Math 310 — Group Theory About Lectures OnQ


  Date Topic Book HomeworkHmwk Practice ProblemsProbs
Sept. 5 Introduction to the course §1   1— 10
7 Counting symmetries of polyhedra §1  
11 Axioms §2—3 §2: 3—7; §4: 2—4
12 Examples of groups §3 1—10
14 More symmetries of algebraic structures §9 1—6
18 Subgroups §5 H1 1—5, 7, 8
19 Generators §5 A1 1—5, 7, 8
21 Order of an element, Cyclic groups §5 10—12
25 The symmetric group §6 H2 1—5
26 More Symmetric Group §6 A2
28 The alternating group §6 8—12
Oct. 2 National Day for Truth and Reconciliation
3 Dihedral groups §4 H3 5—9
5 More on dihedral groups §4 A1
9
10 Fall Mid-Term Break
12
16 Homomorphisms §16 H4 1—7
17 Isomorphisms §7 A4 1—12
19 Conjugation
23 Cosets §11—12 H5 §11: 1, 2; §12: 3, 8
24 Lagrange's theorem §11 A5 1—5
26 Normal subgroups §15 1, 2, 4, 6
30 Quotient groups §15 H6 13
31 The first isomorphism theorem §16 A6
Nov. 2 The correspondence theorem §16
6 More about the correspondence theorem §16 H7
7 Proof of the correspondence theorem §16 A7
9 Conjugation and conjugacy classes §14 1—5
13 More conjugation §14 H8 6, 9, 12
14 Group actions on sets §17 A8 1, 2, 5, 6, 7
16 More group actions on sets §17
20 Orbits and Stabilizers §17 H9 3, 4
21 The orbit-stablizer theorem §17 A9 6, 7, 8
23 Automorphisms of the platonic solids §8 4, 11
27 Symmetries of the icosahedron §8 H10 5, 12
28 p-groups and the Sylow theorems §20 A10 1, 2
30 Proofs of the Sylow theorems §20 3, 9, 10
Dec. 4 More Sylow theorems §20 H11
5 Products §10 A11 1—13
7  
11   H12
12   A12