Math 347 — Introduction to Topology About Lectures OnQ


  Date Topic Book HomeworkHmwk Practice ProblemsProbs
Jan. 6 Introduction to the course I §3.1  
8 Introduction II  
9 Introduction III §3.3
13 Homeomorphisms
15 The subspace topology §3.5
16 Subspaces II §3.5 H1
20 Generators and bases for topologies §3.1 A1
22 Generators and bases II §3.1
23 Introduction to Categories §10.4 H2
27 Definitions by diagrams; functors §10.4 A2
29 Definitions via universal properties §10.4
30 Products and the product topology §3.6 H3
Feb. 3 Products II §3.6 A3
5 Quotient spaces §5.1
6 Quotient spaces II §5.2 H4
10 Examples of quotient spaces A4
12 More quotient examples
13 Separation properties §7.6 H5
17
19 Reading Week
20
24 Connectedness of topological spaces I §4.1 A5
26 Connectedness II §4.1
27 Compact and quasi-compact spaces §4.4 H6
Mar. 3 Compact subsets of $\mathbb{R}^n$ §4.4 A6
5 Tychonoff's theorem I §7.2
6 Tychonoff's theorem II §8.4 H7
10 Separation conditions II §7.6 A7
12 Metric spaces §3.4
13 Topology as a language H8
17 Introduction to the fundamental group §11.1 A8
19 Introduction to $\pi_1$ II §11.2
20 Introduction to $\pi_1$ III §11.3 H9
24 $\pi_1(S^n)$, $n\geq 2$ §11.4 A9
26 $\pi_1(S^1)$, I
27 $\pi_1(S^1)$ II and covering spaces §12.2 H10
31 $\pi_1(S^1)$ III + first applications §12.4 A10
Apr. 2 More applications of $\pi_1(S^1)$ §12.5
3 Good Friday H11
6 Still more applications of $\pi_1(S^1)$ §12.5 A11
8
9 H12
10 A12