Linear Algebra (winter lectures)

Hermann Grassmann
homothety
eigenvectors
least-squares estimators
Date Topic Read & Do Links
2022.01.11 Vector spaces §6.1:1,9,15
2022.01.13 Function spaces §6.1:29,35,43 notes 13
2022.01.14 Linear subspaces §6.2:1,9,13 problems 13
2022.01.18 Spanning and independence §6.2:17,19,25
2022.01.20 Dimension §6.2:35,37,41 notes 14
2022.01.21 Recognizing bases §6.2:43,49,53 problems 14
2022.01.25 Coordinate vectors §6.2:27,29,33
2022.01.27 Linear transformations §6.4:7,17,25 notes 15
2022.01.28 Kernels & images §6.5:3,13,27 problems 15
2022.02.01 Invertible linear maps §6.5:17,31,37
2022.02.03 Test 3 notes 16
2022.02.04 Invertible operators §6.6:7,13,17 problems 16
2022.02.08 Change of basis §6.3:11,13,15
2022.02.10 Matrix of a linear map §6.6:27,33,35 notes 17
2022.02.11 Similar matrices §4.4:1,3,35 problems 17
2022.02.15 Eigenvalues §4.3:9,15,21
2022.02.17 Characteristic polynomials §4.4:23,34,41 notes 18
2022.02.18 Triangularization §4.5:47,49,51 problems 18
Winter break
2022.03.01 Eigenbasis §4.4:11,27,45
2022.03.03 Eigenspaces §4.4:13,37,43 notes 19
2022.03.04 Diagonalizablility §4.4:39,49,51 problems 19
2022.03.08 Inner products §7.1:5,9,11
2022.03.10 Test 4 notes 20
2022.03.11 Norms §7.1:17,27,39 problems 20
2022.03.15 Orthonormalization §5.3:3,7,11
2022.03.17 Projections §5.3:13,15,17 notes 21
2022.03.18 Approximate solutions §5.2:3,7,11 problems 21
2022.03.22 Least-squares §7.3:1,11,19
2022.03.24 Adjoint operators §7.5:3,5,15 notes 22
2022.03.25 Isometries §5.2:9,13,19 problems 22
2022.03.29 Spectral theorem §5.2:17,21,29
2022.03.31 Self-adjoint operators §5.4:5,19,25 notes 23
2022.04.01 Positive-semidefinite operators §5.4:9,15,23 problems 23
2022.04.05 Polar decomposition §5.5:27,39,53
2022.04.07 Singular value decomposition §7.4:7,9,29 notes 24
2022.04.08 Review problems 24
2022.04.21 Extra tutorial 201 Jeffery Hall at 14:00 EDT
2022.04.22 Extra tutorial 201 Jeffery Hall at 14:00 EDT
2022.04.24 Exam 2 14:00–17:00 Grant Hall