Math 347 — Introduction to Topology About Lectures OnQ


  Date Topic Book HomeworkHmwk Practice ProblemsProbs
Sept. 3 Introduction to the course I §3.1  
5 Introduction II  
6 Introduction III §3.3
10 Homeomorphisms
12 The subspace topology §3.5
13 Subspaces II §3.5 H1
17 Generators and bases for topologies §3.1 A1
19 Generators and bases II §3.1
20 Introduction to Categories §10.4 H2
24 Definitions by diagrams; functors §10.4 A2
26 Definitions via universal properties §10.4
27 Products and the product topology §3.6 H3
Oct. 2 Officially a Monday (no class) A3
3 Products II §3.6
4 Quotient spaces §5.1 H4
8 Quotient spaces II §5.2 A4
10 Examples of quotient spaces
11 More quotient examples H5
15
17 Fall Break
18
22 Separation properties §7.6 A5
24 Connectedness of topological spaces I §4.1
25 Connectedness II §4.1 H6
29 Compact and quasi-compact spaces §4.4 A6
31 Compact subsets of $\mathbb{R}^n$ §4.4
Nov. 1 Tychonoff's theorem I §7.2 H7
5 Tychonoff's theorem II §8.4 A7
7 Separation conditions II §7.6
8 Metric spaces §3.4 H8
12 Topology as a language A8
14 Introduction to the fundamental group §11.1
15 Introduction to $\pi_1$ II §11.2 H9
19 Introduction to $\pi_1$ III §11.3 A9
21 $\pi_1(S^n)$, $n\geq 2$ §11.4
22 $\pi_1(S^1)$, I H10
26 $\pi_1(S^1)$ II and covering spaces §12.2 A10
28 $\pi_1(S^1)$ III + first applications §12.4
29 More applications of $\pi_1(S^1)$ §12.5 H11
Dec. 3 Still more applications of $\pi_1(S^1)$ §12.5 A11
5
6 H12
10 A12