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a b s t r a c t

The problem of causal transmission of a memoryless Gaussian source over a two-hop memoryless
Gaussian relay channel is considered. The source and the relay encoders have average transmit power
constraints, and the performance criterion is mean-squared distortion. The main contribution of this
paper is to show that unlike the case of a point-to-point scalar Gaussian channel, linear encoding schemes
are not optimal over a two-hop relay channel in general, extending the sub-optimality results which are
known for more than three hops. In some cases, simple three-level quantization policies employed at the
source and at the relay can outperform the best linear policies. Further a lower bound on the distortion is
derived and it is shown that the distortion bounds derived using cut-set arguments are not tight in general
for sensor networks.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a physical phenomenon characterized by a sequence
of independent and identically distributed real valued Gaussian
random variables {Xn}n∈Z+

having zero mean and variance σ 2
x ,

where n denotes a discrete time index. We wish to instantly
communicate this physical phenomenon to a remote destination
over a two-hop relay channel with as high fidelity as possible. The
system model is illustrated in Fig. 1. According to the figure, at
a discrete time n ∈ Z+ the source encoder E observes Xn and
produces Se,n = f1,n({Xi}

n
i=1) suitable for transmission, where f1,n :

Rn
→ R is a causal measurable mapping. The mapping f1,n has to

satisfy the following average power constraint,

E[S2e,n] ≤ PS . (1)

The signal Se,n is then observed in noise by the relay node R as
Yn = Se,n + Zr,n, where {Zr,n}n∈Z+

is a zero mean white Gaussian
noise sequence of variance Nr . Since there is no direct link from
the source encoder to the destination, we neglect transmission
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and processing delays at the relay, i.e., the relay node applies a
causal mapping on the received signal f2,n : Rn

→ R to produce
Sr,n = f2,n({Yi}

n
i=1) under the power constraint,

E[S2r,n] ≤ PR. (2)

The signal Sr,n is then transmitted over a Gaussian channel.
Accordingly the destination node D receives Rn = Sr,n + Zd,n,
where {Zd,n}n∈Z+

is a zero mean white Gaussian noise sequence of
variance Nd. Upon receiving Rn the decoder wishes to reconstruct
the transmitted variable Xn by applying a mapping gn : Rn

→ R to
produce X̂n = gn({Ri}

n
i=1). We define the signal-to-noise ratios of

E–R and R–D links as γr := PS/Nr and γd := PR/Nd respectively.
The encoder, the relay, and the decoder are all causal and delay-
free (zero delay). The objective is to choose the encoder, relay, and
decoder mappings such that following distortion

D = lim
N→∞

1
N

N
n=1

E[(Xn − X̂n)
2
] (3)

is minimized subject to the constraints in (1) and (2).
It is well-known that linear encoding is optimal for transmis-

sion of a Gaussian source over a point-to-point scalar Gaussian
channel when the distortion measure is the mean squared error
(Berger, 1971; Goblick, 1965). From Ayanoglu and Gray (1987),
Bansal and Başar (1987), Dobrushin and Tsybakov (1962), Fine
(1965) we know that linear policies are also optimal if the encoder
observes a noisy version of a Gaussian source. Moreover in Gastpar
(2008) Gastpar has shown that a linear (uncoded) scheme is even
optimal in a simple Gaussian sensor network setting where each

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.06.011

http://dx.doi.org/10.1016/j.automatica.2013.06.011
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:zaidi@kth.se
mailto:yuksel@mast.queensu.ca
mailto:oech@kth.se
mailto:skoglund@kth.se
http://dx.doi.org/10.1016/j.automatica.2013.06.011


2 A.A. Zaidi et al. / Automatica ( ) –

Fig. 1. System model.

sensor node observes a noisy version of a Gaussian source and all
the sensor nodes simultaneously transmit over a multiple-access
Gaussian channel.

In this paper, we show that linear policies are not optimal in
general for the transmission of a Gaussian source over a Gaus-
sian channel comprised of one or more relay nodes connected in
cascade. A special case of this problem was studied by Lipsa and
Martins in Lipsa and Martins (2011) where they provided coun-
terexamples based on binary quantizers to show that linear poli-
cies are not optimal when the number of relays are greater than or
equal to three. Further we discuss that linear encoding policies are
person-by-person optimal2 for a two-hop relay channel. However
they do not guarantee global optimality because the given team
problem is concave in the encoding policies, as observed in Yük-
sel and Linder (2011). We also derive a lower bound on distortion
which is not tight in general.

This is a team decision problem under non-classical informa-
tion structure (Ho, 1980). Some such problems are very difficult
depending on the cost function and the information structure. The
problem under study in this paper is a variation of the Witsen-
hausen’s problem (Witsenhausen, 1968) with the addition of a re-
lay encoder.

The problem of causal transmission over a two-hop relay chan-
nel is motivated by control applications, where the sensor mea-
surements of a dynamical system are transmitted via a relay node
to a remote controller. Control of linear systems over various types
of relay channels has been studied in Kumar, Gupta, and Laneman
(2010), Zaidi, Oechtering, and Skoglund (2010); Zaidi, Oechtering,
Yüksel, and Skoglund (2011), where linear schemes are used to de-
rive conditions onmean-square stability. In Karlsson and Skoglund
(2010), non-linear policies are shown to outperform linear policies
for instantaneous transmission of a Gaussian source over an or-
thogonal relay channel. A similar observation ismade in the control
context for parallel Gaussian channels (Andersson, Zaidi, Wern-
ersson, & Skoglund, 2011; Yüksel & Tatikonda, 2007). The paper
(Andersson et al., 2011) shows linear policies are not even person-
by-person optimal for control over parallel Gaussian channels.
However the problem under study in this paper is fundamentally
different from the problems addressed in Andersson et al. (2011),
Karlsson and Skoglund (2010), Yüksel and Tatikonda (2007) due to
a different system model.
Notations: a sequence of variables is defined as XN

:= {Xn}
N
n=1.

The probability density function of a random variable X is denoted
as p(x) instead of pX (x) (we drop the subscript for ease of nota-
tion and its usage will be clear from the context). The function

Q (x) , 1
√
2π


∞x e−

τ2
2 dτ is the complement of the standard nor-

mal cumulative distribution function. The operator E[·] is used for
expectation.

2. Distortion lower bound

Consider the following series of inequalities:

1
N

N
n=1

I(Xn; X̂n)
(a)
=

1
N


N

n=1

H(Xn) −

N
n=1

H(Xn|X̂n)



2 In a team decision problem, policies of decision makers are person-by-person
optimal if there is no incentive for any decision maker to uni-laterally deviate from
its policy given others’ policies (Ho, 1980).

(b)
=

1
N


H(XN) −

N
n=1

H(Xn|X̂n)


(c)
≤

1
N


H(XN) −

N
n=1

H(Xn|X̂N , Xn−1)



=
1
N


H(XN) − H(XN

|X̂N)


=
1
N
I(XN

; X̂N)

(d)
≤

1
N
I(SNe ; RN)

(e)
≤

1
N

min{I(SNe ; YN), I(SNr ; RN)}

(f)
≤

1
N

min


N

n=1

I(Se,n; Yn),

N
n=1

I(Sr,n; Rn)


(g)
≤

1
2
min


log


1 +

PS
Nr


, log


1 +

PR
Nd


, (4)

where (a) follows from the definition of mutual information;
(b) follows from the independence of the sequence XN

n ; (c) follows
from the fact that conditioning reduces entropy; (d) and (e) follow
from the data processing inequality (Cover & Thomas, 2006, The-
orem 2.8.1) with Markov chain XN

− SNe − RN
− X̂N ; (f) follows

from the fact that the channels are memoryless and conditioning
reduces entropy; and (g) follows from the fact that mutual infor-
mation ismaximized byGaussian distribution among randomvari-
ableswith a given variance (Cover & Thomas, 2006, Theorem8.6.5).
Further consider the following inequalities:

1
N

N
n=1

I(Xn; X̂n)

(a)
≥

1
2N

N
n=1

log


σ 2
x

E[(Xn − X̂n)2]


(b)
≥

1
2
log


σ 2
x


−

1
2
log


1
N

N
n=1

E

(Xn − X̂n)

2


, (5)

where (a) follows from the rate distortion theorem for an i.i.d.
Gaussian source (Cover & Thomas, 2006); and (b) follows from the
concavity of the logarithm function and Jensen’s inequality. From
(4) and (5), we obtain the following lower bound:

D = lim
N→∞

1
N

N
n=1

E

(Xn − X̂n)

2


≥ σ 2
x max


Nr

PS + Nr
,

Nd

PR + Nd


=

σ 2
x

1 + min{γr , γd}
. (6)

Remark 1. The lower bound has been obtained without using
causality constraints. Due to the two channel noise components
(Zr , Zd) with non-zero variance, we have

max
PSe

I(Se; R) < min

max
PSe

I(Se; Y );max
PSr

I(Sr; R)


.

As a result of this strict inequality, the bound (6) is not tight if we
restrict the encoding policies to be memoryless.3 This bound will
be tight for memoryless policies when the variance of any of the
two channel noise components approaches zero. This observation

3 A policy that only uses the current input at any time n.



A.A. Zaidi et al. / Automatica ( ) – 3

can also be made from Bansal and Başar (1989). In Yüksel and
Tatikonda (2007, Theorem 3.5) the authors discussed that I(Se; R)
is strictly lower than the capacity of a two-hop relay channelwhich
follows from block coding arguments and cut-set bound. This tells
us that the distortion bounds obtained using cut-set arguments are
not tight in general for relay networks with memoryless policies.

3. Linear policies

In this section, we find the optimal linear policies and show that
linear policies are person-by-person optimal.Moreover, it is shown
that the person-by-person optimality of linear policies does not
guarantee global optimality.

3.1. Optimal linear encoding

Typically when a source is memoryless and the encoders are
causal, the optimal encoders are memoryless (Walrand & Varaiya,
1983). This can be easily verified by showing that if we transmit
a linear combination of the current and the previous source
observations, then the previous observations will only contribute
to noise as the source is memoryless. We therefore restrict our
study to memoryless linear policies, in the sense that the encoders
merely transmit a scaled version of the received signal. That is, the
source and the relay encoders transmit the following signals:

Se,n =


an
σ 2
x
Xn, Sr,n =


bn

an + Nr
Yn,

where an, bn ∈ R+ are time varying gain coefficients which are
chosen such that the transmit power constraints in (1) and (2)
are satisfied, i.e., an ≤ PS and bn ≤ PR. The decoder accordingly
receives

Rn =


anbn

σ 2
x (an + Nr)

Xn +


bn

an + Nr
Zr,n + Zd,n,

and computes the MMSE estimate according to X̂n = E[Xn|Rn
] =

E[Xn|Rn], where we have used the fact that the {Rn, Rn−k
} are

mutually independent for all k ≠ n. Since Xn is Gaussian, the
distortion is given by

E[(Xn − X̂n)
2
] = σ 2

x


1 −

anbn
(an + Nr)(bn + Nd)


,

⇒ DL = lim
N→∞

σ 2
x

N

N
n=1


1 −

anbn
(an + Nr)(bn + Nd)


. (7)

The optimal choice of the gain coefficients 0 < an ≤ PS, 0 < bn ≤

PR, which minimizes (7) is {a⋆
n = PS, b⋆

n = PR}. This choice of the
gain coefficients leads to

D⋆
L = σ 2

x


1 −

1
(1 + γr)(1 + γd)


. (8)

We have so far found a strict lower bound on the distortion
in (6) and an upper bound in (8) using the best linear scheme.
However we still do not know how good linear policies are? In the
following we show that the linear policies are person-by-personal
optimal, however they do not guarantee global optimality.

3.2. Person-by-person optimality of linear policies

Let us fix the source encoder to be linear. Given a linear and
memoryless policy at the source encoder, we now find an optimal

relaying policy whichminimizes the distortionE[(Xn−E[Xn|Rn
])2]

suffered at time n. We can rewrite the distortion suffered at time n
as

E[(Xn − E[Xn|Rn
])2]

(a)
= E


(Xn − E[Xn|Y n

])2

+ E


(E[Xn|Y n

] − E[Xn|Rn
])2


(b)
= E


(Xn − cnYn)

2
+ E


(cnYn − E[Xn|Rn

])2

, (9)

where (a) follows from Xn−Y n
−Rn andE[(Xn−E[Xn|Y n

])(E[Xn|Y n
]

− E[Xn|Rn
])] = 0 (by the orthogonality principle); and (b) fol-

lows from the fact that the source encoder is linear and memo-
ryless and the MMSE estimation of a Gaussian variable is linear,
i.e. E[Xn|Y n

] = cnYn, where cn is a scalar. According to (9), the
optimal relaying policy is the one which minimizes E[(cnYn −

E[Xn|Rn
])2], since the first term in the distortion function is inde-

pendent of the relaying policy. This problemwas studied in Bansal
and Başar (1987), from which it follows that an optimal relay en-
coding policy is linear andmemoryless if we fix the source encoder
to be linear memoryless. This observation can also be made from
Ayanoglu and Gray (1987), Dobrushin and Tsybakov (1962), Fine
(1965), Gastpar (2008), Gomadam and Jafar (2007). Now if we fix
the relay encoder policy to be linear and memoryless, one can ob-
serve that the problem becomes equivalent to the transmission of
a Gaussian source over a point to point Gaussian channel subject to
an average power constraint, for which it is well-known that lin-
ear (memoryless) encoding is optimal in the sense of minimizing
mean-squared distortion (Berger, 1971; Goblick, 1965). Hence, lin-
ear encoding policies are person-by-person optimal.

3.3. Concavity of the team problem

In a decentralized team optimization problem person-by-
person optimal solutions are globally optimal if the cost function is
convex in the policies of the decision makers and the cost function
satisfies certain differentiability conditions in the policies (Radner,
1962). Let P be an observation channel from the input variable X at
source encoder to the channel output variable R such that P(·|x) is
a probability measure on the Borel σ -algebra B(R) on R for every
x ∈ R, and P(A|·) : R → [0 : 1] is a Borel measurable function
for every A ∈ B(R). Similarly we define P1 as an observation
channel from the variable X to the variable Y , and P2 as an
observation channel from the variable Y to the variable R. From
Yüksel and Başar (2013), Yüksel and Linder (2011, 2012) it follows
that the distortion in (3) is concave in the joint observation channel
P(A|x) =


R P2(A|y)P1(dy|x) for every A ∈ B(R). If the encoding

policies are viewed as stochastic kernels, then the individual
observation channels P1 and P2 are given by convolutions of
Gaussian distributions with the encoding policies, i.e., P1 = PSe|X ∗

N (0,Nr) and P2 = PSr |Y ∗N (0,Nd). Since the distortion is concave
in the joint channel and the individual channels are affine in the
source and the relay encoding policies, the distortion is concave
in the encoding policies (PSe|X , PSr |Y ) and the optimal policies have
to be deterministic if they exist. This implies that the person-
by-person optimal encoding policies do not guarantee global
optimality when policies are viewed as stochastic kernels (Wu &
Verdú, 2011; Yüksel & Başar, 2013; Yüksel & Linder, 2011, 2012).

4. Counterexample: non-linear policies

In this section, we provide a simple counterexample to show
that linear policies are not optimal for causal transmission of a
Gaussian source over the given two-hop relay channel. Consider
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the following time invariant policies at the source encoder and the
relay encoder respectively:

f1(x) =

a, for x > m1
0, for |x| ≤ m1
−a, for x < −m1


, (10)

f2(y) =

b, for y > m2
0, for |y| ≤ m2
−b, for y < −m2


, (11)

with a, b ∈ R+. In (10) and (11) we have dropped the index n for
the sake of simplicity without any loss as we are considering time
invariant policies. According to these policies, the signals observed
at the relay and the destination are respectively given by

Y =

a + Zr , for X > m1
Zr , for |X | ≤ m1
−a + Zr , for X < −m1


, (12)

R =

b + Zd, for Y > m2
Zd, for |Y | ≤ m2
−b + Zd, for Y < −m2


. (13)

The policies in (10) and (11) have to satisfy the transmit power
constraints in (1) and (2). In Appendix A we have obtained con-
ditions on a, b ∈ R+ to ensure these power constraints, which
are given by (A.1) and (A.4) respectively. For these non-linear poli-
cies, the MMSE decoder g(R) and the corresponding distortion DNL
are given in (B.7) and (B.8). We can numerically compute DNL us-
ing (B.8), (A.1), and (A.4) for any fixed values of the parameters
{σ 2

x , PS, PR,Nd,Nr ,m1,m2}.We now give two examples to demon-
strate that the proposed simple non-linear scheme can outperform
the best linear scheme. In the following examples we fix the values
of the system parameters and then numerically compute the dis-
tortion for non-linear and linear policies according to (B.8) and (8)
respectively.We also evaluate the lower bound in (6), however the
reader should keep in mind that the bound is not tight in general.

Example 1. Fixing σ 2
x = PS = PR = 1,Nr = Nd = 4,m1 = 2.45,

m2 = 6.84, a = 8.36, and b = 9.25 we get: DNL = 0.926,D⋆
L =

0.96, and D = 0.8.

Example 2. Fixing σ 2
x = PS = PR = 1,Nr = Nd = 10,m1 = 2.85,

m2 = 12.05, a = 15.12, and b = 16.25 we get: DNL = 0.964,
D⋆
L = 0.992, and D = 0.909.

These examples validate that linear policies are not optimal in gen-
eral for the given two-hop relay channel when the source and the
relay node have individual power constraints. Let us now consider
a total power, E[S2e,n]+ E[S2r,n] = P . It can be easily shown that the
distortion is minimized for the linear policies by an equal power
allocation E[S2e,n] = E[S2r,n] =

P
2 if Nr = Nd. In the above two

counterexamples equal power constraints and noise variances are
imposed on the source and relay nodes. Therefore, linear policies
are still sub-optimal even if a total transmit power constraint is im-
posed on the source and the relay, instead of separate power con-
straints. Note that for more than one relay nodes linked in cascade
(multi-hop channel), the end-to-end distortion can be written as
the sum of distortions suffered at each hop since the source input
is memoryless and by applying the orthogonality property, as we
did for the two-hop case in (9). Therefore linear policies are sub-
optimal for multi-hop relaying in general.

The proposed non-linear scheme is not always better than the
optimal linear scheme as demonstrated in Fig. 2, where we have
plotted distortion achieved with the non-linear and the optimal
linear schemes as functions of signal-to-noise ratios for some fixed
parameters. The non-linear scheme outperforms the linear scheme
in low SNR regions, however there might exist better non-linear

D
is

to
rt

io
n

D
is

to
rt

io
n

(a) σ 2
x = PS = PR = 1. (b) σ 2

x = PS = PR = 1,Nd = 5.

Fig. 2. Comparison of linear and non-linear schemes.

strategies which may outperform the linear strategy also in high
SNR regions. When the channels are very noisy, one intuition on
why the proposed non-linear strategy is superior may be that it
does not amplify the large values of channel noise at its input un-
like the linear (amplify-and-forward) strategy. We note that, in
Lipsa andMartins (2011) a two-level quantizer was used when the
number of relays were greater than two. In our setting the result
also holds for a single relay, which generalizes and implies the re-
sults of Lipsa andMartins (2011). The reason for selecting symmet-
ric quantizers is due to the fact that symmetry in distribution is
preserved when symmetric functions are applied to sources with
symmetric distributions. Moreover with centering the quantizer at
zero, the encoders can utilize the available transmit power in an ef-
ficient way by transmitting signals with power equal to zero more
often.

5. Conclusion

We studied the problem of mean-square estimation of a Gaus-
sian source over a two-hop Gaussian relay channel with average
transmit power constraints. A lower bound on the distortion was
derived. We observed that the distortion bounds obtained using
cut-set arguments are not tight in general for sensor networks ifwe
restrict policies to be memoryless. Further it was shown that lin-
ear policies are person-by-person optimal over the given two-hop
relay channel. However person-by-person optimality of the linear
policies does not guarantee global optimality due to the concav-
ity property of the distortion function in the observation channel.
A simple three-level function was shown to outperform the best
linear scheme in some cases, thus validating that linear policies
are not optimal in general. This observation is in accordance with
the previously known results for non-classical information struc-
tures (Ho, 1980). We wish to identify necessary and sufficient con-
ditions for optimal schemes using variational methods as future
work. Some recent related results onMMSE, linearity of optimal es-
timation and the Witsenhausen’s counterexample can be found in
Akyol, Viswanatha, and Rose (2012), Wu and Verdú (2010, 2011).

Appendix A. Transmit power constraints

The parameter a ∈ R+ in (10) is chosen such that

PS ≥ E

f 21 (X)


(a)
= a2


−m1

−∞

p(x)dx +


∞

m1

p(x)dx


(b)
= 2a2Q


m1

σx


⇒ a ≤

 PS

2Q


m1
σx

 , (A.1)

where (a) follows from (10); (b) follows from p(x) =
1√
2πσ 2

x
e
−

x2

2σ2
x ,

Q (x) =
1

√
2π


∞

x e−
τ2
2 dτ =

1
√
2π


−x
−∞

e−
τ2
2 dτ . We now compute
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p(y) to find the condition on b ∈ R+ in (11)which ensuresE

S2r


≤

PR. From (12) we have

p(y|x) =



1
√
2πNr

e−
(y−a)2
2Nr , if x > m1

1
√
2πNr

e−
y2
2Nr , if |x| ≤ m1

1
√
2πNr

e−
(y+a)2
2Nr , if x < −m1


. (A.2)

The marginal pdf p(y) can now be computed as

p(y) =


R
p(y|x)p(x)dx

=
1

√
2πNr


e

−(y+a)2
2Nr


−m1

−∞

p(x)dx

+ e
−y2
2Nr

 m1

−m1

p(x)dx + e
−(y−a)2

2Nr


∞

m1

p(x)dx



=
1

√
2πNr


e

−(y+a)2
2Nr + e

−(y−a)2
2Nr


Q

m1

σx



+ e
−y2
2Nr


1 − 2Q


m1

σx


. (A.3)

The condition on b is obtained as follows:

PR ≥ E

f 22 (Y )


(a)
= b2


−m2

−∞

p(y)dy +


∞

m2

p(y)dy


(b)
= 2b2


−m2

−∞

p(y)dy

(c)
= 2b2


Q

m1

σx


1

√
2πNr


−m2

−∞

e
−(y+a)2

2Nr dy

+
1

√
2πNr


−m2

−∞

e
−(y−a)2

2Nr dy


+


1 − 2Q


m1

σx


1

√
2πNr


−m2

−∞

e
−y2
2Nr dy


(d)
= 2b2


Q

m1

σx


Q

m2 − a
√
Nr


+ Q


m2 + a
√
Nr


+Q


m2
√
Nr


1 − 2Q


m1

σx


(e)
=: 2b2κ(m1,m2, a, σx,Nr)

⇒ b ≤


PR

2κ(m1,m2, a, σx,Nr)
, (A.4)

where (a) follows from (11); (b) follows from symmetry of p(y)
around origin; (c) follows by substituting p(y) from (A.3); (d)
follows by the definition of Q (·) function; and (e) follows by
defining κ(m1,m2, a, σx,Nr).

Appendix B. Distortion calculation

Since we have the following Markov chain X − Y − R, p(x, r) is
given by

p(x, r) =


R
p(r|y)p(y|x)p(x)dy, (B.1)

where p(r|y) follows from (13), that is

p(r|y) =



1
√
2πNd

e−
(r−b)2
2Nd , if y > m2

1
√
2πNd

e−
r2
2Nd , if |y| ≤ m2

1
√
2πNd

e−
(r+b)2
2Nd , if y < −m2


. (B.2)

From (A.2) we see that p(y|x) is defined over the three disjoint
intervals of x (i.e., x⟨m1, |x| ≤ m1, x⟩m1). Due to this, the joint pdf
p(x, r) is also defined over these three intervals. For the interval
x < −m1,

p(x, r)
(a)
=

p(x)
√
2πNd

 e
−(r+b)2

2Nd
√
2πNr


−m2

−∞

e
−(y+a)2

2Nr dy

+
e

−r2
2Nd

√
2πNr

 m2

−m2

e
−(y+a)2

2Nr dy

+
e

−(r−b)2
2Nd

√
2πNr


∞

m2

e
−(y+a)2

2Nr dy


=

p(x)
√
2πNd


e

−(r+b)2
2Nd Q


m2 − a
√
Nr


+ e

−(r−b)2
2Nd Q


m2 + a
√
Nr


+ e

−r2
2Nd


1 − Q


m2 − a
√
Nr


− Q


m2 + a
√
Nr


(b)
=: p(x)l1(r), (B.3)

where (a) follows from (B.1) and (A.2) and (B.2); and (b) follows by
defining l1(r). Similarly for |x| ≤ m1,

p(x, r) =
p(x)

√
2πNd


e

−r2
2Nd +


e

−(r+b)2
2Nd

+ e
−(r−b)2

2Nd − 2e
−r2
2Nd


Q


m2
√
Nr


=: p(x)l2(r), (B.4)

and for x > m1,

p(x, r) =
p(x)

√
2πNd


e

−(r+b)2
2Nd Q


m2 + a
√
Nr


+ e

−r2
2Nd


1 − Q


m2 − a
√
Nr


− Q


m2 + a
√
Nr


+ e

−(r−b)2
2Nd Q


m2 − a
√
Nr


=: p(x)l3(r). (B.5)

From (B.3), (B.4), and (B.5), we compute

p(r) =


R
p(x, r)dx

= l1(r)


−m1

−∞

p(x)dx + l2(r)
 m1

−m1

p(x)dx

+ l3(r)


∞

m1

p(x)dx

= (l1(r) + l3(r))Q

m1

σx


+ l2(r)


1 − 2Q


m1

σx


. (B.6)
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TheMMSE estimator can now be computed using (B.3), (B.4), (B.5),
and (B.6) as follows.

E[X |R = r]

=
1

p(r)


xp(x, r)dx

=
1

p(r)


l1(r)


−m1

−∞

xp(x)dx

+ l2(r)
 m1

−m1

xp(x)dx + l3(r)


∞

m1

xp(x)dx


(a)
=

1
p(r)

(l3(r) − l1(r))


∞

m1

xp(x)dx

=
1

p(r)
(l3(r) − l1(r))


σ 2
x

2π
exp


−

m1
2

2σ 2
x


=: g(r), (B.7)

where (a) follows from
 m1
−m1

xp(x)dx = 0. The associated mean-
squared error is

DNL :=


R2

(x − g(r))2 p(x, r)d(x, r)

=


∞

−∞


l1(r)


−m1

−∞

(x − g(r))2 p(x)dx

+ l2(r)
 m1

−m1

(x − g(r))2 p(x)dx

+ l3(r)


∞

m1

(x − g(r))2 p(x)dx

dr. (B.8)
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