Introduction to Algebraic Geometry (Schedule)

David Hilbert
projective variety
ruled surface
Zariski topology
Date Topics Read Links
2025.01.06 Course overview, Affine space §1.1
2025.01.07 Affine subvarieties, Zariski topology §1.2 notes01
2025.01.09 Parametrizations, Unirationality §1.3 email
2025.01.13 Ideals, Vanishing ideals §1.4
2025.01.14 Monomial ideals, Monomial orders §2.2 notes02
2025.01.16 Polynomial division, Division algorithm §2.3 problems1
2025.01.20 Hilbert basis, Noetherian rings §2.4 solutions1
2025.01.21 Projects, Remainders §2.5 notes03
2025.01.23 S-polynomials, Buchberger criteria §2.6 research
2025.01.27 Buchberger algorithm, reduced Gröbner bases §2.7
2025.01.28 Macaulay2 basics, More Macaulay2 §2.8 notes04
2025.01.30 Elimination, Projections §3.1 problems2
2025.02.03 Implicitization, Classic examples §3.2 solutions3
2025.02.04 Rational Implicitization, Toric ideals §3.3 notes05
2025.02.06 Common roots, Resultants §3.4 outline
2025.02.10 Resultants and roots, Properties of resultants §3.5
2025.02.11 Resultants and remainders, Resultants with many variables §3.6 notes06
2025.02.13 Extension theorem (statement and proof) problems3
Winter break
2025.02.24 Nullstellensatz, Radical ideals §4.1 solutions3
2025.02.25 Maximal ideals, Prime ideals §4.2 notes07
2025.02.27 Sums and products, Intersections §4.3 draft
2025.03.03 Closure theorem, Colon ideals §4.4
2025.03.04 Irreducible decompositions, Primary ideals §4.5 notes08
2025.03.06 Primary decompositions, Associated primes §4.6 problems4
2025.03.10 Coordinate rings, Morphisms of affine subvarieties §5.4 solutions4
2025.03.11 Homomorphisms of coordinate rings, Dominant morphisms §5.5 notes09
2025.03.13 Projective space (as a set and as a variety) §8.1 peer feedback
2025.03.17 Projective subvarieties, Homogenization §8.2
2025.03.18 Projective closure, Projective nullstellensatz §8.3 notes10
2025.03.20 Saturation, Projective dictionary §8.4 problems5
2025.03.24 Projective elimination, Completeness §8.5 solutions5
2025.03.25 Hilbert functions, Hilbert polynomials §9.3 notes11
2025.03.27 Multiplicities, Finite affine subvarieties §9.2 paper
2025.03.31 Finite projective subvarieties, Bézout theorem §8.7 notes12
2025.04.01 Mock presentation, Making presentations §8.6
2025.04.03 Review problems6
2025.04.?? Extra office hour solutions6
2025.04.11 video
2025.04.?? Exam TBA