.4) corresponding to
the Jordan block associated with the complex eigenvalues. Since
all the state components {xi,t}s−1

i=r are equally unstable, we fix krj =

kr+1j = · · · = ksj = kij. Following the same steps as in (B.8), (B.9),
and (B.10), we can show that the sum E


x2i,t+K


+ E


x2i+1,t+K


is

bounded if

log

|λ̃s−1|


<

m
j=1

kijCj, log

|λ̃s|


<

m
j=1

kijCj. (B.15)

For i = r, r + 2, r + 4, . . . , s − 3, we have

E

x2i,t+K


= 2

−2
m
j=1

kijCj 
σ̃ 2E


x2i,t

+ ω̃2E


x2i+1,t


+ E


x2i+2,t


+ 2σ̃ ω̃E


xi,t − x̂i,t

 
xi+1,t − x̂i+1,t


+ 2ω̃E


xi+1,t − x̂i+1,t

 
xi+2,t − x̂i+2,t


+ 2σ̃E


xi,t − x̂i,t

 
xi+2,t − x̂i+2,t


+ νi, (B.16)

E

x2i+1,t+K


= 2

−2
m
j=1

kijCj 
ω̃2E


x2i,t

+ σ̃ 2E


x2i+1,t


+ E


x2i+3,t


− 2σ̃ ω̃E


xi,t − x̂i,t

 
xi+1,t − x̂i+1,t


+ 2σ̃E


xi+1,t − x̂i+1,t

 
xi+3,t − x̂i+3,t


− 2ω̃E


xi,t − x̂i,t

 
xi+3,t − x̂i+3,t


+ νi+1. (B.17)

Assuming that xi+2,t and xi+3,t are stable, the sum E

x2i,t+K


+

E

x2i+1,t+K


is bounded by (⋆) given in Box I,where (a) follows from

(B.16) and (B.17); (b) follows from the Cauchy–Schwarz inequality;
(c) follows from the assumption that


E

x2i+2,t


+ E


x2i+3,t


<

M , and (d) follows by using the following inequality


E

x2i,t


+
E

x2i+1,t


< 2


E

x2i,t

+ E


x2i+1,t


and defining b1 :=


σ̃ 2

+ω̃2


2−2
m

j=1 kijCj , b2 := 8 (σ̃ + ω̃) 2−2
m

j=1 kijCjM , and b3 := 2−2
m

j=1 kijCj

M+νi+νi+1. If we define αt := E

x2i,t

+E


x2i+1,t


, then according

to (⋆) we get a majorizing sequence that has the same form as
(B.13) with the values of bi given above. Using Lemma B.1 we can
show that αt is convergent if b1 =


σ̃ 2

+ ω̃2

2−2

m
j=1 kijCj < 1.
Since

σ̃ 2

+ ω̃2


= |λ̃|
2

= |λ̃i|
2, we get

log

|λ̃i|


<

m
j=1

kijCj. (B.18)

According to (B.7), (B.11), (B.14), and (B.18), all modes are stable if

log

|λ̃i|


<

m
j=1

kijCj. (B.19)

Since |λ̃i| = |λi|
K , we can re-write (B.19) as,

log

|λi|

K  <

m
j=1

kijCj ⇒ log (|λi|) <

m
j=1

fijCj, (B.20)

where fij :=
kij
K . According to (7) fij ≥ 0,

m
j=1 fij ≤ 1, andn

i=1 fij ≤ 1. This completes the proof.
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