| Date | Topic | Book | HomeworkHmwk | Practice ProblemsProbs | |
|---|---|---|---|---|---|
| Sept. | 5 | Introduction to the course | §1 | 1— 10 | |
| 7 | Counting symmetries of polyhedra | §1 | 11 | Axioms | §2—3 | §2: 3—7; §4: 2—4 |
| 12 | Examples of groups | §3 | 1—10 | ||
| 14 | More symmetries of algebraic structures | §9 | 1—6 | ||
| 18 | Subgroups | §5 | H1 | 1—5, 7, 8 | |
| 19 | Generators | §5 | A1 | 1—5, 7, 8 | |
| 21 | Order of an element, Cyclic groups | §5 | 10—12 | ||
| 25 | The symmetric group | §6 | H2 | 1—5 | |
| 26 | More Symmetric Group | §6 | A2 | ||
| 28 | The alternating group | §6 | 8—12 | ||
| Oct. | 2 | National Day for Truth and Reconciliation | |||
| 3 | Dihedral groups | §4 | H3 | 5—9 | |
| 5 | More on dihedral groups | §4 | A1 | ||
| 9 | |||||
| 10 | Fall Mid-Term Break | ||||
| 12 | |||||
| 16 | Homomorphisms | §16 | H4 | 1—7 | |
| 17 | Isomorphisms | §7 | A4 | 1—12 | |
| 19 | Conjugation | ||||
| 23 | Cosets | §11—12 | H5 | §11: 1, 2; §12: 3, 8 | |
| 24 | Lagrange's theorem | §11 | A5 | 1—5 | |
| 26 | Normal subgroups | §15 | 1, 2, 4, 6 | ||
| 30 | Quotient groups | §15 | H6 | 13 | |
| 31 | The first isomorphism theorem | §16 | A6 | ||
| Nov. | 2 | The correspondence theorem | §16 | ||
| 6 | More about the correspondence theorem | §16 | H7 | ||
| 7 | Proof of the correspondence theorem | §16 | A7 | ||
| 9 | Conjugation and conjugacy classes | §14 | 1—5 | ||
| 13 | More conjugation | §14 | H8 | 6, 9, 12 | |
| 14 | Group actions on sets | §17 | A8 | 1, 2, 5, 6, 7 | |
| 16 | More group actions on sets | §17 | |||
| 20 | Orbits and Stabilizers | §17 | H9 | 3, 4 | |
| 21 | The orbit-stablizer theorem | §17 | A9 | 6, 7, 8 | |
| 23 | Automorphisms of the platonic solids | §8 | 4, 11 | ||
| 27 | Symmetries of the icosahedron | §8 | H10 | 5, 12 | |
| 28 | p-groups and the Sylow theorems | §20 | A10 | 1, 2 | |
| 30 | Proofs of the Sylow theorems | §20 | 3, 9, 10 | ||
| Dec. | 4 | More Sylow theorems | §20 | H11 | |
| 5 | Products | §10 | A11 | 1—13 | |
| 7 | |||||
| 11 | H12 | ||||
| 12 | A12 |